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Abstract The cause of massive blooms of Ethmodiscus rex laminated diatom mats (LDMs) in the eastern
Philippine Sea (EPS) during the Last Glacial Maximum (LGM) remains uncertain. In order to better understand
the mechanism of formation of E. rex LDMs from the perspective of dissolved silicon (DSi) utilization, we
determined the silicon isotopic composition of single E. rex diatom frustules (δ30SiE. rex) from two sediment cores
in the Parece Vela Basin of the EPS. In the study cores, δ30SiE. rex varies from �1.23‰ to �0.83‰ (average
�1.04‰), a range that is atypical of marine diatom δ30Si and that corresponds to the lower limit of reported
diatom δ30Si values of any age. A binary mixing model (upwelled silicon versus eolian silicon) accounting
for silicon isotopic fractionation during DSi uptake by diatoms was constructed. The binary mixing model
demonstrates that E. rex dominantly utilizedDSi fromeolian sources (i.e., Asian dust) with onlyminor contributions
from upwelled seawater sources (i.e., advected from Subantarctic ModeWater, Antarctic IntermediateWater, or
North Pacific Intermediate Water). E. rex utilized only ~24% of available DSi, indicating that surface waters of the
EPS were eutrophic with respect to silicon during the LGM. Our results suggest that giant diatoms did not
always use a buoyancy strategy to obtain nutrients from the deep nutrient pool, thus revising previously
proposed models for the formation of E. rex LDMs.

1. Introduction

As a typical giant diatom species, Ethmodiscus rex shows distinct physiological and ecological features that
distinguish it from small spring-bloom diatoms. Compared with cell volumes of 103–105μm3 for spring-
bloom diatoms, E. rex has much large cell volumes (up to 109μm3) dominated by a single vacuole
(>99% of total volume) [Villareal et al., 1999a, 2007]. Whereas spring-bloom diatoms favor well-mixed,
fertile surface waters, E. rex reaches maximum abundance within stable and stratified, oligotrophic
water masses [Villareal et al., 1999a; Kemp et al., 2000]. To overcome the nutrient deficiency of surface
waters, E. rex commonly utilizes a buoyancy strategy of migrating vertically between the surface for
photosynthesis and the nutricline to obtain nutrients, e.g., dissolved silicon (DSi), nitrate, and phosphate
[Villareal, 1992; Villareal and Carpenter, 1994; Kemp et al., 2006]. In addition, giant diatoms can utilize
nutrient inputs resulting from episodic breakdown of the thermocline [Goldman, 1993; Goldman and
McGillicuddy, 2003] or tap into the nutrient pool via symbiosis with nitrogen-fixing cyanobacteria
[Villareal, 1991; Carpenter et al., 1999]. Relying on abundant DSi and nitrate trapped in deep nutrient
pools, E. rex can sustain blooms lasting several months from early summer to late fall [Kemp et al., 2000,
2006]. The long duration of E. rex blooms generates total primary production that rivals or exceeds that
of small-diatom blooms, which generally last from several days to a few weeks in the spring [Kemp et al.,
2000]. However, the growth and production rates of E. rex are substantially lower than those of
spring-bloom diatoms [Kemp et al., 2000]. Once seasonal mixing breaks down water column stratification,
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E. rex blooms subside, resulting in a massive flux of diatom biomass to the deep ocean, where it rapidly
accumulates on the seafloor as laminated diatom mats (LDMs).

Due to the rare occurrence of E. rex in the modern global ocean and its unusual ecology, the formation of
LDMs is still not well understood—a situation that has been referred to as the “E. rex problem” [Gardner
and Burckle, 1975; Abrantes, 2001]. Several mechanisms have been proposed for the formation of E. rex
LDMs in different oceanic regions (see review in Romero and Schmieder [2006]). In their seminal taxonomic
study of LDMs from the Mariana Ridge-Trough-Trench region, Wiseman and Hendey [1953] inferred
massive, short-duration blooms of E. rex. This explanation was further elaborated in the “strong-upwelling-
plus-intense-bloom” hypothesis, according to which upwelling supplies E. rex with episodic pulses of
nutrients [Gardner and Burckle, 1975; Stabell, 1986; Abrantes, 2001]. However, the general use of E. rex as a
paleo-upwelling indicator is not warranted because modern studies of its ecology have shown that
upwelling is not a necessary condition for E. rex blooms [Villareal et al., 1999a]. An alternative, the
“differential dissolution” hypothesis, proposed that strong dissolution of other diatom species together
with minimal dissolution of E. rex due to its rapid sinking and short exposure time to seawater favored its
relative enrichment in the sediment [Bukry, 1974; Schrader, 1974; Mikkelsen, 1977]. Also, several
investigations have suggested that local seafloor bathymetry plays a critical role in the formation of E. rex
LDMs. For example, Gombos [1984] pointed out that preservation of E. rex LDMs may have been promoted
within a closed depression on the Mid-Atlantic Ridge having poor bottom circulation and reduced
dissolved O2 levels. Nevertheless, these mechanisms either apply exclusively to a particular oceanic region
or seek only to explain the accumulation of E. rex LDMs rather than the underlying causes of E. rex blooms.

Recent advances in our knowledge of the ecology and biochemistry of E. rex [Villareal, 1992; Villareal and
Carpenter, 1994; Villareal et al., 1999a, 2007] have yielded two new models for the formation of giant diatom
LDMs. In the “ocean stratification model,” E. rex blooms develop within a deep chlorophyll maximum layer
under stratified conditions and utilize a buoyancy strategy of vertical migration between the ocean surface
for photosynthesis and the nutricline to obtain nutrients [Villareal et al., 1999a; Kemp et al., 2000, 2006]. In the
“frontal zone model,” E. rex congregates along an oceanic front, first taking up nutrients and growing in cold
upwelling waters beneath the frontal boundary and then ascending into overlying warm oligotrophic waters
by regulated buoyancy [Yoder et al., 1994; Kemp et al., 2006]. Because these models take into consideration
the unusual ecological characteristics of E. rex (i.e., its buoyancy strategy and association with oligotrophic
conditions), they are now widely accepted as the most likely mechanisms of formation of E. rex LDMs. Each
model has regional applicability: strong oceanic stratification is linked to E. rex blooms in the tropical ocean
[e.g., Gingele and Schmieder, 2001; De Deckker and Gingele, 2002; Kemp and Villareal, 2013] and frontal zones
to blooms in subtropical settings [e.g., Pike, 2000; Kemp et al., 2010; Rackebrandt et al., 2011]. Both models
invoke deep nutrient pools for E. rex blooms, raising the question of whether all nutrients utilized by E. rex
are taken from such pools. Studies of giant diatoms have provided unambiguous evidence of nitrate uptake
from deep nutrient pools [Villareal et al., 1993, 1999b]. However, the source of the nutrient DSi used in
biomineralization has not been unambiguously determined to date, although significant surface DSi uptake
by E. rex has been reported [Villareal et al., 1999a].

The silicon isotopic composition of diatom opal (δ30Sidiatom) has great potential for tracing DSi utilization by
diatoms in paleoceanographic and paleolimnological investigations (see reviews in De La Rocha [2006],
Crosta and Koç [2007], and Leng et al. [2009]). Diatoms preferentially assimilate the light isotope of silicon
(28Si) when they take up DSi from ocean-surface waters for frustule formation, thus leaving the nutrient pool
enriched in the heavy isotope of silicon (30Si). As the nutrient pool becomes enriched in 30Si, this signal is
also transferred to diatom opal [De La Rocha et al., 1997]. Thus, increased δ30Sidiatom is generally indicative of
greater degrees of DSi utilization in ocean-surface waters. The silicon isotopic fractionation factor associated
with DSi uptake is thought to be essentially constant (30ε=�1.1‰) and independent of temperature and
growth rates [De La Rocha et al., 1997], pH [Milligan et al., 2004], salinity [Alleman et al., 2005], and cell size
[Cardinal et al., 2007], although species-specific effects have been discovered recently [Sutton et al., 2013] (see
section 4.3.1). The utility of silicon isotopes for analysis of silica biomineralization has been further confirmed
through a series of studies that have quantified diatom growth and its effect on the DSi pool in modern
aqueous systems [De La Rocha et al., 2000, 2011; Varela et al., 2004; Cardinal et al., 2005, 2007; Beucher et al.,
2008, 2011; Fripiat et al., 2011a, 2011b, 2012; Cao et al., 2012; de Souza et al., 2012a, 2012b; Ehlert et al., 2012;
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Grasse et al., 2013; Singh et al., 2015]. However, most of these studies utilized mixed-species δ30Sidiatom records
from polar-ocean sediments, making the broader applicability of their conclusions uncertain.

