
HAL Id: hal-02104136
https://hal.science/hal-02104136v2

Submitted on 30 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Morita equivalences for cyclotomic Hecke algebras of
type B and D

Loïc Poulain d’Andecy, Salim Rostam

To cite this version:
Loïc Poulain d’Andecy, Salim Rostam. Morita equivalences for cyclotomic Hecke algebras of
type B and D. Bulletin de la société mathématique de France, 2021, 149 (1), pp.179-233.
�10.24033/bsmf.2828�. �hal-02104136v2�

https://hal.science/hal-02104136v2
https://hal.archives-ouvertes.fr


Morita equivalences for cyclotomic Hecke algebras of type B
and D

Équivalences de Morita pour les algèbres de Hecke cyclotomiques
de type B et D

Loïc Poulain d’Andecy∗† Salim Rostam‡

Abstract

We give a Morita equivalence theorem for so-called cyclotomic quotients of affine Hecke
algebras of type B and D, in the spirit of a classical result of Dipper–Mathas in type A for
Ariki–Koike algebras. Consequently, the representation theory of affine Hecke algebras of
type B and D reduces to the study of their cyclotomic quotients with eigenvalues in a single
orbit under multiplication by q2 and inversion. The main step in the proof consists in a
decomposition theorem for generalisations of quiver Hecke algebras that appeared recently
in the study of affine Hecke algebras of type B and D. This theorem reduces the general
situation of a disconnected quiver with involution to a simpler setting. To be able to treat
types B and D at the same time we unify the different definitions of quiver Hecke algebra for
type B that exist in the literature.

Résumé
Nous énonçons un théorème d’équivalence de Morita pour les quotients cyclotomiques

des algèbres de Hecke affines de type B et D, suivant un résultat classique de Dipper–Mathas
en type A pour les algèbres d’Ariki–Koike. Ainsi, la théorie des représentations des algèbres
de Hecke affines de type B et D se réduit à l’étude de leurs quotients cyclotomiques où
les valeurs propres sont dans une unique orbite pour la multiplication par q2 et l’inversion.
La preuve consiste notamment en un théorème de décomposition pour des généralisations
d’algèbres de Hecke carquois introduites récemment dans l’étude des algèbres de Hecke affines
de type B et D, ramenant la situation générale d’un carquois non connexe avec involution à
un cadre plus simple. Pour traiter simultanément les deux types, nous unifions les différentes
définitions d’algèbres de Hecke carquois pour le type B déjà existantes.

Introduction
Cyclotomic quotients of the affine Hecke algebra of type A, also known as Ariki–Koike
algebras, have been extensively studied since their introduction by Broué–Malle [5] and Ariki–
Koike [2]. Given a field K, a subset I ⊆ K×, an element q ∈ K× and a finitely-supported
family Λ = (Λi)i∈I of non-negative integers, the Ariki–Koike algebra HΛ(Sn) is defined by
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the generators g0, . . . , gn−1 and the relations

gigj = gjgi, for all i, j ∈ {0, . . . , n− 1}, |i− j| > 1,
gigi+1gi = gi+1gigi+1, for all i ∈ {1, . . . , n− 2},
g0g1g0g1 = g1g0g1g0,

(gi − q)(gi + q−1) = 0, for all i ∈ {1, . . . , n− 1},∏
i∈I

(g0 − i)Λi = 0.

We note that Ariki–Koike algebras are quotients, by the last relation, of affine Hecke algebras
of type A and that the study of their representations (for all choices of I and Λ) is equivalent
to the study of finite-dimensional representations of affine Hecke algebras of type A.

By an important theorem of Dipper–Mathas [8], we know that it suffices to study Ariki–
Koike algebras when the set I is q2-connected, that is, in a single q2-orbit (and even, up to a
scalar renormalisation of the generator g0, when I ⊆ 〈q2〉). More precisely, if I = qdj=1I

(j) is
the decomposition of I into q2-connected sets then we have a Morita equivalence

HΛ(Sn) Morita'
⊕

n1,...,nd≥0
n1+···+nd=n

d⊗
j=1

HΛ(j)
(Snj ), (♣)

where Λ(j) is the restriction of Λ to I(j). (Note that the assumption in [8] is slightly stronger
than the one above, but in practice it is this condition of q2-connected sets that is used.)
Hence, this Morita equivalence allows to use results that are only known when the set I is
q2-connected, in particular, the celebrated Ariki’s categorification theorem [1] that computes
the decomposition numbers of Ariki–Koike algebras in terms of the canonical basis of a
certain highest weight module over an affine quantum group.

Another way to obtain this Morita equivalence was given by the second author [22, §3.4],
using the theory of quiver Hecke algebras. This is a family of graded algebras that was
introduced a few years ago independently by Khovanov–Lauda [16, 17] and Rouquier [23], in
the context of categorification of quantum groups. If Γ is a quiver, we denote by Rn(Γ) the
associated quiver Hecke algebra (see §2.1). For a certain quiver Γ depending only on the
order of q2, Brundan–Kleshchev [6] and independently Rouquier [23] proved that a certain
“cyclotomic” quotient of Rn(Γ) is isomorphic to an Ariki–Koike algebra. This result is now
a basic tool in the study of Ariki–Koike algebras and their degenerations, including the
symmetric group and the classical Hecke algebra of type A. For instance, as consequences
first the Ariki–Koike algebra inherits the grading of the cyclotomic quiver Hecke algebra,
and second depends on q only through its order in K×. Now if Γ is of the form Γ = qdj=1Γ(j)

where each Γ(j) is a full subquiver, it was shown in [21, §6] that we have a decomposition

Rn(Γ) '
⊕

n1,...,nd≥0
n1+···+nd=n

Mat( n
n1,...,nd)

 d⊗
j=1

Rnj (Γ(j))

 . (♠)

This isomorphism of algebras is compatible with cyclotomic quotients, and combining with
the previous isomorphism of Brundan–Kleshchev and Rouquier allows to recover the Morita
equivalence (♣). This Morita equivalence has been further generalised for the cyclotomic
Hecke algebras of type G(r, p, n) [11]. We indicate also the paper [12] where the Dipper–
Mathas result is studied and derived again from the point of view of affine Hecke algebras,
and where the question of a similar result for other affine Hecke algebras is evoked.

The main point of this paper is to prove a similar decomposition theorem for some
generalisations of quiver Hecke algebras and hence obtain an analogue of the Dipper–Mathas
Morita equivalence for cyclotomic quotients of affine Hecke algebras of type B and D. Such
generalisations of quiver Hecke algebras were introduced by Varagnolo and Vasserot [25] (for
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type B) and together with Shan [24] (for type D), in the course of their proofs of conjectures
by Kashiwara–Enomoto [9] and Kashiwara–Miemietz [15]. These algebras play for certain
subcategories of representations of affine Hecke algebras of type B and D a similar role as
quiver Hecke algebras for affine Hecke algebras of type A. Inspired by their results, the
first author together with Walker [19, 20] obtained an isomorphism theorem à la Brundan–
Kleshchev between cyclotomic quotients of affine Hecke algebras of type B and D and certain
generalisations of cyclotomic quiver Hecke algebras.

The first step of this paper is to provide a definition of these generalisations of quiver
Hecke algebras for the type B which encompasses all the slightly different versions previously
defined. They are Z-graded algebras and they depend upon a quiver with an involution and
certain weight functions on the vertices. As for the type A case, that is, for usual quiver Hecke
alegbras, the algebra that we define admits a PBW basis and this is a key ingredient to prove
the decomposition theorem when the underlying quiver has several connected components.
The point of having defined a new algebra in Section 3 is that we can now use the main
results of [19, 20] at the same time. We deduce our main theorem for type B, Theorem 6.8,
that we state now. Write I ⊆ K× as I = qdj=1I

(j) such that each I(j) is q2-connected and
stable by scalar inversion. As in the type A case, for Λ = (Λi)i∈I ∈ N(I) we denote by
HΛ(Bn) the quotient of the affine Hecke algebra of type B by the relation∏

i∈I
(X1 − i)Λi = 0

(see §6.1 for a precise definition).
Theorem. We have an (explicit) isomorphism

HΛ(Bn) '
⊕

n1,...,nd≥0
n1+···+nd=n

Mat( n
n1,...,nd)

 d⊗
j=1

HΛ(j)
(Bnj )

 ,

in particular, we have a Morita equivalence

HΛ(Bn) Morita'
⊕

n1,...,nd≥0
n1+···+nd=n

d⊗
j=1

HΛ(j)
(Bnj ).

We also deduce that a similar result holds for the cyclotomic quotient HΛ(Dn) of the
affine Hecke algebra of type D. Some technicalities typical to the type D situation result in a
formulation of the final result a bit more complicated than for type B in the Theorem above,
since it involves in addition a semi-direct product by powers of a cyclic group of order 2 (see
Theorem 6.19).

One motivation for considering cyclotomic quotients of affine Hecke algebras is that the
study of (finite-dimensional) representations of the affine Hecke algebra is equivalent to the
study of representations of all their cyclotomic quotients. As a consequence of our main
results, we obtain that, for affine Hecke algebras of type B and D, this study reduces to
considering the algebras HΛ(Bn) and HΛ(Dn) when the set I is q2-connected and stable by
scalar inversion (see Corollaries 6.9 and 6.20 for more details and a complete description of
the finite number — up to four — of sets I to be considered). This generalises the classical
reduction for the affine Hecke algebras of type A (for which it is enough to consider I = q2Z)
induced by the Dipper–Mathas result.

Organisation of the paper. In Section 1, given an algebra A and a set of idempotents
satisfying certain properties we prove a general decomposition theorem expressing A in terms
of a direct sum involving matrix algebras on idempotent truncations (Corollary 1.13).

Let Γ be a (possible infinite) quiver with no 1-loops, let I be its vertex set and let α ⊆ Sn

be a finite union of Sn-orbits. In Section 2 we recall the definition of the quiver Hecke algebra
Rα(Γ). We then review the proof, based on the general theorem from Section 1, of the
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decomposition isomorphism of [21] when Γ has several connected components, generalising
it to the case where Γ is not necessarily finite (as it is assumed in [21]). In §2.2.4, given a
finitely-supported family Λ of non-negative integers we define the cyclotomic quotient RΛ

α(Γ)
of Rα(Γ) and give the corresponding isomorphism when Γ has several connected components.

Then we assume that Γ is endowed with an involution θ and let β ⊆ In be an orbit for
the action of the Weyl group Bn of type B and rank n. We begin Section 3 by defining the
algebra Vβ(Γ, λ, γ) depending in addition on λ ∈ NI and γ ∈ KI satisfying certain conditions.
This algebra generalises the constructions of [25, 19, 20], see Remarks 3.16, 3.17 and 3.18
respectively. The algebra Vβ(Γ, λ, γ) is Z-graded, and we prove in §3.2 that it admits a PBW
basis, using a polynomial realisation (the calculations are postponed to Appendix A).

Section 4 is the heart of the paper. We prove a decomposition theorem, similar to (♠),
for the algebra Vβ(Γ, λ, γ) when the quiver Γ is a disjoint union of θ-stable full subquivers
Γ = qdj=1Γ(j) (Theorem 4.1). As in Section 2, we first use the results of Section 1 and then
prove that some idempotent truncation of Vβ(Γ, λ, γ) can be expressed as a tensor product
on smaller algebras involving the quivers Γ(j). Note here a technical difficulty comparing
with the type A case: for n1 + · · · + nd = n, the group Sn1 × · · · ×Snd can be seen as a
parabolic subgroup of Sn for its standard Coxeter structure, but it is no more the case for
Bn1 × · · · × Bnd ⊆ Bn, although this is still a subgroup. We prove in §4.3 the cyclotomic
analogue of the decomposition theorem (Corollary 4.17).

The shorter Section 5 is devoted to quiver Hecke algebras Wβ(Γ) for type D and their
cyclotomic quotients WΛ

β (Γ). Using a result of [20] that expresses Wβ(Γ) as the subalgebra
of fixed-points of a certain involutive automorphism of Vβ(Γ, 0, 0) (Proposition 5.17), we
manage to give a decomposition isomorphism for Wβ(Γ) and its cyclotomic quotient when
the quiver Γ has several θ-stable full subquivers (Theorem 5.26).

Finally, in Section 6 we introduce the affine Hecke algebras H(Bn) of type B and H(Dn)
of type D, together with their cyclotomic quotients HΛ(Bn) and HΛ(Dn). We then use
the analogues of Brundan–Kleshchev isomorphism theorem in types B and D from [19,
20] to deduce from our disjoint quiver isomorphisms the announced Morita equivalences:
Theorem 6.8 for type B and Theorem 6.19 for type D.

Acknowledgements The authors would like to thank Ruari Walker for many interesting
discussions initiating this work. The second author would like to thank Ruslan Maksimau
for explaining a proof of Proposition 2.12. The authors are very grateful to an anonymous
referee for many useful suggestions.

1 Decomposition in matrix algebras on idempotent trun-
cations
The results in this section, or some versions of them, are probably known to specialists, but
we could not find them in this precise form in the literature. So we state them in the form
we need and provide complete proofs. The framework presented here encompasses several
cases of proved isomorphism theorems such as in [13, 21].

Let A be a unitary algebra over a ring K. Let I be a complete (finite) set of orthogonal
idempotents, that is:
• for all e ∈ I we have e2 = e;
• for all e, e′ ∈ I, if e 6= e′ then ee′ = e′e = 0;
• we have 1 =

∑
e∈I e.

For any e ∈ I, let φe, ψe ∈ A such that

φeψee = e, (1.1a)
eφeψe = e. (1.1b)

Remark 1.2. Such elements necessarily exist, for instance φe = ψe = e for any e ∈ I. However,
obviously this will not lead to interesting results.
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Lemma 1.3. For any e ∈ I, the element ψeeφe is an idempotent.

Proof. Using (1.1a), we have

(ψeeφe)2 = ψee(φeψee)φe
= ψee

2φe

= ψeeφe,

as desired.

Denote by J the image of the map I −→ A
e 7−→ ψeeφe

and write Iε for the fibre of any

element ε ∈ J . We have
Iε = {e ∈ I : ψeeφe = ε},

and ⊔
ε∈J
Iε = I.

By Lemma 1.3, the set J consists of idempotents, however it is a priori not related to I.
Proposition 1.4. For any ε ∈ J and any e ∈ Iε we have

eφe = φeε, (1.5a)
εψe = ψee. (1.5b)

Proof. We have
ψeeφe = ε, (1.6)

thus (φeψee)φe = φeε. Using (1.1a) we obtain the first equality. We also obtain ψe(eφeψe) =
εψe from (1.6) thus by (1.1b) we obtain the second equality.

Proposition 1.7. For any ε ∈ J and any e ∈ Iε we have

ψeφeε = ε, (1.8a)
εψeφe = ε. (1.8b)

Proof. By (1.5a) we have φeε = eφe, thus

ψeφeε = ψeeφe,

and we conclude that (1.8a) holds since ψeeφe = ε by definition of Iε. Similarly, by (1.5b)
we have

εψeφe = ψeeφe = ε,

thus (1.8b) holds.

If J is any finite set and B any K-algebra, we denote by MatJ(B) the K-algebra of
matrices with rows and columns indexed by J with entries in B.
Definition 1.9. For any ε ∈ J , we define the idempotent

ε̂ :=
∑
e∈Iε

e.

Theorem 1.10. Let ε ∈ J . We have the following isomorphism of K-algebras:

ε̂Aε̂ ' MatIε(εAε).
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Proof. We first prove that for any e′, e ∈ Iε, the maps

θe′e : e′Ae −→ εAεMe′e

a 7−→ ψe′aφeMe′e
,

and
ηe′e : εAεMe′e −→ e′Ae

aMe′e 7−→ φe′aψe,

are well-defined and inverse isomorphism of K-modules. Here, we denoted by Me′e ∈
MatIε(εAε) the matrix whose unique non-zero coefficient, which is 1, is at row e′ and
column e. The maps θe′e and ηe′e are well-defined by Proposition 1.4. Indeed, for any
a ∈ e′Ae then a = e′ae and

ψe′aφe = (ψe′e′)a(eφe) = (εψe′)a(φeε) ∈ εAε,

so θe′e is well-defined, and for any a ∈ εAε then a = εaε and

φe′aψe = (φe′ε)a(εψe) = (e′φe′)a(ψee) ∈ e′Ae,

so ηe′e is well-defined. Now for any a ∈ e′Ae we have, using a = e′ae and (1.1),

ηe′e
(
θe′e(a)

)
= ηe′e(ψe′aφeMe′e)
= φe′(ψe′aφe)ψe
= (φe′ψe′e′)a(eφeψe)
= e′ae

= a.

