K. S. Park, Z. Ni, A. P. Côte, J. Y. Choi, R. D. Huang et al., Exceptional Chemical and Thermal Stability of Zeolitic Imidazolate Frameworks, Proc. Natl. Acad. Sci, vol.103, pp.10186-10191, 2006.

J. Canivet, A. Fateeva, Y. Guo, B. Coasne, and D. Farrusseng, Water Adsorption in MOFs: Fundamentals and Applications, Chem. Soc. Rev, vol.43, pp.5594-5617, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01073438

B. Chen, Z. Yang, Y. Zhu, and Y. Xia, Zeolitic Imidazolate Framework Materials: Recent Progress in Synthesis and Applications, J. Mater. Chem. A, vol.2, pp.16811-16831, 2014.

J. G. Duan, W. Q. Jin, and S. Kitagawa, Water-Resistant Porous Coordination Polymers for Gas Separation, Coord. Chem. Rev, vol.332, pp.48-74, 2017.

A. Phan, C. J. Doonan, F. J. Uribe-romo, C. B. Knobler, M. O'keeffe et al., Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks, Acc. Chem. Res, vol.43, pp.58-67, 2010.

Y. Tian, S. Yao, D. Gu, K. Cui, D. Guo et al., Cadmium Imidazolate Frameworks with Polymorphism, High Thermal Stability, and a Large Surface Area, Chem. -Eur. J, vol.16, pp.1137-1141, 2010.

B. R. Pimentel, A. Parulkar, E. Zhou, N. A. Brunelli, and R. P. Lively, Zeolitic Imidazolate Frameworks: Next-Generation Materials for Energy-Efficient Gas Separations, ChemSusChem, vol.7, pp.3202-3240, 2014.

R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa et al., High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO 2 Capture, Science, vol.319, pp.939-943, 2008.

Z. Zhang, Y. Zhao, Q. Gong, Z. Li, and J. Li, MOFs for CO 2 Capture and Separation from Flue Gas Mixtures: the Effect of Multifunctional Sites on their Adsorption Capacity and Selectivity, Chem. Commun, vol.49, pp.653-661, 2013.

S. Wang and X. Wang, Imidazolium Ionic Liquids, Imidazolylidene Heterocyclic Carbenes, and Zeolitic Imidazolate Frameworks for CO 2 Capture and Photochemical Reduction, Angew. Chem., Int. Ed, vol.55, pp.2308-2320, 2016.

Y. He, W. Zhou, R. Krishna, and B. Chen, Microporous Metal-Organic Frameworks for Storage and Separation of Small Hydrocarbons, Chem. Commun, vol.48, pp.11813-11831, 2012.

Z. R. Herm, E. D. Bloch, and J. R. Long, Hydrocarbon Separations in Metal-Organic Frameworks, Chem. Mater, vol.26, pp.323-338, 2014.

S. Qiu, M. Xue, and G. Zhu, Metal-Organic Framework Membranes: from Synthesis to Separation Application, Chem. Soc. Rev, vol.43, pp.6116-6140, 2014.

B. Van-de-voorde, B. Bueken, J. Denayer, and D. De-vos, Adsorptive Separation on Metal-Organic Frameworks in the Liquid Phase, Chem. Soc. Rev, vol.43, pp.5766-5788, 2014.

E. Adatoz, A. K. Avci, and S. Keskin, Opportunities and Challenges of MOF-Based Membranes in Gas Separations, Sep. Purif. Technol, vol.152, pp.207-237, 2015.

Z. Bao, G. Chang, H. Xing, R. Krishna, Q. Ren et al., Potential of Microporous Metal-Organic Frameworks for Separation of Hydrocarbon Mixtures, Energy Environ. Sci, vol.9, pp.3612-3641, 2016.

Q. Zhu and Q. Xu, Metal-Organic Framework Composites, Chem. Soc. Rev, vol.43, pp.5468-5512, 2014.

S. Bhattacharjee, M. Jang, H. Kwon, and W. Ahn, Zeolitic Imidazolate Frameworks: Synthesis, Functionalization, and Catalytic/Adsorption Applications, Catal. Surv. Asia, vol.18, pp.101-127, 2014.

A. Dhakshinamoorthy, M. Opanasenko, J. Cejka, and H. Garcia, Metal Organic Frameworks as Heterogeneous Catalysts for the Production of Fine Chemicals, Catal. Sci. Technol, vol.3, pp.2509-2540, 2013.

