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Mesh Deformation based on Radial Basis Function Interpolation
applied to Low Frequency Electromagnetic Problem

Thomas Henneron1, Antoine Pierquin1 and Stéphane Clénet1
1 Univ. Lille, Centrale Lille, Arts et Metiers ParisTech, HEI, EA 2697 - L2EP, F-59000 Lille, France

In order to take into account a modification of the geometry during an optimization process or due to a physical phenomenon, a
deformation of the elements of the spatial discretization is preferable to conserve a conformal mesh and to apply the Finite Element
(FE) method. To perform the displacement of nodes, interpolation method can be investigated in this context. In this paper, the
Radial Basis Function (RBF) interpolation method is applied for low frequency electromagnetic problems solved by the FE method.
A 2D magnetostatic example is considered to study the influence of the parameters of the RBF interpolation. To test the extension in
3D, a non destructive testing (NDT) problem is treated where the shape of the crack is modified by applying the proposed method.

Index Terms—mesh deformation, Radial Basis Function, finite element method, low frequency electromagnetism.

I. INTRODUCTION

TO study low frequency electromagnetic devices, the FE
method is widely used. For problems with a parametrized

shape or involving dynamic behavior of boundaries (dynamic
magneto mechanical behavior for example), the FE mesh
should fit the modification of the geometry. To solve this
kind of problem, a simple approach consists in remeshing the
geometry. Nevertheless, this method is not very efficient be-
cause it introduces a numerical noise and it breaks the natural
link between two successive solutions in a time dependent
problem. Different approaches based on interpolation methods
have been developed in order to deform an initial mesh to take
into account a shape modification. The idea is to impose the
displacement for a set of nodes of the mesh or of points of
the geometry and to determine the new coordinates for all
other ones by an interpolation approach. In this context, the
isogeometric analysis (IGA) [1] and the Radial Basis Function
(RBF) interpolation method [2] can be investigated. For low
frequency electromagnetic problems, for example, the IGA
approach has been applied to optimize the shape of permanent
magnets of a synchronous motor [3] or to parametrize the
geometry of a piezoelectric device [4].

In this article, we propose to use the RBF interpolation
method for the mesh deformation in the case of low frequency
electromagnetic devices solved by the FE method. Initially, the
approach has been developed in the case of flow fluid problem
[5]. First, the RBF interpolation method is presented. Sec-
ondly, the mesh deformation based on the RBF is described.
Thirdly, numerical experiments are performed in order to study
the influence of the parameters of the RBF interpolation with
a 2D magnetostatic problem. Finally, a 3D non destructive
testing device is investigated for different shapes of the crack
obtained from the RBF approach.

II. RADIAL BASIS FUNCTION INTERPOLATION METHOD

The RBF interpolation method is often used to compute
an approximation s(x) of a multivariable function f(x). This
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TABLE I
EXAMPLES OF RBF FUNCTION

Name φ(x)

Gaussian e−(x/a)2

Multiquadric
√

1 + (x/a)2

Inverse quadric
√

1
1+(x/a)2

Thin plate spline x2log(x)

approximation is expressed as a linear combination of basis
functions φ. In a general way, we consider Nt training points
such as yi = f(xi) for i = 1, .., Nt with xi ∈ Rp and yi ∈ R.
Then, for a new coordinate x ∈ Rp, the approximation of f(x)
is given by

f(x) ≈ s(x) =
Nt∑
i=1

αiφi(x) (1)

with φi(x) = φ(||x− xi||),

where φi is a radial function depending on the Euclidian
distance between x and xi and αi is its associated coefficient.
The coefficients αi are calculated using the Nt training points
in order to verify

yj = f(xj) = s(xj) =

Nt∑
i=1

αiφi(||xj − xi||) (2)

for j = 1, .., Nt.

Then, we can define a matrix system to be solved for the
computation of αi such as

Y = Gα with Y = [y1, ..., yNt
]t, α = [α1, ..., αNt

]t (3)

and G =

 φ1(x1) . . . φ1(xNt
)

...
. . .

...
φNt(x1) . . . φNt(xNt)

 .
The error of interpolation depends on the choice of RBF.

Table 1 presents different examples of functions where a is
a parameter fixed by the user. Others functions can be used
for the RBF interpolation such as functions with compact
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support [5]. In the case of vector function f(x) ∈ Rq , the
RBF method is performed for each component of f(x). Then,
the approximation s(x) is

f(x) ≈ s(x) =

s
1(x)

...
sq(x)

 with sj(x) =
Nt∑
i=1

αj
iφi(x) (4)

for j = 1, .., q.