Moreover, for any a ∈ εAε we have, using a = εaε and Proposition 1.4,

θe′e
(
ηe′e(aMe′e)

)
= θe′e(φe′aψe)
= ψe′φe′aψeφeMe′e

= (ψe′φe′ε)a(εψeφe)Me′e

= εaε

= a.

We now want to extend θe′e and ηe′e to algebra isomorphisms. We have a direct sum
decomposition

ε̂Aε̂ =
⊕

e′,e∈Iε

e′Ae. (1.11)

We define two maps

θε : ε̂Aε̂→ MatIε(εAε),
ηε : MatIε(εAε)→ ε̂Aε̂,

by

θε :=
⊕

e′,e∈Iε

θe′e,

ηε :=
⊕

e′,e∈Iε

ηe′e.

These two maps are inverse isomorphisms of K-modules. To prove that they are inverse
isomorphism of K-algebras, it suffices to prove that θε is a morphism of K-algebras. Recalling
the decomposition (1.11), it suffices to prove that

θε(a1a2) = θε(a1)θε(a2), (1.12)
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for any ai ∈ e′iAei for any ei ∈ Iε. If e1 6= e′2 then the left-hand side is zero, and so is the
right-hand one since Me′1e1Me′2e2 = 0MatIε (εAε). Thus, we now assume that e1 = e′2. We have
a1 = a1e1 and a1a2 = a1e1a2 ∈ e′1Ae2, thus using (1.1b) we obtain

θε(a1a2) = θe′1e2(a1a2)
= ψe′1a1(e1)a2φe2Me′1e2

= ψe′1a1(e1φe1ψe1)a2φe2Me′1e2

= (ψe′1a1e1φe1)(ψe1a2φe2)Me′1e2

=
(
ψe′1a1φe1Me′1e1

)
(ψe1a2φe2Me1e2)

= θe′1e1(a1)θe1e2(a2)
= θε(a1)θε(a2).

This concludes the proof.

Corollary 1.13. Assume that for all ε, ε′ ∈ J we have

ε 6= ε′ =⇒ ε̂Aε̂′ = {0}. (1.14)

Then have the following isomorphism of K-algebras:

A '
⊕
ε∈J

MatIε(εAε).

Proof. The assumption (1.14) implies that

A '
⊕
ε∈J

ε̂Aε̂.

We now use the result of Theorem 1.10.

2 Application to quiver Hecke algebras
We here review and generalise the decomposition theorem from [21, §6] to the case of a
possibly infinite quiver. A careful analysis of the proofs in this section will be the starting
point of several proofs later in the paper.

2.1 Definition
Let Γ be a loop-free quiver, possibly infinite. We write I (respectively A) for the vertex
(resp. arrow) set. We have a map A → I × I given by A 3 a 7→

(
o(a), t(a)

)
∈ I × I. The

loop-free condition says that for all a ∈ A we have o(a) 6= t(a). For any i, j ∈ I, we write
|i → j| for the (finite) number of a ∈ A such that o(a) = i and t(a) = j. We also define
i · j := |i → j| + |i ← j|. (We warn the reader that the usual quantity is −i · j.) For any
i, j ∈ I we define

d(i, j) :=
{
i · j, if i 6= j,

−2, otherwise.

Let u, v be two indeterminates over K. For any i, j ∈ I, we define the polynomial Qij(u, v) ∈
K[u, v] by

Qij(u, v) :=
{

(−1)|i→j|(u− v)i·j , if i 6= j,

0, otherwise,
(2.1)

Note that
Qij(u, v) = Qji(v, u) = Qij(−v,−u). (2.2)

Let n ∈ N and Sn be the symmetric group on n letters. We denote by ra the transposition
(a, a+ 1) ∈ Sn for any a ∈ {1, . . . , n− 1}. We will consider the following two actions of Sn:
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• the natural action on {1, . . . , n}, given by ra · i := ra(i) for all a ∈ {1, . . . , n− 1} and
i ∈ {1, . . . , n} ;

• the action on In by place permutation, given by

ra · (. . . , ia, ia+1, . . . ) := (. . . , ia+1, ia, . . . ), (2.3)

for any i = (i1, . . . , in) ∈ In and a ∈ {1, . . . , n− 1}.
Let α ⊆ In be a finite Sn-stable subset, that is, a finite union of Sn-orbits.
Definition 2.4 (Khovanov–Lauda [16, 17], Rouquier [23]). The quiver Hecke algebra asso-
ciated with the quiver Γ and the finite stable Sn-subset α ⊆ In, denoted by Rα(Γ), is the
associative unitary K-algebra generated by elements

{ya}1≤a≤n ∪ {ψb}1≤b≤n−1 ∪ {e(i)}i∈α,

and relations, for any i, j ∈ α and a, b ∈ {1, . . . , n},∑
i∈α

e(i) = 1, e(i)e(j) = δije(i), yayb = ybya, yae(i) = e(i)ya, (2.5)

and

ψae(i) = e(ra · i)ψa, (2.6)

(ψayb − yra(b)ψa)e(i) =


−e(i), if b = a and ia = ia+1,

e(i), if b = a+ 1 and ia = ia+1,

0, otherwise,
(2.7)

if a ≤ n− 1, and finally

ψaψb = ψbψa, if |a− b| > 1, (2.8)
ψ2
ae(i) = Qiaia+1(ya, ya+1)e(i), (2.9)

(ψb+1ψbψb+1 − ψbψb+1ψb)e(i) =


Qibib+1(yb, yb+1)−Qibib+1(yb+2, yb+1)

yb − yb+2
e(i), if ib = ib+2,

0, otherwise,
(2.10)

if a ≤ n− 1 and b ≤ n− 2.
We may form the direct sum Rn(Γ) :=

⊕
αRα(Γ), where α runs over all the orbits of In

under the action of Sn. If Γ is finite, the direct sum is finite and Rn(Γ) is a unitary algebra,
with unit

∑
i∈In e(i). Note that if n = 0 then Rα(Γ) = R0(Γ) = K.

Proposition 2.11 ([16, 17, 23]). The algebra Rα(Γ) is endowed with the Z-grading given by

deg e(i) = 0,
deg ya = 2,

degψbe(i) = d(ib, ib+1),

for all i ∈ α and a, b ∈ {1, . . . , n} with b ≤ n− 1.
For any w ∈ Sn, choose a reduced expression w = ra1 · · · rak and define ψw := ψa1 · · ·ψak .

Note that the element ψw may depend on the chosen reduced expression.
Proposition 2.12 ([16, 17, 23]). The algebra Rα(Γ) is a free K-module, and

{ya1
1 · · · yann ψwe(i) : ai ∈ N, w ∈ Sn, i ∈ α} ,

is a K-basis.
Remark 2.13. We recall that there is a one-to-one correspondence between Sn-orbits α ⊂ In
and maps α̂ : I → N of weight n, namely such that

∑
i∈I α̂(i) = n (the number α̂(i) counts

the number of occurrence of i in any element in the orbit α).
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2.2 Disjoint union of quivers
Let d ∈ N∗. Like in [21, §6.1.3], we assume that the quiver Γ decomposes as a disjoint union
of full subquivers

Γ =
d⊔
j=1

Γ(j) ,

where there are no arrows between Γ(j) and Γ(j′) if j 6= j′. We denote by I = qdj=1I
(j) the

subsequent partition of the vertex set. Note that Qii′ = 1 whenever i ∈ I(j) and i′ ∈ I(j′)

with j 6= j′.
Now we consider a special class of finite unions of Sn-orbits in In. We let G be a finite

group acting on I and, for each j ∈ {1, . . . , d}, we assume that I(j) is stable under the action
of G. We denote

Gn = Gn oSn ,

the semi-direct product where Sn acts on place permutation on Gn.
The semidirect product Gn acts naturally on In. For any g = (g1, . . . , gn) ∈ Gn and

w ∈ Sn we have, for all (i1, . . . , in) ∈ In,

(g, w) · (i1, . . . , in) =
(
g1 · iw−1(1), . . . , gn · iw−1(n)

)
.

We fix α ⊆ In to be a Gn-orbit. Note that α is indeed a finite Sn-stable subset of In as
in §2.1.

2.2.1 Decomposition of orbits
For any i ∈ α and j ∈ {1, . . . , d}, let i(j) be the tuple obtained from i by removing the
entries that are not in I(j). We denote by nj(i) the number of remaining entries, that is, the
number of components of i(j). It follows easily from the fact that each I(j) is stable under
the action of G that:

the tuple (n1(i), . . . , nd(i)) is the same for each i ∈ α. (2.14)

Thus, we denote, for each j ∈ {1, . . . , d}, by nj(α) the unique value of nj(i) for i ∈ α.
We may simply write nj instead of nj(α) when α is clear from the context. Note that
n1 + · · ·+ nd = n.

We define
α(j) :=

{
i(j) : i ∈ α

}
⊆ (I(j))nj .

The set α(j) is a finite Snj -stable subset of (I(j))nj . We will see in (2.17) that it is in fact a
Gnj -orbit.

In addition to (2.14), we will need the following property of α.
Proposition 2.15. Recall that α ⊆ In is a Gn-orbit. We have:

α(1) × · · · × α(d) ⊂ α . (2.16)

where we use implicitly the natural identification (by concatenation) of In1 × · · · × Ind with a
subset of In.

Proof. Let us provide a proof which shows all the various elements explicitly. Since α is a
Gn-orbit, it can be written of the form:

α = {
(
g1 · iw−1(1), . . . , gn · iw−1(n)

)
| g1, . . . , gn ∈ G , w ∈ Sn} ,

for some element (i1, . . . , in) ∈ In. By invariance under Sn, we can choose (i1, . . . , in) in an
ordered form as follows: (

i11, . . . , i
1
n1
, . . . . . . , id1, . . . , i

d
nd

)
,
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where ijk ∈ I(j) for all j ∈ {1, . . . , d} and k ∈ {1, . . . , nj}. Then it is clear that for each
j ∈ {1, . . . , d}, we have simply

α(j) =
{(
g1 · ijw−1(1), . . . , gnj · i

j
w−1(nj)

) ∣∣ g1, . . . , gnj ∈ G , w ∈ Snj

}
.

Property (2.16) is now immediate to check.

From the proof of the preceding proposition, it is easy to see that the map

{
Gn-orbits of In

}
−→

⊔
n1,...,nd≥0
n1+···+nd=n

d∏
j=1

{
Gnj -orbits of

(
I(j))nj}, (2.17)

given by α 7→
(
α(1), . . . , α(d)) is a bijection. The inverse map associates to

(
α(1), . . . , α(d))

the smallest Gn-stable subset in In containing α(1) × · · · × α(d).
Remark 2.18. What we actually need for the results of this section is a subset α satisfying
properties (2.14) and (2.16). However, since we will use in all the paper only Gn-orbits, we
find it more convenient to start directly with Gn-orbits. In fact we will only use the groups
G = {1} and G = Z/2Z, but considering an arbitrary finite group G does not lead to any
complication.
Remark 2.19. • Let Ω be the set of G-orbits of I. Generalising Remark 2.13, it is easy to see
that there is a one-to-one correspondence between Gn-orbits α ⊆ In and maps α̂ : Ω→ N
such that

∑
ω∈Ω α̂(ω) = n. If α ⊆ In is a Gn-orbit and ω ∈ Ω, then α̂(ω) counts the number

of occurrence of the elements of ω in any element of α.
• For each j = 1, . . . , d, let Ω(j) be the set of G-orbits of I(j). We have Ω = qdj=1Ω(j).

Then the bijection (2.17) in terms of maps simply associates to α̂ : Ω→ N the restrictions
α̂|Ω(j) : Ω(j) → N to each Ω(j).
Example 2.20. Let us give an example of a subset α not satisfying property (2.16). Let n = 2
and α = {(a,A), (A, a), (b, B), (B, b)} where a, b ∈ I(1) and A,B ∈ I(2). Then α is a union of
two S2-orbits and it satisfies (2.14). It does not satisfy (2.16). Indeed, we have α(1) = {a, b}
and α(2) = {A,B} but, for example, (a,B) /∈ α.

2.2.2 Decomposition along the connected components of the quiver
We keep α ⊆ In a Gn-orbit for some finite group G acting on each set I(j). We may (and we
will) simply write nj instead of nj(α).

For each i ∈ I, we set p(i) = j ∈ {1, . . . , d} if i ∈ I(j). Then for each i = (i1, . . . , in) ∈ In,
we define its profile by p(i) =

(
p(i1), . . . , p(in)

)
∈ {1, . . . , d}n. Let

Profα := {p(i) , i ∈ α} ⊆ {1, . . . , d}n

be the set of all profiles of elements of α. Note that (2.14) ensures that Profα is also a single
orbit, now for the action of Sn on {1, . . . , d}n by place permutation.

A natural element to consider in this orbit Profα is

tα := (1, . . . , 1, 2, . . . , 2, . . . . . . , d, . . . , d),

where each j ∈ {1, . . . , d} appears exactly nj times. Then every element t ∈ Profα can be
reordered to obtain the distinguished element tα. More precisely, for any t ∈ Profα, the
set of elements w ∈ Sn such that w · t = tα forms a right coset in Sn for the subgroup
Sn1 × · · · ×Snd (the stabiliser of tα). There is a unique minimal length element in this coset
(see e.g. [10]) and we denote it πt. In particular, the element πt is the unique minimal length
element of Sn such that πt · t = tα.

For any t ∈ Profα, we define the idempotent

e(t) =
∑
i∈α
p(i)=t

e(i) ∈ Rα(Γ),
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and we set
I :=

{
e(t) : t ∈ Profα

}
.

It is a complete set of orthogonal idempotent and its cardinality is
(

n
n1,...,nd

)
. Then, for any

t ∈ Profα we fix a reduced expression πt = ra1 · · · rak and define

ψt := ψa1 · · ·ψak ∈ Rα(Γ), (2.21a)
φt := ψak · · ·ψa1 ∈ Rα(Γ). (2.21b)

In the following proposition, the grading on MatI
(
e(tα)Rα(Γ)e(tα)

)
is trivially induced

from the grading on e(tα)Rα(Γ)e(tα) (an homogeneous element of degree N is a matrix
where all coefficients are homogeneous elements of degree N).
Proposition 2.22. We have an isomorphism of graded algebras:

Rα(Γ) ' Mat( n
n1,...,nd)

(
e(tα)Rα(Γ)e(tα)

)
.

Proof. The proof follows the same steps as in [21] and we only give a sketch and the precise
references to [21]. First we have that the data {e(t), ψt, φt}t∈Profα in Rα(Γ) enters the general
setting (1.1) of Section 1, namely we have, for any t ∈ Profα (see [21, Proposition 6.18]),

φtψte(t) = e(t)φtψt = e(t). (2.23)

The main point to prove (2.23) is the following fact:

ψ2
ae(t) = e(t), (2.24)

for any a ∈ {1, . . . , n−1} and t ∈ Profα such that ta 6= ta+1 (see [21, Lemma 6.15]). Similarly,
we obtain, for any t ∈ Profα,

ψte(t)φt = ψtφte(tα) = e(tα). (2.25)

This last equality ensures that the set J in the notation of §1 is J = {e(tα)}. Since J is
reduced to one element, we deduce that the assumption (1.14) is automatically satisfied, and
we can use Corollary 1.13 to obtain the proposition. Finally, the fact that the isomorphism
is homogeneous follows from degψte(t) = deg φte(t) = 0 for any t ∈ Profα (see [21, Remark
6.29]).

Remark 2.26. Similarly to (2.24), we have (see [21, Lemma 6.20])

yaφte(t) = φtyπt(a)e(t), (2.27)

for any a ∈ {1, . . . , n− 1} and t ∈ Profα such that ta 6= ta+1, and also (see [21, Lemma 6.15])

ψa+1ψaψa+1e(t) = ψaψa+1ψae(t), (2.28)

for any a ∈ {1, . . . , n− 2} and t ∈ Profα such that ta 6= ta+2. In particular, (2.28) implies
that the quantities ψte(t) and e(t)φt do not depend on the chosen reduced expression for πt.

2.2.3 Expression as a tensor product
We now want to write the algebra e(tα)Rα(Γ)e(tα) as a tensor product. Recall that α is
a Gn-orbit and thus satisfies properties (2.14) and (2.16). We have already used the first
property. The second will be explicitly used during the proof of the next result.

