N. Yoshinaga and S. Aomine, Imogolite in some ando soils, Soil Sci. Plant Nutr, vol.8, pp.22-29, 1962.

M. Amara, E. Paineau, M. Bacia-verloop, M. M. Krapf, P. Davidson et al., Single-step formation of micron long (OH)3Al2O3Ge(OH) imogolite-like nanotubes, Chem. Commun, p.11284, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01426270

J. P. Gustafsson, The Surface Chemistry of Imogolite, Clays Clay Miner, vol.49, pp.73-80, 2001.

L. Guimarães, A. N. Enyashin, J. Frenzel, T. Heine, H. A. Duarte et al., Imogolite Nanotubes: Stability, Electronic, and Mechanical Properties, ACS Nano, vol.1, pp.362-368, 2007.

K. Tamura and K. Kawamura, Molecular Dynamics Modeling of Tubular Aluminum Silicate: Imogolite, J. Phys. Chem. B, vol.106, pp.271-278, 2002.
DOI : 10.1021/jp0124793

M. Zhao, Y. Xia, and L. Mei, Energetic Minimum Structures of Imogolite Nanotubes: A First-Principles Prediction, J. Phys. Chem. C, vol.113, pp.14834-14837, 2009.

R. Demichelis, Y. Noël, P. D'arco, L. Maschio, R. Orlando et al., Structure and energetics of imogolite: a quantum mechanical ab initio study with B3LYP hybrid functional, J. Mater. Chem, p.20, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00687894

F. Alvarez-ramírez, Ab initio simulation of the structural and electronic properties of aluminosilicate and aluminogermanate nanotubes with imogolite-like structure, Phys. Rev. B, p.125421, 2007.

S. Konduri, S. Mukherjee, and S. Nair, Controlling Nanotube Dimensions: Correlation between Composition, Diameter, and Internal Energy of Single-Walled Mixed Oxide Nanotubes, ACS Nano, vol.1, pp.393-402, 2007.

S. U. Lee, Y. C. Choi, S. G. Youm, and D. Sohn, Origin of the Strain Energy Minimum in Imogolite Nanotubes, J. Phys. Chem. C, vol.115, pp.5226-5231, 2011.

R. I. González, R. Ramírez, J. Rogan, J. A. Valdivia, F. Munoz et al., Model for Self-Rolling of an Aluminosilicate Sheet into a SingleWalled Imogolite Nanotube, J. Phys. Chem. C, vol.118, pp.28227-28233, 2014.

R. I. González, J. Rogan, E. M. Bringa, and J. A. Valdivia, Mechanical Response of Aluminosilicate Nanotubes under Compression, J. Phys. Chem. C, vol.120, pp.14428-14434, 2016.

M. S. Amara, S. Rouzière, E. Paineau, M. Bacia-verloop, A. Thill et al., Hexagonalization of Aluminogermanate Imogolite Nanotubes Organized into ClosedPacked Bundles, J. Phys. Chem. C, vol.118, pp.9299-9306, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01157204

B. Creton, D. Bougeard, K. S. Smirnov, J. Guilment, and O. Poncelet, Molecular dynamics study of hydrated imogolite : 2. Structure and dynamics of confined water, Phys. Chem. Chem. Phys, p.4879, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00316024

P. D. Cradwick, V. C. Farmer, J. D. Russell, C. R. Masson, K. Wada et al., Imogolite, a Hydrated Aluminium Silicate of Tubular Structure, Nature Phys. Sci, vol.240, pp.187-189, 1972.

M. I. Aroyo, J. M. Perez-mato, C. Capillas, E. Kroumova, S. Ivantchev et al., Bilbao Crystallographic Server: I. Databases and crystallographic computing programs, Z. Kristallogr. Cryst. Mater, vol.221, pp.15-27, 2006.
DOI : 10.1107/s0108767308094828

S. Konduri, H. M. Tong, S. Chempath, and S. Nair, Water in Single-Walled Aluminosilicate Nanotubes: Diffusion and Adsorption Properties, J. Phys. Chem. C, vol.112, pp.15367-15374, 2008.

W. C. Ackerman, D. M. Smith, J. C. Huling, Y. W. Kim, J. K. Bailey et al., Gas/vapor adsorption in imogolite: a microporous tubular aluminosilicate, Langmuir, vol.9, pp.1051-1057, 1993.
DOI : 10.1021/la00028a029

S. Mukherjee, V. M. Bartlow, and S. Nair, Phenomenology of the Growth of SingleWalled Aluminosilicate and Aluminogermanate Nanotubes of Precise Dimensions, Chem. Mater, vol.17, pp.4900-4909, 2005.

J. Zang, S. Chempath, S. Konduri, S. Nair, and D. S. Sholl, Flexibility of Ordered Surface Hydroxyls Influences the Adsorption of Molecules in Single-Walled Aluminosilicate Nanotubes, J. Phys. Chem. Lett, vol.1, pp.1235-1240, 2010.

