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Abstract. In this work we study Good-For-Games (GFG) automata
over ω-words: non-deterministic automata where the non-determinism
can be resolved by a strategy depending only on the prefix of the ω-word
read so far. These automata retain some advantages of determinism:
they can be composed with games and trees in a sound way, and inclu-
sion LpAq Ě LpBq can be reduced to a parity game over A ˆ B if A is
GFG. Therefore, they could be used to some advantage in verification,
for instance as solutions to the synthesis problem.
The main results of this work answer the question whether parity GFG
automata actually present an improvement in terms of state-complexity
(the number of states) compared to the deterministic ones. We show that
a frontier lies between the Büchi condition, where GFG automata can be
determinised with only quadratic blow-up in state-complexity; and the
co-Büchi condition, where GFG automata can be exponentially smaller
than any deterministic automaton for the same language. We also study
the complexity of deciding whether a given automaton is GFG.

1 Introduction

One of the classical problems of automata theory is synthesis — given a spec-
ification, decide if there exists a system that fulfils it and if there is, automat-
ically construct one. The problem was solved positively by Büchi and Landwe-
ber [BL69] for the case of ω-regular specifications. There are two standard
approaches to the problem: either by deterministic automata [McN66] or by
tree automata [Rab72]. Henzinger and Piterman [HP06] have proposed a model
of Good-For-Games (shortly GFG) automata that enjoy a weak form of non-
determinism while still preserving soundness and completeness when solving the
synthesis problem.

An automaton is Good-For-Games if there exists a strategy that resolves the
non-deterministic choices, by taking into account only the prefix of the input
ω-word read so far. The strategy is supposed to construct an accepting run of
‹ Research funded by ANR/DGA project Cx (ref. ANR-13-ASTR-0006); and by fon-
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the automaton whenever an ω-word from the language is given. The motivation
for this model in [HP06] was to simplify the transition structure of automata
as solutions of the synthesis problem for Linear Temporal Logic. Experimental
evaluation of GFG automata and their applications to stochastic problems were
discussed in [KMBK14].

The notion of GFG automata was independently discovered in [Col09] under
the name history-determinism, in the more general framework of regular cost
functions. It turns out that deterministic cost automata have strictly smaller
expressive power than non-deterministic ones and therefore history-determinism
is used whenever a sequential model is needed.

In the survey [Col12] two important results about GFG automata over finite
words are mentioned: first that every GFG automaton over finite words con-
tains an equivalent deterministic subautomaton, second that it is decidable in
PTIME if a given automaton over finite words is GFG. Additionally, a conjecture
stating that every parity GFG automaton over ω-words contains an equivalent
deterministic subautomaton is posed.

In [BKKS13], examples were given of Büchi and co-Büchi GFG automata
which do not contain any equivalent deterministic subautomaton. Moreover,
a link between GFG and tree automata was established: an automaton for a
language L of ω-words is GFG if and only if its infinite tree version accepts the
language of trees that have all their branches in L. However, the problem of
the gap in the number of states between deterministic and GFG automata over
ω-words was left open. Indeed, for all the available examples of GFG automata,
there was an equivalent deterministic automaton of the same size.

We settle this question in the present paper. We show that for Büchi au-
tomata determinisation can be done with only a quadratic state-space blow-up.
The picture is very different for co-Büchi automata (and all higher parity con-
ditions), for which for every n we give an example of a GFG automaton with
2n` 1 states that does not admit any equivalent deterministic automaton with
less than 2n

2n`1 states.
The lower bound for determinising co-Büchi GFG automata shows that these

automata can be exponentially more succinct than deterministic ones. Therefore,
it indicates possibility of avoiding exponential blow-up by using GFG automata
instead of deterministic automata in the problems of containment or synthesis.
On the other hand, the quadratic determinisation construction for Büchi GFG
automata shows that in this case GFG automata are close to deterministic ones.
Therefore, the GFG model may be considered less relevant (with respect to
succinctness) for Büchi condition than for general parity condition.

We emphasize the fact that although the model of GFG automata requires
the existence of a strategy resolving the non-determinism, this strategy is not
used in algorithms but only in proofs. Therefore, it is not a part of the size
of the input in computations based on GFG automata. This is what allows an
improvement on deterministic automata: we just rely on the existence of this
strategy without having to explicit it.



In the present paper we additionally consider the problem of deciding whether
a given parity automaton is GFG. The problem is decidable in EXPTIME
(see [HP06]) but no efficient algorithm is known. In the special case where the
automaton accepts all ω-words, we show that this is equivalent to solving a par-
ity game, so it is in PTIME for any fixed parity condition, and in NPX co–NP if
the parity condition is a part of the input. The general case of deciding GFGness
of parity automata is a priori more complicated. We show that it is in PTIME
for co-Büchi automata, moreover the procedure involves building another au-
tomaton that could be GFG even if the input automaton is not. Therefore, this
procedure could be used as a tool to produce co-Büchi GFG automata in some
cases. The PTIME complexity in this case is surprising — although the required
strategy can be of exponential size in the co-Büchi case, we can decide in poly-
nomial time whether it exists. In the Büchi case we show that it is in NP to
decide whether a given automaton is GFG. The problem of efficiently deciding
GFGness of automata of higher parity indices remains open.

Structure of the paper. In Section 2 we briefly introduce the basic notions
used in our constructions. In Section 3 we provide the lower bound on the state-
complexity of determinising co-Büchi GFG automata. Section 4 is devoted to the
determinisation construction for Büchi GFG automata. In Section 5 we study
the problem of deciding GFGness of a given automaton and in Section 6 we
conclude. The technical details of the presented results are given in Appendix.

2 Definitions

By A we denote a finite alphabet, elements a P A are called letters. A˚ is the
set of finite words over A and Aω is the set of ω-words over A. ε stands for the
empty word. The successive letters of a word α are αp0q, αp1q, . . . The length of
a finite word w is |w|. We use the standard notions of prefix and suffix of a word.
By uα we denote the concatenation of a finite word u with a finite word or an
ω-word α. If K Ď Aω and w P A˚ then we define w´1K

def
“ tα P Aω | wα P Ku.

In our constructions it is easier to work with an acceptance condition over
transitions instead of states. Clearly, the translation from the state-based ac-
ceptance to the transition-based acceptance does not influence the number of
states of a parity automaton. The opposite translation may increase the num-
ber of states by the factor corresponding to the acceptance condition but this
translation is still polynomial (even linear for a fixed condition). Except that,
the proposed definitions are standard.