In this case, it is necessary to compute Nt.q coefficients αj
i .

III. MESH DEFORMATION BASED ON RBF INTERPOLATION

In the case of the mesh deformation, the function f(x) to
approximate corresponds to a displacement. Its approximation
based on the RBF interpolation method is noted d(x) with
d(x) ∈ R2 or R3 in the case of a 2D or 3D problem.
To perform the RBF interpolation, two sets of nodes are
defined. The first Nf is composed of nodes with imposed
displacements. The second one Ni corresponds to nodes
whose the displacements are approximated. The cardinal of
Nf and Ni is Nf and Ni respectively. The displacement is
interpolated separately for each spatial direction. Each node
is moved individually according to the interpolation function
d(x). Then, if we consider a node nk ∈ Ni, the approximation
of its displacement d(xk) is

f(xk) ≈ d(xk) =

dx(xk)
dy(xk)
dz(xk)

 with du(xk) =

Nf∑
i=1

αu
i φi(xk) (5)

for u = x, y, z.

For a 2D or 3D problem, the number of coefficient αu
i to

be defined is 2Nf or 3Nf respectively. These coefficients are
computed by (3) according to each spatial direction, the vector
Y of size Nf corresponds to the imposed displacement of
nodes Nf according to the considered direction. Then, the
new coordinates of the node nk is xk = xk0 + d(xk) with
xk0 the original coordinates.

In order to illustrate the mesh deformation based on the
RBF interpolation method, a simple academic example is
used. The 2D spatial domain is rectangular shape discretized
by triangle elements (fig. 1). The two sets of node Nf and
Ni are introduced to perform the deformation (Fig.1.b). The
displacement of the nodes of Nf is imposed according to their
x coordinates. Then, for a node nk ∈ Nf , the displacement
along the axis y is imposed such as

dy =

{
0 if y = 0

−25cos(π/100x) if y = 40
(6)

The displacements of the nodes of Ni are interpolated with
Gaussian functions for the RBF. Figure 2.a presents the
deformed mesh. As the displacement of a node is calculated
independently from the other ones, it is necessary to verify
the conformity of the deformed mesh. Then, we propose
an indicator based on the comparison of the determinant of
the initial and the deformed element. Thus, the indicator is
de = dete−def/dete−init with dete−def and dete−init the
determinants of the deformed and initial element e. If the

indicator is positive for all elements, the deformation of the
mesh is correct. If an element is shifted between both meshes
and overlaps others elements, its indicator is negative and
the deformed mesh is not conformal. The distribution of the
indicator is presented in Fig. 2.b, it gives information of the
deformation for all elements of the mesh.

(a) mesh of the domain (b) definition of Nf and Ni

Fig. 1. Academic example

(a) deformed mesh (b) distribution of the deformation
indicator

Fig. 2. Academic example after deformation of the mesh

IV. NUMERICAL EXPERIMENT

A. Presentation of the example

We consider a 2D magnetostatic example composed with
11840 1st order triangle elements. The device is composed by
a stranded inductor supplied by a current, a magnetic core and
a magnetic plate. The vector potential formulation is used to
solve the problem, the strong formulation is

curl

(
1

µ
curlA

)
= J (7)

with µ the magnetic permeability, J the current density of
the stranded inductor and A the unknown potential. The
mesh deformation is imposed on the plate, the boundary of
mesh deformation is specified in fig. 3. In figure 4, the red
and green nodes correspond to those of Nf and the orange
nodes to those of Ni. The position of green nodes is fixed
and the displacement of red nodes is imposed. The RBF
interpolation method is performed onto the orange nodes. A
rotation movement of 20 degrees in the clockwise direction is
imposed for the plate. At first, the aim is to study the influence
of the parameters of the RBF interpolation method on the mesh
deformation. In a second time, local quantities are studied.

B. Influence of the iteration number

The RBF interpolation method can be applied iteratively.
At each iteration, the method to calculate the new coordi-
nates of the nodes is performed with the intermediate mesh



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

Fig. 3. Magnetostatic problem

Fig. 4. Definition of Nf and Ni

computed at the previous iteration. Then, a large deformation
is decomposed in several smaller ones. Figure 5 presents the
distribution of the deformation indicator for the last mesh after
1, 2, 4 and 8 iterations. Gaussian functions with a = 1 is used
for the RBF. For 1 and 2 iterations, the deformation indicator

(a) 1 iteration (b) 2 iterations

(c) 4 iterations (d) 8 iterations

Fig. 5. Influence of the iteration number on the mesh deformation with
Gaussian functions and a = 1

is negative for several elements, the mesh is not conformal
in this case. With 4 and 8 iterations, the final meshes are
close and conformal. Then, an iterative approach of the RBF
interpolation method increases the robustness of the mesh
deformation.