Note that, for any j ∈ {1, . . . , d}, the algebra Rα(j)(Γ(j)) is well-defined since α(j) consists
of nj-tuples of vertices I(j) of Γ(j) and is stable under permutations (see §2.2.1).
Theorem 2.29. We have an (explicit) isomorphism of graded algebras:

e(tα)Rα(Γ)e(tα) ' Rα(1)(Γ(1))⊗ · · · ⊗Rα(d)(Γ(d)).
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Proof. We construct an algebra homomorphism f from the tensor product to e(tα)Rα(Γ)e(tα)
as follows. For any i(j) ∈ α(j) ⊆ (I(j))nj with j ∈ {1, . . . , d} we define

f
(
e(i(1))⊗ · · · ⊗ e(i(d))

)
:= e(i(1), . . . , i(d)).

Note that
(
i(1), . . . , i(d)) ∈ α due to Proposition 2.15. Moreover, for any j ∈ {1, . . . , d} we

denote y(j)
a and ψ(j)

b the generators of Rα(j)(Γ(j)) in the tensor product and we define

f(y(j)
a ) := e(tα)yn1+···+nj−1+ae(tα),

f(ψ(j)
b ) := e(tα)ψn1+···+nj−1+be(tα),

for all a, b ∈ {1, . . . , nj} with b ≤ nj − 1. By [21, Lemma 6.24], the map f is indeed a
homomorphism. Using the basis of Proposition 2.12, we can prove that f sends a basis onto
a basis and thus is an isomorphism (see [21, Proposition 6.25]). Finally, the isomorphism f
is clearly homogeneous.

Combining Theorem 2.29 with Proposition 2.22, we obtain the main result of this section.
Corollary 2.30. We have an (explicit) isomorphism of graded algebras:

Rα(Γ) ' Mat( n
n1,...,nd)

 d⊗
j=1

Rα(j)(Γ(j))

 .

Remark 2.31. If α = qki=1αi the decomposition of α into Sn-orbits, then we have Rα(Γ) =
⊕ki=1Rαi(Γ). So of course, as far as the algebras Rα(Γ) are concerned, taking α a single
Sn-orbit would be enough. However, we really needed a more general setting since we will
apply later the results above for orbits α ⊂ In of the Weyl group of type B.

We now show how to recover [21, Theorem 6.26], with the difference that the result we
obtain here is also valid if the quiver Γ is infinite.
Corollary 2.32. We have an (explicit) isomorphism of graded algebras:

Rn(Γ) '
⊕

n1,...,nd≥0
n1+···+nd=n

Mat( n
n1,...,nd)

 d⊗
j=1

Rnj (Γ(j))

 .

Proof. We write In/Sn to denote the Sn-orbits in In. We apply the isomorphism of
Corollary 2.30 in each term of right-hand side of the equality Rn(Γ) = ⊕αRα(Γ), where α
runs over In/Sn (so we use the situation G = {1} here). Recalling the 1:1-correspondence
in (2.17), we obtain

Rn(Γ) '
⊕

α∈In/Sn

Rα(Γ)

'
⊕

α∈In/Sn

Mat( n
n1(α),...,nd(α))

 d⊗
j=1

Rα(j)(Γ(j))


'

⊕
n1,...,nd≥0
n1+···+nd=n

⊕
α∈In/Sn
nj(α)=nj

Mat( n
n1(α),...,nd(α))

 d⊗
j=1

Rα(j)(Γ(j))



'
⊕

n1,...,nd≥0
n1+···+nd=n

Mat( n
n1,...,nd)

 ⊕
α∈In/Sn
nj(α)=nj

d⊗
j=1

Rα(j)(Γ(j))


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'
⊕

n1,...,nd≥0
n1+···+nd=n

Mat( n
n1,...,nd)

 ⊕
α(1)∈In1/Sn1

· · ·
⊕

α(d)∈Ind/Snd

d⊗
j=1

Rα(j)(Γ(j))



'
⊕

n1,...,nd≥0
n1+···+nd=n

Mat( n
n1,...,nd)

 d⊗
j=1

Rnj (Γ(j))

 ,

as desired.

2.2.4 Cyclotomic case
We keep the above setting with the quiver Γ, its full subquivers Γ(j) and a Gn-orbit α. In
addition, let Λ = (Λi)i∈I be a finitely-supported family of non-negative integers.
Definition 2.33 ([23, 6]). The cyclotomic quiver Hecke algebra RΛ

α(Γ) is the quotient of
the quiver Hecke algebra Rα(Γ) by the two-sided ideal IΛ

α generated by the relations

y
Λi1
1 e(i) = 0, (2.34)

for all i = (i1, . . . , in) ∈ α.
Since the above relations are homogeneous, the cyclotomic quiver Hecke algebras is

graded, as in Proposition 2.11. Note that if Λi = 0 for all i then

RΛ
α(Γ) =

{
{0}, if n ≥ 1,
K, if n = 0.

As in [21, §6.4.1], we want to state Corollaries 2.30 and 2.32 in the cyclotomic setting.
First, for any j ∈ {1, . . . , d} let Λ(j) be the restriction of Λ to I(j).
Theorem 2.35. We have an (explicit) isomorphism of graded algebras:

RΛ
α(Γ) ' Mat( n

n1,...,nd)

 d⊗
j=1

RΛ(j)

α(j) (Γ(j))

 .

Proof. The proof is similar to the one of [21, Theorem 6.30]. We provide details since it will
be used later in the paper.

Note that ⊗dj=1R
Λ(j)

α(j) (Γ(j)) is the quotient of ⊗dj=1Rα(j)(Γ(j)) by the two-sided ideal

IΛ
α,⊗ := 〈1⊗ · · · ⊗ 1⊗ IΛ(j)

α(j) ⊗ 1⊗ · · · ⊗ 1 , j = 1, . . . , d〉

generated by the ideals IΛ(j)

α(j) in position j in the tensor product. We will identify the algebra
⊗dj=1Rα(j)(Γ(j)) with the algebra e(tα)Rα(Γ)e(tα) thanks to the explicit isomorphism given
in the proof of Theorem 2.29. With this identification, the ideal IΛ

α,⊗ is generated by the
elements

y
Λib
b e(i) ,

where i ∈ α is of profile tα, and b is of the form b = n1 + · · ·+ nj−1 + 1 for j ∈ {1, . . . , d}.
Now let θ be the isomorphism of Proposition 2.22 and η its inverse. For convenience we

denote during the proof N :=
(

n
n1,...,nd

)
. We will prove the following two inclusions:

θ
(
IΛ
α

)
⊆ MatN

(
IΛ
α,⊗
)
, (2.36a)

IΛ
α ⊇ η

(
MatN

(
IΛ
α,⊗
))
. (2.36b)

Let t′, t ∈ Profα. First recall that for h ∈ e(t′)Rα(Γ)e(t), we have

θ(h) = ψt′hφtMt′t ∈ MatN (e(tα)Rα(Γ)e(tα)) .
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while for h ∈ e(tα)Rα(Γ)e(tα) we have

η (hMt′t) = φt′hψt ,

where the elements φt, ψt were introduced in (2.21).
• Let i ∈ α of profile t. By (2.23), (2.6) and (2.27) we have:

y
Λi1
1 e(i) = y

Λi1
1 e(i)e(t) = y

Λi1
1 e(i)φtψte(t) = φty

Λi1
πt(1)e(πt · i)ψte(t).

Thus, to prove (2.36a) it suffices to show that

θ
(
y

Λi1
πt(1)e(πt · i)

)
∈ MatN

(
IΛ
α,⊗
)
.

By definition of πt, we have that i′ := πt · i has profile tα and therefore yΛi1
πt(1)e(i

′) ∈
e(tα)Rα(Γ)e(tα). Let b := πt(1) so that we have i1 = i′b, and moreover, by [21, Proposition
6.7], the element b is of the form n1 + · · ·+ nj−1 + 1. We conclude that

θ
(
y

Λi1
πt(1)e(πt · i)

)
= y

Λi′
b

b e(i′)Mtαtα ∈ MatN
(
IΛ
α,⊗
)
.

• Let i ∈ α with profile tα and let b = n1 + · · ·+ nj−1 + 1 with j ∈ {1, . . . , d} such that
nj 6= 0. Let us prove that

η
(
y

Λib
b e(i)Mt′t

)
∈ IΛ

α.

Since Mt′t = Mt′t′′Mt′′t for any t′′ it is enough to prove it for a single value of t′. So without
loss of generality, since nj 6= 0 we can assume that t′ starts with j so that πt′(1) = b. We
conclude that

η
(
y

Λib
b e(i)Mt′t

)
= φt′y

Λib
b e(i)ψt = y

Λib
1 e(π−1

t′ · i)φt′ψt ∈ IΛ
α,

since, if we denote i′ = π−1
t′ · i then we have i′1 = ib.

This concludes the proof of (2.36) showing that we have

θ
(
IΛ
α

)
= MatN

(
IΛ
α,⊗
)
.

Thus we can deduce the isomorphism of Theorem 2.35 from Corollary 2.30.

Remark 2.37. • We saw that if Λ(j) ≡ 0 on Γ(j) for some j then, if moreover α(j) 6= ∅
(that is, if nj(α) 6= 0), we have RΛ(j)

α(j) (Γ(j)) = {0} from the defining relations. So in turn,
Theorem 2.35 implies that RΛ

α(Γ) = {0}.
• The conclusion of the preceding item can in fact be seen more directly. Indeed the

cyclotomic relations in RΛ
α(Γ) imply that e(i) = 0 for all i ∈ α with i1 ∈ Γ(j). So we

have that the idempotent e(t) is 0 for any profile t starting with j (and at least one
profile like this exists in Profα when nj(α) 6= 0). Since:

ψte(t)φt = e(tα) and φte(tα)ψt = e(t) ,

it follows immediately that if nj(α) 6= 0 then all idempotents e(t) are 0 and in turn all
idempotents e(i), i ∈ α, are 0, which shows that RΛ

α(Γ) = {0}.
As in Corollary 2.32, we deduce the following corollary.

Corollary 2.38. We have an (explicit) isomorphism of graded algebras:

RΛ
n(Γ) '

⊕
n1,...,nd≥0
n1+···+nd=n

Mat( n
n1,...,nd)

 d⊗
j=1

RΛ(j)

nj (Γ(j))

 .
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Remark 2.39. It follows from Remark 2.37 that we can assume that Λ is supported on all
components of Γ, that is Λ(j) 6≡ 0 for all j ∈ {1, . . . , d}. In other words, we can replace
from the beginning Γ by Γ̃ where we removed the components Γ(j) such that Λ(j) ≡ 0. In
particular, we have RΛ

n(Γ) = R
Λ|Ĩ
n (Γ̃), where Ĩ denotes the vertex set of Γ̃. We could have

done that but it turned out to be not really necessary to state Theorem 2.35 or Corollary 2.38.
For example, in Corollary 2.38, if Λ(j) ≡ 0 for some j then all the summands with nj 6= 0
are {0} and can thus be removed from the direct sum.

3 Interpolating quiver Hecke algebras for type B
The aim of this section is to unite the definitions of quiver Hecke algebras for type B that are
introduced in [25] by Varagnolo and Vasserot and in [19, 20] by the first author and Walker.

3.1 Definition
Let Γ be a quiver as in §2.1. We also adopt the notation of this subection. Let θ be an
involution of Γ, that is, the map θ is an involution on both sets I and A and satisfies

θ(o(a)) = t(θ(a)), (3.1)

for all a ∈ A. Note the following consequence: for any i, j ∈ I we have |i→ j| = |θ(j)→ θ(i)|
and thus

i · j = θ(i) · θ(j). (3.2)
It follows from the definition (2.1) of the polynomials Qij and from (3.1) again that

Qij(u, v) = Qθ(j)θ(i)(u, v), (3.3)

for any i, j ∈ I.
Let Bn be the group of signed permutations of {±1, . . . ,±n}, that is, the group of

permutations π of {±1, . . . ,±n} satisfying π(−i) = −π(i) for all i ∈ {1, . . . , n}. We have a
natural isomorphism Bn ' (Z/2Z)n oSn. In particular we are in the setting of §2.2 with
G = Z/2Z, which acts on I via the canonical surjection G� 〈θ〉. We have a natural inclusion
Sn ⊆ Bn, where ra is identified with (a, a+ 1)(−a,−a− 1) for all a ∈ {1, . . . , n− 1}. We
see Bn as a Weyl group of type B by adding the generator r0 := (−1, 1). The action of Bn
on In is given by (2.3) and

r0 · (i1, . . . , in) := (θ(i1), i2, . . . , in),

for any i = (i1, . . . , in) ∈ In. Let β ⊆ In be a Bn-orbit. In particular, the set β is a finite
Sn-stable subset of In.
Remark 3.4. The result of Remark 2.19 can here be written as follows. There is a one-to-one
correspondence between Bn-orbits β ⊂ In and maps β̂ : I → N such that β̂ = β̂ ◦ θ and
1
2
∑

i∈I
θ(i)6=i

β̂(i) +
∑

i∈I
θ(i)=i

β̂(i) = n (the number β̂(i) counts the number of occurrence of both

i and θ(i) in any element in the orbit β). See also [19, Remark 2.5].
Let λ ∈ NI and γ ∈ KI . Define

d(i) :=
{
λi + λθ(i), if γi = 0,
−2, otherwise.

For any i ∈ I, we make the following assumptions:

θ(i) 6= i =⇒ γi = 0, (3.5a)
γi = 0 =⇒ [θ(i) 6= i or d(i) = 0]. (3.5b)

Note that γ is θ-invariant, that is, we have

γθ(i) = γi, for all i ∈ I. (3.6)
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Remark 3.7. • Condition (3.5b) may seem strong; without it we encounter in §A.1 useless
complications for our means (see also Remark A.5).
• Similarly, one could consider a more general definition than the one below. As for

example in [23, §3.2], we could remove any reference to a quiver and start only with a
family of polynomials associated to the set I with involution θ (namely, Qij [u, v] and a
polynomial replacing (−1)λθ(i1)y

d(i1)
1 in the definition below). Then one should look for

conditions ensuring the existence of a polynomial representation. We do not pursue in this
direction to avoid adding another layer of technicalities.
Definition 3.8. The algebra Vβ(Γ, λ, γ) is the unitary associative K-algebra generated by
elements

{ya}1≤a≤n ∪ {ψb}0≤b≤n−1 ∪ {e(i)}i∈β ,

with the relations (2.5)–(2.10) of Section 2 involving all the generators but ψ0, together with

ψ0e(i) = e(r0 · i)ψ0, (3.9)
ψ0ψb = ψbψ0, for all b ∈ {2, . . . , n− 1}, (3.10)

(ψ0y1 + y1ψ0)e(i) = 2γi1e(i), (3.11)
ψ0ya = yaψ0, for all a ∈ {2, . . . , n}, (3.12)

ψ2
0e(i) =

{
(−1)λθ(i1)y

d(i1)
1 e(i), if γi1 = 0,

0, otherwise,
(3.13)(

(ψ0ψ1)2 − (ψ1ψ0)2) e(i) = (3.14)
(−1)λθ(i1) (−y1)d(i1)−yd(i1)

2
y1+y2

ψ1e(i), if γi1 = 0 and θ(i1) = i2,

γi2
Qi2i1 (y1,−y2)−Qi2i1 (y1,y2)

y1y2
(y1ψ0 − γi1) e(i) otherwise,

for all i ∈ β.
It is clear that the fraction in the first line of the right hand side in (3.14) is a polynomial

in y1, y2. Then we note that the second line in the right hand side of (3.14) is 0 when γi2 = 0
or when i1 = i2 (recalling (2.1)), and is a polynomial in y1, y2 when γi1 = 0. So for the
second line, if γi1 6= 0 6= γi2 and i1 6= i2 then by (3.5a) we have θ(i1) = i1 and θ(i2) = i2,
and thus we can use (2.2) and (3.3) so that

Qi1i2(u,−v)−Qi1i2(u, v)
uv

=
Qi1i2(v,−u)−Qθ(i2)θ(i1)(u, v)

uv

= Qi1i2(v,−u)−Qi2i1(u, v)
uv

= Qi1i2(v,−u)−Qi1i2(v, u)
uv

,

is a polynomial.
Finally, note that when n = 0 then Vβ(Γ, λ, γ) = K.