2.1 Automata over ω-words

A non-deterministic parity automaton over ω-words (shortly parity automaton)
is a tuple A “

〈
AA, QA, qA

I , ∆
A, ΩA〉

that consists of: a finite set AA called the
input alphabet; a finite set QA of states; an initial state qA

I P QA; a transition



relation ∆A Ď QA ˆ AA ˆ QA; and a priority function ΩA : ∆A Ñ N. If the
automaton A is known from the context then we skip the superscript A.

Transitions pq, a, q1q P ∆ are usually noted q
a
ÝÑ q1. Similarly, if w “

a0a1 . . . an and qi
ai
ÝÑ qi`1 is a transition of A for all i ď n then we write

q0
w
ÝÑ qn`1 and call it a path in A. We additionally require that for every q P Q,

a P A there is at least one transition in ∆ of the form q
a
ÝÑ q1 for some q1 P Q.

If Ω : ∆Ñ ti, i`1, . . . , ju then we say that the parity index of A is pi, jq. An
automaton of parity index p1, 2q is called a Büchi automaton and an automaton
of parity index p0, 1q is called a co-Büchi automaton. If A is a Büchi automaton
then we additionally define F Ď ∆ as Ω´1p2q and call it the set of accepting
transitions. Similarly, if A is a co-Büchi automaton then we define R Ď ∆ as
Ω´1p1q and call it the set of rejecting transitions.

If ∆ is such that for every q P Q and a P A, there is a unique state q1 P Q
such that q a

ÝÑ q1 then A is a deterministic automaton. In this case, we might
denote its transition relation by a function δ : QˆAÑ Q instead of ∆.

For an ω-word α P Aω, a run of A over α from a state q P Q is a function
ρ : ω Ñ Q where for every n ě 0, we have a transition of A ρpnq

αpnq
ÝÑ ρpn`1q and

ρp0q “ q. ρ is accepting over α if5 lim supnÑ8 Ω
`

pρpnq, αpnq, ρpn`1q
˘

is even.
In other words, the condition requires the highest priority that occurs infinitely
often to be even. The priorities can be seen as positive (even) and negative (odd)
events, ordered by their importance. The formula says that the most important
event happening infinitely often has to be positive.

By the definition, if A is Büchi it means that the above sequence of transitions
should contain infinitely many accepting transitions. Similarly, if A is co-Büchi
then it should contain only finitely many rejecting transitions.

An automaton A accepts an ω-word α from q P Q if there exists an accepting
run ρ of A from q over α. By LpA, qq we denote the set of all ω-words that are
accepted by A from q. The language of an automaton A is LpAq def

“ LpA, qIq.
An automaton A is Good-For-Games (GFG, for short) if there exists a func-

tion σ : A˚ Ñ Q that resolves the non-determinism of A depending only of
the prefix of the input ω-word read so far: over every ω-word α, the function
n ÞÑ σ

`

αp0qαp1q . . . αpn ´ 1q
˘

is a run of A from qI over α, and it is accepting
over α whenever α P LpAq. Clearly, every deterministic automaton is GFG.

3 Co-Büchi case

In this section we provide the following result about the state-complexity of
determinising co-Büchi GFG automata.

Theorem 1. For every n there exists a co-Büchi GFG automaton Cn with 2n`1
states such that any equivalent deterministic automaton has at least 2n

2n`1 states.

All the automata Cn for n ě 1 share the same alphabet consisting of four
symbols A def

“ tι, σ, π, 7u. The letters of the alphabet enable to manipulate on
5 Note that whether a run ρ is accepting over α depends on the ω-word α.



the set t0, 1, 2, . . . , 2n ´ 1u: ι, σ, π are three permutations of this set such that
every permutation of this set can be obtained as a composition of these three (in
fact ι is the identity permutation used for padding). The symbol 7 corresponds
to the identity permutation on t1, . . . , 2n´ 1u but it is undefined on 0.

This way a finite word or an ω-word α over the alphabet A can be seen as
a sequence of relations on the set t0, . . . , 2n ´ 1u as depicted on Figure 1. We
will represent these relations as a graph (denoted Graphpαq). If α is finite let
D “ t0, 1, . . . , |α|u, otherwise D “ ω. The graph is a plait of width 2n: the
domain of Graphpαq is t0, 1, . . . , 2n ´ 1u ˆD and all the edges are of the form
pi, kq Ñ pαpkqpiq, k ` 1q for i P t0, . . . , 2n´ 1u and k, k`1 P D.

α:

Graphpαq:

time:

0
1
2
3

0

σ

1

π

2

ι

3

σ

4

7

5

σ

6

π

7

7 . . .

8 . . .

. . .

. . .

. . .

. . .

Fig. 1. The infinite sequence of relations on the set t0, . . . , 3u (i.e. n “ 2) represented
by an ω-word α P Aω.

The language Ln contains an ω-word α P Aω if and only if Graphpαq contains
at least one infinite path.

The set of states of the automaton Cn isQ “ tK, 0, 1, 2, . . . , 2n´1u. The states
t0, . . . , 2n´ 1u are deterministic: reading a P A in such a state q the automaton
moves to the successive state according to the relation represented by a (or to K
if a “ 7 and q “ 0). The state K is non-deterministic — the automaton can move
from K over any letter a P A to any state q1 P t0, . . . , 2n ´ 1u. Let the initial
state of Cn be K and the rejecting transitions be those of the form K

a
ÝÑ q1.

Note that every accepting run of Cn over an ω-word α indicates an infinite
path in Graphpαq. Therefore, we obtain the following fact.

Fact 2. LpCnq Ď Ln.

Lemma 3. Cn is a GFG automaton recognising the language Ln.

Proof. It is enough to construct a function σ : A˚ Ñ Q that for every ω-word
α P Ln produces an accepting run of Cn over α — it will prove that Ln Ď LpCnq
and that Cn is GFG. We will do it inductively with σpεq “ K “ qCn

I .
Let σ follow deterministically the transitions of Cn for all the states q ‰ K. It

remains to define σpwaq if σpwq “ K and a successive letter a is given. Assume
that |wa| “ k.

For every i P t0, 1, . . . , 2n´ 1u let pi be the unique maximal path containing
the node pi, kq in Graphpwaq. Note that each of these paths pi has a starting



position — a node p̄i, kiq on the path pi with a minimal moment of time ki.
Clearly ki ď k. We say that pi is older than pi1 if ki ă ki1 — in other words, pi
reaches further to the left than pi1 .