E. rex LDMs were deposited widely in the eastern Philippine Sea (EPS) during the Last Glacial Maximum (LGM)
[Xiong et al., 2013a, and references therein], as documented in a series of cores recovered from the Parece
Vela Basin (Figure 1) during the 2003–2004 cruise of R/V Science No. 1 [Zhai et al., 2009]. The widespread
occurrence of E. rex LDMs in the EPS during the LGM is puzzling. First, the modern EPS is characterized by
oligotrophic and low-productivity surface waters having silicate and chlorophyll a concentrations of just
2.5–3.5μmol L�1 and 0.04–0.07mgm�3, respectively (Figures 2a–2c). However, DSi availability during the
LGM may have been much greater than at present, which raises two important questions. What was the
source of DSi for E. rex blooms during the LGM? And what was the degree of DSi utilization by E. rex?
Second, the EPS is located on the northern margin of the Western Pacific Warm Pool, which is modulated
by large-scale climatic patterns linked to the El Niño–Southern Oscillation [Chiang, 2009]. In this area, El
Niño-like conditions led to shoaling of the thermocline during the LGM and, thus, to increased nutrient
inputs to the surface waters [Stott et al., 2002]. However, greater vertical mixing and turbulence during the
LGM should have served to repress E. rex blooms, raising additional important questions. What was the
trigger for these E. rex blooms? Were E. rex blooms linked to vertical mixing events or to other proximate
causes? In order to answer these questions, we present the first δ30Sidiatom records from two tropical-
ocean cores containing E. rex LDMs. The results of this study not only allow reconstruction of the DSi state
of the EPS during the LGM but also provide new insights concerning the formation of E. rex LDMs.

2. Materials and Methods
2.1. Core Descriptions and Age Models

E. rex LDMs were analyzed for δ30Sidiatom in two deep-sea cores from the Parece Vela Basin of the EPS
(Figure 1): (1) core WPD-03, 405 cm long, recovered during the 2004 cruise of R/V Science No. 1 in 5250m
water depth at 17°19.82′N and 138°27.28′E, and (2) core WPD-12, 100 cm long, obtained during the 2003
cruise of R/V Science No. 1 in 4954m water depth at 20°35.95′N and 139°14.54′E. Both of the cores contain

Figure 1. Map of the tropical West Pacific showing the locations of cores WPD-03 and WPD-12, regional ocean circulation
(modified from Fine et al. [1994], Siedler et al. [2004], Bostock et al. [2010], Kawabe and Fujio [2010], and Rose et al. [2010]),
and schematic Asian dust trajectories (modified after Nilson and Lehmkuhl [2001], Shao et al. [2011], and Muhs [2013]).
Abbreviations: AAIW, Antarctic Intermediate Water; EAWM, East Asian winter monsoon; EUC, Equatorial Undercurrent; KC,
Kuroshio Current; MC, Mindanao Current; NEC, North Equatorial Current; NECC, North Equatorial Counter Current; NPDW,
North Pacific Deep Water; NPIW, North Pacific Intermediate Water; SAF, Subantarctic Front; SAMW, Subantarctic Mode
Water; SEC, South Equatorial Current; and STMW, Subtropical Mode Water. The map is a Mercator projection drawn using
the online map generator at http://www.geomapapp.org/MSInstall.html.
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little carbonate (<1%) because the study sites lie below the calcium carbonate compensation depth [Xiong
et al., 2012b]. The longer core (WPD-03) comprises three discrete lithostratigraphic units. The upper unit
(0–286 cm; all depths are relative to the core top) is composed of olive-grey and grey, laminated diatom
mats (LDM-03), which are dominated by fragmented valves of the mat-forming diatom E. rex in near-
monospecific assemblages (Figure 3a) with extremely low abundances of other diatom species and
radiolarians (Figure 3b) [Zhai et al., 2009]. The middle unit (286–334 cm) is characterized by grey
diatomaceous clays (DCs) that are dominated by E. rex and small spring-bloom diatoms [Zhai et al., 2012]
but lack lamination. The lower unit (334–405 cm) comprises massive red pelagic clays (PCs) that generally
lack a microfossil component. The shorter core (WPD-12) contains only the laminated diatom mat facies
(LDM-12), which resembles that of LDM-03 but contains greater quantities of nonbiogenic silica.

The construction of an agemodel for coreWPD-03 was based on linear regression of the calibrated radiocarbon
age data (see details in Xiong et al. [2013a]). This model dates deposition of the DC and LDM-03 units to
31.0–29.4 kyr and 29.4–19.5 kyr, respectively (note that all reported ages are “before present”) [Xiong et al.,
2013a]. Unfortunately, the age model of core WPD-12 is not well established due to reversed accelerator
mass spectrometry (AMS)14C age data throughout the core, and the age of the cored interval can be
constrained only broadly to between ~25 kyr and ~19 kyr [Zhai et al., 2009]. Possible reasons for AMS14C age
reversals in the study cores were considered by Xiong et al. [2013a]. Post-LGM sediments are missing at the
tops of the study cores due to coring-induced loss of a thin (<~3cm) fluff layer that represents the limited
accumulation of pelagic clays in the EPS since ~19 kyr, which is an interval without LDM formation.

2.2. Diatom Extraction and Silicon Isotope Analysis

A series of physical separation and chemical oxidation steps were utilized to extract and isolate diatoms,
including the primary species of interest (E. rex), for silicon isotope measurements [Xiong et al., 2012c]. Bulk
wet samples (Figure 3a) were treated with 10% H2O2 and 1molmL�1 HCl to remove excess organic matter
and carbonate. The samples were then wet sieved to obtain the 63–154μm and >154μm size fractions

Figure 2. Maps of annual mean surface (a) silicate and (b) chlorophyll a concentrations in the tropical West Pacific.
Latitudinal depth sections of (c) silicate concentrations along 139°E (i.e., close to the study cores) and (d) salinity along
163°E. In Figure 2d, CPDW is Circumpolar Deep Water; see Figure 1 for other abbreviations. Figures 2a, 2c, and 2d were
generated using the Ocean Data View software (http://www.odv.awi.de) [Schlitzer, 2000], and Figure 2b was developed
from SeaWiFS satellite imagery (http://www.oceancolor.gsfc.nasa.gov/cgi/l3). The white dashed lines in Figures 2a and 2b
show the locations of the cross sections in Figures 2c and 2d, respectively.
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using 63μm and 154μm steel meshes. Pure diatom remains were obtained from the two size fractions via
centrifugation at 1500 rpm and heavy liquid flotation using 2.3 gmL�1 sodium polytungstate (Figures 3d
and 3e). Labile organic matter coating the diatom frustules was removed via a chemical oxidation step, in
which samples were immersed in 30% H2O2 at 65°C for 2 h. Sample purity was verified by visual inspection
of treated samples using both standard light and scanning electron (SEM) microscopy. The 63–154μm and
>154μm diatom fractions consist of nearly pure E. rex except for the presence of trace radiolarians (<3%)
in the 63–154μm fraction [Xiong et al., 2013a]. However, our experiments indicate that samples with opal
concentrations of <10% cannot be totally purified by the physical separation technique described here
[Xiong et al., 2012c].