Remark 3.15. Since β is a finite Sn-stable subset of In, we can also consider the algebra
Rβ(Γ) as defined in §2.1. The subalgebra of Vβ(Γ, λ, γ) generated by all the generators but
ψ0 is an obvious quotient of Rβ(Γ) (see also Corollary 3.28).
Remark 3.16. If θ has no fixed point in I then Vβ(Γ, λ, γ) is exactly the algebra defined
in [25]. In this case, by (3.5a) we necessarily have γi = 0 for any i and (3.5b) is automatically
satisfied. In particular, in (3.14) the second line is always zero in this situation.
Remark 3.17. Assume that K is field of characteristic different from 2 and let p, q ∈ K×
with q2 6= 1 6= p2. Let θ : K× → K× be the scalar inversion. For any x ∈ K×, we define the
set Ix := {xεq2l : ε ∈ {±1}, l ∈ Z}. Let x1, . . . , xk ∈ K× such that the sets Ixa are pairwise
disjoint. Let Γ be the quiver with vertices I := qka=1Ixa and arrows between v and q2v for
all v ∈ I. Finally let λ be the indicator function of P := {±p} ∩ I and define γi := 1 if
θ(i) = i and γi := 0 otherwise (thus (3.5) is satisfied). Then Vβ(Γ, λ, γ) is exactly the algebra
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V I
β

x defined in [19]. This is, together with the next remark, the situation relevant for the
applications to affine Hecke algebras, see Section 6.
Remark 3.18. The algebra of [20, §3.1] is obtained with the same choice of Γ, θ as in the
preceding remark, together with γi := 0 and λi := 0 for all i. In particular, Condition (3.5b)
is satisfied since d(i) = 0 for all i ∈ I. We will come back to this particular situation in
Section 5.

The algebra Vβ(Γ, λ, γ) is endowed with the Z-grading given by

deg e(i) = 0, (3.19a)
deg ya = 2, (3.19b)

degψ0e(i) = d(i1), (3.19c)
degψbe(i) = d(ib, ii+1). (3.19d)

The homogeneity of the defining relations that do not involve ψ0 is as in Section 2, the
other ones being a simple calculation. For (3.11) note that if γi1 = 0 there is nothing to check,
and if γi1 6= 0 then by definition we have d(i1) = −2 thus degψ0y1e(i) = deg y1ψ0e(i) = 0.
To check the last relation, let us write i1i2 instead of i and even a instead of ia and ā instead
of θ(ia). We have(
(ψ0ψ1)2 − (ψ1ψ0)2) e(12) = ψ0ψ1ψ0ψ1e(12)− ψ1ψ0ψ1ψ0e(12)

= ψ0e(12̄)ψ1e(2̄1)ψ0e(21)ψ1e(12)− ψ1e(2̄1̄)ψ0e(21̄)ψ1e(1̄2)ψ0e(12).
(3.20)

We have:

degψ0e(12̄) = degψ0e(12) = d(1),
degψ0e(21) = degψ0e(21̄) = d(2).

Moreover, by (3.2) we have

degψ1e(2̄1) = d(2̄, 1) = d(1, 2̄) = d(1̄, 2) = degψ1e(1̄2),
degψ1e(12) = d(1, 2) = d(2, 1) = d(2̄, 1̄) = degψ1e(2̄1̄).

Thus, the quantity
(
(ψ0ψ1)2 − (ψ1ψ0)2) e(i) is homogeneous of degree

d(i1) + d(i2) + d
(
i1, i2

)
+ d
(
i1, θ(i2)

)
.

A quick calculation now shows that the last relation is homogeneous (note that in the first
case we have γi2 = 0 by (3.6)).

3.2 Basis theorem
We now want to give an analogue of the basis theorem Proposition 2.12 for quiver Hecke
algebras. As in [16, 17, 23], we will construct a polynomial realisation of Vβ(Γ, λ, γ). Let
(Pij(u, v))i,j∈I be a family of polynomials satisfying

Pij(u, v) = Pij(−v,−u), (3.21a)
Pij(u, v) = Pθ(j)θ(i)(u, v), (3.21b)

and such that
Pij(u, v)Pji(v, u) = Qij(u, v). (3.22)

Note that Pij(u, v) := (u− v)|j→i| if i 6= j and Pij(u, v) := 0 if i = j is an example of such a
family, by (3.1). Now let (αi(y))i∈I be a family of polynomials such that

αθ(i)(y)αi(−y) = (−1)λθ(i)yd(i), if γi = 0, (3.23)
αi(y) = 0, otherwise. (3.24)
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Note that if γi = 0 we can just set αi(y) := yλθ(i) . We now consider the sum of polyno-
mials algebras K[x, β] := ⊕i∈βK[x1, . . . , xn]1i, where 1i denotes the unit of the summand
corresponding to i, so that

f1i = 1if, for all f ∈ K[x1, . . . , xn] and i ∈ β,
1i1j = δij1i, for all i, j ∈ β.

The Weyl group Bn acts on K[x1, . . . , xn] by wf(x1, . . . , xn) := f
(
w−1 · (x1, . . . , xn)

)
for any

w ∈ Bn and f ∈ K[x1, . . . , xn], where the action of the generator r0 on (x1, . . . , xn) is by
multiplying x1 by −1, and the action of the generator ra, a = 1, . . . , n− 1, on (x1, . . . , xn)
is by exchanging xa and xa+1. The action of Bn on K[x1, . . . , xn] extends by linearity to
K[x, β] by setting w ? f1i := wf1w·i for any i ∈ β.

We now consider the linear action of Vβ(Γ, λ, γ) on K[x, β] given on the generators by

e(j) · f1i := δijf1i = δij1if,

ya · f1i := xaf1i = xa1if,

ψb · f1i := δib,ib+1

rbf − f
xb − xb+1

1i + Pib,ib+1(xb+1, xb) rbf1rb·i

=
(
δib,ib+1(xb − xb+1)−1(rb − 1) + Pib,ib+1(xb+1, xb)rb

)
? f1i,

ψ0 · f1i :=
(
γi1

f − r0f

x1
+ αi1(x1) r0f

)
1r0·i

=
(
γi1x

−1
1 (1− r0) + αi1(x1)r0

)
? f1i,

for any i, j ∈ β and f ∈ K[x1, . . . , xn].
Lemma 3.25. The previous action is well-defined.

The proof of Lemma 3.25 is given in Appendix A. For each w ∈ Bn we now fix a reduced
expression w = ra1 · · · rak and define ψw := ψa1 · · ·ψak ∈ Vβ(Γ, λ, γ). Note that the element
ψw may depend on the chosen reduced expression.
Theorem 3.26. The algebra Vβ(Γ, λ, γ) is a free K-module, and

{ya1
1 · · · yann ψwe(i) : ai ∈ N, w ∈ Bn, i ∈ β} ,

is a K-basis.

Proof. As in [16, 17, 23], successively applying the defining relations of Vβ(Γ, λ, γ) we can
see that the above family is a spanning set, hence it remains to prove that it is linearly
independent. For any b ∈ {0, . . . , n− 1}, i ∈ β and f ∈ K[x1, . . . , xn] we can write

ψb · f1i =
(
Arbi rb +A1,rb

i

)
? f1i,

where Arbi , A
1,rb
i ∈ K(x1, . . . , xn) with Arbi non-zero (recall that Pij 6= 0 if i 6= j). If < is the

Bruhat order on Bn, we deduce that for each w ∈ Bn we can write

ψw · f1i =
(
Awi w +

∑
w′<w

Aw
′,w

i w′

)
? f1i,

where Awi , A
w′,w
i ∈ K(x1, . . . , xn) with Awi non-zero. Thus,

ya1
1 · · · yann ψw · f1i =

(
Awi x

a1
1 · · ·xann w +

∑
w′<w

Aw
′,w

i xa1
1 · · ·xann w′

)
? f1i,

for any a1, . . . , an ∈ N. We now use the following basic Lemma 3.27 from field theory and
notice that the elements of Bn induce distinct field homomorphisms of K(x1, . . . , xn).
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Lemma 3.27 (Dedekind). If u1, . . . , un : F → G are distinct field homomorphisms then
they form a linearly independent family over G.

So we can use reverse induction in the Bruhat order to show that the images of the basis
elements are linearly independent in EndK(K[x, β]) and thus conclude the proof.

As a corollary, we obtain the sequel of Remark 3.15.
Corollary 3.28. The subalgebra of Vβ(Γ, λ, γ) generated by all generators but ψ0 is isomor-
phic to Rβ(Γ).

4 Disjoint quiver isomorphism
Let Γ be a quiver with an involution θ and λ ∈ NI , γ ∈ KI as in §3.1. Let d be a positive
integer and write Γ = qdj=1Γ(j) such that
• each Γ(j) is a full subquiver of Γ;
• each Γ(j) is stable under θ.

We write I = qdj=1I
(j) the corresponding partition of the vertex set of Γ. Recall that

Bn ' Gn o Sn with G = Z/2Z acting on I via G � 〈θ〉. In particular, each I(j) for
j ∈ {1, . . . , d} is stable under the action of G so that we are in the setting of §2.2.

Let β be a Bn-orbit in In. As explained in §2.2, both properties (2.14) and (2.16) are
satisfied. In particular, for any j ∈ {1, . . . , d} we have an integer nj(β) = nj and we have a
Bnj -orbit β(j) ⊆ (I(j))nj .

For any j ∈ {1, . . . , d}, we define λ(j) ∈ NI(j) (respectively γ(j) ∈ KI(j)) to be the
restriction of λ (resp. γ) to I(j).
Theorem 4.1. We have an (explicit) isomorphism of graded algebras

Vβ(Γ, λ, γ) ' Mat( n
n1,...,nd)

 d⊗
j=1

Vβ(j)

(
Γ(j), λ(j), γ(j)

) .

As in §2, will first apply the result of §1 and then prove an isomorphism with a tensor
product. Parts 4.1 and 4.2 are devoted to the proof of Theorem 4.1, which is a direct
consequence of (4.2) and Proposition 4.3.

4.1 Fixing the profile
As defined in §2.2.2, to each i ∈ β we associate its profile p(i) ∈ {1, . . . , d}n, and we write
Profβ ⊆ {1, . . . , d}n to denote the set of all profiles of elements of β. Any element of Profβ
can be reordered so that we obtain

tβ = (1, . . . , 1, . . . , d, . . . , d),

where each j ∈ {1, . . . , d} appears exactly nj times. To any t ∈ Profβ , we define the
idempotent

e(t) :=
∑
i∈β
p(i)=t

e(i) ∈ Vβ(Γ, λ, γ),

and we define
I := {e(t) : t ∈ Profβ}.

It is a complete set of orthogonal idempotents and its cardinality is exactly
(

n
n1,...,nd

)
.

Since any reduced expression in Sn in the generators r1, . . . , rn−1 is also reduced in Bn for
these same generators, the definitions (2.21) make sense in Vβ(Γ, λ, γ) for any t ∈ Profβ .
Moreover, since the defining relations of Rβ(Γ) are also satisfied in Vβ(Γ, λ, γ), we deduce
that equations (2.23) and (2.25) are still satisfied in Vβ(Γ, λ, γ) thus as in §2.2.2 we conclude
that

Vβ(Γ, λ, γ) ' Mat( n
n1,...,nd)

(
e(tβ)Vβ(Γ, λ, γ)e(tβ)

)
. (4.2)
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4.2 Embedding the tensor product
The aim of this section is to prove the following proposition.
Proposition 4.3. We have an (explicit) isomorphism of graded algebras

e(tβ)Vβ(Γ, λ, γ)e(tβ) '
d⊗
j=1

Vβ(j)

(
Γ(j), λ(j), γ(j)

)
.

4.2.1 Images of the generators
Set n = n1 + · · ·+ nd. We start by defining a map from the set of generators of the algebra⊗d

j=1 Vβ(j)
(
Γ(j), λ(j), γ(j)) to e(tβ)Vβ(Γ, λ, γ)e(tβ).

Let j ∈ {1, . . . , d}. We denote ψ(j)
0 , . . . , ψ

(j)
nj−1, y

(j)
1 , . . . , y

(j)
nj , e(ij) with ij ∈ β(j), the

generators of Vβ(j)
(
Γ(j), λ(j), γ(j)). Then we consider the map

e(i1)⊗ · · · ⊗ e(id) 7→ e(i1, . . . , id) , (4.4)

ψ
(j)
0 7→ e(tβ)ψn1+···+nj−1 . . . ψ1ψ0ψ1 . . . ψn1+···+nj−1e(tβ) , (4.5)

ψ(j)
a 7→ e(tβ)ψn1+···+nj−1+ae(tβ) , a = 1, . . . , nj − 1 , (4.6)

y
(j)
b 7→ e(tβ)yn1+···+nj−1+be(tβ) , b = 1, . . . , nj , (4.7)

where each ij ∈ β(j) and (i1, . . . , id) is simply the concatenation. Note that (i1, . . . , id) ∈ β
since β is a Bn-orbit, using Proposition 2.15. Moreover, the profile of (i1, . . . , id) is tβ and
thus e(i1, . . . , id)e(tβ) = e(tβ)e(i1, . . . , id) = e(i1, . . . , id). By convention, n1 + · · ·+nj−1 = 0
if j = 1 (and ψ(1)

0 7→ ψ0). Note also that the Formula (4.4) extended by linearity gives the
image of an idempotent e(ij) ∈ Vβ(j)

(
Γ(j), λ(j), γ(j)):

e(ij) 7→
d∑

j′=1
j′ 6=j

∑
ij
′∈β(j′)

e(i1, . . . , id) . (4.8)

Equivalently, the image of e(ij) is the sum of the idempotents e(i) where the sum is taken
over i ∈ β such that the profile of i is tβ and moreover (in1+···+nj−1+1, . . . , in1+···+nj ) = ij .

We will prove that the map given in (4.4)–(4.7) extends to an homomorphism of graded
algebras denoted ρ and that ρ is bijective.

4.2.2 Grading
We check that the map given in (4.4)–(4.7) preserves the grading given in (3.19). For the
images of the idempotents and of the generators y(j)

b , there is nothing to check.
Let ij ∈ β(j) and i ∈ β such that (in1+···+nj−1+1, . . . , in1+···+nj ) = ij . Let a ∈ {1, . . . , nj−

1}. On the one hand, we have degψ(j)
a e(ij) = d(ija, i

j
a+1). On the other hand, we have

degψn1+···+nj−1+ae(i) = d(in1+···+nj−1+a, in1+···+nj−1+a+1) = d(ija, i
j
a+1) .

Finally, on the one hand, we have degψ(j)
0 e(ij) = d(ij1). On the other hand, we claim

that we have
degψk . . . ψ0 . . . ψke(j) = d(jk+1) ,

for any k ≥ 0 and any j ∈ β such that jk+1 is not in the same component as j1, . . . , jk for
the decomposition of the quiver Γ = qdj=1Γ(j). Taking k = n1 + · · ·+ nj−1 and j = i, this
concludes the verification.

To prove the claim, we use induction on k. For k = 0, this is the definition of the
degree of ψ0e(j). For k > 0, we have degψke(j) = jk · jk+1 = |jk → jk+1| + |jk ←
jk+1| = 0 by assumption on j. Similarly, degψke(j′) = 0 where j′ = rk−1 . . . r0 . . . rk−1rk(j),
since (j′k, j′k+1) = (θ(jk+1), jk). It remains to use the induction hypothesis, namely that
degψk−1 . . . ψ0 . . . ψk−1e(rk(j)) = d(jk+1), valid since rk(j) has jk+1 in position k.
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4.2.3 Bijectivity
We assume for a moment that the map given in (4.4)–(4.7) extends to an algebra homomor-
phism. We denote this map by ρ and we prove here that ρ is bijective.

For any j ∈ {1, . . . , d}, we writeB(j) := Bnj and we rename its generators to r(j)
0 , . . . , r

(j)
nj−1.

We recall the following fact.
Lemma 4.9. We have an injective group homomorphism

B(1) × · · · ×B(d) → Bn

(w1, . . . , wd) 7→ w1 . . . wd

given on the generators by, for j ∈ {1, . . . , d},

r
(j)
0 7→ rn1+···+nj−1 . . . r1r0r1 . . . rn1+···+nj−1 ,

r(j)
a 7→ rn1+···+nj−1+a , a = 1, . . . , nj − 1 .

By convention, n1 + · · · + nj−1 = 0 if j = 1 (and r(1)
0 7→ r0). Moreover, any d-tuple of

reduced expressions is sent onto a reduced expression in Bn.