Let σpwaq “ i such that pi is the oldest among these paths (if there are two
paths equally old, we move to that with smaller i).

Assume that α P Ln. We need to prove that σ produces an accepting run of
Cn over α. Let p1, p2, . . . , pm be the set of infinite paths in Graphpαq (we know
that 1 ď m ď 2n). Assume that p1 is an oldest among them and that it starts in
a moment of time k1. For every node pi, k1q for i “ 0, . . . , 2n ´ 1 that does not
belong to any of these infinite paths, the unique maximal path containing pi, k1q
is finite. Therefore, for some k1 ą k1, one of the paths p1, . . . , pm is the oldest
among the paths intersecting the pk1qth moment of time. So the function σ will
use at most once a rejecting transition of Cn after reading the pk1qth symbol of
α and then it will follow one of the paths p1, . . . , pm and accept.

We now assume for the sake of contradiction that there exists a deterministic
automaton D recognising Ln that has strictly less than 2n

2n`1 states. By Theo-
rem 4 from [BKKS13] it means that we can use D as a memory structure for the
automaton Cn to recognise Ln. Therefore, we focus on the product Cn ˆD with
the acceptance condition taken from Cn. What is important is that Cn ˆ D has
to follow the transitions of Cn. We know that CnˆD is a deterministic co-Büchi
automaton with strictly less than 2n states and LpCn ˆDq “ Ln.

We will use the symbol ρ to denote finite and infinite runs of Cn ˆD. For a
given run ρ there are possibly many ω-words α that induce this run, since only
the sequence of states is considered in ρ.

The rest of the argument aims at providing an ω-word α that belongs to Ln
but is rejected by the product automaton CnˆD. Intuitively, the construction of
α requires to balance between the two aims: we need to infinitely often force the
product automaton Cn ˆD to take a rejecting transition of Cn but at the same
time to ensure that there is at least one infinite path in Graphpαq. The ω-word
α, an infinite path in Graphpαq, and the rejecting run of Cn ˆD over α will be
constructed as a limit of inductively constructed finite approximations. We will
not control exactly the way CnˆD works in every position of our approximation,
we will be interested only in some checkpoints controlled by partial runs.

Definition 4. A partial run is a finite partial mapping τ : ω á QCn ˆQD such
that τp0q is defined and equal to pK, qD

I q.
A partial run τ is rejecting if all its states are of the form pK,mq.
By τ Ď ρ we denote the fact that a run ρ agrees with τ wherever τ is defined.
The length of τ is the maximal moment of time k such that τpkq is defined.

Note that the domain of a partial run τ does not have to be an initial segment
of ω. The following definition is crucial.

Definition 5. Let τ be a partial run of length k. We say that a value i P
t0, . . . , 2n ´ 1u is alive in τ if there exists an ω-word α such that for the run
ρ of Cn ˆ D over α we have τ Ď ρ and there exists a path p : t0, 1, . . . , ku Ñ



t0, 1, . . . , 2n´ 1u in Graphpαq that starts in the moment of time 0 and ends in
the moment of time k with the value i (i.e. ppkq “ i).

Note that in the above definition we actually care only about the first k
letters of α. However, it is cleaner to consider ω-words α here.

τ :

α:

Graphpαq:

ρ:

time:

? ? ? ? ? ?pq0,m0q pq6,m6q pq8,m8q

0
1
2
3

0

σ

1

π

2

σ

3

7

4

π

5

σ

6

σ

7

7 . . .

8

. . .

. . .

. . .

. . .

. . .

pq0,m0q pq1,m1q pq2,m2q pq3,m3q pq4,m4q pq5,m5q pq6,m6q pq7,m7q pq8,m8q

Fig. 2. An example of a partial run τ and an ω-word α that witnesses the fact that 2
is alive in τ . ρ is the run of Cn ˆ D over α and the states of ρ and τ agree wherever
defined. The dashed path is the path witnessing that 2 is alive in τ .

Figure 2 depicts a partial run and a witness that the value i “ 2 is alive.
Our aim is to construct a sequence of partial rejecting runs of increasing

lengths τ0 Ă τ1 Ă . . . such that for all ` P N there are at least n alive values in
τ`. It will give a contradiction with our assumptions by the following lemma.

Lemma 6. Assume that there exists a sequence of partial rejecting runs τ0 Ă
τ1 Ă . . . of increasing lengths such that for all ` P N there exists an alive value
in τ`. Then there exists an ω-word α P Ln such that the run ρ of Cn ˆD over α
is rejecting.

Proof. Let k` be the length of τ`. Take any ` and assume that i` is a value that
is alive in τ`. Observe that it is witnessed by:

– an ω-word α`,
– a run ρ` of Cn ˆD over α`, such that τ` Ă ρ`,
– a path p` : t0, . . . , k`u Ñ t0, . . . , 2n´ 1u in Graphpα`q with p`pk`q “ i`.

Now we take a subsequence of pα`, ρ`, p`q`PN that is point-wise convergent to
a triple

pα, ρ, pq P
´

Aˆ
`

QCn ˆQD˘ˆ t0, . . . , 2n´ 1u
¯ω

,

such that:



– ρ is the run of Cn ˆD over α,
– for infinitely many ` we have τ` Ď ρ,
– p encodes an infinite path in Graphpαq.

To formally construct pα, ρ, pq we can proceed similarly as in the proof of König’s
lemma. We fix pαpiq, ρpiq, ppiqq inductively for i “ 0, 1, . . .. At each moment we
require that infinitely many pα`, ρ`, p`q agree with pα, ρ, pq on the first i positions.
Since for each i there are only finitely many choices of pαpiq, ρpiq, ppiqq so we can
fix these values in such a way that still infinitely many pα`, ρ`, p`q agree with
them.

By the properties of pα, ρ, pq we know that ρ is rejecting as it contains in-
finitely many times a state of the form pK,mq. On the other hand, α P Ln
because p is a witness that Graphpαq contains an infinite path.

What remains is to construct the sequence τ` inductively. Our inductive
assumption is that τ` is a partial rejecting run and the values 1, 3, 5, . . . , 2n´1 are
alive in τ` (note that there is n such values). We put τ0 “

“

0 ÞÑ pK, qD
I q

‰

. Clearly
τ0 satisfies the inductive assumption (in fact all the values i “ 0, . . . , 2n´ 1 are
alive in τ0).

