C. C. Maass, C. Krüger, S. Herminghaus, and C. Bahr, Swimming droplets, Annu. Rev. Condens. Matter Phys, vol.7, pp.6-7, 2016.

Y. S. Ryazantsev, M. G. Velarde, R. G. Rubio, F. Ortega, and P. López, Thermo-and soluto-capillarity: Passive and active drops, Adv. Col. Int. Sci, vol.247, p.52, 2017.

S. Thutupalli, R. Seemann, and S. Herminghaus, Swarming behavior of simple model squirmers, New J. Phys, vol.13, p.73021, 2011.

Z. Izri, M. N. Van-der-linden, S. Michelin, and O. Dauchot, Self-propulsion of pure water droplets by spontaneous marangoni-stress-driven motion, Phys. Rev. Let, vol.113, p.248302, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01114975

P. G. Moerman, H. W. Moyses, E. B. Van-der-wee, D. G. Grie, A. Van-blaaderen et al., Solute-mediated interactions between active droplets, Phys. Rev. E, vol.96, p.32607, 2017.

C. Krüger, G. Klös, C. Bahr, and C. C. Maass, Curling liquid crystal microswimmers: A cascade of spontaneous symmetry breaking, Phys. Rev. Lett, vol.117, p.48003, 2016.

M. Suga, S. Suda, M. Ichikawa, and Y. Kimura, Self-propelled motion switching in nematic liquid crystal droplets in aqueous surfactant solutions, Phys. Rev. E, vol.97, p.62703, 2018.

S. Herminghaus, C. C. Maass, C. Krüger, S. Thutupalli, L. Goehring et al., Interfacial mechanisms in active emulsions, Soft Matter, vol.10, p.7008, 2014.

Y. Nagasaka, S. Tanaka, T. Nehiraa, and T. Amimoto, Spontaneous emulsification and self-propulsion of oil droplets induced by the synthesis of amino acid-based surfactants, Soft Matter, vol.13, p.6450, 2017.

C. Krüger, C. Bahr, S. Herminghaus, and C. C. Maass, Dimensionality matters in the collective behaviour of active emulsions, Eur. Phys. J. E, vol.39, pp.64-72, 2016.

C. Jin, B. V. Hokmabad, K. A. Baldwin, and C. C. Maass, Chemotactic droplet swimmers in complex geometries, J. Phys.: Condens. Matter, vol.30, p.54003, 2018.

N. Yoshinaga, Simple models of self-propelled colloids and liquid drops: from individual motion to collective behaviors, J. Phys. Soc. Japan, vol.86, p.101009, 2017.

A. Ye, Y. S. Rednikov, M. G. Ryazantsev, and . Velarde, Drop motion with surfactant transfer in a homogeneous surrounding, Phys. Fluids, vol.6, p.451, 1994.

A. Ye, Y. S. Rednikov, M. G. Ryazantsev, and . Velarde, Active drops and drop motions due to nonequilibrium phenomena, J. Non-Equilib. Thermodyn, vol.19, p.95, 1994.

S. Yabunaka, T. Ohta, and N. Yoshinaga, Self-propelled motion of a fluid droplet under chemical reaction, J. Chem. Phys, vol.136, p.74904, 2012.

N. Yoshinaga, K. N. Nagai, Y. Sumino, and H. Kitahata, Drift instability in the motion of a fluid droplet with a chemically reactive surface driven by marangoni flow, Phys. Rev. E, vol.86, p.16108, 2012.

M. Schmitt and H. Stark, Marangoni flow at droplet interfaces: Three-dimensional solution and applications, Phys. Fluids, vol.28, p.12106, 2016.

K. Shitara, T. Hiraiwa, and T. Ohta, Deformable self-propelled domain in an excitable reaction-diffusion system in three dimensions, Phys. Rev. E, vol.83, p.66208, 2011.

M. Schmitt and H. Stark, Swimming active droplet: A theoretical analysis, Europhys. Lett, vol.101, p.44008, 2013.

S. Yabunaka and N. Yoshinaga, Collision between chemically driven self-propelled drops, J. Fluid Mech, vol.806, pp.205-233, 2016.