R. Dovesi, R. Orlando, A. Erba, C. M. Zicovich-wilson, B. Civalleri et al., CRYSTAL14: A program for the ab initio investigation of crystalline solids, Int. J. Quantum Chem, vol.114, pp.1287-1317, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01404047

J. Hutter, M. Iannuzzi, F. Schiffmann, and J. Vandevondele, CP2K: atomistic simulations of condensed matter systems, WIREs Comput. Mol. Sci, vol.4, pp.15-25, 2014.
DOI : 10.1002/wcms.1159

G. Bussi, D. Donadio, and M. Parrinello, Canonical sampling through velocity rescaling, J. Chem. Phys, p.14101, 2007.
DOI : 10.1063/1.2408420

URL : http://arxiv.org/pdf/0803.4060

S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys, vol.117, pp.1-19, 1995.
DOI : 10.2172/10176421

URL : https://digital.library.unt.edu/ark:/67531/metadc1389173/m2/1/high_res_d/10176421.pdf

N. Desbiens and A. Boutin, Demachy, I. Water Condensation in Hydrophobic Silicalite-1

, Zeolite: A Molecular Simulation Study, J. Phys. Chem. B, vol.109, pp.24071-24076, 2005.

R. T. Cygan, J. Liang, and A. G. Kalinichev, Molecular Models of Hydroxide, Oxyhydroxide, and Clay Phases and the Development of a General Force Field, J. Phys. Chem. B, vol.108, pp.1255-1266, 2004.

O. Teleman, B. Jönsson, and S. Engström, A molecular dynamics simulation of a water model with intramolecular degrees of freedom, Mol. Phys, vol.60, pp.193-203, 1987.

M. Pouvreau, J. A. Greathouse, R. T. Cygan, and A. G. Kalinichev, Structure of Hydrated Gibbsite and Brucite Edge Surfaces: DFT Results and Further Development of the ClayFF Classical Force Field with Metal-O-H Angle Bending Terms, The Journal of Physical Chemistry C, vol.121, pp.14757-14771, 2017.
URL : https://hal.archives-ouvertes.fr/in2p3-01577624

F. Coudert, F. Cailliez, R. Vuilleumier, A. H. Fuchs, and A. Boutin, Water nanodroplets confined in zeolite pores, Faraday Discuss, vol.141, pp.377-398, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02116837

G. Y. Gor and N. Bernstein, Adsorption-Induced Surface Stresses of the Water/Quartz Interface: Ab Initio Molecular Dynamics Study, Langmuir, vol.32, pp.5259-5266, 2016.

A. V. Neimark, F. Coudert, A. Boutin, and A. H. Fuchs, Stress-Based Model for the Breathing of Metal-Organic Frameworks, J. Phys. Chem. Lett, vol.1, pp.445-449, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00548069

F. Mouhat, D. Bousquet, A. Boutin, L. Bouëssel-du-bourg, F. Coudert et al., Softening upon Adsorption in Microporous Materials: A Counterintuitive Mechanical Response, J. Phys. Chem. Lett, vol.6, pp.4265-4269, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02115286

V. Haigis, F. Coudert, R. Vuilleumier, and A. Boutin, Investigation of structure and dynamics of the hydrated metal-organic framework MIL-53(Cr) using first-principles molecular dynamics, Phys. Chem. Chem. Phys, p.15, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02116940

A. Luzar and D. Chandler, Hydrogen-bond kinetics in liquid water, Nature, vol.379, pp.55-57, 1996.

J. D. Bernal and R. H. Fowler, A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen and Hydroxyl Ions, J. Chem. Phys, vol.1, pp.515-548, 1933.

A. C. Fogarty, F. Coudert, A. Boutin, and D. Laage, Reorientational Dynamics of Water Confined in Zeolites, ChemPhysChem, vol.15, pp.521-529, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02113178

A. C. Fogarty, E. Duboué-dijon, D. Laage, and W. H. Thompson, Origins of the nonexponential reorientation dynamics of nanoconfined water, J. Chem. Phys, pp.18-523, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02105305

A. Ozkanlar, M. Kelley, and A. Clark, Water Organization and Dynamics on Mineral Surfaces Interrogated by Graph Theoretical Analyses of Intermolecular Chemical Networks, vol.4, pp.118-129, 2014.

V. A. Makarov, B. K. Andrews, P. E. Smith, and B. M. Pettitt, Residence Times of Water Molecules in the Hydration Sites of Myoglobin, Biophys. J, vol.79, pp.2966-2974, 2000.

J. Zang, S. Konduri, S. Nair, and D. S. Sholl, Self-Diffusion of Water and Simple Alcohols in Single-Walled Aluminosilicate Nanotubes, ACS Nano, vol.3, pp.1548-1556, 2009.

B. Bonelli, Developments in Clay Science