Let k` be the length of τ`. We construct τ``1 from τ` by applying some words
to the last state pK,m`q “ τ`pk`q of τ` and observing the behaviour of Cn ˆD.

Observe that there are N “ 2n words u1, . . . , uN P tι, σ, πu˚ that encode
distinct permutations P of t0, . . . , 2n ´ 1u such that for all i P t0, . . . , 2n ´ 1u,
we have ti{2u “ tP piq{2u i.e. such a permutation maps t2i, 2i` 1u to itself.

We can assume that all the words u1, . . . , uN are of equal length by padding
them with ι. Since there are strictly less than N “ 2n states of CnˆD, there are
two distinct such words u, u1 leading from pK,m`q to the same state pq1`,m1`q of
Cn ˆD. By the construction of Cn ˆD we know that q1` P t0, . . . , 2n´ 1u.

Assume that the permutations corresponding to u and u1 differ on 2i ` 1,
i.e. one of them maps 2i ` 1 to 2i and the other to 2i ` 1. Let X be the set of
the values tup1q, up3q, . . . , up2n ´ 3q, up2n ´ 1q, u1p2i ` 1qu (we write here upi1q
for the value assigned to i1 by the permutation corresponding to u, the same for
u1). By the above observations X contains exactly n` 1 elements.

Consider w P tι, σ, πu˚ encoding a permutation that maps:

– q1` to 0,
– Xztq1`u to 1, 3, 5, . . . , 2n´1 if q1` P X,
– X to 1, 3, . . . , 2n´1, and 2 if q1` R X.

Since w as a permutation maps q1` to 0, we know that after reading w7 from
the state pq1`,m1`q the automaton Cn ˆ D reaches a state of the form pK,m``1q.
For an illustration of these permutations, see Figure 3.

Fact 7. Consider τ``1 defined as τ` Y
“

k` ` |u| ` |w| ` 1 ÞÑ pK,m``1q
‰

. By the
definition τ` Ă τ``1, τ``1 is rejecting, and all the values 1, 3, . . . , 2n´1 are alive
in τ``1 (it is witnessed by the fact that these values were alive in τ` and by the
words uw7 and u1w7).



τ``1:

α{α1:

Graphpαq:

ρ{ρ1:

time:

pK,m`q ? ? pK,m``1q

pK,m`q p3,m1`q p0,m2` q pK,m``1q

k` k` ` |u| k``|u|`|w| k``1

u{u1 w 7

0
1
2
3

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Fig. 3. The behaviour of CnˆD over uw7 and u1w7. The alive values are in circles, only
edges between the alive values are drawn. The dashed edge corresponds to the action
of the word u1 on the value 1 (u and u1 differ on this value). X is the set of values
in circles at the moment of time k` ` |u|. q1` “ 3 is mapped to 0 by the permutation
corresponding to w, the other elements of X are mapped to 1 and 3.

Therefore, we have constructed τ``1 that satisfies the inductive invariant.
This concludes the inductive construction of the sequence pτ`q`PN. By Lemma 6
it finishes the proof of Theorem 1.

4 Büchi case

In this section we discuss the quadratic upper bound for the state-complexity of
determinising Büchi GFG automata, as expressed by the following theorem.

Theorem 8. For every Büchi GFG automaton there exists an equivalent deter-
ministic Büchi automaton with quadratic number of states.

Here we provide some high level overview of the construction. A detailed
description of it can be found in Appendix B.

The main part of the construction is an inductive normalisation of a given
Büchi automaton A. The normalisation is guided by the powerset automaton
D having sets of states of A as its states. It turns out that if A is GFG then
LpAq “ LpDq. During the normalisation we remove some irrelevant transitions
of A and mark some existing transitions as accepting (while ensuring that we
preserve the language LpAq and the fact that A is GFG).

When reaching a fixed-point of the normalisation, we know that A is in cer-
tain formal sense optimal. This optimal A needs not be deterministic. However,
we can prove that there is a function σ witnessing that A is GFG that uses
A as a memory structure. Therefore, by combining A with σ, we can define a
structure of a deterministic Büchi automaton for LpAq over AˆA.



5 Recognising GFG automata

We now investigate the algorithmic complexity of recognising whether a given au-
tomaton is GFG. We provide three results about general GFG-automata, Büchi
GFG automata, and co-Büchi GFG-automata. Let us recall that in general, the
problem of deciding if a given parity automaton is GFG was shown in [HP06] to
belong to EXPTIME.

Equivalence with parity games. The following theorem shows that in gen-
eral, the problem of GFGness of a given parity automaton is at least as hard
as solving parity games. The later is known to be NP X co–NP but there is no
PTIME algorithm known.

Theorem 9. Finding the winner of a parity game of index pi, jq is polynomi-
ally equivalent to deciding whether a given parity automaton of index pi, jq that
accepts all ω-words is GFG.

Indeed, we show that given a parity game G between the players D and @, it
is possible to build an automaton A accepting all ω-words, with the same parity
index as G, such that A is GFG if and only if D wins G. In the initial state of
A the automaton is supposed to non-deterministically guess the next letter. If
the guess is correct, we move to an accepting sink state, otherwise we move to
a subautomaton mimicking the game G, where moves of @ are represented by
letters and moves of D are represented by a choice of transition. This way A
accepts all ω-words but no GFG strategy can guarantee to reach the accepting
sink state. Therefore, A is GFG only if D has a strategy to win the original
game G. A polynomial reduction from the problem of GFGness of an automaton
accepting all ω-words to a parity game of the same index is an easy consequence
of [HP06].

A detailed construction of A and the proof of equivalence are presented in
Appendix C.

Recognising Büchi GFG automata. The upper bounds given in Section 4
allow us to state the following theorem, see Appendix D for a detailed proof .

Theorem 10. It is in NP to decide whether a given non-deterministic Büchi
automaton A is GFG. Moreover, if A is GFG then we can construct an equivalent
deterministic Büchi automaton in NP.

Recognising co-Büchi GFG automata.

Theorem 11. Given a non-deterministic co-Büchi automaton, we can decide
whether it is GFG in polynomial time.

We will only sketch the proof here, the detailed proof is presented in Ap-
pendix E.