Proof. Recall that Bn = 〈r0, . . . , rn−1〉 is the group of signed permutations of {±1, . . . ,±n},
with r0 = (1,−1) and ra = (a, a + 1)(−a,−a − 1) for a = 1, . . . , n − 1. Let t1 := r0 and
ta+1 := ratara for a = 1, . . . , n− 1. The element ta corresponds to the transposition (−a, a).

For any i ∈ {1, . . . , n} and a ∈ {1, . . . , i}, we set by convention ra . . . ri−1 = 1 if a = i. It
is easy to see (for example [18, Figure 9]) that:

Bn =
n⊔
a=1

ra . . . rn−1Bn−1 t
n⊔
a=1

tara . . . rn−1Bn−1 .

So, if we define, for i ∈ {1, . . . , n},

R(i) := {tεara . . . ri−1 | a ∈ {1, . . . , i} , ε ∈ {0, 1}} ;

then we have that
{un . . . u1 | ui ∈ R(i) } , (4.10)

forms a complete set of pairwise distinct elements of Bn. Moreover this set consists of reduced
expressions in terms of the generators r0, r1, . . . , rn−1, since the polynomial

∑
k akt

k, where
ak records the number of elements in (4.10) written as a product of k generators, is easily
found to be

∏n
i=1

1−t2i
1−t which is the Poincaré polynomial

∑
w∈Bn t

`(w) of the Coxeter group
of type Bn (see, for instance, [4, Theorem 7.1.5]).

Now, to prove the lemma, we note that the subgroup permuting only the numbers
±1, . . . ,±n1 is isomorphic to B(1), the subgroup permuting only the numbers ±(n1 +
1), . . . ,±(n1 + n2) is isomorphic to B(2) and so on. These subgroups commute and therefore
we have an embedding of B(1) × · · · ×B(d) inside Bn (though not as a parabolic subgroup).
It is straightforward to see that this corresponds to the embedding described at the level of
the generators in the lemma.

For the statement about the reduced expressions, let us first recall that the length function
of the Coxeter group Bn can be expressed in terms on inversions as follows (see for example
[4, §8.1]):

`(π) = ] {1 ≤ i < j ≤ n | π(i) > π(j)}+ ] {1 ≤ i ≤ j ≤ n | π(−i) > π(j)} .

Using the notations of the lemma, we obtain that `(w1 . . . wd) = `(w1) + · · ·+ `(wd), since w1
permutes only the numbers ±1, . . . ,±n1, w2 permutes only the numbers ±(n1+1), . . . ,±(n1+
n2), and so on. So it remains to show that a reduced expression in B(j), j = 1, . . . , d, is sent
to a reduced expression in Bn.
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Let j ∈ {1, . . . , d}. We claim that it is enough to show our assertion for a single reduced
expression for each element of B(j). Indeed the number of occurrences of r0 in different
reduced expressions of a same element remains constant (due to the homogeneity in r0 of
the braid relations of Bn), and therefore, the number of generators in the images of these
different reduced expressions is also constant. So if one of these images is reduced, they are
all reduced.

Finally, to conclude the proof of the lemma, we observe that the set of reduced expressions
of the form (4.10) in B(j) is sent to expressions of the same form in Bn, which are therefore
reduced as well.

To prove that ρ is bijective, we use first that we know a basis of
⊗d

j=1 Vβ(j)
(
Γ(j), λ(j), γ(j))

by Theorem 3.26. A basis element is of the form

d⊗
j=1

(y(j)
1 )a

(j)
1 . . . (y(j)

nj )a
(j)
nj ψ(j)

wj e(i
j), (4.11)

where a(j)
1 , . . . a

(j)
nj ∈ N, ij ∈ β(j) and wj ∈ B(j). Note that we have fixed a reduced expression

for each element wj ∈ B(j) for each j = 1, . . . , d, in order to define ψ(j)
wj .

On the other hand, we also know a basis of e(tβ)Vβ(Γ, λ, γ)e(tβ) again by Theorem 3.26.
Indeed note that e(i)e(tβ) = e(i) if the profile of i is tβ and e(i)e(tβ) = 0 otherwise.
Moreover, ψwe(i) = e(w · i)ψw. So it is straightforward to conclude that a basis element of
e(tβ)Vβ(Γ, λ, γ)e(tβ) is of the form

ya1
1 . . . yann ψwe(i) , (4.12)

where a1, . . . , an ∈ N, i ∈ β with profile tβ and w is in the subgroup of Bn isomorphic to
B(1) × · · · × B(d) from Lemma 4.9 (the stabiliser of tβ). We must fix reduced expressions
for such w in order to define ψw. We fix them as the images of the reduced expressions of
elements B(1) × · · · ×B(d) chosen in the preceding paragraph. That we can do so is the last
statement in Lemma 4.9.

Finally, the image of a basis element (4.11) under the homomorphism ρ is

yb1
1 . . . ybnn ψw1 · · ·ψwde(i

1, . . . , id), (4.13)

where bn1+···+nj−1+k = a
(j)
k and the notation wj comes from Lemma 4.9. The concatenation

(i1, . . . , id) has the profile tβ since each ij ∈ β(j), and due to our choices of reduced
expressions, we have ψw1 · · ·ψwd = ψw1···wd . So we conclude that the element (4.13) is of the
form (4.12). Further, it is immediate that we can obtain in this way all the basis elements of
e(tβ)Vβ(Γ, λ, γ)e(tβ). We conclude that the homomorphism ρ sends a basis onto a basis and
thus is bijective.

4.2.4 Homomorphism property
To finish the proof of Proposition 4.3, it remains to check that the map defined in (4.4)–(4.7)
extends to an algebra homomorphism. It is possible but quite lengthy to check explicitly that
all defining relations are preserved. Instead we are going to use the polynomial representation
introduced in §3.2. We keep in use the notations introduced in §3.2.

From the proof of Theorem 3.26, we see that the action of the algebra Vβ(Γ, λ, γ) on
K[x, β] is faithful, or in other words, we have an embedding of Vβ(Γ, λ, γ) in EndK(K[x, β]).
Therefore, if we denote φ

(
e(tβ)

)
the image of e(tβ) by this embedding, we obtain an embedding

of the algebra e(tβ)Vβ(Γ, λ, γ)e(tβ) in EndK
(
φ
(
e(tβ)

)
K[x, β]

)
. We have immediately:

φ
(
e(tβ)

)
K[x, β] =

⊕
i∈β

p(i)=tβ

K[x1, . . . , xn]1i . (4.14)
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On the other hand, we also have an embedding of the algebra
⊗d

j=1 Vβ(j)
(
Γ(j), λ(j), γ(j))

in EndK(
⊗d

j=1K[x, β(j)]), and we have the natural identification:

d⊗
j=1

K[x, β(j)] =
d⊗
j=1

⊕
ij∈β(j)

K[x(j)
1 , . . . , x(j)

nj ]1ij
∼=

⊕
i∈β

p(i)=tβ

K[x1, . . . , xn]1i . (4.15)

The identification simply maps f11i1 ⊗ · · · ⊗ fd1id to f1 . . . fd1(i1,...,id).
Through the identifications we just made, both algebras related by the map in (4.4)–(4.7)

are seen as algebras of endomorphisms of the same space, in (4.14) and (4.15). So in order
to check the homomorphism property, it is enough to check that both sides of Formulas
(4.4)–(4.7) are in fact the same elements in the endomorphism algebra.

This verification is immediate for (4.4)–(4.5) and (4.7). For the image of ψ(j)
0 , we proceed

as follows. First, it is convenient to choose a polynomial representation as in §3.2 for which
Pij(u, v) := (u− v)|j→i| if i 6= j and Pij(u, v) := 0 if i = j.

Let i ∈ β such that p(i) = tβ . It means that i = (i1, . . . , id) where ij ∈ β(j). Fix
j ∈ {1, . . . , d} and set for brevity k = n1 + · · ·+ nj−1. Through the identifications explained
above, the action of ψ(j)

0 is given by:

f1i 7→

(
γik+1

f − r
(j)
0 f

xk+1
+ αik+1(xk+1) r

(j)
0 f

)
1
r

(j)
0 ·i

,

where we recall that r(j)
0 = rk . . . r1r0r1 . . . rk acts on i simply by replacing ik+1 by θ(ik+1).

On the other hand, we need to calculate the action of ψk . . . ψ1ψ0ψ1 . . . ψk. We note that,
with our choice of Pij(u, v), we have that Pij(u, v) = 1 if one index is among {i1, . . . , ik} and
the other is ik+1 or θ(ik+1). Indeed, ik+1 is not in the same connected component of the
quiver than i1, . . . , ik since p(i) = tβ . This is also true for θ(ik+1) since θ leaves stable the
set I(j).

Then the calculation is made in three steps, corresponding respectively to the action of
ψ1 . . . ψk, the action of ψ0 and the action of ψk . . . ψ1:

f1i 7→ r1...rkf1r1...rk·i

7→
(
γik+1

r1...rkf − r0r1...rkf

x1
+ αik+1(x1) r0r1...rkf

)
1r0r1...rk·i

7→

(
γik+1

f − r
(j)
0 f

xk+1
+ αik+1(xk+1) r

(j)
0 f

)
1
r

(j)
0 ·i

.

This concludes the verification of the homomorphism property and the proof of Proposition 4.3.

4.3 Cyclotomic quotients
As in §2.2.4, let Λ = (Λi)i∈I be a finitely-supported family of non-negative integers. In the
same way as [25, 19, 20], we define the cyclotomic quotient of the algebra Vβ(Γ, λ, γ).
Definition 4.16. We define the algebra V Λ

β (Γ, λ, γ) as the quotient of Vβ(Γ, λ, γ) by the
two-sided ideal JΛ

β generated by the relations

y
Λi1
1 e(i) = 0 , for all i = (i1, . . . , in) ∈ β.

The above relations are homogeneous so that V Λ
β (Γ, λ, γ) is graded. Note that if Λi = 0

for all i then

V Λ
β (Γ, λ, γ) =

{
{0}, if n ≥ 1,
K, if n = 0.

As in §2.2.4, for any j ∈ {1, . . . , d} let Λ(j) be the restriction of Λ to the vertex set I(j)

of Γ(j).
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Corollary 4.17. We have an (explicit) isomorphism of graded algebras:

V Λ
β (Γ, λ, γ) ' Mat( n

n1,...,nd)

 d⊗
j=1

V Λ(j)

β(j)

(
Γ(j), λ(j), γ(j)

) .

Proof. Recall that the algebra Rβ(Γ) is isomorphic to a subalgebra of Vβ(Γ, λ, γ) (see
Corollary 3.28). Moreover, if ϑ denotes the isomorphism of Theorem 4.1, its restriction to
Rβ(Γ) is by construction the isomorphism of Corollary 2.30. Therefore it is immediate that
the calculations made in the proof of Theorem 2.35 can be repeated verbatim here. They
show that, if we denote JΛ

β,⊗ the ideal of ⊗dj=1Vβ(j)(Γ(j), λ(j), γ(j)) such that the quotient is
⊗dj=1V

Λ(j)

β(j) (Γ(j), λ(j), γ(j)) (see the proof of Theorem 2.35), we have

ϑ(JΛ
β ) = Mat( n

n1,...,nd)
(
JΛ
β,⊗
)
.

This concludes the proof.

We define V Λ
n (Γ, λ, γ) :=

⊕
β V

Λ
β (Γ, λ, γ) where the direct sum is over the Bn-orbits β

in In. As in Corollary 2.32, using the bijection (2.17) we deduce the following corollary.
Note that we now use (2.17) with G = Z/2Z.
Corollary 4.18. We have an (explicit) isomorphism of graded algebras:

V Λ
n (Γ, λ, γ) '

⊕
n1,...,nd≥0
n1+···+nd=n

Mat( n
n1,...,nd)

 d⊗
j=1

V Λ(j)

nj (Γ(j), λ(j), γ(j))

 .

Remark 4.19. As in Remark 2.39, we deduce that we can assume that Λ is supported on all
components of Γ.

5 Quiver Hecke algebras for type D
To fit with the setting of [20], we now assume that K is a field with char(K) 6= 2.

Let Γ be a quiver with an involution θ as in §3.1 and let β be a Bn-orbit in In. As before,
let Λ = (Λi)i∈I be a finitely-supported family of non-negative integers.

In this section, as in Remark 3.18 we consider the situation λi = γi = 0 for all i ∈ I, and
we denote simply Vβ(Γ) = Vβ(Γ, 0, 0) the resulting algebra, defined in Section 3.1 (note that
Conditions (3.5) are satisfied with this choice of λ and γ). The defining relations (3.9)–(3.14)
(those involving the generator ψ0) become simply:

ψ0e(i) = e(r0 · i)ψ0, (5.1)
ψ0ψb = ψbψ0, for all b ∈ {2, . . . , n− 1}, (5.2)
ψ0y1 = −y1ψ0, (5.3)
ψ0ya = yaψ0, for all a ∈ {2, . . . , n}, (5.4)
ψ2

0 = 1 , (5.5)
(ψ0ψ1)2 = (ψ1ψ0)2 . (5.6)

So we see immediately that we have an homogeneous involutive algebra automorphism ι of
Vβ(Γ) given on the generators by:

ι(ψ0) = −ψ0 and ι(X) = X for X ∈ {ψ1, . . . , ψn−1, y1, . . . , yn} ∪ {e(i)}i∈β . (5.7)

Note that ι is the identity map if n = 0. We denote by Vβ(Γ)ι the fixed-point subalgebra
of Vβ(Γ), that is, Vβ(Γ)ι = {x ∈ Vβ(Γ) | ι(x) = x}. The subalgebra Vβ(Γ)ι is a graded
subalgebra of Vβ(Γ) since ι is homogeneous.
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Cyclotomic quotients. We recall that V Λ
β (Γ) is the quotient of Vβ(Γ) by the two-sided

ideal JΛ
β generated by

y
Λi1
1 e(i) = 0 , for all i ∈ β.

These relations are homogeneous so that the algebra V Λ
β (Γ) inherits the grading of Vβ(Γ).

The same formulas as in (5.7) define an homogeneous involutive algebra automorphism of
V Λ
β (Γ), and we make the slight abuse of notation of keeping the name ι for this automorphism.

The fixed-point subalgebra is denoted V Λ
β (Γ)ι.

5.1 Definition and main property of Wδ(Γ)
We recall some definitions and the results we need from [20].

If n ≥ 2, we identify the Weyl group Dn of type D as the subgroup of Bn generated by
s0 := r0r1r0, s1 := r1, . . . , sn−1 := rn−1. The convention we need here is that Dn = {1} if
n ∈ {0, 1}. The group Dn then acts on In by, if n ≥ 2,

s0 · (i1, i2, . . . , in) = (θ(i2), θ(i1), i3, . . . , in) ,
sa · (. . . , ia, ia+1, . . . ) = (. . . , ia+1, ia, . . . ) a = 1, . . . , n− 1.

Let δ be a finite subset of In stable by Dn, that is a finite union of Dn-orbits.
Definition 5.8. Let n ≥ 2. The algebra Wδ(Γ) is the unitary associative K-algebra
generated by elements

{ya}1≤a≤n ∪ {ψb}1≤b≤n−1 ∪ {Ψ0} ∪ {e(i)}i∈δ,

with the relations (2.5)–(2.10) of Section 2 involving all the generators but Ψ0, together with

Ψ0e(i) = e(s0 · i)Ψ0, (5.9)
Ψ0ψb = ψbΨ0, for all b ∈ {1, . . . , n− 1} with b 6= 2 , (5.10)

(Ψ0ya + yr1(a)Ψ0)e(i) =
{
e(i) if θ(i1) = i2,
0 otherwise, for a ∈ {1, 2}, (5.11)

Ψ0ya = yaΨ0, for all a ∈ {3, . . . , n}, (5.12)
Ψ2

0e(i) = Qθ(i1),i2(−y1, y2)e(i), (5.13)

(Ψ0ψ2Ψ0 − ψ2Ψ0ψ2)e(i) =


Qθ(i1),i2(−y1, y2)−Qθ(i1),i2(y3, y2)

y1 + y3
e(i), if θ(i1) = i3,

0, otherwise,
(5.14)

for all i ∈ δ.
By convention, we set Wδ(Γ) = Rδ(Γ) if n ∈ {0, 1}. Explicitly, Wδ(Γ) = K if n = 0 and

Wδ(Γ) =
∑

i∈δK[y1]e(i) if n = 1. This choice for n ∈ {0, 1} is important for the statements
of the results in the next subsection.
Remark 5.15. With the choices of Γ, θ and the notations of Remark 3.17, the algebra Wδ(Γ)
is exactly the algebra W δ

x defined in [20].
The algebra Wδ(Γ) is Z-graded with

deg e(i) = 0,
deg ya = 2,

deg Ψ0e(i) = d(θ(i1), i2),
degψbe(i) = d(ib, ib+1).