Y. Huang, J. Liang, X. Wang, and R. Cao, Multifunctional Metal-Organic Framework Catalysts: Synergistic Catalysis and Tandem Reactions, Chem. Soc. Rev, vol.46, pp.126-157, 2017.

G. Ortiz, H. Nouali, C. Marichal, G. Chaplais, and J. Patarin, Energetic Performances of the Metal-Organic Framework ZIF-8 Obtained Using High Pressure Water Intrusion-Extrusion Experiments, Phys. Chem. Chem. Phys, vol.15, pp.4888-4891, 2013.

G. Ortiz, H. Nouali, C. Marichal, G. Chaplais, and J. Patarin, Versatile Energetic Behavior of ZIF-8 upon High Pressure Intrusion-Extrusion of Aqueous Electrolyte Solutions, J. Phys. Chem. C, vol.118, pp.7321-7328, 2014.

G. Ortiz, H. Nouali, C. Marichal, G. Chaplais, and J. Patarin, Energetic Performances of "ZIF-71-Aqueous Solution" Systems: A Perfect Shock-Absorber with Water, J. Phys. Chem. C, vol.118, pp.21316-21322, 2014.

A. U. Ortiz, A. P. Freitas, A. Boutin, A. H. Fuchs, and F. Coudert, What Makes Zeolitic Imidazolate Frameworks Hydrophobic or Hydrophilic? The Impact of Geometry and Functionalization on Water Adsorption, Phys. Chem. Chem. Phys, vol.16, pp.9940-9949, 2014.

I. Khay, G. Chaplais, H. Nouali, C. Marichal, and J. Patarin, Water Intrusion-Extrusion Experiments in ZIF-8: Impacts of the Shape and Particle Size on The Energetic Performances, RSC Adv, vol.5, pp.31514-31518, 2015.

I. Khay, G. Chaplais, H. Nouali, G. Ortiz, C. Marichal et al., Assessment of the Energetic Performances of Various ZIFs with SOD or RHO Topology Using High Pressure Water Intrusion-Extrusion Experiments, Dalton Trans, vol.45, pp.4392-4400, 2016.

B. Mortada, G. Chaplais, V. Veremeienko, H. Nouali, C. Marichal et al., Energetic Performances of ZIF-8 Derivatives: Impact of the Substitution (Me, Cl or Br) on Imidazolate Linker, J. Phys. Chem. C, vol.122, pp.3846-3855, 2018.

G. Fraux, F. Coudert, A. Boutin, and A. H. Fuchs, Forced Intrusion of Water and Aqueous Solutions in Microporous Materials: from Fundamental Thermodynamics to Energy Storage Devices, Chem. Soc. Rev, vol.46, pp.7421-7437, 2017.

K. Li, D. H. Olson, J. Seidel, T. J. Emge, H. Gong et al., Zeolitic Imidazolate Frameworks for Kinetic Separation of Propane and Propene, J. Am. Chem. Soc, vol.131, pp.10368-10369, 2009.

J. Li, K. Li, and D. H. Olson, Zeolitic Imidazolate Frameworks for Kinetic Separation of Propane and Propene. US20110282067, 2011.

C. R. Groom, I. J. Bruno, M. P. Lightfoot, and S. C. Ward, The Cambridge Structural Database, Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater, vol.72, pp.171-179, 2016.

H. Amrouche, S. Aguado, J. Pérez-pellitero, C. Chizallet, F. Siperstein et al., Experimental and Computational Study of Functionality Impact on Sodalite-Zeolitic Imidazolate Frameworks for CO 2 Separation, J. Phys. Chem. C, vol.115, pp.16425-16432, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00697851

J. Hu, Y. Liu, J. Liu, and C. Gu, Effects of Water Vapor and Trace Gas Impurities in Flue Gas on CO 2 Capture in Zeolitic Imidazolate Frameworks: the Significant Role of Functional Groups, pp.244-251, 0200.

H. Amrouche, B. Creton, F. Siperstein, and C. Nieto-draghi, Prediction of Thermodynamic Properties of Adsorbed Gases in Zeolitic Imidazolate Frameworks, vol.2, pp.6028-6035, 2012.