The cornerstone of the construction is a game called the Joker Game, defined
relatively to a co-Büchi automaton A. This is a perfect information two players



game played between D and @. The set of positions is QAˆQA, the initial position
is pqA

I , q
A
I q, and at a round n starting in ppn, qnq the following choices are made

by the players:

– @ chooses a letter an P A,
– D chooses a transition pn

an
ÝÑ pn`1 of A,

– @ chooses a transition qn
an
ÝÑ qn`1 of A or plays joker and chooses a

transition pn
an
ÝÑ qn`1 of A.

After that the game moves to the position ppn`1, qn`1q. Player D wins an infinite
play if either:

– the run ppnqn of A is accepting over panqn,
– @ played infinitely many times joker,
– or the run pqnqn of A is not accepting over panqn6.

Intuitively, the Joker Game forces D to produce an accepting run of A over
panqn sequentially, whenever possible. However, since we cannot put the fact that
panqn P LpAq into the acceptance condition (it would hide an exponential blow-
up in the acceptance condition). Therefore, we ask @ to concurrently produce a
run of A over panqn. If @ manages to produce an accepting run while D fails to
do so, it shows that A is not GFG. The other implication is problematic: the
automaton A may not be GFG but D may win the Joker Game by relying on
the choices made by @.

We start by computing in polynomial time the winner of the Joker Game
(a parity game of index p0, 2q) on A. We show that if @ wins the Joker Game
then A is not GFG. In the opposite case we are able to build a GFG automaton
B of the same number of states as A that recognises the same language. Then,
using again an appropriate game over A ˆ B we can decide GFGness of A in
polynomial time.

To build the automaton B, we first compute a binary relationá on the states
of A. This relation is the winning region of yet another game, the safety game,
which is the Joker Game where seeing a rejecting transition means immediate
loss. By referring to the Joker Game we prove that for all q there is p such that
pá p and pá q.

This means that we can construct a deterministic safety automaton D with
states p such that p á p. Every ω-word that is accepted by A has a suffix
accepted by D from some state p. It remains to add non-deterministic rejecting
transitions to D in order to allow it to guess such a state p. For this, we compute
an equivalence relation E on the states of A reflecting simultaneous reachability.
We then use this relation to build B by connecting E-equivalent states of D
using rejecting transitions. We finally show that the automaton B is GFG and
recognises LpAq. The strategy witnessing GFGness of B uses the same intuition
as the one in Lemma 3
6 Formally, only the suffix of pqnqn after the last joker played by @ is a run of A over
the suffix of panqn.



6 Conclusion

The main result of this paper is a solution of the open problem asking what is the
state-complexity of determinising parity GFG automata over ω-words. We prove
that for co-Büchi GFG automata (and therefore all higher parity indices) the
exponential blow-up cannot be avoided. For the remaining case of Büchi GFG
automata we provide a construction of an equivalent deterministic automaton
with quadratic number of states.

Using the tools developed to prove the above results, we are additionally able
to study the complexity of the decision problem of verifying if a given parity
automaton is GFG. We prove that for general parity automata the problem
is at least as hard as solving parity games (for which no PTIME algorithm is
known). Then we focus on the two subcases of Büchi and co-Büchi automata.
In the case of Büchi automata we provide a very simple NP algorithm based
on our determinisation construction. In the case of co-Büchi automata we have
a bit more involved PTIME decision procedure. One of the advantages of the
procedure is that, even if the automaton itself is not GFG, there could be cases
when the procedure builds an equivalent GFG automaton with the same number
of states. The possibilities of exploiting this fact are still to be studied.

Hopefully, the results presented in this paper will shed some light on possible
efficient applications of GFG automata in the classical problems of verification.

For future research, in the Büchi case, both the exact time-complexity (be-
tween PTIME and NP) and state-complexity (between linear and quadratic) of
the determinisation algorithm are still to be clarified.

The complexity of deciding GFGness for general parity automata is still open,
with a lower bound of solving parity games and an EXPTIME upper bound.



Appendix

A Game approach

Games on finite arenas will play a central role in our study of the parity GFG
automata. We will be mainly interested in two types of games, as defined in the
following subsections.

A.1 Game on a single automaton

In this section we recall the construction of a game GpAq from [HP06,BKKS13]
for resolving GFGness of parity automata.

Let A “ 〈A,Q, qI, ∆,Ω〉 be a parity automaton over an alphabet A. The set
of positions of the game GpAq is Q and the initial position vI is the initial state
qI. In the nth round for n “ 0, 1, . . . starting in a position qn first @ plays a letter
an P A and then D plays a state qn`1 such that qn

an
ÝÑ qn`1 is a transition of A.

Consider an infinite play in which @ played an ω-word α and D played a run ρ of
A over α. Such a play is won by D if either the run ρ is accepting or the ω-word
α does not belong to LpAq.

Observe that the arena of the game GpAq is finite and the winning condition
is ω-regular. Therefore, one of the players has a finite-memory winning strategy.
It is shown in [BKKS13] that D wins GpAq if and only if A is GFG7.

We will also need a reformulation of Theorem 4 from [BKKS13].

Proposition 12. Assume that A is a parity GFG automaton.

1. If D has a finite-memory winning strategy in GpAq with M memory states
then there exists a deterministic parity automaton recognising LpAq with
|QA| ¨M states.

2. If D is a deterministic parity automaton recognising LpAq then D has a finite
memory winning strategy in GpAq with |QD| memory states.

A.2 Game on two automata

Let A, B be two non-deterministic parity automata, both over an alphabet A.
We define the game GpA,Bq similarly to GpAq from the previous section,

except that we require Player @ to explicitly build a run of the other automaton
B. In more detail, the set of positions is QAˆQB, the initial position is pqA

I , q
B
I q,

and at a round n starting in ppn, qnq:

– @ chooses a letter an P A,
– D chooses a transition pn

an
ÝÑ pn`1 of A,

7 Originally, in [HP06] the definition of GFG automata was given by the game GpAq.



– @ chooses a transition qn
an
ÝÑ qn`1 of B.

After that the game moves to the position ppn`1, qn`1q. Player D wins an infinite
play if the run ppnqn of A is accepting over panqn or the run pqnqn of B is not
accepting over panqn.

The following remark follows from the existing algorithms for solving Rabin
games in polynomial time for every fixed number of Rabin pairs [PP06].

Remark 1. For each fixed index pi, jq the winner of GpA,Bq can be decided in
polynomial time in the number of states of automata A, B of index pi, jq.