The cleaned >154μm E. rex fractions (Figure 3f) were used for silicon isotopic measurements. About 75μL of
the E. rex samples were transferred into Teflon vials, dried and dissolved in 1mL 0.1mol L�1 NaOH at 130°C
for 24 h. Residual detrital material was separated afterward via centrifugation, and traces of organic matter
were removed with 200μL concentrated H2O2 (Suprapur®). Following repeated evaporation and dissolution,
sample solutions were diluted with 4mL MQ water and neutralized with 0.1mL 1mol L�1 HCl [Reynolds et al.,
2008]. Prior to isotopic analysis, all samples were chromatographically purified with 1mL precleaned
AG50W-X8 cation exchange resin (BioRad®, mesh 200–400) [after Georg et al., 2006b; de Souza et al.,
2012b]. The silicon isotope ratios were analyzed on a NuPlasma high-resolution multicollector inductively

Figure 3. Scanning electron microscope photos showing samples before and after cleaning for silicon isotope analysis.
(a) Bulk sediment sample before physical separation, (b) radiolarian (marked by the red arrow) in sample before physical
separation, (c) detrital grain in sample before physical separation, (d) >154 μm E. rex frustules after physical separation,
(e) 63–154 μm E. rex frustules after physical separation, and (f ) pure E. rex frustules following removal of labile organic
matter by chemical oxidation.
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coupled plasma–mass spectrometer
by applying a standard-sample
bracketing method [Albarède et al.,
2004] at GEOMAR in Kiel, Germany,
with selected replicate samples ana-
lyzed at the University of California,
Santa Barbara (UCSB). All solutions
were diluted to 0.6 ppm (measured
colourimetrically using a photo-
spectrometer per methods of
Grasshoff et al. [1999]) and intro-
duced via a CetacAridus II desolvat-
ing nebulizer system equipped with
a perfluoroalkoxy nebulizer, yielding
a 70–80 μLmin�1 uptake rate. For
methods used at UCSB to analyze
sample duplicates, see Brzezinski
et al. [2006].

The silicon isotopic compositions are
reported in δ notation using the
reference standard National Bureau

of Standards (NBS) 28 in parts per thousand (δ30Si = ((Rsample/Rstandard)� 1) × 1000), where Rsample is the
30Si/28Si ratio of the sample and Rstandard is the 30Si/28Si ratio of the standard. For each sample,
measurements were repeated at least on three different days and at least 4–5 times per session, which
generally resulted in internal reproducibility between 0.14‰ and 0.28‰ (2σsd), with two samples having
higher 2σsd of 0.41‰ and 0.44‰, respectively (Table 1). Repeated measurements of the reference
materials NBS28, Institute for Reference Materials and Measurement 018, and Big Batch gave average δ30Si
values of 0.00 ± 0.26‰ (2σsd), �1.42 ± 0.27‰ (2σsd), and �10.64 ± 0.23‰ (2σsd), respectively. These values
are in good agreement with values obtained by other laboratories [Reynolds et al., 2007; Hendry et al.,
2011]. Replicate measurements of an in-house diatom matrix standard over longer periods of time (n= 30
sessions within 1 year) gave an external reproducibility of ±0.25‰ (2σsd).

3. Results

In coreWPD-03, δ30SiE. rex ranges from�1.23‰ to�0.83‰with an average of approximately�1.06‰ (Table 1
and Figure 4a). In core WPD-12, δ30SiE. rex varies from �1.05‰ to �0.87‰ with an average of approximately
�0.97‰ (Table 1 and Figure 4e). The ranges of variation in δ30SiE. rex are thus 0.40‰ and 0.18‰ in the
WPD-03 and WPD-12 cores, respectively. These ranges are rather small, just within the long-term external
reproducibility (±0.25‰, 2σsd) of the δ30Si measurements (Figures 4a and 4e). They indicate that δ30SiE. rex is
relatively invariant and does not exhibit pronounced changes within or between the two cores.

The δ30SiE. rex results of the present study (average �1.04±0.22‰; 2σsd, n=19) are the most negative silicon
isotopic compositions so far reported for diatoms and diatomaceous sediments of any age (Figure 5). To verify
that these unusual diatom δ30Si values are free from analytical bias, three E. rex sample duplicates (>154μm
fraction) from core WPD-03 were sent to UCSB for silicon isotopic analysis. Table 2 compares the results for
the two laboratories, which are indistinguishable from each other within the reported error for each sample.
These observations suggest that our δ30SiE. rex results can be regarded as a real environmental signal.

Unlike δ30SiE. rex, the productivity proxies δ13CE. rex and δ13Corg (Figure 4b), opal concentration (Figure 4c), and
Ba/Ti [Xiong et al., 2012b] show a two-step pattern of change within LDM-03. These proxies increased through
time during deposition of the PC, DC, and lower LDM-03, followed by stabilization at relatively high levels
during deposition of the middle to upper LDM-03 [Xiong et al., 2012b, 2013a]. Illite content and illite/smectite
ratios show a pronounced peak during DC deposition, followed by lower and relatively invariant values
during deposition of the LDM-03 (Figure 4d). Core WPD-12 and the correlative portion of core WPD-03 show
nearly identical lithofacies patterns as well as downcore geochemical trends (Figures 4e–4h).

Table 1. The δ30Si of E. rex Frustules (>154 μm Fraction) for Cores
WPD-03 and WPD-12

Core Interval (cm) Age (kyr) δ30Si (‰) 2σsd (‰)

WPD-03 0–10 19.53 �0.95 0.21
60–65 21.55 �1.18 0.23

100–105 22.95 �1.03 0.19
140–145 24.35 �0.98 0.14
180–185 25.75 �1.05 0.24
212–214 26.82 �1.12 0.20
228–230 27.38 �1.23 0.15
252–254 28.23 �1.10 0.18
284–286 29.35 �1.14 0.28
292–294 29.63 �1.17 0.44
300–302 29.91 �0.97 0.41
312–314 30.33 �1.00 0.20
316–318 30.47 �1.15 0.25
324–326 30.75 �0.83 0.20

WPD-12 6–8 �0.89 0.22
22–24 �0.87 0.15
54–56 �1.05 0.26
88–90 �1.03 0.27
96–98 �1.02 0.21

Paleoceanography 10.1002/2015PA002793

XIONG ET AL. SOURCE AND UTILIZATION OF DSI BY E. REX 808



4. Discussion
4.1. Comparison With δ30Si of Modern and Ancient Diatoms

The δ30SiE. rex results of the present study (average�1.04± 0.22‰; 2σsd, n=19) are exceptionally low compared
to earlier studies of biogenic silica (BSi) and diatoms in the oceanic water column and sediment, which have
yielded δ30Si that is mostly >0‰ (Figure 5). The few instances of modern δ30Si of <0‰ have been
attributed to contributions of BSi from sponge spicules or radiolarians [Cardinal et al., 2007; Cao et al., 2012;

Figure 4. Age-depth profiles for δ30SiE. rex, δ
13CE. rex, and δ13Corg; opal content; and illite content and illite/smectite ratios

in cores (a–d) WPD-03 and (e–h) WPD-12. The error bars in Figures 4a and 4e show the long-term external reproducibility
(±0.25‰, 2σsd) of the δ