Definition 5.16. The cyclotomic quotient WΛ
δ (Γ) is the quotient of the algebra Wδ(Γ) by

the relations
y

Λi1
1 e(i) = 0 , for all i ∈ δ.

25



The algebra WΛ
δ (Γ) inherits the grading from Wδ(Γ) since the additional relations are

homogeneous. If Λi = 0 for all i then

WΛ
δ (Γ) =

{
{0}, if n ≥ 1,
K, if n = 0.

Fixed-point isomorphism. Let β be a Bn-orbit in In. Note that β is a finite union
of Dn-orbits, so that both algebras Vβ(Γ) and Wβ(Γ) are defined.

We recall the following results from [20]. Note that they were proved for a particular
choice of Γ and θ (the one relevant for the next section). However, the proof does not depend
on this choice and can be repeated verbatim in our general setting.
Proposition 5.17 ([20]).
(i) The algebra Wβ(Γ) is isomorphic to the subalgebra Vβ(Γ)ι of Vβ(Γ).
(ii) Assume that Λ satisfies Λθ(i) = Λi for all i ∈ I. The cyclotomic quotient WΛ

β (Γ) is
isomorphic to V Λ

β (Γ)ι.
In both cases, an isomorphism is given by Ψ0 7→ ψ0ψ1ψ0 and X 7→ X for all the

generators X but Ψ0.
Remark 5.18. Note that it is assumed in [20] that n ≥ 2. With our conventions, the
statements are also true for n ∈ {0, 1}, in which cases the verification is straightforward.
Remark 5.19. Recall the defining relations (5.1), (5.3) and (5.5) of V Λ

β (Γ). Conjugating the
cyclotomic relations of V Λ

β (Γ) by ψ0, we obtain that yΛi1
1 e(r0 · i) = 0 for any i ∈ β. From

this remark, it is easy to see that we have in fact V Λ
β (Γ) = V Λ̃

β (Γ), where Λ̃ is now given by
Λ̃i = min{Λi,Λθ(i)}. This phenomenon does not necessarily occur also in WΛ

β (Γ) (where ψ0
is not present) and this explains the assumptions on Λ in Proposition 5.17(ii).

We note that the isomorphisms given in the preceding proposition are isomorphisms of
graded algebras. Indeed, in Vβ(Γ) we have degψ0 = 0 and so it is straightforward to check
that the given map is homogeneous.

From Proposition 5.17(i) and Corollary 3.28, one obtains immediately the following
statement.
Corollary 5.20. The subalgebra of Wβ(Γ) generated by all generators but Ψ0 is isomorphic
to Rβ(Γ).

Semi-direct product. In this paragraph, assume that n ≥ 1. Since ι is involutive, the
vector space Vβ(Γ) decomposes as

Vβ(Γ) = Vβ(Γ)ι ⊕ Vβ(Γ)− ,

where Vβ(Γ)− is the eigenspace of ι for the eigenvalue −1. Moreover, the generator ψ0 is
invertible (in fact, ψ2

0 = 1) and satisfies ι(ψ0) = −ψ0. So the multiplication by ψ0 provides
an isomorphism of vector spaces between Vβ(Γ)ι and Vβ(Γ)−, so that Vβ(Γ)− can be written
Vβ(Γ)ιψ0. Working out the multiplication in Vβ(Γ)

(x+ yψ0)(x′ + y′ψ0) = xx′ + yψ0y
′ψ0 + (yψ0x

′ψ0 + xy′)ψ0 ,

one obtains as a standard consequence that Vβ(Γ) is isomorphic to the semi-direct product
Vβ(Γ)ι o C2, where the action of the cyclic group C2 of order 2 on Vβ(Γ)ι is by conjugation
by ψ0. Recall that as a vector space Vβ(Γ)ι o C2 is the tensor product Vβ(Γ)ι ⊗K[C2], and
the multiplication is given by

(x⊗ ψε0)(x′ ⊗ ψε
′

0 ) = (xψε0x′ψε0)⊗ ψε+ε
′

0 .

Then we formulate the preceding standard facts taking into account Proposition 5.17.
First we give explicitly the automorphism of Wβ(Γ) induced by conjugation by ψ0 in Vβ(Γ).
We denote this automorphism of order 2 by π. It is given on the generators by:

π : Ψ0 7→ ψ1 , ψ1 7→ Ψ0 , y1 7→ −y1 , e(i) 7→ e(r0 · i) , (5.21)
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and the identity on all the other generators. As a consequence of Proposition 5.17 together
with the preceding discussion, we conclude that

Vβ(Γ) 'Wβ(Γ) o 〈π〉 ,

and similarly, for Λ as in Proposition 5.17(ii),

V Λ
β (Γ) 'WΛ

β (Γ) o 〈π〉 , (5.22)

where we still denote by π the automorphism of order 2 of WΛ
β (Γ) given by the same

formulas (5.21). This is indeed an automorphism since Λ satisfies the assumption of Proposi-
tion 5.17(ii).

With these descriptions as semi-direct products, the involution ι on Vβ(Γ) (and on V Λ
β (Γ))

is simply given by:
ι
(
x⊗ πε

)
= (−1)εx⊗ πε , (5.23)

where ε ∈ {0, 1} and x ∈Wβ(Γ) (or x ∈WΛ
β (Γ)).

5.2 Disjoint quiver isomorphism for Wδ(Γ)
Now let d be a positive integer and assume that the quiver Γ admits a decomposition
Γ = qdj=1Γ(j) as in §4. Let β be a Bn-orbit in In. As in §4, for any j ∈ {1, . . . , d}, we have
an integer nj(β) = nj and a Bnj -orbit β(j) in (I(j))nj .

If nj(β) = 0 for some j ∈ {1, . . . , d} then consider Γ̃ the quiver where we removed the
component Γ(j). It is immediate from the definitions that Wβ(Γ) is the same algebra as
Wβ(Γ̃). So we lose no generality by assuming that nj(β) 6= 0 for all j ∈ {1, . . . , d}.

Fixed points of tensor products. Since nj(β) ≥ 1 for all j ∈ {1, . . . , d}, by the
preceding section we have Vβ(j)(Γ(j)) 'Wβ(j)(Γ(j)) o C2 for all j. Hence,

d⊗
j=1

Vβ(j)(Γ(j)) '
( d⊗
j=1

Wβ(j)(Γ(j))
)
o Cd2 ,

where Cd2 acts on the tensor product by the automorphism π from (5.21) on each factor.
We would like to describe the fixed points of

⊗d
j=1 Vβ(j)(Γ(j)) for the involutive auto-

morphism ι⊗ given by the tensor product of ι for each factor. From Formula (5.23), it is
immediate to see that( d⊗

j=1
Vβ(j)(Γ(j))

)ι⊗
'
( d⊗
j=1

Wβ(j)(Γ(j))
)
o Cd−1

2 , (5.24)

where Cd−1
2 is seen as the subgroup of “even” elements of Cd2 , namely

Cd−1
2 = {(πε1 , . . . , πεd) ∈ Cd2 such that ε1 + · · ·+ εd = 0 (mod 2) } . (5.25)

Disjoint quiver isomorphism. We can now formulate the main result of this section.
Recall that nj(β) 6= 0 for all j ∈ {1, . . . , d}.
Theorem 5.26. We have (explicit) isomorphisms of graded algebras:

Wβ(Γ) ' Mat( n
n1,...,nd)

( d⊗
j=1

Wβ(j)(Γ(j))
)
o Cd−1

2

 , (5.27)

and, assuming d > 1,

WΛ
β (Γ) ' Mat( n

n1,...,nd)

( d⊗
j=1

W Λ̃(j)

β(j) (Γ(j))
)
o Cd−1

2

 , (5.28)

where Λ̃ = (Λ̃i)i∈I is defined by Λ̃i := min{Λi,Λθ(i)}.
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Note that in both formulas above, the group Cd−1
2 is as given in (5.25). Moreover, the

semi-direct product in Formula (5.28) is well-defined since each Λ̃(j) satisfies the condition
Λ̃(j)
i = Λ̃(j)

θ(i) of Proposition 5.17(ii) (see (5.22)).
Remark 5.29. The reader may have noticed that the assumptions d > 1 and nj(β) 6= 0 (which
do not reduce the generality as explained above) were not present in the preceding section
for the type B in Theorem 4.1 and Corollary 4.17. Indeed those statements are more uniform
in the sense that they are also valid as they are, even if some nj(β) are 0 or if d = 1. In
particular, for d = 1 we do not necessarily have WΛ

β (Γ) = W Λ̃
β (Γ) (cf. Remark 5.19).

Proof. • Recall from Theorem 4.1 that we have an isomorphism between Vβ(Γ) and the
algebra Mat( n

n1,...,nd)
(⊗d

j=1 Vβ(j)(Γ(j))
)
. This isomorphism was obtained with the following

two steps:

Vβ(Γ) ' Mat( n
n1,...,nd)

(
e(tβ)Vβ(Γ)e(tβ)

)
and

d⊗
j=1

Vβ(j)(Γ(j)) ' e(tβ)Vβ(Γ)e(tβ) .

For the first isomorphism, see §4.1, the construction of the idempotent e(tβ) does not
involve ψ0, and neither does the construction of the matrix units (that is, the construction
of the elements ψt and φt given by Formulas (2.21)). So we deduce immediately how the
automorphism ι of Vβ(Γ) behaves with respect to this isomorphism, namely we have that

Vβ(Γ)ι ' Mat( n
n1,...,nd)

(
e(tβ)Vβ(Γ)ιe(tβ)

)
.

According to Formula (5.24) (that we can use since nj(β) 6= 0), to prove (5.27) it remains
only to show that

e(tβ)Vβ(Γ)ιe(tβ) '
( d⊗
j=1

Vβ(j)(Γ(j))
)ι⊗

.

So if we denote ρ the isomorphic map from
⊗d

j=1 Vβ(j)(Γ(j)) to e(tβ)Vβ(Γ)e(tβ), it remains
to check that

ρ ◦ ι⊗ = ι ◦ ρ .

This is immediately verified from Formulas (4.4)–(4.7) giving the map ρ in the proof of
Proposition 4.3. Moreover, the isomorphism (5.27) is graded since it is the restriction of a
graded isomorphism (to a graded subalgebra).

• To prove (5.28), we start exactly as in the proof of Corollary 4.17, namely we repeat
the calculations in the proof of Theorem 2.35. We can do so since Rβ(Γ) is a subalgebra of
Wβ(Γ) by Corollary 5.20.

Let ϑ denote the isomorphism in (5.27) and let KΛ
β denote the ideal of Wβ(Γ) giving the

cyclotomic quotient WΛ
β (Γ). The proofs of Corollary 4.17 and Theorem 2.35 show that

ϑ(KΛ
β ) = Mat( n

n1,...,nd)
(KΛ
β,⊗) ,

where KΛ
β,⊗ is the ideal of

(⊗d
j=1Wβ(j)(Γ(j))

)
o Cd−1

2 generated by the elements

y
Λib
b e(i) , (5.30)

where i is of profile tβ , and b is of the form b = n1 + · · ·+ nj−1 + 1 for j ∈ {1, . . . , d}. Note
that, as in the proof of Theorem 2.35 we slightly abuse notations: if i = (i1, . . . , id) with
ik ∈ β(k), we identify yΛib

b e(i) ∈Wβ(Γ) with the element of
⊗d

j=1Wβ(j)(Γ(j)) which is e(ik)
in the k-th factor with k 6= j and (y(j)

1 )Λ(ij)1 e(ij) in the j-th factor (where y(j)
1 denotes the

generator y1 of Wβ(j)(Γ(j))).
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Contrary to the type A and B, we need to show something more here to prove (5.28).
In particular, we cannot consider the semi-direct product

(⊗d
j=1W

Λ(j)

β(j) (Γ(j))
)
o Cd−1

2 since
the elements Λ(j) do not necessarily satisfy the stability condition of Proposition 5.17(ii).
Thus, let KΛ̃

β,⊗ be the ideal of
(⊗d

j=1Wβ(j)(Γ(j))
)
o Cd−1

2 generated by the elements

y
Λ̃ib
b e(i) , (5.31)

where i ∈ β is of profile tβ , and b is of the form b = n1 + · · ·+ nj−1 + 1 for j ∈ {1, . . . , d},
and where Λ̃ is defined in Theorem 5.26. We will show that

KΛ
β,⊗ = KΛ̃

β,⊗ .

First, since Λ̃i ≤ Λi for all i ∈ I, we have KΛ
β,⊗ ⊂ KΛ̃

β,⊗. For the reverse inclusion, take

an element yΛ̃ib
b e(i) as in (5.30). If Λ̃ib = Λib then yΛ̃ib

b e(i) ∈ KΛ
β,⊗, thus we assume that

Λ̃ib = Λθ(ib). Let ξ ∈ C
d−1
2 such that the component of ξ in position j is π. Such an element

exists since we assumed that d > 1. Then, using Formulas (5.21) for the action of π on
Wβ(j)(Γ(j)), we have, where i′ ∈ β of profile tβ is such that i′b = θ(ib),

ξ ·
(
y

Λ̃ib
b e(i)

)
= (−yb)Λ̃ib e(i′) = (−yb)Λθ(ib)e(i′) = (−yb)

Λi′
b e(i′) .

Since the action of ξ is invertible, we thus deduce that yΛ̃ib
b e(i) ∈ KΛ

β,⊗. Finally, we showed
that all elements in (5.31) are in KΛ

β,⊗, and thus KΛ̃
β,⊗ ⊂ KΛ

β,⊗. This concludes the proof.

We define Wn(Γ) := ⊕δWδ(Γ), where δ runs over all the orbits of In under the action
of Dn, and similarly WΛ

n (Γ) = ⊕δWΛ
δ (Γ). In the type D situation, the statements below

are less clean that those of Corollary 2.32 or Corollary 4.18. Nevertheless, it still explicitly
reduces the study of Wn(Γ) and WΛ

n (Γ) to the situation of a quiver with a single component.
For (n1, . . . , nd) ∈ (Z≥0)d, we denote l(n1, . . . , nd) the number of its non-zero components.

Assume that n ≥ 1 to avoid a trivial situation.
Corollary 5.32. We have (explicit) isomorphisms of graded algebras:

Wn(Γ) '
⊕

n1,...,nd≥0
n1+···+nd=n

Mat( n
n1,...,nd)

( d⊗
j=1
nj 6=0

Wnj (Γ(j))
)
o C

l(n1,...,nd)−1
2

 ,

WΛ
n (Γ) '

⊕
n1,...,nd≥0
n1+···+nd=n

Mat( n
n1,...,nd)

(
W(n1, . . . , nd)

)
,

where:
• If l(n1, . . . , nd) = 1 then W(n1, . . . , nd) := WΛ(j)

nj (Γ(j)) where j is the component such
that nj = n.
• If l(n1, . . . , nd) > 1 then

W(n1, . . . , nd) :=
( d⊗
j=1
nj 6=0

W Λ̃(j)

nj (Γ(j))
)
o C

l(n1,...,nd)−1
2 .

Proof. We write Wn(Γ) = ⊕βWβ(Γ) and WΛ
n (Γ) = ⊕βWΛ

β (Γ), where β runs over all the
orbits of In under the action of Bn. We note that if some nj(β) are equal to 0 then, as
explained at the beginning of this subsection, we can remove the corresponding components
of Γ to obtain another quiver Γ̃ for which the assumptions of Theorem 5.26 are satisfied.
Then the proof is a repetition of the proof of Corollary 2.32, using Theorem 5.26 for each
orbit β.
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Remark 5.33. As in Remarks 2.39 and 4.19, we deduce that we can assume that Λ is supported
on all the components of Γ.

6 Morita equivalence for cyclotomic quotients of affine
Hecke algebras of type B and D
In this section, we will combine our previous results Corollaries 4.18 and 5.32 with [19, 20]
to obtain Morita equivalences theorems for cyclotomic quotients of affine Hecke algebras
of type B and D. We emphasize that these Morita equivalences will be deduced from
isomorphisms. As they combine the isomorphisms of [19, 20] with those of the previous
sections, these isomorphisms can be written down explicitly even though they are rather
complicated.