Theorem 13. Let A be a GFG automaton and B be a non-deterministic au-
tomaton. Then D wins GpA,Bq if and only if LpAq Ě LpBq.

Proof. If LpBq Ę LpAq then playing α P LpBqzLpAq together with an accepting
run of B over α is a winning strategy for @ in GpA,Bq.

On the other hand, if LpBq Ď LpAq, playing the GFG strategy of A is winning
for D, since every ω-word α P LpBq will yield an accepting run of A over α via
this strategy.

The following result from [HP06] provides the EXPTIME upper bound for
the general GFGness problem.

Theorem 14 ([HP06]). Let A, B be two non-deterministic parity automata
such that LpAq “ LpBq and B is GFG. Then D wins GpA,Bq if and only if A is
GFG.

Proof. By Theorem 13, if A is GFG and LpBq Ď LpAq, Player D wins GpA,Bq.
Now, assume D wins GpA,Bq using a strategy σ. We want to provide a GFG

strategy
σGFG : A˚ Ñ QA.

The principle is simply to use the GFG strategy σB of B to play moves of @, and
answer them with a winning strategy σ to find a valid run of A. This way, if
the input ω-word is in LpAq “ LpBq, the correctness of σB ensures that the run
of B is accepting, and in turn the correctness of σ ensures that the run of A is
accepting.

Let us describe the function σGFG more formally. Assume that u P A˚ and
the sequence of states of B produced by σB over u is ρ1. Consider the play of
GpA,Bq in which @ plays successive letters of u and successive states of ρ1. Let
σGFGpuq be the state played by D according to her winning strategy after @
played u and ρ1.

We need to prove that if α P LpAq “ LpBq then the sequence of states ρ
defined by σGFG is an accepting run of A over α. Let ρ1 be the sequence of
states of B given by σB over α. Since α P LpBq we know that ρ1 is an accepting
run of B over α. Since ρ is the run constructed by the winning strategy σ against
@ playing α and ρ1, we know that ρ has to be an accepting run of A over α.



B Büchi case

In this section, we prove the following theorem:

Theorem 15. For every Büchi GFG automaton there exists an equivalent de-
terministic Büchi automaton with quadratic number of states.

Let A “ xA,Q, qI, ∆, F y with F Ď ∆ be a Büchi GFG automaton recognising
a language L Ď Aω.

The crucial phase of our construction will consist of inductively modify-
ing A while preserving L. The modifications will not influence the alphabet
A nor the initial state qI. Let us put Q0 “ Q, ∆0 “ ∆, F0 “ F , and A0 “
xA,Q0, qI, ∆0, F0y. During the construction we will keep the following invari-
ants:

qI P Qi`1 Ď Qi Ď Q,

∆i`1 Ď ∆i Ď ∆,

Fi Ď ∆i,

∆i`1zFi`1 Ď ∆izFi,

LpAi`1q “ LpAiq “ L,

and additionally we will ensure that the automaton Ai is GFG.

B.1 Residual languages

We will start by observing that the fact that a given automaton Ai is GFG
implies that the residual languages LpAi, qq of Ai are in a sense simple.

Let us fix a function σGFG
i : A˚ Ñ Qi witnessing that Ai is GFG.

Definition 16. We say that Ai is minimal with respect to σGFG
i if:

– for every state q P Qi there is a word w such that σGFG
i pwq “ q,

– for every transition q a
ÝÑ q1 P ∆i there is a word w such that σGFG

i pwq “ q
and σGFG

i pwaq “ q1, i.e. the transition is used somewhere in σGFG
i .

Lemma 17. We can assure that the automaton Ai is minimal with respect to
σGFG
i while preserving the invariants.

Proof. Let us define A1i as the copy of Ai with all the states and transitions of
Ai not accessible via σGFG

i removed. Clearly after these modifications we still
have LpA1iq “ L: the Ď inclusion follows from monotonicity of the modifications
and the Ě is witnessed by the strategy σGFG

i . Since σGFG
i is a complete function,

the remaining A1i satisfies the condition that from every state there is at least
one transition over every letter. Also the monotonicity constrains are satisfied.
From that point on we assume that Ai “ A1i.



We will now study residuals of Ai — the languages LpAi, qq for states q of Ai.
The following lemma shows that the residuals of Ai cannot split — for every pair
of transitions q a

ÝÑ q1 and q a
ÝÑ q2 of Ai the residuals LpAi, q

1q and LpAi, q
2q

are the same.

Lemma 18. If σGFG
i pwq “ q and σGFG

i pwaq “ q1 then

LpAi, q
1q “ a´1LpAi, qq.

Proof. Clearly the Ď containment holds — if Ai has an accepting run over α
from q1 then it has an accepting run over aα from q.

For the Ě containment take α P Aω such that aα belongs to LpAi, qq. Since
σGFG
i pwq “ q we know that qI

w
ÝÑ q. Therefore, there exists an accepting run

of Ai over waα from qA
I (i.e. waα P LpAiq). It means that the run constructed

by σGFG
i over waα is also accepting. But σGFG

i pwaq “ q1, therefore this run
witnesses that there is an accepting run of Ai over α from q1. Therefore, α P
LpAi, q

1q.

Corollary 19. If q a
ÝÑ q1 is a transition of Ai then LpAi, q

1q “ a´1LpAi, qq.
If q u

ÝÑ q1 is a path in Ai then LpAi, q
1q “ u´1LpAi, qq.

If q u
ÝÑ q1 and q u

ÝÑ q2 are paths in Ai then LpAi, q
1q “ LpAi, q

2q.

Proof. The first claim follows from Lemma 18 and minimality of Ai with respect
to σGFG

i .
The second claim follows from the first one by induction over u.
The third claim follows directly from the second one.

Intuitively this corollary guarantees that we can always make finitely many
bad non-deterministic choices over an ω-word α P LpAiq and still accept it.

B.2 A simple deterministic automaton Di for L

Now we will construct an exponential but simple deterministic Büchi automaton
for L. Let us fix an arbitrary total order ăQ on the set of states Q of the original
automaton A.