30Si measurements. The arrows in Figures 4a–4c and 4e–4g show general stratigraphic trends. Data
in Figures 4a, 4e, 4f, and 4h are original to this study; data in Figures 4b–4d and 4g are from Xiong et al. [2012a, 2012b,
2013a]. LDM: laminated E. rex diatom mats, DC: diatomaceous clay, and PC: pelagic clay.
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Figure 5. Comparison of δ30SiE. rex in cores WPD-03 and WPD-12 with published δ30Si of diatoms or BSi in the oceanic
water column and sediment. Data sources: global-ocean surface sediments [Wischmeyer et al., 2003]; Southern Ocean
surface waters (open circles), intermediate waters (open squares), and deep waters (open diamonds) (green [Varela et al.,
2004], blue [Cardinal et al., 2007], red [Fripiat et al., 2011b], and purple [Fripiat et al., 2012]); Southern Ocean sea ice [Fripiat
et al., 2007], core-top sediments [Egan et al., 2012], core TTN057-13PC4 [Horn et al., 2011], core RC13-259 [Brzezinski et al.,
2002], cores MD88-769 and MD97-2101 [Beucher et al., 2007], cores E50-11, RC11-94, and RC13-269 [De La Rocha et al.,
1998], core MD03-2601 [Panizzo et al., 2014], and core ODP 1090 (2–10 μm (red pentacles) and 10–20 μm (blue pentacles)
diatoms [Egan et al., 2013]; Atlantic Ocean unnamed core (Baltic Sea) [Sun et al., 2011], core U1304 [massive (blues crosses)
and laminated (red crosses) diatom oozes [Romero et al., 2011], core ODP 1082 [Etourneau et al., 2012], and core HU89038-
8PC [Hendry et al., 2014]; and Pacific Ocean surface waters [Cao et al., 2012], Rhizosolenia sp. [De La Rocha et al., 2000],
surface sediments (diatom (red open crosses) and BSi (purple open crosses) [Ehlert et al., 2012], core ODP 1240 [Pichevin
et al., 2009], core ODP 882 [Reynolds et al., 2008], core SO147-106KL [Ehlert et al., 2013], core MD02-2515 [Pichevin et al.,
2012], and coreMD01-2416 (10–20 μm (red triangles) and>63 μm (blue triangles) diatoms [Maier et al., 2013]. Note that the
δ29Si data from Cardinal et al. [2007] and Fripiat et al. [2007] in Figures 5–7 were converted to δ30Si by multiplication by a
factor of 1.96 assuming mass-dependent fractionation under kinetic processes [Reynolds et al., 2007].

Table 2. Interlaboratory Comparison of δ30Si for Three E. rex Samples (>154 μm Fraction)

Core Interval (cm)

GEOMAR (November 2013)

UCSB

First Analysis (October 2013) Second Analysis (December 2013)

δ30Si (‰) 2σsd (‰) δ30Si (‰) 2σsd (‰) δ30Si (‰) 2σsd (‰)

WPD-03 100–105 �1.03 0.19 �1.00 0.05 �0.93 0.08
180–185 �1.05 0.24 �1.08 0.05 �0.98 0.19
252–254 �1.10 0.18 �1.11 0.10 � 1.07 0.05
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Egan et al., 2012; Ehlert et al., 2012], whose δ30Si is on average lighter than that of diatoms [Ding et al., 1996;Wu
et al., 1997; De La Rocha, 2003; Ellwood et al., 2010; Hendry and Robinson, 2012]. Two earlier studies suggested
that modern and ancient giant diatoms also generally yield δ30Si of>0‰ (Figure 5): (1) the δ30Si of Rhizosolenia
sp. from diatommats in surface waters of the central North Pacific is +0.9‰ to +1.9‰ [De La Rocha et al., 2000]
and (2) the δ30Si of the>63μm E. rex fraction extracted from a sediment core in the North Atlantic ranged from
+0.2‰ to +1.14‰ [Hendry et al., 2014]. Differences in δ30Si between modern and ancient diatom species and
E. rex from the LGM (this study) probably reflect different DSi sources prevailing during their blooms (see
section 4.4.1).

4.2. Potential DSi Sources to the Eastern Philippine Sea

There are multiple potential DSi sources to the EPS, which we will consider in the context of the global silicon
cycle. DSi is delivered to the global ocean via four main pathways, i.e., the riverine, eolian, hydrothermal, and
submarine basalt weathering fluxes [Tréguer et al., 1995]. As an open pelagic deep sea with a water depth of
~5000m (Figure 1), the EPS does not receive DSi input directly from rivers. Furthermore, inputs of DSi from
hydrothermal and basalt weathering sources in the EPS are small and strongly diluted before transport to
the surface mixed layer [Harrison, 2000]. Thus, these three fluxes are unlikely to have been the proximate
cause of giant diatom blooms in the EPS during the LGM. The only significant external flux of silicon to the
surface layer of the EPS is the DSi derived from eolian dust (DSieolian). The principal alternative to DSieolian
as a nutrient source for giant diatom blooms is upwelling of DSi (DSiupwelled) from subsurface (~100–
500m) and/or intermediate (~500–1500m) depths to the surface layer of the EPS, a process that has been
shown to play an important role in diatom blooms in other oceanic regions [Tréguer et al., 1995;
Ragueneau et al., 2000; Tréguer and De La Rocha, 2013].

Many diatoms, especially spring-bloom species, utilize subsurface- and intermediate-water DSi that is
upwelled or advected into the surface mixed layer. In the tropical western Pacific, subsurface- and
intermediate-depth waters derive from mixing of Subantarctic Mode Water (SAMW), Antarctic
Intermediate Water (AAIW), and North Pacific Intermediate Water (NPIW) [Toggweiler et al., 1991; Qu et al.,
1999; Qu and Lindstrom, 2004; Kawabe and Fujio, 2010; see review in Bostock et al., 2010] (Figure 2d).
Although some investigators have argued that Equatorial Pacific Intermediate Water (EqPIW) is a separate
water mass [Bingham and Lukas, 1995; Firing et al., 1998; Bostock et al., 2010], EqPIW probably forms from
mixing AAIW with a smaller component of upwelled Pacific Deep Water [Bostock et al., 2010], so we will
regard it as part of AAIW in the following discussion.

Northward advection of SAMW and AAIW controls the nutrient distribution and biological productivity of
surface waters of the tropical Pacific [Sarmiento et al., 2004; Marinov et al., 2006]. At present (i.e., in
interglacial times), SAMW and AAIW are characterized by low DSi and high nitrate concentrations as a
result of greater uptake of DSi relative to nitrate by diatoms in the Southern Ocean [Sarmiento et al., 2004,
2007]. In contrast, high DSi and low nitrate concentrations prevailed in the SAMW and AAIW during glacial
periods due to enhanced utilization of nitrate by Southern Ocean diatoms in response to elevated eolian
iron fluxes [Brzezinski et al., 2002; Beucher et al., 2007]. Northward transport of unutilized DSi by SAMW and
AAIW then resulted in enhanced tropical-ocean diatom productivity [Brzezinski et al., 2002; Matsumoto
et al., 2002]. This hypothesis is supported by opal records from the equatorial Atlantic and eastern tropical
Pacific, which show higher BSi mass accumulation rates (MAR) during glacials relative to interglacials
[Bradtmiller et al., 2007; Arellano-Torres et al., 2011]. However, some authors have questioned this scenario
based on the observation that opal fluxes peaked during the last deglaciation and marine isotope stage 3
rather than during the LGM [e.g., Kienast et al., 2006; Dubois et al., 2010]. Recently, by emphasizing the role
of Southern Ocean and tropical-ocean ventilation in delivery of DSi during the deglaciation, the former
“silicic acid leakage hypothesis” has been revised to the “silicic acid ventilation hypothesis” [Crosta et al.,
2007; Hendry and Brzezinski, 2014]. However, enhanced DSi supply from the Southern Ocean during the
LGM has not been demonstrated for the western tropical Pacific region to date.

Southward advection of NPIWmay be another vector for resupply of DSi to the EPS. In contrast to SAMW and
AAIW, NPIW is rich in both DSi (Figure 2c) and nitrate, and it is known to strongly influence productivity in the
northern and equatorial Pacific [Tsunogai, 2002; Sarmiento et al., 2004]. However, paleoceanographic
evidence of a link between NPIW ventilation and glacial diatom production in the western tropical Pacific
is lacking. In addition, North Pacific Deep Water (NPDW), which is characterized by maximum silicate
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concentrations of >144μmol kg�1, also reaches the EPS from the northeastern Pacific via westward flow
from the Hawaiian Islands [Siedler et al., 2004] (Figure 1). Considering its water depth (2000–3500m),
NPDW can rise to intermediate depths but cannot directly feed the thermocline of the EPS. In summary,
lateral advection of oceanic water masses rich in DSi represents a potential source of nutrient silicon to
surface waters of the EPS during the LGM, although an indirect one that would have been attenuated by
mixing and dilution effects.