Recall that K is a field with characteristic different from two. Let p, q ∈ K \ {0} such
that q2 6= 1. As in Remark 3.17, for any x ∈ K \ {0} we define the set

Ix := {xεq2l : ε ∈ {±1}, l ∈ Z} .

Then we take d ≥ 1 and x1, . . . , xd ∈ K× such that the sets I(j) := Ixj are pairwise disjoint,
and we set

I := qdj=1Ixj .

The quiver Γ with involution that we will be considering in this section is the following:
• The vertex set of Γ is I as above.
• There is an arrow starting from v and pointing to q2v for all v ∈ I. These are all arrows.
• The involution θ on I is the scalar inversion θ(x) = x−1 for all x ∈ I.
The partition I = qdj=1I

(j) induces a decomposition of Γ into full subquivers Γ = qdj=1Γ(j)

as in Section 4, in particular each Γ(j) is stable under the scalar inversion θ. We also choose
a finitely-supported family Λ = (Λi)i∈I of non-negative integers. Finally, let L be a free
Z-module of rank n with basis {εi}i=1,...,n:

L :=
n⊕
i=1

Zεi .

6.1 Morita equivalence for cyclotomic quotients of affine Hecke al-
gebras of type B
We set

α0 := 2ε1 and αi := εi+1 − εi , i = 1, . . . , n− 1 .

For n ≥ 1, the Weyl group Bn of type B acts on L by

r0(ε1) = −ε1,
r0(εi) = εi if i > 1,
ra(εi) = εra(i),

for i = 1, . . . , n− 1 and a = 1, . . . , n− 1.
We denote q0 := p and qi := q for i = 1, . . . , n − 1. The affine Hecke algebra Ĥ(Bn) is

the unitary K-algebra generated by elements

g0, g1, . . . , gn−1 and Xx, x ∈ L .

The defining relations are X0 = 1, XxXx′ = Xx+x′ for any x, x′ ∈ L, and the characteristic
equations for the generators gi:

g2
i = (qi − q−1

i )gi + 1 for i ∈ {0, . . . , n− 1} , (6.1)
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with the braid relations of type B

g0g1g0g1 = g1g0g1g0 (6.2)
gigi+1gi = gi+1gigi+1 for i ∈ {1, . . . , n− 2}, (6.3)
gigj = gjgi for i, j ∈ {0, . . . , n− 1} such that |i− j| > 1, (6.4)

together with

giX
x −Xri(x)gi = (qi − q−1

i )X
x −Xri(x)

1−X−αi ,

for any x ∈ L and i = 0, 1, . . . , n− 1. Note that the right-hand side is a well-defined element
since there exists k ∈ Z such that ri(x) = x− kαi. Note also that Ĥ(B0) = K.

Let Xi := Xεi for i = 1, . . . , n. An equivalent presentation of the algebra Ĥ(Bn) is with
generators

g0, g1, . . . , gn−1, X
±1
1 , . . . , X±1

n ,

and defining relations (6.1)–(6.4) together with

XiXj = XjXi for i, j ∈ {1, . . . , n},
g0X

−1
1 g0 = X1,

giXigi = Xi+1 for i ∈ {1, . . . , n− 1},
giXj = Xjgi for i ∈ {0, . . . , n− 1} and j ∈ {1, . . . , n} such that j 6= i, i+ 1.

Definition 6.5. The cyclotomic quotient HΛ(Bn) of type B associated with Λ = (Λi)i∈I is
the quotient of the algebra Ĥ(Bn) over the relation∏

i∈I
(X1 − i)Λi = 0 .

Note that if Λi = 0 for all i then

HΛ(Bn) =
{
{0}, if n ≥ 1,
K, if n = 0.

We recall the main result of [19, 20] concerning HΛ(Bn).
Theorem 6.6. Let λ, γ be as in Remarks 3.17 and 3.18 if p2 6= 1 and p2 = 1 respectively.
The algebras HΛ(Bn) and V Λ

n (Γ, λ, γ) are (explicitly) isomorphic.
Remark 6.7. Theorem 6.6 is proven for n ≥ 1, but is also trivially true for n = 0.

We now state the first main application of the results of the preceding sections.
Theorem 6.8. We have an (explicit) isomorphism of algebras:

HΛ(Bn) '
⊕

n1,...,nd≥0
n1+···+nd=n

Mat( n
n1,...,nd)

 d⊗
j=1

HΛ(j)
(Bnj )

 .

In particular, HΛ(Bn) is Morita equivalent to
⊕

n1,...,nd≥0
n1+···+nd=n

 d⊗
j=1

HΛ(j)
(Bnj )

.

Proof. Note that the statement is true if n = 0, thus we now assume n ≥ 1. Let us first
assume that p2 6= 1. Let λ be the indicator function of {±p} ∩ I and (γi)i∈I be given

by γi =
{

1, if θ(i) = i,

0, otherwise,
as in Remark 3.17. By Theorem 6.6, we have an isomorphism
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HΛ(Bn) ' V Λ
n (Γ, λ, γ). For any j ∈ {1, . . . , d}, the restrictions λ(j) and γ(j) of λ and γ

respectively to I(j) satisfy, by Corollary 4.18,

V Λ
n (Γ, λ, γ) '

⊕
n1,...,nd≥0
n1+···+nd=n

Mat( n
n1,...,nd)

 d⊗
j=1

V Λ(j)

nj (Γ(j), λ(j), γ(j))

 .

Since λ(j) and γ(j) are still of the above form with respect to the quiver Γ(j), by Theorem 6.6
we have V Λ(j)

nj (Γ(j), λ(j), γ(j)) ' HΛ(j)(Bnj ) for any nj . We thus deduce the isomorphism
of the theorem. We deduce the statement of Morita equivalence since MatN (A) and A
are Morita equivalent for any algebra A and N ∈ N∗. The case p2 = 1 is similar, still by
Theorem 6.6.

We obtain the following corollary.
Corollary 6.9. To study an arbitrary cyclotomic quotient of the affine Hecke algebra Ĥ(Bn),
it is enough to consider cyclotomic quotients given by a relation∏

ε∈{±1}
l∈Z

(X1 − xεq2l)mε,l = 0 ,

for any finitely-supported family of non-negative integers (mε,l)ε∈{±1},l∈Z, where x ∈ K×
satisfies one of the following four cases:

(a) x = 1 (b) x = q (c) x = p (d) x /∈ ±qZ ∪ ±p±1q2Z .

Proof. We sketch a proof, in the same spirit as in the introduction of [19]. By Theorem 6.8,
it is clear that it suffices to consider cyclotomic quotients given by a relation∏

i∈Ix

(X1 − i)Λi = 0,

where Ix = {xεq2l : ε ∈ {±1}, l ∈ Z} with x ∈ K× and Λ = (Λi)i∈Ix is a finitely-supported
family of non-negative integers. By Theorem 6.6 and Remark 3.17, this cyclotomic quotient
is determined by:
• the quiver Γ with vertex set Ix, arrows v → q2v for all v ∈ Ix and involution θ : v 7→ v−1

on Ix;
• the set {±p} ∩ Ix.
A first distinction arises when looking at the number of connected components of Γ. It

has exactly one (respectively two) connected component(s) when x2 ∈ q2Z (resp. x2 /∈ q2Z).
The first case, x2 ∈ q2Z, is equivalent to x ∈ ±qZ. We can switch between x and −x

by the variable change Xi ← −Xi for all i ∈ {1, . . . , n}, replacing Ix by −Ix = I−x and
Λ = (Λi)i∈Ix by Λ′ = (Λ′i)i∈I−x given by Λ′i := Λ−i for all i ∈ I−x. Thus, it suffices to
consider x ∈ qZ, but now a simple shift of Λ (that is, setting Λ′i = Λiq2N for appropriate N)
shows that it suffices to consider the cases x = 1 (this is case (a)) or x = q (this is case (b)),
according to the parity of the power of q.

We now consider the case x2 /∈ q2Z, that is, x /∈ ±qZ. If {±p} ∩ Ix = ∅, then x /∈
±qZ ∪ ±p±1q2Z, and all these choices of x lead to isomorphic algebras since moreover θ has
no fixed points (if x±1q2k is fixed by θ then x2 ∈ q4Z thus x ∈ ±q2Z). This is case (d). Now
if {±p} ∩ Ix 6= ∅, using the variable change Xi ← −Xi for all i ∈ {1, . . . , n} we can always
assume that p ∈ Ix, that is, x ∈ p±1q2Z. It suffices in fact to consider x ∈ pq2Z, since the
variable change g0 ← −g0 exchanges p and p−1. This case reduces to x = p by shifting Λ as
above, and this is case (c).

Remark 6.10. We make additional final remarks on the four cases (a)–(d) to be considered.
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• Cases (a) and (b) correspond to a quiver with a single connected component (an infinite
oriented line or a finite oriented polygon depending on whether q is a root of unity or
not). This quiver is stable by the involution θ, and then Case (a) corresponds to θ
having a fixed point, while Case (b) generically corresponds to the situation where there
is no fixed point. This latter situation cannot occur if the number of vertices is finite
and odd, that is, Case (b) is not present (or more precisely, is not necessary since it is
equivalent to Case (a)) when q2 is an odd root of unity.

• Cases (c) and (d) (generically) correspond to a quiver with two identical connected
components (two infinite oriented lines or two finite oriented polygons depending on
whether q is a root of unity or not), which are exchanged by the involution θ. Then
Case (c) corresponds to the situation where one of the special values ±p−1 is present,
while Case (d) corresponds to the situation where no such values occur. We see that
Case (c) is not necessary (more precisely, it reduces to one of Cases (a) or (b)) when p2

is a power of q2.
• To summarise, there are at least two cases to consider in general: (a) and (d), while

the additional two cases (b) and (c) are to be considered or not depending on p and q.

6.2 Morita equivalence for cyclotomic quotients of affine Hecke al-
gebras of type D
Let n ≥ 2. We set

α′0 = ε1 + ε2 and α′i = εi+1 − εi , i = 1, . . . , n− 1 .

The Weyl group Dn of type D acts on L by

s0(ε1) = −ε2,
s0(ε2) = −ε1,
s0(εi) = εi, if i > 2,
sa(εi) = εra(i),

for i = 1, . . . , n− 1 and a = 1, . . . , n− 1.
The affine Hecke algebra Ĥ(Dn) is the unitary K-algebra generated by elements

{gi}1≤i≤n−1 ∪ {G0} ∪ {Xx}x∈L.

The defining relations are X0 = 1, XxXx′ = Xx+x′ for any x, x′ ∈ L, and the characteristic
equations for the generators gi and G0:

g2
i = (q − q−1)gi + 1 for i ∈ {1, . . . , n− 1},

G2
0 = (q − q−1)G0 + 1,

(6.11)

with the braid relations of type D

G0g2G0 = g2G0g2, (6.12)
G0gi = giG0 for i ∈ {1, . . . , n− 1} \ {2}, (6.13)
gigi+1gi = gi+1gigi+1 for i ∈ {1, . . . , n− 2}, (6.14)
gigj = gjgi for i, j ∈ {1, . . . , n− 1} such that |i− j| > 1, (6.15)

together with

giX
x −Xsi(x)gi = (q − q−1)X

x −Xsi(x)

1−X−α′i
,

G0X
x −Xs0(x)G0 = (q − q−1)X

x −Xs0(x)

1−X−α′0
,
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for any x ∈ L and i = 1, . . . , n− 1. Note that the right-hand sides are well-defined elements
since for any i ∈ {0, . . . , n− 1} there exists k ∈ Z such that si(x) = x− kα′i.

An equivalent presentation of the algebra Ĥ(Dn) is with generators (where again Xi :=
Xεi)

{gi}1≤i≤n−1 ∪ {G0} ∪ {X±1
i }1≤i≤n ,

and defining relations (6.11)–(6.15) together with

XiXj = XjXi for i, j ∈ {1, . . . , n},
G0X

−1
1 G0 = X2,

G0Xi = XiG0 for i ∈ {3, . . . , n− 1},
giXigi = Xi+1 for i ∈ {1, . . . , n− 1},
giXj = Xjgi for i ∈ {1, . . . , n− 1} and j ∈ {1, . . . , n} such that j 6= i, i+ 1.

By convention, we set that Ĥ(Dn) coincides with the usual affine Hecke algebra of type
An if n ∈ {0, 1}, that is, we have Ĥ(D0) = K and Ĥ(D1) = K[X±1

1 ].
Definition 6.16. The cyclotomic quotient HΛ(Dn) of type D associated with Λ = (Λi)i∈I
is the quotient of the algebra Ĥ(Dn) over the relation∏

i∈I
(X1 − i)Λi = 0 .

Note that if Λi = 0 for all i then

HΛ(Dn) =
{
{0}, if n ≥ 1,
K, if n = 0.

We recall the main result of [20] concerning HΛ(Dn). Recall that the quiver Γ was defined
at the beginning of Section 6.
Theorem 6.17. The algebras HΛ(Dn) and WΛ

n (Γ) are (explicitly) isomorphic.
Remark 6.18. Theorem 6.17 is proven for n ≥ 2, but it is immediate with our conventions
that it remains true for n ∈ {0, 1}.

Expression as a semi-direct product. We assume here that n ≥ 1. Assuming
p2 = 1, we now can see Ĥ(Dn) as a subalgebra of Ĥ(Bn). Namely, we have an inclusion (see,
for instance, [20, §2.3]) Ĥ(Dn) ⊆ Ĥ(Bn), given on the generators by

G0 7→ g0g1g0, gi 7→ gi, X±1
j 7→ X±1

j ,

for any i ∈ {1, . . . , n− 1} and j ∈ {1, . . . , n}. Another way to see Ĥ(Dn) as a subalgebra of
Ĥ(Bn) is to write Ĥ(Dn) as the subalgebra of fixed points of Ĥ(Bn) under the involution η
given by

g0 7→ −g0, gi 7→ gi, X±1
j 7→ X±1

j ,

for each i ∈ {1, . . . , n− 1} and j ∈ {1, . . . , n} (note that since p2 = 1 the defining relation for
the generator g0 is g2

0 = 1). In particular, as in §5.1 we have a vector space decomposition
Ĥ(Bn) = Ĥ(Dn)⊕ Ĥ(Dn)g0 and thus an isomorphism of algebras

Ĥ(Bn) ' Ĥ(Dn) o C2.

Note that the action of the generator of C2 on the generating set of Ĥ(Dn) is given by

G0 7→ g1, g1 7→ G0, gi 7→ gi,

X1 7→ X−1
1 , X−1

1 7→ X1, X±1
j 7→ X±1

j ,
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for all i ∈ {2, . . . , n− 1} and j ∈ {2, . . . , n}.

The involution η on Ĥ(Bn) is compatible with the cyclotomic quotient HΛ(Bn). Now if Λ
satisfies the stability condition of Proposition 5.17(ii) (which is here Λi−1 = Λi for all i ∈ I),
the previous action of C2 on Ĥ(Dn) is compatible with the cyclotomic quotient HΛ(Dn) and
as above we have

HΛ(Bn) ' HΛ(Dn) o C2.

Morita equivalence theorem. Let n1, . . . , nd ≥ 1. If Λ satisfies Λi−1 = Λi for all
i ∈ I, the previous action of C2 on HΛ(Dn) extends to a (diagonal) action of Cd2 on
⊗dj=1H

Λ(j)(Dnj ). As in §5.2, we restrict this action to the subgroup Cd−1
2 of even elements

given in (5.25). Recall also the definition of Λ̃ = (Λ̃i)i∈I given in Theorem 5.26.
We now state the second main application of the paper. As in Corollary 5.32, for any

(n1, . . . , nd) ∈ (Z≥0)d we denote by l(n1, . . . , nd) the number of its non-zero components.
Theorem 6.19. We have an (explicit) isomorphism of algebras:

HΛ(Dn) '
⊕

n1,...,nd≥0
n1+···+nd=n

Mat( n
n1,...,nd)

(
H(n1, . . . , nd)

)
,

where:
• If l(n1, . . . , nd) = 1 then H(n1, . . . , nd) := HΛ(j)(Dnj ) where j is the component such
that nj = n.
• If l(n1, . . . , nd) > 1 then

H(n1, . . . , nd) :=
( d⊗
j=1
nj 6=0

HΛ̃(j)
(Dnj )

)
o C

l(n1,...,nd)−1
2 .

In particular, HΛ(Dn) is Morita equivalent to
⊕

n1,...,nd≥0
n1+···+nd=n

H(n1, . . . , nd).