Let us define

Mi “
 

m Ď Qi | m ‰ H^ @q, q1 P m. LpAi, qq “ LpAi, q
1q
(

. (1)

The set of states of Di is Mi and the initial state is tqIu. Let the transition
function of Di for m PMi, a P A be defined as:

δDipm, aq “

#

 

minăQ
tq P Qi | Dp P m. pp, a, qq P Fiu

(

if such q exists
tq P Qi | Dp P m. pp, a, qq P ∆iu otherwise

In other words, if any of the transitions from m over a is accepting (i.e. in Fi),
we move to the singleton of the minimal state accessible by such a transition.
Otherwise, we just proceed as in the standard powerset construction. Note that



by Corollary 19 we know that the successive set of states of Ai is also an element
of Mi.

The accepting transitions FDi of Di are the transitions of the first type
(notice that their target is always a singleton). Summing up,

Di “ xA,Mi, tqIu, δ
Di , FDiy

is a deterministic Büchi automaton.
See Figure 4 for a depiction of a run of Di over an ω-word. In this section we

follow the convention that accepting transitions are dashed.

α:

Q:

a b c d e . . .

. . .

. . .

. . .

. . .

Fig. 4. The behaviour of Di over an ω-word α. Dots correspond to states of Ai. Nodes
in circles belong to the current state of Di. Dashed edges are accepting transitions of
Ai, normal edges are normal transitions of Ai. Transitions from states of Ai outside
the current state of Di are omitted. The order ăQ on the states of A is from top to
the bottom.

The following lemma implies that the automaton Di is equivalent to Ai in a
strong sense.

Lemma 20. If m PMi and q P m then

LpDi,mq “ LpAi, qq.

In particular, LpDiq “ LpAiq and if m Ď m1 for m,m1 PMi then

LpDi,mq “ LpDi,m
1q.

Proof. Clearly an accepting run of Di over α from m encodes an accepting run
of Ai over α from a state q1 P m, i.e. α P LpAi, q

1q. By (1) it means that also
α P LpAi, qq. Therefore LpDi,mq Ď LpAi, qq.

Consider an ω-word α P LpAi, qq. We need to prove that Di accepts α from
m. We will proceed by induction showing that Di uses infinitely many accepting
transitions in its run over α.

It will be achieved by the following inductive claim.

Claim. If q P m P Mi and α P LpAi, qq then Di uses an accepting transition
when reading α from m.



We start by proving why this claim finishes the proof of the lemma. Take
q P m PMi and α P LpAi, qq. Let m

w
ÝÑ m1 be the execution of Di from m over

a prefix w of α that contains an accepting transition given by the above claim.
Let α “ wα1. For every q1 P m1 there is a path q2

w
ÝÑ q1 in Ai with q2 P m.

By the definition of Mi we know that α P LpAi, q
2q and by Corollary 19 we

know that α1 P LpAi, q
1q. Therefore, we can apply the above claim inductively

for q1 P m1 P Mi and α1 P LpAi, q
1q. This way we prove that the run of Di over

α from m contains infinitely many accepting transitions.
For the proof of the claim assume contrarily that the run of Di over α from

m does not contain any accepting transition. In that case for every n the state
mn of Di after reading αp0q . . . αpn´ 1q from m is

tq1 | q
αp0q...αpn´1q

ÝÑ q1 in Aiu.

Consider an accepting run ρ “ pq0, q1, . . .q of Ai over α from q. Let the first
accepting transition in this run be qn

αpnq
ÝÑ qn`1. Since q

αp0q...αpn´1q
ÝÑ qn in Ai we

know that qn P mn and therefore the transition of Di when reading αpnq from
mn is accepting.

Figures 5 and 6 present the two possibilities for the run of Di from m to have
an accepting transition if ρ is an accepting run of Ai over α from q P m.

α:

Q:

w a α1

. . .

. . .

. . .

. . .

Fig. 5. The execution of Di over α — the states in circles belong to the current state
m of D, the run ρ of Ai is boldfaced, the dashed boldfaced edge is the first accepting
transition in the run ρ over α. This transition is also the source of the first accepting
transition in the run of Di over α.

B.3 Combinement of Ai and Di

We can now define formally the parity game Gi that combines the automata Ai

and Di. Let Wi Ď Qi ˆMi contain all pairs pq,mq such that

LpAi, qq “ LpDi,mq. (2)

The set of positions of Gi is of the form Wi \Wi ˆ A. The positions from
Wi belong to @ and the remaining ones to D. The edges are of the following two
kinds:



α:

Q:

w a α1

. . .

. . .

. . .

. . .

Fig. 6. The execution of Di over α — the states in circles belong to the current state
m of D, the run ρ of Ai is boldfaced, the dashed boldfaced edge is the first accepting
transition in ρ. The automaton Di performs an accepting transition before the first
accepting transition is taken in the run ρ over α. The state m1 “ tq1u of Di after its
first accepting transition does not contain the respective state in ρ. However, by the
equivalence of residuals we know that α1 P LpAi, q1q.

– pq,mq Ñ pq,m, aq for all a P A,
– pq,m, aq Ñ pq1,m1q for all transitions q a

ÝÑ q1 of Ai and m1 “ δDipm, aq.

The priorities of the transitions of the first kind are 0. The priority of a
transition of the second kind is either:

– 0 if both transitions q a
ÝÑ q1 of Ai and m

a
ÝÑ m1 of Di are not accepting,

– 2 if the transition q a
ÝÑ q1 of Ai is accepting,

– 1 otherwise (i.e. if the transition of Ai is not accepting but the transition of
Di is).

Fact 21. Consider a play of Gi starting from a position pq,mq PWi in which @
proposed a sequence of letters α and D proposed a sequence of states ρ of Ai. Let
k be the lim sup of priorities of edges during this play. The following cases can
occur (recall (2)):

– k “ 0 and α R LpAi, qq,
– k “ 1 and α P LpAi, qq, but the run ρ is not accepting over α,
– k “ 2 and the run ρ is accepting over α (it witnesses the fact that α P

LpAi, qq).

Summing up, D wins such a play if either α R LpAi, qq or she managed to
produce an accepting run ρ of Ai over α from q.

The following lemma follows directly from the fact that Ai is GFG.

Lemma 22. For every pair pq,mq P Wi D has a winning strategy in Gi from
pq,mq.

Proof. By our assumptions on minimality of Ai there is a word w P A˚ such
that σGFG

i pwq “ q. Consider the following strategy of D in Gi: after @ playing a
sequence of letters v P A˚, D moves to the state σGFG

i pwvq. By the assumptions



on σGFG
i and Lemma 20 this is a correct play in Gi. Consider a play in which

@ played α P Aω. Assume for contradiction that the lim sup of the priorities in
this play is 1. By Fact 21 it means that α P LpAi, qq but the run constructed by
σGFG
i is not accepting over α. But in that case wα P L but the run constructed

by σGFG
i over wα is not accepting. A contradiction with the assumptions on

σGFG
i .