An important source of silicon to surface waters of the EPS is Asian dust. Asian dust is transported over wide
areas of the Pacific Ocean (see review in Rea [2007]) and is even carried as far eastward as North America
[McKendry et al., 2001], northern Europe [Bory et al., 2003], and in a full circuit around the globe [Uno et al.,
2009]. Numerous observations and climate models have demonstrated that Asian dust is delivered to the
tropical western Pacific Ocean by the Northern Hemisphere westerlies and the East Asian winter monsoon
(EAWM) [Nilson and Lehmkuhl, 2001; Shao et al., 2011; Muhs, 2013]. Radiogenic Sr-Nd isotopic data from
surface and subsurface sediments suggest that Asian dust contributes ~10–50% of the detrital fraction of the
surface sediments in the western Philippine Sea [Jiang et al., 2013]. In the Parece Vela Basin of the EPS, the
proportion of Asian dust in the detrital fraction is higher, ranging from 50% to 70%, reflecting the influence
of an average Asian dust MAR of ~0.45gm�2 yr�1 (F. Jiang, unpublished data). Furthermore, the flux of Asian
dust to the Philippine Sea may have been even greater during late Pleistocene glacial periods, as inferred
from clay-mineral and major-element data [Wan et al., 2012; Xu et al., 2012, 2013]. In cores WPD-03 and
WPD-12, the presence of substantial quantities of illite in the DC and LDM are indicative of continuous Asian
eolian inputs during the LGM [Xiong et al., 2010, 2013a] (Figures 4d and 4h; see section 4.4.1).

The flux of eolian dust to the ocean influences marine biogeochemistry and global climate by regulating the
supply of iron and silicon, both of which can be productivity-limiting nutrients [Maher et al., 2010]. According
to a recent oceanic silicon budget, ~5% of seawater silicon is sourced by eolian processes [Tréguer and De La
Rocha, 2013]. Given that silicon in the global ocean is dominated by DSi rather than BSi, the contribution of
eolian dust to seawater DSi is thus ~5% or slightly more. Although this contribution is relatively small at a
global scale, eolian dust may be the primary external source of DSi in the open pelagic ocean (e.g., the
EPS) where rivers have little influence [Duce et al., 1991]. Enhanced eolian silicon inputs during glacial
times are hypothesized to have promoted diatom blooms, resulting in increased primary and export
productivity as well as organic carbon burial [Harrison, 2000; Nozaki and Yamamoto, 2001]. A direct link
between the Asian dust flux and diatom productivity in the North Pacific region has been confirmed by
both modern observations and paleoceanographic studies [e.g., Kawahata et al., 2000; Yuan and Zhang,
2006]. This relationship has also been documented for the oligotrophic subtropical Shikoku Basin (just
north of the EPS) on the basis of time series sediment-trap studies [Li et al., 2004]. Analysis of aerosols
from the North Pacific has shown that the mineralogic composition of Asian dust is dominated by
aluminosilicates and quartz [Gao et al., 2007]. Although only ~5% of this eolian silicon is directly dissolved
when the particles enter seawater [Duce et al., 1991], additional DSi can be leached from settling dust
particles in seawater, providing nutrient silicon for diatom blooms [Yuan and Zhang, 2006]. The leaching
process is thought to be similar to submarine weathering of silicate minerals, in which reactions with
dissolved CO2 yield DSi [Scholz et al., 2013].

4.3. Modeling DSi Sources to the Eastern Philippine Sea
4.3.1. Biogenic Silicon Isotope Fractionation (30ε)
Isotopic fractionation during the incorporation of DSi into BSi is expressed as 30ε, i.e., the fractionation factor
representing the instantaneous (i.e., nonaccumulated) enrichment or depletion of 30Si in BSi compared to the
parent DSi. The fractionation factor 30ε can be assessed empirically based on Δ30Si, which is the difference in
δ30Si between sedimentary BSi and aqueous DSi (i.e., Δ30Si = δ30Sidiatom� δ30SiDSi) [Cardinal et al., 2007;
Fripiat et al., 2012]. The silicon isotopic fractionation during BSi formation by diatoms can be described in
terms of either a Rayleigh (closed-system) model or a steady state (open-system) model [Fry, 2006]. In the
open-system model, Δ30Si is constant and equal to 30ε due to the simple overall isotope dynamics. In the
closed-system model, Δ30Si increases relative to 30ε during DSi consumption because δ30Sidiatom reflects
the accumulated rather than the instantaneous δ30Si composition of BSi. However, at a low fraction of DSi
consumed, Δ30Si is effectively equal (e.g., within measurement error) to 30ε in the closed system (i.e.,
Δ30Si≈ 30ε) [Cardinal et al., 2007; Demarest et al., 2009; Cao et al., 2012].
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Recent studies have mostly yielded a
relatively narrow, consistent set of 30ε
values. Culture experiments under
closed-system conditions yielded 30ε
estimates of �1.1 ± 0.4‰ [De La Rocha
et al., 1997] and �1.5 ± 0.2‰ [Milligan
et al., 2004], which are identical within
the reported error. Similar values were
obtained in field studies of Pacific and
Southern Ocean diatoms, with 30ε esti-
mates generally in the range of
�1.5‰ to �0.7‰ (Figure 6). Modeling
of 30ε for closed (�1.1 ± 0.1‰)
and open systems (�1.9 ± 0.2‰) sug-
gested that Antarctic Circumpolar
Current surface waters are intermediate
between these end-members [Varela
et al., 2004]. The limited variation
among these estimates implies that
30ε may be largely independent of spe-
cies, temperature, growth rates, pH, sali-
nity, and cell size [De La Rocha et al.,
1997; Milligan et al., 2004; Alleman
et al., 2005; Cardinal et al., 2007]. For this
reason, we will assume that 30ε
averages �1.1‰ and that measured
Δ30Si values are equal to 30ε for model-
ing purposes in this study.

We recognize that certain studies have documented significant variability in Δ30Si or 30ε. For example,
Fripiat et al. [2012] reported a latitudinal dependence of Δ30Si, with variation from �0.3‰ at 45–50°S to
�1.7‰ at lower and higher latitudes. In that study, smaller Δ30Si values were associated with lower DSi
concentrations, reflecting minimal fractionation at high degrees of DSi utilization as predicted by the
closed-system model, and the larger values of Δ30Si are thus probably closer to true 30ε. Hendry et al.
[2014] documented substantial Δ30Si variation in E. rex, from �0.46‰ to �1.4‰ (based on δ30Sidiatom of
+0.2‰ to +1.14‰ and an AAIW source δ30Si of +1.6‰; Figure 5). They inferred that simple fractionation
models cannot account for the observed δ30Sidiatom values and that the large degree of variability is
related to dynamic water mass mixing. A culture experiment by Sutton et al. [2013] yielded 30ε estimates
ranging from �0.54‰ to �2.09‰ for different diatom species, suggesting species-specific fractionation
factors (Figure 6). However, other studies do not support this inference. For example, Egan et al. [2013]
found that different diatom size fractions (and, thus, species assemblages) in Southern Ocean core-top
samples yielded similar δ30Si, suggesting minimal interspecific variation. In general, the observed
variations in 30ε estimates are likely to reflect uncertainties in initial conditions, difficulties in accurately
determining DSi sources, complexities in water mass mixing dynamics, and limitations in existing
fractionation models [Reynolds et al., 2006; Beucher et al., 2008; Fripiat et al., 2011b, 2012; Egan et al.,
2012; Ehlert et al., 2013].
4.3.2. Model Constraints on DSi Sources
We developed a binary mixing model to evaluate DSi sources for E. rex blooms in the EPS during the LGM
(Figure 7a). In this model, the two end-members are upwelled silicon and eolian silicon (see section 4.2).
The application of this model depends on differences in the silicon isotopic composition between
subsurface/intermediate water masses and Asian dust (see section 4.4.1).