S. A. Moggach, T. D. Bennett, and A. K. Cheetham, The Effect of Pressure on ZIF-8: Increasing Pore Size with Pressure and the Formation of a High-Pressure Phase at 1.47 GPa, Angew. Chem., Int. Ed, vol.48, pp.7087-7089, 2009.

D. Fairen-jimenez, S. A. Moggach, M. T. Wharmby, P. A. Wright, S. Parsons et al., Opening the Gate: Framework Flexibility in ZIF-8 Explored by Experiments and Simulations, J. Am. Chem. Soc, vol.133, pp.8900-8902, 2011.

C. O. Ania, E. García-pérez, M. Haro, J. J. Gutiérrez-sevillano, T. Valdés-solís et al., Understanding Gas-Induced Structural Deformation of ZIF-8, J. Phys. Chem. Lett, vol.3, pp.1159-1164, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02124970

C. Zhang, J. A. Gee, D. S. Sholl, and R. P. Lively, Crystal-Size-Dependent Structural Transitions in Nanoporous Crystals: Adsorption-Induced Transitions in ZIF-8, J. Phys. Chem. C, vol.118, pp.20727-20733, 2014.

S. Tanaka, K. Fujita, Y. Miyake, M. Miyamoto, Y. Hasegawa et al., Adsorption and Diffusion Phenomena in Crystal Size Engineered ZIF

. Mof, J. Phys. Chem. C, vol.119, pp.28430-28439, 2015.

T. Tian, M. T. Wharmby, J. B. Parra, C. O. Ania, and D. Fairen-jimenez, Role of Crystal Size on SwingEffect and Adsorption Induced Structure Transition of ZIF-8, Dalton Trans, vol.45, pp.6893-6900, 2016.

S. Watanabe, S. Ohsaki, T. Hanafusa, K. Takada, H. Tanaka et al., Synthesis of Zeolitic Imidazolate Framework-8 Particles of Controlled Sizes, Shapes, and Gate Adsorption Characteristics Using a Central Collision-Type Microreactor, Chem. Eng. J, vol.313, pp.724-733, 2017.

M. Springuel-huet, A. Nossov, F. Guenneau, and A. Gedeon, Flexibility of ZIF-8 Materials Studied Using
URL : https://hal.archives-ouvertes.fr/hal-01468494

N. Xe, Chem. Commun, vol.49, pp.7403-7405, 2013.

F. Coudert, Molecular Mechanism of Swing Effect in Zeolitic Imidazolate Framework ZIF-8: Continuous Deformation upon Adsorption, vol.18, pp.2732-2738, 2017.

M. He, J. Yao, Q. Liu, K. Wang, F. Chen et al., Facile Synthesis of Zeolitic Imidazolate Framework-8 from a Concentrated Aqueous Solution, Microporous Mesoporous Mater, vol.184, pp.55-60, 2014.

, STOE Powder Diffraction Software Package WinX POW, 2006.

A. Boultif and D. Louër, Indexing of Powder Diffraction Patterns for Low-Symmetry Lattices by the Successive Dichotomy Method, J. Appl. Crystallogr, vol.24, pp.987-993, 1991.

H. M. Rietveld, Profile Refinement Method for Nuclear and Magnetic Structures, J. Appl. Crystallogr, vol.2, pp.65-71, 1969.

A. C. Larson and R. B. Von-dreele, General Structure Analysis System (GSAS), pp.86-748, 1994.

B. H. Toby, EXPGUI, a Graphical User Interface for GSAS, J. Appl. Crystallogr, vol.34, pp.210-213, 2001.

L. Bail, A. Duroy, H. Fourquet, and J. L. , The Ab-Initio Structure Determination of Lithium Antimony Tungstate (LiSbWO 6 ) by X-Ray Powder Diffraction, Mater. Res. Bull, vol.23, pp.447-452, 1988.

D. Massiot, F. Fayon, M. Capron, I. King, S. Le-calvé et al., Modelling One-and Two-Dimensional Solid-State NMR Spectra, Magn. Reson. Chem, vol.40, pp.70-76, 2002.

J. Rouquerol, P. Llewellyn, and F. Rouquerol, Is the BET Equation Applicable to Microporous Adsorbents? Stud, Surf. Sci. Catal, vol.160, pp.49-56, 2006.