Proof. We argue as in the proof of Theorem 6.8, using Corollary 5.32 and Theorem 6.17.
Note that the isomorphism of [20] is compatible with the semi-direct product since the
involution ι (respectively, the element ψ0) of V Λ

n (Γ) is sent to the involution η (resp., the
element g0) of HΛ(Bn) by the isomorphism of loc. cit.

We obtain the following corollary. We note that the situation is a little bit more intricate
than for type B because of the presence of semidirect products with products of groups C2.
So below, it is implicit that it is enough to consider some special cyclotomic quotients, up to
the application of standard Clifford theory to deal with the semidirect products.
Corollary 6.20. To study an arbitrary cyclotomic quotient of the affine Hecke algebra
Ĥ(Dn), it is enough to consider cyclotomic quotients given by a relation∏

ε∈{±1}
l∈Z

(X1 − xεq2l)mε,l = 0 ,

for any finitely-supported family of non-negative integers (mε,l)ε∈{±1},l∈Z, where x ∈ K×
satisfies one of the following three cases:

(a) x = 1 (b) x = q (c) x /∈ ±qZ .

Proof. We sketch a proof, in the same spirit as in the introduction of [20]. We deduce from
Theorem 6.19 that it suffices to study the cyclotomic quotients of Ĥ(Dn) given by a relation∏

i∈Ix

(X1 − i)Λi ,
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where Ix and Λ are as in the proof of Corollary 6.9. By Theorem 6.17, this cyclotomic
quotient is only determined by the quiver Γ and its involution θ as defined in the proof
of Corollary 6.9. In particular, looking at the number of connected components of Γ we
still have the two cases x ∈ ±qZ (which give cases (a) and (b)) and x /∈ ±qZ (which is case
(c)). In the latter case all the choices of x lead to isomorphic algebras since θ has no fixed
points.

Remark 6.21. We make an additional final remark on the three cases (a)–(c) to be considered,
similarly to Remark 6.10. Cases (a) and (b) correspond to a quiver with a single connected
component (an infinite oriented line or a finite oriented polygon depending on whether q
is a root of unity or not), while (c) corresponds to a quiver with two identical connected
components exchanged by the involution θ. Case (a) corresponds to θ having a fixed point,
while Case (b) generically corresponds to the situation where there is no fixed point. As
before, when q2 is an odd root of unity, Case (b) is not necessary since it is equivalent to
Case (a).

A Polynomial realisation
We prove here Lemma 3.25. In this appendix, for any f ∈ K[x, β] we also systematically write
f for the the element of EndK(K[x, β]) given by left multiplication and we use concatenation
to denote the composition inside EndK(K[x, β]). In particular, for any w ∈ Bn and f ∈ K[x]
we have wf = (wf)w inside EndK(K[x, β]).

We now define some elements of EndK(K[x, β]) by

ϕ(e(i)) = 1i,

ϕ(yae(i)) = xa1i,

ϕ(ψbe(i)) =
(
δib,ib+1(xb − xb+1)−1(rb − 1) + Pib,ib+1(xb+1, xb)rb

)
1i,

ϕ(ψ0e(i)) =
(
γi1x

−1
1 (1− r0) + αi1(x1)r0

)
1i,

(A.1)

for any a ∈ {1, . . . , n} and b ∈ {1, . . . , n − 1}, and extend these formulas to ϕ(X) for
X ∈ {y1, . . . , yn, ψ0, . . . , ψn−1} by ϕ(X) =

∑
i∈β ϕ(Xe(i)).

We will prove that ϕ extends to an algebra homomorphism ϕ : Vβ(Γ, λ, γ)→ EndK(K[x, β]),
which will imply Lemma 3.25. Indeed, the map ϕ is the homomorphism associated with the
action defined in §3.2. To prove that ϕ extends to an algebra homomorphism, we check the
defining relations of Vβ(Γ, λ, γ). Recall that Pi,j = 0 when i = j so that

ϕ(ψbe(i)) =
{

(xb − xb+1)−1(rb − 1)1i, if ib = ib+1,

Pib,ib+1(xb+1, xb)rb1i, otherwise.

Moreover, by (3.5a) and (3.24) we have

ϕ(ψ0e(i)) =
{
αi1(x1)r01i, if γi1 = 0,
γi1x

−1
1 (1− r0)1i, otherwise.

The relations that do not involve ψ0 are satisfied since the action is the same as in [23,
Proposition 3.12]. Relations (3.9), (3.10) and (3.12) are immediate.

To simplify the notation, for any v ∈ Vβ(Γ, λ, γ) we also write v′ instead of ϕ(v). Note
that the composition operation in EndK(K[x, β]) is denoted as a simple multiplication.
For example, ψ′0x1 means composition of the multiplication by x1 with the operator φ(ψ0).
Concerning (3.11), we have

(ψ′0y′1 + y′1ψ
′
0)e(i)′ = ψ′0x11i + x1

(
γi1x

−1
1 (1− r0) + αi1(x1)r0

)
1i

=
[(
γi1x

−1
1 (1− r0)x1 + αi1(x1)r0x1

)
+ (γi1(1− r0) + x1αi1(x1)r0)

]
1i

=
[
γi1(1 + r0)− x1αi1(x1)r0 + γi1(1− r0) + x1αi1(x1)r0

]
1i

= 2γi11i = ϕ
(
2γi1e(i)

)
.
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For (3.13), if γi = 0 then γθ(i) = 0 by (3.6) and we have, noting that 1jr0 = r01r0·j
inside EndK(K[x, β]),

ψ′0
2
e(i)′ = ψ′0αi1(x1)r01i

= αθ(i1)(x1)r0αi1(x1)r01i

= αθ(i1)(x1)αi1(−x1)1i

= (−1)λθ(i1)x
d(i1)
1 1i

= ϕ
(

(−1)λθ(i1)y
d(i1)
1 e(i)

)
,

by (3.23), and if γi1 6= 0 then γθ(i1) 6= 0 and we have

ψ′0
2
e(i)′ = ψ′0γi1x

−1
1 (1− r0)1i

= γθ(i1)γi1
(
x−1

1 (1− r0)
)2 1i

= 0.

It remains to check (3.14). As in (3.20), we write i1i2 and even 12 instead of i, and ā instead
of θ(ia). We have, using (3.9),

(ψ′0ψ′1)2e(12)′ = (ψ′0112̄)(ψ′112̄1)(ψ′0121)(ψ′1112), (A.2a)
(ψ′1ψ′0)2e(12)′ = (ψ′112̄1̄)(ψ′0121̄)(ψ′111̄2)(ψ′0112). (A.2b)

A.1 Case γi1 = 0 = γi2

First, recall that by (3.6) we know that if γi1 = 0 and θ(i1) = i2 then γi2 = 0. Thus, we
want to prove that

(
(ψ′0ψ′1)2 − (ψ′1ψ′0)2)1i =

{
(−1)λθ(i1) (−y′1)d(i1)−y′2

d(i1)

y′1+y′2
ψ′11i, if θ(i1) = i2,

0, otherwise.
(A.3)

Since γi1 = γθ(i1) = γi2 = γθ(i2) = 0, for any a, b ∈ {1, 2, 1̄, 2̄} the element ψ0 acts on 1ab
as αa(x1)r0.

Assume that θ(i1) = i1 and θ(i2) = i2. By (3.5b) we have d(i1) = d(i2) = 0, thus (A.3)
becomes (

(ψ′0ψ′1)2 − (ψ′1ψ′0)2)1i = 0. (A.4)
Since d(i1) = d(i2) = 0, by (3.23) we can assume αi1(y) = αi2(y) = 1, thus ψ0 acts on 1ab as
r0 for any a, b. Hence, the same calculation as in [20, §3.1] proves that (A.4) is satisfied. In
the opposite case, if θ(i1) 6= i1 and θ(i2) 6= i2 we know by the proof of [25, Proposition 7.4]
that (A.3) holds.

Thus, we now assume that θ(i1) = i1 and θ(i2) 6= i2, in particular i1 6= i2 and θ(i1) 6= i2.
As above, we have d(i1) = 0 thus ψ0 acts on 11a as r0. We obtain from (A.2), omitting the
idempotents,

(ψ′0ψ′1)2 = r0P2̄1(x2, x1)r1α2(x1)r0P12(x2, x1)r1

= P2̄1(x2,−x1)r0α2(x2)r1r0P12(x2, x1)r1

= P2̄1(x2,−x1)α2(x2)P12(−x1,−x2)r0r1r0r1,

and

(ψ′1ψ′0)2 = P2̄1̄(x2, x1)r1α2(x1)r0P1̄2(x2, x1)r1r0

= P2̄1̄(x2, x1)α2(x2)r1r0P1̄2(x2, x1)r1r0

= P2̄1̄(x2, x1)α2(x2)P1̄2(x1,−x2)r1r0r1r0,

thus (ψ′0ψ′1)2 = (ψ′1ψ′0)2 as desired, where we used 1̄ = 1 and (3.21). The case θ(i1) 6= i1 and
θ(i2) = i2 is similar.
Remark A.5. (See Remark 3.7.) Without condition (3.5b), we have to choose another, more
complicated, relation (3.14), if we want it to be compatible with the action on polynomials.
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A.2 Case γi1 = 0 6= γi2

We want to prove that

(
(ψ′0ψ′1)2 − (ψ′1ψ′0)2)1i = γi2

Qi2i1(y′1,−y′2)−Qi2i1(y′1, y′2)
y′2

ψ′01i,

that is,

(
(ψ′0ψ′1)2 − (ψ′1ψ′0)2)1i = γi2

Qi2i1(x1,−x2)−Qi2i1(x1, x2)
x2

αi1(x1)r01i.

By (3.5a) we have θ(i2) = i2. Note that γi1 = 0 6= γi2 implies i1 6= i2. By (A.2) we have,
omitting the idempotents,

(ψ′0ψ′1)2 = α1(x1)r0P2̄1(x2, x1)r1γ2x
−1
1 (1− r0)P12(x2, x1)r1

= α1(x1)P2̄1(x2,−x1)γ2x
−1
2 r0r1(1− r0)P12(x2, x1)r1

= α1(x1)P2̄1(x2,−x1)γ2x
−1
2
[
P12(−x1, x2)r0r1 − P12(−x1,−x2)r0r1r0

]
r1

= γ2x
−1
2 α1(x1)P2̄1(x2,−x1)

[
P12(−x1, x2)r0r1 − P12(−x1,−x2)r0r1r0

]
r1,

and

(ψ′1ψ′0)2 = P2̄1̄(x2, x1)r1γ2x
−1
1 (1− r0)P1̄2(x2, x1)r1α1(x1)r0

= P2̄1̄(x2, x1)γ2x
−1
2 r1(1− r0)P1̄2(x2, x1)α1(x2)r1r0

= P2̄1̄(x2, x1)γ2x
−1
2
[
P1̄2(x1, x2)r1 − P1̄2(x1,−x2)r1r0

]
α1(x2)r1r0

= P2̄1̄(x2, x1)γ2x
−1
2 α1(x1)

[
P1̄2(x1, x2)r1 − P1̄2(x1,−x2)r1r0

]
r1r0

= γ2x
−1
2 α1(x1)P2̄1̄(x2, x1)

[
P1̄2(x1, x2)− P1̄2(x1,−x2)r1r0r1

]
r0.

Thus, recalling 2̄ = 2 and using the properties (2.2), (3.3), (3.21), (3.22) for the families P
and Q we have

(ψ′0ψ′1)2 − (ψ′1ψ′0)2 = γ2x
−1
2 α1(x1)

[
P2̄1(x2,−x1)P12(−x1, x2)− P2̄1̄(x2, x1)P1̄2(x1, x2)

]
r0

= γ2x
−1
2
[
Q21(x2,−x1)−Q21̄(x2, x1)

]
α1(x1)r0

= γ2x
−1
2
[
Q21(x1,−x2)−Q21(x1, x2)

]
α1(x1)r0,

as desired.

A.3 Case γi1 6= 0 = γi2

We want to prove that (
(ψ′0ψ′1)2 − (ψ′1ψ′0)2)1i = 0.

Similarly to §A.2 we have θ(i1) = i1 6= i2. By (A.2) we have, omitting the idempotents,

(ψ′0ψ′1)2 = γ1x
−1
1 (1− r0)P2̄1(x2, x1)r1α2(x1)r0P12(x2, x1)r1

= γ1x
−1
1 [P2̄1(x2, x1)− P2̄1(x2,−x1)r0]α2(x2)P12(x1,−x2)r1r0r1

= γ1x
−1
1 α2(x2) [P2̄1(x2, x1)P12(x1,−x2)− P2̄1(x2,−x1)P12(−x1,−x2)r0] r1r0r1

= γ1x
−1
1 α2(x2)P2̄1(x2, x1)P12(x1,−x2)(1− r0)r1r0r1

by (3.21), and

(ψ′1ψ′0)2 = P2̄1(x2, x1)r1α2(x1)r0P12(x2, x1)r1γ1x
−1
1 (1− r0)

= γ1x
−1
1 α2(x2)P2̄1(x2, x1)P12(x1,−x2)r1r0r1(1− r0),

Thus (ψ′0ψ′1)2 = (ψ′1ψ′0)2 as desired.
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A.4 Case γi1 6= 0 6= γi2

We want to prove that (recalling from (2.1) that Qii = 0)

(
(ψ′0ψ′1)2 − (ψ′1ψ′0)2)1i =

{
γi2

Qi2i1 (y′1,−y
′
2)−Qi2i1 (y′1,y

′
2)

y′1y
′
2

(y′1ψ′0 − γi1) 1i, if i1 6= i2,

0, otherwise,

that is, since ψ0 acts on 1i as γi1x−1
1 (1− r0) (recalling that θ(i1) = i1 by (3.5a)),

(
(ψ′0ψ′1)2 − (ψ′1ψ′0)2)1i =

{
γi1γi2

Qi2i1 (x1,x2)−Qi2i1 (x1,−x2)
x1x2

r01i, if i1 6= i2,

0, otherwise.

The next result is an easy calculation.
Lemma A.6. Let P be a polynomial in x1, x2 and let w ∈ 〈r0, r1〉. Then

x−1
1 (1− r0)Pw − Pwx−1

1 (1− r0) =
(
x−1

1 − wx−1
1
)
Pw + wx−1

1 Pwr0 − x−1
1

r0Pr0w ,

inside EndK(K[x, β]).
By (3.5a) we have θ(i2) = i2. If i1 6= i2 we obtain from (A.2)

ψ′1ψ
′
0ψ
′
1112 = P21(x2, x1)r1γ2x

−1
1 (1− r0)P12(x2, x1)r1112

= γ2x
−1
2 P21(x2, x1)r1(1− r0)P12(x2, x1)r1112

= γ2x
−1
2 P21(x2, x1)r1

[
P12(x2, x1)− P12(x2,−x1)r0

]
r1112

= γ2x
−1
2 P21(x2, x1)

[
P12(x1, x2)r1 − P12(x1,−x2)r1r0

]
r1112

= γ2x
−1
2 P21(x2, x1)

[
P12(x1, x2)− P12(x1,−x2)r1r0r1

]
112.

Since ψ′0112 = γ1x
−1
1 (1 − r0)112, we can apply Lemma A.6 for the two above summands.

We obtain that second summand will vanish in
(
(ψ′0ψ′1)2 − (ψ′1ψ′0)2)112 since x−1

1 ∈ K(x1)
is invariant under r1r0r1 and P21(x2, x1)P12(x1,−x2) ∈ K[x1, x2] is invariant under r0
by (3.21). Thus, we only consider the first summand, which is equal to γ2x

−1
2 Q21(x2, x1),

and we obtain, omitting the idempotents and using (2.2) and (3.3),

(ψ′0ψ′1)2 − (ψ′1ψ′0)2 = γ1γ2x
−1
1 x−1

2
[
Q21(x2, x1)−Q21(x2,−x1)

]
r0

= γ1γ2x
−1
1 x−1

2
[
Q21(x1, x2)−Q21(x1,−x2)

]
r0,

as desired.
Finally, assume that i1 = i2. We have

(ψ′0ψ′1)2 − (ψ′0ψ′1)2 = γ2
1
[
x−1

1 (1− r0)(x1 − x2)−1(r1 − 1)x−1
1 (1− r0)(x1 − x2)−1

−(x1 − x2)−1(r1 − 1)x−1
1 (1− r0)(x1 − x2)−1x−1

1 (1− r0)
]

= 0,

since this is just the braid relation for the divided difference operators ∂0 := x−1
1 (1− r0) and

∂1 := (x1 − x2)−1(r1 − 1) (see [3, 7]).
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