Subsurface and intermediate waters of the Pacific region show a limited range of positive δ30Si values.
Reported δ30Si values are (1) AAIW=+1.25 to +1.8‰ [Cardinal et al., 2005; Fripiat, 2010; de Souza et al.,

Figure 6. Estimates of the silicon isotopic fractionation factor (30ε) during
silicic acid assimilation by marine diatoms based on in vitro experiments
and in situ observations. The red and blue symbols represent 30ε estimates
using the closed-system and open-system models, respectively. The purple
symbols represent 30ε estimates for which Δ30Si was substituted, and
the green symbol is an estimate based on linear regression of δ30SiDSi
against ln[DSi]. The vertical dashed lines bracket the 30ε range of De La
Rocha et al. [1997].
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2012a, 2012b], +1.38‰ [Reynolds, 2009], and +1.64 ± 0.31‰ and +1.91 ± 0.24‰ [Fripiat et al., 2011a]; (2)
SAMW=+1.75 to +2.0‰ [Cardinal et al., 2005; Fripiat, 2010], +1.55 to +1.60‰ [de Souza et al., 2012b], and
+1.38‰, +1.76‰ and +1.8‰ [de Souza et al., 2012a]; and (3) NPIW=+1.4 ± 0.1‰ [Reynolds et al., 2006].
These values are consistent with simulations yielding estimated δ30Si of +1.0‰ to +1.5‰ for intermediate
and deep waters of the world ocean (MOIDW) [Wischmeyer et al., 2003]. These results demonstrate that
subsurface and intermediate water δ30Si is >+1.0‰ throughout the modern global ocean. We adopt an

Figure 7. Binary mixing model for discrimination of sources of DSi utilized in E. rex blooms in the EPS during the LGM. (a)
Construction of the binary mixing model, based on an upwelled silicon end-member with δ30Si of +1.6‰, an eolian dust
silicon end-member with δ30Si of�0.2‰, a variable fractionation during silicate dissolution of τ (probably between�0.3‰
and 0‰), and biotic assimilatory fractionation of�1.1‰. (b) Calculation of proportion of DSi sourced from upwelled silicon
versus eolian silicon, based on measured δ30SiE. rex in cores WPD-03 and WPD-12 (for assumed τ = 0‰). In Figure 7a, τ is
shown as equal to�0.5‰, although the actual value of τ is unknown. In Figures 7a and 7b, the difference in silicon isotopic
compositions between diatom BSi and DSi (Δ30Si) of�1.1‰ represents an estimate of 30ε. UCC is upper continental crust,
CL is Chinese loess, OWL is other worldwide loess, andMOIDW is modeled ocean intermediate and deep water; see Figure 1
for other abbreviations. The dashed vertical lines represent estimated end-member compositions for E. rex in the EPS
during the LGM for DSi derived 100% from eolian dust (blue) or upwelled silicon (red). The purple diamonds and green
squares represent estimated average values for eolian silicon and upwelled silicon, respectively. Data sources for δ30Si:
SAMW (red filled rectangle [Cardinal et al., 2005; Fripiat, 2010], purple and green empty squares [de Souza et al., 2012a], and
red empty rectangle [de Souza et al., 2012b]); AAIW (red empty rectangle [Cardinal et al., 2005; Fripiat, 2010; de Souza et al.,
2012a, 2012b], blue empty diamond [Reynolds, 2009], and purple empty diamond and green filled diamond [Fripiat et al.,
2011a]); MOIDW [Wischmeyer et al., 2003]; NPIW [Reynolds et al., 2006]; and UCC, CL, and OWL [Savage et al., 2013]. See
sections 4.2 and 4.3 for further details.
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estimate of +1.6‰ as the average value for the DSiupwelled supporting diatom growth in EPS surface waters
and +0.5‰ as the average δ30Si of diatom silica generated from DSiupwelled (i.e., reflecting
30ε=�1.1‰; Figure 7a).

Although the δ30Si of eolian dust from marine sediments is poorly known, that of continental eolian dust (e.g.,
loess) has been well studied. Savage et al. [2013] systematically analyzed Pleistocene loess samples from China,
New Zealand, Germany, Hungary, and the U.S., thus characterizing typical silicon isotopic compositions of
continental dust globally. The δ30Si of loess shows minor variation among different regions, ranging from
�0.28‰ to �0.15‰ (average �0.22± 0.07‰ (2σsd)) [Savage et al., 2013]. In particular, Chinese loess displays
an average δ30Si of �0.19± 0.22‰ (2σsd) (�0.20± 0.08‰ (2σsd) for repeat analyses) [Savage et al., 2013]. The
main sources of Asian dust are the eastern and central Asian deserts (e.g., the Taklamakan, Gobi/Badin Jaran,
and Tengger) [Nilson and Lehmkuhl, 2001; Shao et al., 2011; Muhs, 2013]. Assuming negligible silicon isotopic
fractionation of Asian dust during transport to the tropical West Pacific, the eolian dust delivered to marine
areas should have a Si-isotopic composition similar to that of Chinese loess. Thus, we adopt �0.2‰ as an
estimate of the average δ30Si of Asian dust deposited in the EPS (Figure 7a).

The silicon isotopic composition of silicate materials can undergo changes during their dissolution. Silicate
dissolution preferentially releases 28Si [Ziegler et al., 2005; Opfergelt and Delmelle, 2012; Cornelis et al., 2014],
suggesting that the DSi generated from the dissolution of eolian dust may have a lower δ30Si than the
parent material. However, the silicon isotope fractionation associated with release of DSi from silicates has
not been well constrained and may depend on the mineral composition of the dust. Here we accommodate
this uncertainty by assigning an unknown quantity τ (with a negative value) to represent the δ30Si difference
between Asian eolian silicon and the DSieolian released to seawater. Thus, the δ30Si of DSieolian is �0.2‰+ τ,
and the δ30Si of diatom silica made from such DSieolian is �1.3‰+ τ (i.e., accounting for
30ε=�1.1‰; Figure 7a).

One point of uncertainty is whether subsurface- and intermediate-water δ30Si was the same in the late
Pleistocene ocean as in the modern. We cannot evaluate δ30Si differences between the LGM and the
Holocene, but Maslin and Swann [2006] argued that seawater shows minimal variability in δ30Si at glacial-
interglacial time scales. A second point of uncertainty is silicon isotopic fractionation associated with
dissolution during the export and burial of diatom frustules. Demarest et al. [2009] reported that BSi
dissolution preferentially releases light 28Si with a fractionation factor of �0.55‰. Thus, the δ30Si of
preserved BSi may be shifted toward more positive values than that of initial BSi. However, given the
current analytical uncertainty of ~0.1‰ for δ30Si measurements [Reynolds et al., 2007], the Δ30Si between
initial and preserved BSi will be detectable only when dissolution amounts to >20% of total BSi [Demarest
et al., 2009]. This is roughly consistent with the estimate of De La Rocha et al. [1998] that diatoms can
retain their original δ30Si signature even after dissolution of 26% of BSi. Several investigations of core-top
[Egan et al., 2012], sediment trap [Varela et al., 2004], and water column samples [Cardinal et al., 2007;
Fripiat et al., 2012], as well as dissolution experiments on diatoms from cores [Wetzel et al., 2014], confirm
that dissolution and early diagenesis have little to no effect on δ30Si in natural environments.

4.4. Comparative Data-Model Evaluation of DSi Sources
4.4.1. DSi Sources for E. rex Blooms During the LGM
Application of our binary mixing model shows that most samples from cores WPD-03 and WPD-12 yield
δ30SiE. rex close to the eolian silicon end-member (Figure 7b). This observation strongly suggests that E. rex
in the EPS dominantly utilized DSieolian rather than DSiupwelled from subsurface and intermediate waters
during the LGM. Furthermore, one can calculate the proportion of silicon from each source based on
measured δ30SiE. rex values. Exact proportions depend on the value chosen for τ, although reasonable
variation in τ results in only limited uncertainties in calculated values. Assuming that τ =0‰, measured
δ30Si values of �1.23‰ to �0.83‰ (average �1.04‰) for E. rex in cores WPD-03 and WPD-12 correspond
to 4–26% (average 14%) of diatom silica being derived from DSiupwelled and 74–96% (average 86%) being
derived from DSieolian (Figure 7b). If τ =�0.3‰, these proportions shift to 18–37% (average 27%) from
DSiupwelled and 63–82% (average 73%) from DSieolian; if τ is positive (which is unlikely), then the proportion
of DSieolian would be >74–96% (average >86%). Allowing 30ε to vary has only a limited effect on model
output. For example, if the silicon utilized by E. rex is 50% DSieolian and 50% DSiupwelled, then

30ε would be
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�1.8‰ (assuming τ =0‰). As DSiupwelled becomes larger than 50%, 30ε will rapidly exceed the upper end of
reported 30ε values obtained from culture experiments (i.e.,�2.09‰ [Sutton et al., 2013]). These observations
suggest that our model results (i.e., E. rex utilization of DSieolian>DSiupwelled) are robust within the range of
reported 30ε values. Our δ30SiE. rex data thus clearly imply that DSi for E.rex blooms was derived mainly
from Asian dust with smaller contributions from the Southern Ocean or North Pacific Ocean through
lateral advection of SAMW, AAIW, or NPIW.