C. Influence of the choice of RBF

We compare the mesh deformation for three different RBF
with 4 iterations. Gaussian, multiquadric and inverse quadric
functions are considered with the same value for the parameter
a (a = 1). Figures 6 and 5.c present the distributions of the
deformation indicator for multiquadric and inverse quadric
functions and for Gaussian functions respectively. For all

(a) multiquadric (b) inverse quadric

Fig. 6. Influence of the radial basis function on the mesh deformation

cases, the final mesh is conformal. The influence of functions
is not very significant on our example. Nevertheless, we can
observe that the mesh deformation is smoother with the inverse
quadric function than with the two others.

D. Influence of the parameter a

The parameter a of functions presented in table I enables
to adjust the domain of influence of nodes with imposed
displacements on a node to be moved. Greater a is important,
most influential is the displacement of node by nodes with a
fixed displacement. Figures 7 and 5.c present the distributions
of the deformation indicator for Gaussian functions with
a = 0.5 and 1.5 for 4 iterations.

(a) a = 0.5 (b) a = 1.5

Fig. 7. Influence of the parameter a on the mesh deformation

E. Influence on local quantities

Figure 8 presents the distributions of the magnetic flux
density. Gaussian and inverse quadric functions are applied
for the RBF interpolation. The influence of the choice RBF
is not so significant. In fact, the difference of the maximal
magnitude is 0.2mT.

(a) with Gassian functions and
a = 1

(b) with inverse quadric functions
and a = 2

Fig. 8. Distribution of the magnetic flux density (T) for a rotation movement
of the plate
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V. APPLICATION

A 3D application example based on a NDT device is consid-
ered (Fig. 9) [6]. This consists in a stranded inductor supplied
by a sinusoidal current, a magnetic core and a conductive plate
with a crack. The electric formulation is used to solve the
problem in the time domain, the strong formulation is

curl

(
1

µ
curlA

)
+ σ (∂tA+ gradϕ) = J (8)

with σ the electric conductivity of the plate and ϕ the
scalar electric potential defined within the plate. The mesh is
composed of 203659 1st order tetrahedra. The aim is to study
the difference of magnetic flux with and without crack. From
the original mesh with an initial shape of the crack, the RBF
interpolation method is performed to modify the geometry of
the default. Inverse quadric functions are used for the RBF
with 8 iterations to reach the final deformation (see IV-B).
Figure 10 presents the distribution of the deformation indicator
for a translation, a rotation and a sinusoidal deformation of the
crack. For all cases, the deformed mesh is conformal. Figure

(a) 3D view (b) 2D view

Fig. 9. Mesh of the NDT example

(a) translation (b) rotation

(c) sinusoidal deformation

Fig. 10. Deformation indicator for three different deformations

11 presents the distribution of the eddy current density for the
different shapes of the crack. Figure 12 presents the evolution
of the difference of the magnetic flux flowing through the
stranded inductor for different shapes of the crack. For the
initial position and for a rotation of the crack, the evolution
are close. The maximal magnitude is obtained with the crack
translated from the initial position. In term of computational
time, the mesh deformation required about 8.5s for 5576
nodes to be moved. This is inferior to the computational time
necessary to solve one time step of the problem (10s).

(a) initial position (b) translation

(c) rotation (d) sinuoidal deformation

Fig. 11. Distribution of the eddy current density for the different shapes of
the crack

Fig. 12. Difference of the magnetic flux associated with the inductor

VI. CONCLUSION

The RBF interpolation method has been developed with low
frequency electromagnetic problem solved by the FE method.
A 2D academic magnetostatic example has been used to study
the influence of the parameters of the RBF interpolation. A
deformation indicator has been introduced to verify the validity
of the deformed mesh. Then, a 3D magnetodynamic problem
based on a NDT device has been studied. Different shapes
of the crack have been obtained from the deformation of the
initial geometry of the default. From the studied examples, the
RBF interpolation method seems to be an interesting approach
for the deformation of the shape of electromagnetic device.
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