A. Würger, Thermally driven marangoni surfers, J. Fluid Mech, vol.752, p.589, 2014.

M. Frenkel, L. Dombrovsky, V. Multanen, V. Danchuk, I. Legchenkova et al., Self-propulsion of water-supported liquid marbles filled with sulfuric acid, J. Phys. Chem. B, vol.122, p.7936, 2018.

J. L. Moran and J. D. Posner, Phoretic self-propulsion, Annu. Rev. Fluid Mech, vol.49, p.511, 2017.

S. Michelin, E. Lauga, and D. Bartolo, Spontaneous autophoretic motion of isotropic particles, Phys. Fluids, vol.25, p.61701, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00996484

E. Yariv and U. Kaynan, Phoretic drag reduction of chemically active homogeneous spheres under force fields and shear flows, Phys. Rev. Fluids, vol.2, p.12201, 2017.

J. L. Anderson, Colloid transport by interfacial forces, Ann. Rev. Fluid Mech, vol.21, p.61, 1989.

R. Kree, P. S. Burada, and A. Zippelius, From active stresses and forces to self-propulsion of droplets, J. Fluid Mech, vol.821, p.595, 2017.

E. Lauga and S. Michelin, Stresslets induced by active swimmers, Phys. Rev. Lett, vol.117, p.148001, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02104855

A. Nourhani and P. E. Lammert, Geometrical performance of self-propelled colloids and microswimmers, Phys. Rev. Lett, vol.116, p.178302, 2016.

S. Michelin and E. Lauga, Geometric tuning of self-propulsion for janus catalytic particles, Sci. Rep, vol.7, p.42264, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02104849

Y. Ibrahim, R. Golestanian, and T. B. Liverpool, Shape dependent phoretic propulsion of slender active particles, Phys. Rev. Fluids, vol.3, p.33101, 2018.

S. Shklyaev, J. F. Brady, and U. M. Cordova-figueroa, Non-spherical osmotic motor: chemical sailing, J. Fluid Mech, vol.748, pp.488-520, 2014.

S. Michelin and E. Lauga, Autophoretic locomotion from geometric asymmetry, Eur. Phys. J. E, vol.38, issue.7, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01140759

R. Winklbauer, Cell adhesion strength from cortical tension an integration of concepts, J. Cell Sci, vol.128, p.3687, 2015.

T. Ohta, Dynamics of deformable active particles, J. Phys. Soc. Japan, vol.86, p.72001, 2017.

N. Yoshinaga, Spontaneous motion and deformation of a self-propelled droplet, Phys. Rev. E, vol.89, p.12913, 2014.

F. Fadda, G. Gonnella, A. Lamura, and A. Tiribocchi, Lattice boltzmann study of chemically-driven self-propelled droplets, Eur. Phys. J. E, vol.40, issue.12, p.112, 2017.

C. A. Weber, D. Zwicker, F. Jülicher, and C. F. Lee, Physics of active emulsions, 2018.

A. A. Golovin, Y. P. Gupalo, and Y. S. Ryazantsev, Change in shape of drop moving due to the chemithermocapillary effect, J. App. Mech. and Tech. Phys, vol.30, p.602, 1989.

J. F. Baret, Theoretical model for an interface allowing a kinetic study of adsorption, J. Coll. Int. Sci, vol.30, p.1, 1969.

H. Lamb, Hydrodynamics. Dover Books on Physics, 1945.

J. Happel and H. Brenner, Low Reynolds number hydrodynamics: with special applications to particulate media (Mechanics of Fluids and Transport Processes), 1983.

L. and G. Leal, Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes. Cambridge Series in Chemical Engineering, 2007.

J. R. Blake, A spherical envelope approach to ciliary propulsion, J. Fluid Mech, vol.46, p.199, 1971.

A. Acrivos and T. D. Taylor, Heat and mass transfer form single spheres in stokes flow, Phys. Fluids, vol.5, p.387, 1962.

M. H. Holmes, Introduction to Perturbation Methods, 1995.

Y. Matunobu, Motion of a deformed drop in stokes flow, J. Phys. Soc. Japan, vol.21, p.1596, 1966.

G. K. Batchelor, The stress system in a suspension of force-free particles, J. Fluid Mech, vol.41, pp.545-570, 1970.

F. Caschera, S. Rasmussen, and M. M. Hanczyc, An oil droplet division-fusion cycle, Chempluschem, vol.78, p.52, 2013.