Evidence from clay minerals also supports the dominant usage of DSieolian for E. rex blooms in the EPS during
the LGM. In the Philippine Sea, the two dominant clay minerals are illite and smectite, the former being
sourced mainly from the Asian dust flux and the latter by weathering of volcanic materials on Luzon island
or at the seafloor [Xiong et al., 2010; Wan et al., 2012; Xu et al., 2012]. High illite content and/or
illite/smectite ratios represent a relative increase in wind shear and eolian dust inputs to the Philippine Sea
[Xiong et al., 2010; Wan et al., 2012; Xu et al., 2012]. In cores WPD-03 and WPD-12, significant quantities of
illite are present throughout the DC and LDM, indicating a substantial eolian dust supply (Figures 4d and
4h). Comparing the rare Earth elemental characteristics of EPS sediments with their potential sources, Xu
et al. [2008] inferred that siliceous material of nonbiogenic origin (Figure 3c) was sourced primarily from
alteration of seafloor basalts and secondarily from the eolian dust flux. Therefore, we assume that
illite/smectite ratios reflect the relative contributions of Asian dust versus products of altered seafloor basalts.

The concentration of siliceous material of nonbiogenic origin can be roughly estimated by subtracting the
opal concentration from the bulk sediment, due to the negligible presence of calcium carbonate and
organic matter and only minor accumulation of authigenic phases [Xiong et al., 2012a, 2012b]. The Asian
dust flux (Feolian) can be calculated based on average opal, illite, and smectite concentrations (Copal, Cillite,
and Csmectite), linear sedimentation rate (LSR) (R), and dry bulk sediment density (D):

Feolian ¼ 1� Copal
� ��Cillite= Cillite þ Csmectiteð Þ�R�D

¼ 1� 47:5%ð Þ�40:6% = 40:6%þ 48:7%ð Þ�27:4 cm kyr�1�2:42 g cm�3� 10

¼ 158:3 g m�2yr�1

(1)

where 47.5%, 40.6%, 48.7%, 27.4 cm kyr�1, and 2.42 g cm�3 are the average opal, illite, and smectite
concentrations; LSR; and sediment density, respectively, during deposition of DC and LDM-03 [Xiong et al.,
2012b, 2013a]. The estimated Asian dust flux in the EPS was 1–3 orders of magnitude greater than the general
dust flux in the tropical Pacific during the LGM, which was about 0.1–10 gm�2 yr�1, as determined from
paleoceanographic records and model simulations [Kohfeld and Harrison, 2001; Maher et al., 2010]. Thus, we
infer that a strong and relatively steady input of eolian dust from Asian sources during the LGM provided
large quantities of nutrient silicon (and possibly iron also) for E. rex blooms in the EPS.

In order to test the validity of Feolian (equation (1)), we make a simple mass balance comparison with the BSi
burial flux (BFBSi) in the EPS during the LGM. The BFBSi during DC and LDM-03 can be calculated as follows:

BFBSi ¼ 47:5%� 28:09 = 67:30ð Þ�27:4 cm kyr�1�2:42 g cm�3�10

¼ 131:5 g m�2yr�1
(2)

where 47.5%, 27.4 cm kyr�1, 2.42 g cm�3, 67.30, and 28.09 are the average opal concentration, LSR, sediment
density, and themolar weights of opal (SiO2 · 0.4 H2O) and Si, respectively. This value of BFBSi is close to that of
Feolian (158.3 gm�2 yr�1) in the EPS during the LGM, satisfying the mass balance. Thus, we infer that Asian
dust could have provided sufficient silicon for E. rex blooms during the LGM.

An interesting question is why E. rex did not bloom during DC deposition if there was strong eolian input at that
time. In theWPD-03 core, the illite content and illite/smectite ratios rise substantially within the DC interval, with
an average value roughly twice as high as those for the PC or LDM intervals (Figure 4d). These characteristics
suggest such a rapid increase in the EAWM during DC deposition that it triggered strong wind-driven
upwelling [Xiong et al., 2010, 2013a] and that upwelling then inhibited blooms of giant diatoms such as E. rex
owing to their requirement for water mass stratification [Gingele and Schmieder, 2001; De Deckker and
Gingele, 2002; Kemp and Villareal, 2013]. Wind-driven upwelling may have stimulated modest levels of small
spring-bloom diatom productivity during DC deposition, as evidenced by an opal peak (Figure 4c), a
maximum in small diatom abundance [Zhai et al., 2012], and high illite/smectite ratios (Figure 4d).
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4.4.2. Degree of DSi Utilization for E. rex Blooms During the LGM
The degree of utilization of DSi in EPS surface waters during the LGM can be estimated from δ30SiE. rex
variation in the WPD-03 and WPD-12 study cores. Before performing these calculations, it is necessary to
consider whether other processes (e.g., diagenetic alteration, δ30Si variability of the surface DSi reservoir,
and DSi availability) could have influenced δ30SiE. rex [De La Rocha et al., 1998; Reynolds et al., 2008; Romero
et al., 2011; Pichevin et al., 2012]. Little or no dissolution of BSi in the sediment is likely to have occurred
given the high average LSR of WPD-03 (27.4 cmkyr�1 [Xiong et al., 2013a]), the intrinsically dense
meshwork of E. rex LDMs [Kemp and Baldauf, 1993; Bodén and Backman, 1996], and SEM evidence for
excellent preservation of E. rex frustules (Figure 3). Considering the dominant eolian source of DSi (see
section 4.4.1) and stratified conditions of the EPS [Gingele and Schmieder, 2001; De Deckker and Gingele,
2002; Kemp and Villareal, 2013], the δ30Si of the DSi source for E. rex blooms may have been nearly
constant during the LGM. Although global seawater δ30Si may change due to variations in the flux or δ30Si
of continental DSi inputs, this effect will be pronounced only at time scales longer than the residence time
of DSi in seawater (~10 kyr [De La Rocha and Bickle, 2005; Georg et al., 2006a, 2009; Tréguer and De La
Rocha, 2013]). The δ30Si of DSi of EPS surface waters is thus unlikely to have changed appreciably during
the 11.5 kyr interval of deposition of the DC and LDM in core WPD-03.

After excluding other processes that might have potentially influenced δ30SiE. rex, we can interpret δ
30SiE. rex as

a function of degree of DSi utilization in EPS surface waters. The nearly uniform δ30SiE. rex values in the DC and
LDM of both study cores imply a relatively constant degree of DSi utilization by E. rex. One possibility is that
E. rex completely utilized available DSi in the EPS surface layer. In this case, observed δ30SiE. rex values should
approach the silicon isotopic composition of source DSi, which was estimated at �0.2‰ for DSieolian
assuming τ = 0‰ (see section 4.4.1). However, this is clearly not the case (Figure 7b), so it is unlikely that
E. rex exhausted the DSi of EPS surface waters during the LGM.

