W. Gao and J. Wang, Synthetic micro/nanomotors in drug delivery, Nanoscale, vol.6, issue.18, pp.10486-10494, 2014.

J. Wang and W. Gao, Nano/microscale motors: biomedical opportunities and challenges, ACS nano, vol.6, issue.7, pp.5745-5751, 2012.

B. J. Nelson, I. K. Kaliakatsos, and J. Abbott, Microrobots for minimally invasive medicine, Annual review of biomedical engineering, vol.12, pp.55-85, 2010.

A. A. Solovev, S. Sanchez, M. Pumera, Y. F. Mei, and O. Schmidt, Magnetic control of tubular catalytic microbots for the transport, assembly, and delivery of micro-objects, Advanced Functional Materials, vol.20, issue.15, pp.2430-2435, 2010.

M. García, J. Orozco, M. Guix, W. Gao, S. Sattayasamitsathit et al., Micromotor-based lab-on-chip immunoassays, Nanoscale, vol.5, issue.4, pp.1325-1331, 2013.

E. Lauga and T. R. Powers, The hydrodynamics of swimming microorganisms, Reports on Progress in Physics, vol.72, issue.9, p.96601, 2009.

R. Dreyfus, J. Baudry, M. L. Roper, M. Fermigier, H. A. Stone et al., Microscopic artificial swimmers, Nature, vol.437, pp.862-865, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02106273

A. Ghosh and P. Fischer, Controlled propulsion of artificial magnetic nanostructured propellers, Nano Lett, vol.9, pp.2243-2245, 2009.

W. Wang, L. A. Castro, M. Hoyos, and T. E. Mallouk, Autonomous motion of metallic microrods propelled by ultrasound, ACS Nano, vol.6, issue.7, pp.6122-6132, 2012.

S. J. Ebbens, Active colloids: Progress and challenges towards realising autonomous applications, Curr. Opin. Colloid Interface Sci, vol.21, pp.14-23, 2016.

W. Duan, W. Wang, S. Das, V. Yadav, T. E. Mallouk et al., Synthetic nano-and micromachines in analytical chemistry: sensing, migration, capture, delivery and separation, Annu. Rev. Anal. Chem, vol.8, pp.311-333, 2015.

V. Yadav, W. Duan, P. J. Butler, and A. Sen, Anatomy of nanoscale propulsion, Annu. Rev. Biophys, vol.44, pp.77-100, 2015.

L. Xu, F. Mou, H. Gong, M. Luo, and J. Guan, Light-driven micro/nanomotors: from fundamentals to applications, Chemical Society Reviews, vol.46, issue.22, pp.6905-6926, 2017.

J. Li, I. Rozen, and J. Wang, Rocket science at the nanoscale, ACS nano, 2016.

W. F. Paxton, K. C. Kistler, C. C. Olmeda, A. Sen, S. K. St et al., Catalytic Nanomotors: Autonomous Movement of Striped Nanorods, J. Am. Chem. Soc, vol.126, issue.41, pp.13424-13431, 2004.

J. R. Howse, R. A. Jones, A. J. Ryan, T. Gough, R. Vafabakhsh et al., Self-Motile Colloidal Particles: From Directed Propulsion to Random Walk, Phys. Rev. Lett, vol.99, issue.4, p.48102, 2007.

G. Volpe, I. Buttinoni, D. Vogt, H. Kümmerer, and C. Bechinger, Microswimmers in patterned environments, Soft Matter, vol.7, pp.8810-8815, 2011.

J. Moran and J. D. Posner, Phoretic self-propulsion, Annual Review of Fluid Mechanics, vol.49, pp.511-540, 2017.

J. L. Anderson, Colloid transport by interfacial forces. Annual review of fluid mechanics, vol.21, pp.61-99, 1989.

W. Gao, S. Sattayasamitsathit, and J. Wang, Catalytically propelled micro-/nanomotors: how fast can they move?, The Chemical Record, vol.12, issue.1, pp.224-231, 2012.

F. Mou, Y. Li, C. Chen, W. Li, Y. Yin et al., Single-component tio2 tubular microengines with motion controlled by light-induced bubbles, Small, vol.11, issue.21, pp.2564-2570, 2015.

F. Zha, T. Wang, M. Luo, and J. Guan, Tubular micro/nanomotors: Propulsion mechanisms, fabrication techniques and applications, vol.9, p.78, 2018.

W. Gao, R. Dong, S. Thamphiwatana, J. Li, W. Gao et al., Artificial micromotors in the mouse's stomach: A step toward in vivo use of synthetic motors, ACS nano, vol.9, issue.1, pp.117-123, 2015.

M. Manjare, B. Yang, and Y. Zhao, Bubble-propelled microjets: Model and experiment, The Journal of Physical Chemistry C, vol.117, issue.9, pp.4657-4665, 2013.

M. Vladimir-m-fomin, V. Hippler, L. Magdanz, S. Soler, O. Sanchez et al., Propulsion mechanism of catalytic microjet engines, IEEE Transactions on Robotics, vol.30, issue.1, pp.40-48, 2014.

J. Li, G. Huang, M. Ye, M. Li, R. Liu et al., Dynamics of catalytic tubular microjet engines: Dependence on geometry and chemical environment, Nanoscale, vol.3, issue.12, pp.5083-5089, 2011.

L. Li, J. Wang, T. Li, W. Song, and G. Zhang, Hydrodynamics and propulsion mechanism of self-propelled catalytic micromotors: model and experiment, Soft matter, vol.10, issue.38, pp.7511-7518, 2014.

P. Lv, H. Le-the, J. Eijkel, A. Van-den, X. Berg et al., Growth and detachment of oxygen bubbles induced by gold-catalyzed decomposition of hydrogen peroxide, The Journal of Physical Chemistry C, vol.121, issue.38, pp.20769-20776, 2017.

C. Pozrikidis, A practical guide to boundary element methods with the software library BEMLIB, 2002.

C. Pozrikidis, Boundary integral and singularity methods for linearized viscous flow, 1992.

C. Pozrikidis, Computation of stokes flow due to the motion or presence of a particle in a tube, Journal of engineering mathematics, vol.53, issue.1, pp.1-20, 2005.

L. Zhu, E. Lauga, and L. Brandt, Low-reynolds number swimming in a capillary tube, J. Fluid Mech, vol.726, pp.285-311, 2013.

S. Michelin and E. Lauga, Phoretic self-propulsion at finite péclet numbers, Journal of Fluid Mechanics, vol.747, pp.572-604, 2014.

J. B. Freund, Leukocyte margination in a model microvessel, Physics of Fluids, vol.19, issue.2, p.23301, 1994.

J. Rivero-rodriguez and B. Scheid, Bubbles dynamics in microchannels: inertial and capillary migration forces, 2017.

J. Orozco, B. Jurado-snchez, G. Wagner, W. Gao, R. Vazquez-duhalt et al., Bubble-propelled micromotors for enhanced transport of passive tracers, Langmuir, vol.30, issue.18, pp.5082-5087, 2014.

J. Li, Z. Liu, G. Huang, Z. An, G. Chen et al., Hierarchical nanoporous microtubes for high-speed catalytic microengines, NPG Asia Materials, vol.6, issue.4, p.94, 2014.

R. Maria-hormigos, L. Jurado-sanchez, A. Vazquez, and . Escarpa, Carbon allotrope nanomaterials based catalytic micromotors, Chemistry of Materials, vol.28, issue.24, pp.8962-8970, 2016.