K. S. Walton and R. Q. Snurr, Applicability of the BET Method for Determining Surface Areas of Microporous Metal-Organic Frameworks, J. Am. Chem. Soc, vol.129, pp.8552-8556, 2007.

J. Vandevondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing et al., QUICKSTEP: Fast and Accurate Density Functional Calculations Using a Mixed Gaussian and Plane Waves Approach, Comput. Phys. Commun, vol.167, pp.103-128, 2005.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett, vol.77, pp.3865-3868, 1996.

S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu, J. Chem. Phys, p.154104, 2010.

G. Bussi, D. Donadio, and M. Parrinello, Canonical Sampling Through Velocity Rescaling, J. Chem. Phys, p.14101, 2007.

O. Karagiaridi, M. B. Lalonde, W. Bury, A. A. Sarjeant, O. K. Farha et al., Opening ZIF-8: A Catalytically Active Zeolitic Imidazolate Framework of Sodalite Topology with Unsubstituted Linkers, J. Am. Chem. Soc, vol.134, pp.18790-18796, 2012.

S. Springer, I. A. Baburin, T. Heinemeyer, J. G. Schiffmann, L. Van-wuellen et al., A Zeolitic Imidazolate Framework with Conformational Variety: Conformational Polymorphs Versus Frameworks with Static Conformational Disorder, CrystEngComm, vol.18, pp.2477-2489, 2016.

S. Sneddon, J. Kahr, A. F. Orsi, D. J. Price, D. M. Dawson et al., Investigation of Zeolitic Imidazolate Frameworks Using 13 C and 15 N Solid-State NMR Spectroscopy, Solid State Nucl. Magn. Reson, vol.87, pp.54-64, 2017.

C. Vioglio, P. Catalano, L. Vasylyeva, V. Nervi, C. Chierotti et al., Natural Abundance 15 N and 13 C Solid-State NMR Chemical Shifts: High Sensitivity Probes of the Halogen Bond Geometry, Chem. -Eur. J, vol.22, pp.16819-16828, 2016.

D. Peralta, G. Chaplais, J. Paillaud, A. Simon-masseron, K. Barthelet et al., The Separation of Xylene

. Framework, Microporous Mesoporous Mater, vol.173, pp.1-5, 2013.

J. Pérez-pellitero, H. Amrouche, F. R. Siperstein, G. Pirngruber, C. Nieto-draghi et al., Adsorption of CO 2 , CH 4 , and N 2 on Zeolitic Imidazolate Frameworks: Experiments and Simulations, Chem. -Eur. J, vol.16, pp.1560-1571, 2010.

W. Morris, C. J. Doonan, H. Furukawa, R. Banerjee, and O. M. Yaghi, Crystals as Molecules: Postsynthesis Covalent Functionalization of Zeolitic Imidazolate Frameworks, J. Am. Chem. Soc, vol.130, pp.12626-12627, 2008.

J. A. Thompson, C. R. Blad, N. A. Brunelli, M. E. Lydon, R. P. Lively et al., Hybrid Zeolitic Imidazolate Frameworks: Controlling Framework Porosity and Functionality by Mixed-Linker Synthesis, Chem. Mater, vol.24, pp.1930-1936, 2012.

Z. Xin, X. Chen, Q. Wang, Q. Chen, and Q. Zhang, Nanopolyhedrons and Mesoporous Supra-Structures of Zeolitic Imidazolate Framework with High Adsorption Performance, Microporous Mesoporous Mater, vol.169, pp.218-221, 2013.

M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-reinoso et al., Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report), Pure Appl. Chem, vol.87, pp.1051-1069, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01416682

J. Li, R. J. Kuppler, and H. Zhou, Selective Gas Adsorption and Separation in Metal-Organic Frameworks, Chem. Soc. Rev, vol.38, pp.1477-1504, 2009.

T. F. Willems, C. H. Rycroft, M. Kazi, J. C. Meza, and M. Haranczyk, Algorithms and Tools for HighThroughput Geometry-Based Analysis of Crystalline Porous Materials, Microporous Mesoporous Mater, vol.149, pp.134-141, 2012.

C. L. Hobday, T. D. Bennett, D. Fairen-jimenez, A. J. Graham, C. A. Morrison et al., Tuning the Swing Effect by Chemical Functionalization of Zeolitic Imidazolate Frameworks, J. Am. Chem. Soc, vol.140, pp.382-387, 2018.