The degree of DSi utilization during diatom growth can be calculated using either a closed-system (Rayleigh)
or an open-system (steady state) model [e.g., Beucher et al., 2007; Reynolds et al., 2008] (see section 4.3.1). The
continuous supply of DSi from the Asian dust flux (see section 4.4.1) invalidates the premise of closed-system
dynamics, making the open-system model more suitable for our calculation. The open-system model
describes the evolution of δ30SiDSi and δ30SiBSi in the context of a continuous supply of nutrients [Varela
et al., 2004; Fry, 2006]:

δ30SiDSi ¼ δ30SiDSiinitial�30ε� 1� ƒð Þ (3)

δ30SiBSi ¼ δ30SiDSiinitialþ30ε�ƒ (4)

where δ30SiDSi initial is the δ
30Si of DSi in surface water prior to biological utilization and f is the fraction of DSi

remaining in the surface water after consumption. Therefore, f can be calculated based on measured δ30SiE. rex
values and estimates for δ30SiDSi initial (=DSieolian or �0.2‰+ τ) and 30ε (�1.1‰; see section 4.3.1). Assuming
that τ =0‰, the average δ30SiE. rex for cores WPD-03 and WPD-12 (�1.04‰) yields an estimated f of ~76%. If
τ =�0.3‰, then the same calculation yields an estimated f of ~49%. These results indicate that E. rex consumed
only ~24–51% of DSi in EPS surface waters, leaving large quantities of unutilized DSi. These considerations
suggest that EPS surface waters were eutrophic with respect to nutrient silicon during the LGM (opposite to the
condition of the modern EPS) and that other nutrients were biolimiting. Iron fertilization by Asian dust may
have stimulated E. rex to consume nitrate and phosphate rapidly [Takeda, 1998], making N or P a possible
biolimiting nutrient, which will be the subject of future investigations.
4.4.3. Relationship Between DSi Cycle and E. rex LDM Formation in the Eastern Philippine Sea
The paleoceanographic conditions of the EPS during the LGM, including the Asian dust flux [Xiong et al., 2010,
2013a], redox conditions [Xiong et al., 2012a, 2012b], productivity levels [Xiong et al., 2012a, 2012b, 2013b],
and CO2 partial pressure of surface water (pCO2-sw) [Xiong et al., 2013a], have been investigated previously.
In this section, we examine the linkage of the DSi cycle to these paleoceanographic conditions.

During PC deposition, diatom primary production was suppressed, as inferred from extremely low opal
concentrations (Figure 4c). Redox conditions were oxic both at the sediment-water interface and in the
overlying water column (Figure 8a). During DC deposition, intensification of the EAWM not only carried
large amounts of dust (including silicon and iron) to the surface EPS but also resulted in enhanced
upwelling of subsurface/intermediate waters. Wind-driven upwelling may have stimulated modest
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increases of productivity among small spring-bloom diatoms. The DSi and dissolved iron derived from Asian
dust inputs would have been rapidly consumed by these diatoms. E. rex could not have bloomed massively
during this interval due to its requirement for water mass stratification [Gingele and Schmieder, 2001; De
Deckker and Gingele, 2002; Kemp and Villareal, 2013] (see section 4.4.1). Modestly higher organic matter
sinking fluxes resulted in a shift from oxic to suboxic conditions at the sediment-water interface, but the
overlying water column remained oxic. Intensified upwelling brought high concentrations of deep CO2 to
the surface (pCO2-sw = 431 ppmv) [Xiong et al., 2013a], causing the EPS to act as a strong CO2 source to the
atmosphere (Figure 8b).

During LDM deposition, a weakening of the EAWM terminated upwelling and led to sustained stratification of
the EPS [Xiong et al., 2010, 2013a]. Although the Asian dust flux decreased at the same time, it remained
sufficiently high as to still supply abundant DSieolian and dissolved iron to EPS surface waters. A
combination of surface stratification and high DSieolian availability induced strong annual blooms of E. rex.
Productivity by E. rex resulted in a substantial export flux of organic carbon and opal through the “fall
dump” [Kemp et al., 2000; Kemp and Villareal, 2013], with estimated average organic productivity of
248.42 gm�2 yr�1 [Xiong et al., 2013b]. However, the rain rate and burial flux of organic carbon were very
low, with estimated averages of 61.93 gm�2 yr�1 and 5.27 gm�2 yr�1, respectively [Xiong et al., 2013b].
These observations indicate that remineralization of organic matter was intense owing to high levels of
dissolved oxygen in the water column and, frequently, in sediment pore waters. High respiratory oxygen
demand, in combination with surface stratification, eventually resulted in sulfidic-anoxic conditions at the
sediment-water interface and mainly suboxic conditions in the deeper part of the water column. High
productivity, in combination with isolation of remineralized CO2 through stratification, resulted in a
decrease in average surface pCO2-sw to 219 ppmv, converting the surface EPS from a source to a weak sink
for CO2 during LDM deposition [Xiong et al., 2013a] (Figure 8c).
4.4.4. Implications for E. rex LDM Formation in World Ocean
Both the ocean stratification model and frontal zone model propose that E. rex utilizes nutrients from
subsurface waters (i.e., the ocean interior) to sustain blooms [Villareal et al., 1999a; Yoder et al., 1994; Kemp
et al., 2000, 2006; Kemp and Villareal, 2013]. However, our results suggest that E. rex can also use surface

Figure 8. Schematic model of relationship of laminated E. rex diatom mat formation to paleoceanographic conditions in
the EPS during the LGM: (a) PC interval, (b) DC interval, and (c) LDM interval. Inferred benthic redox conditions are from
Xiong et al. [2012b]; patterns of dust input, wind-driven upwelling, and thermohaline stratification are from Xiong et al.
[2010, 2013a]; pCO2-sw estimates are from Xiong et al. [2013a]; and productivity estimates are from Xiong et al. [2013b]. In
Figures 8a–8c, the number of E. rex and other diatoms shown is proportional to their inferred productivity; the number of
blue and pink arrows shown is proportional to the magnitudes of the Asian eolian silicon and iron fluxes, respectively; and
the number of red and yellow arrows shown is proportional to the magnitudes of organic matter and opal sinking fluxes,
respectively. Abbreviations: OM, organic matter; pCO2-sw, CO2 partial pressure of the study area surface waters; Pp, primary
productivity; RRoc, rain rate of organic carbon; Fb, burial flux of organic carbon; LDM, laminated E. rex diatom mats; DC,
diatomaceous clay; and PC, pelagic clay. See section 4.4.3 for further explanation.
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water DSi derived from eolian dust (i.e., a source external to the ocean). These observations are also
consistent with modern measurements in the central North Pacific gyre, where E. rex acquires DSi from
surface rather than deep waters [Villareal et al., 1999a]. Other giant diatom species, e.g., Rhizosolenia spp.
in the central North Pacific, are also known to utilize DSi from the euphotic zone without any DSi uptake at
depth [Shipe et al., 1999]. Our data coupled with modern observations indicate that giant diatoms do not
always rely on buoyancy regulation to obtain nutrients from below the nutricline [Villareal, 1992; Villareal
and Carpenter, 1994]. In summary, our research provides a new model for formation of E. rex LDMs.

5. Conclusions

1. E. rex blooms in the eastern Philippine Sea (EPS) during the Last Glacial Maximum (LGM) show a unique
silicon isotopic composition that is markedly more 30Si depleted (δ30SiE. rex=�1.23‰ to �0.83‰;
average �1.04‰) than known diatom deposits of any age.

2. A binary mixing model, utilizing estimated δ30Si for upwelled silicon versus eolian silicon end-members,
was constructed to evaluate DSi sources for these E. rex blooms. To sustain blooms in the EPS during
the LGM, E. rex utilized DSi primarily from dissolution of continuously supplied Asian dust and only to a
minor extent from upwelling of subsurface and intermediate waters sourced from SAMW, AAIW, and
NPIW. E. rex utilized an estimated ~24–51% of the DSi in EPS surface waters, reflecting eutrophic
conditions relative to nutrient silicon during the LGM.

3. The DSi cycle is consistent with paleoceanographic conditions during LDM deposition. High levels of DSi
generated through dissolution of Asian dust constantly transported to the EPS inducedmassive blooms of
E. rex that led to LDM formation. High E. rex primary productivity and export productivity converted
surface waters of the EPS from a strong CO2 source to a weak CO2 sink and caused deepwater redox
conditions to shift from oxic to mainly suboxic.

4. Our results suggest that buoyancy regulation with extraction of nutrients from below the nutricline is not
the sole nutrient utilization pathway for giant diatoms. E. rex can also utilize DSi generated through
dissolution of eolian dust. The “eolian-silicon-induced bloom” model represents an important new
addition to mechanisms of formation of E. rex LDMs.
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