In particular pqI, tqIuq P Wi is a winning position of D. Note that Wi may
contain some pairs pq,mq where q R m, such pairs will be essential in our con-
struction (see e.g. Definition 30).

B.4 Optimal strategy

We now recall some simple variant of the theory of ranks (or signatures) in parity
games. The definitions will be specialised for the game Gi with priorities t0, 1, 2u.

Let us recall that a positional strategy is uniform, if it wins from all the
winning positions in the game. By [EJ91,Mos91] parity games are uniformly po-
sitionally determined. Since D wins from all the positionsWi, a uniform positional
strategy of D in Gi is a function σ : WiˆAÑWi. Note that if σpq,m, aq “ pq1,m1q
then by the definition of Gi we have

δDipm, aq “ m1.

We will additionally require our strategy to be optimal with respect to ranks
defined as follows.

Definition 23. Let σ be a winning strategy of D in Gi from a position pq,mq.
We say that rankpσ, q,mq is k if k is the maximal number of edges of priority 1
taken before the first8 edge of priority 2 is taken in plays consistent with σ.

Now we can ask for optimal ranks of given positions.

Definition 24. For pq,mq P Wi let rankipq,mq be the minimal rankpσ, q,mq
ranging over winning strategies σ of D from pq,mq.

Let optipqq be the minimal rankipq,mq ranging over m such that pq,mq PWi.

The following proposition states that there exists a winning strategy opti-
mising the values ranki in all positions, see [SE89,Wal02].

Proposition 25. There exists a uniform positional winning strategy τi of D in
Gi such that for every position pq,mq PWi we have

rankpτi, q,mq “ rankipq,mq (3)
8 If there is no such edge then we count all the edges of priority 1 in a given play.



Sketch of a proof. Having computed the values ranki we can let the strategy τi
move from pq,m, aq to the position pq1,m1q of minimal ranki among the available
successive positions. This way τi is a winning strategy because whenever it takes
an edge of priority 1 the current value of ranki decreases. Consider (3). First τi
witnesses the ě inequality. But since τi follows the optimal values of ranki, the
ď inequality also holds.

From that point on we work with a fixed optimal uniform positional strategy
τi : Wi ˆAÑWi. Let us additionally assume that all the ambiguous choices in
the construction of τi are resolved using the order ăQ. This way we guarantee
that if the automaton Ai1 is the same as Ai then the strategy τi1 is the same as
τi. Figure 7 presents an automaton Ai and a strategy τi in a schematic way.
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Fig. 7. An illustration of Ai and τi. The rectangles are states q of Ai, the dots inside
them are respective values m such that pq,mq P Wi. The straight edges are mappings
by the function τi under a, the bent edges are transitions of Ai over a. The accepting
transitions of Ai are dashed. The number next to each dot is the value of rankipq,mq
and the number at the bottom of the rectangle is the value of optipqq.

The following lemma summarises the monotonicity properties of ranki.

Lemma 26. Consider pq,mq PWi and a P A. Assume that τipq,m, aq “ pq1,m1q
and q a

ÝÑ q1 is not an accepting transition of Ai. Then:

– rankipq,mq ě rankipq1,m1q,
– if m a

ÝÑ m1 is a non-accepting transition of Di then we have

rankipq,mq ą rankipq1,m1q.

B.5 Inductive normalisation

We will now perform a sequence of modifications on Ai to obtain Ai`1. Dur-
ing these modifications we will preserve certain properties witnessing that our
current automaton is still GFG. Let us introduce these concepts more formally.



Consider an automaton A1 “ xA,Qi, qI, ∆
1, F 1y with set of states Qi and set

of transitions ∆1 Ď ∆i. The set of accepting transitions F 1 can be any subset of
transitions ∆1.

Assume that τ : WiˆAÑWi is a function such that for all pq,mq PWi and
a P A we have τpq,m, aq “ pq1,m1q with:

– q
a
ÝÑ q1 is a transition of A1 (i.e. also a transition of Ai),

– if the above transition is non-accepting in Ai then

rankipq,mq ě rankipq1,m1q.

For each finite or infinite word α P A˚ \Aω and pq,mq PWi such a function
τ induces a sequence (finite or infinite) of pairs

τ
“

q,m
‰

¨ α
def
“ pq0,m0q, pq1,m1q, . . .

defined inductively: pq0,m0q “ pq,mq and pqn`1,mn`1q “ τ
`

qn,mn, αpnq
˘

. Note
that in that case the sequence q0, q1, . . . is a (finite or infinite) run of A1 over α
from q. This sequence is called the τ -run of A1 over α from pq,mq.

Definition 27. For A1 and τ as above we say that τ is a GFG-witness for A1
if:

1. for every q P Qi we have

LpA1, qq Ď LpAi, qq, (4)

2. for every pq,mq P Wi and α P LpAi, qq, the τ -run of A1 over α from pq,mq
contains at least one accepting transition of A1.

Lemma 28. Assume that A1 is as above and τ is a GFG-witness for A1. Then:

– for every pq,mq P Wi and α P LpAi, qq, the τ -run of A1 over α from pq,mq
is accepting (with respect to the accepting transitions of A1),

– for every q P Qi we have LpA1, qq “ LpAi, qq,
– the automaton A1 is a GFG automaton for our language L.

Proof. The first claim follows from the inductive application of Item 2 from
Definition 27: we start by finding one accepting transition qn

αpnq
ÝÑ qn`1 in the

run. Then we observe that pαpn`1q, αpn`2q, . . .q P LpAi, qn`1q by Corollary 19
and we can proceed inductively.

The second claim follows from the first one and (4). For the last it is enough
to observe that τ

“

qI, tqIu
‰

¨α constructs letter-by-letter an accepting τ -run of A1
over α, for every α P L.

Now we can prove the following lemma.

Lemma 29. τi is a GFG-witness for Ai.



Proof. It is enough to prove Item 2 from Definition 27. We will in fact prove
that the run contains infinitely many accepting transitions.

Consider pq,mq P Wi and α P LpAi, qq. By (2) we know that α P LpDi,mq.
Consider the play of Gi starting in pq,mq in which @ proposes successive letters
of α and D plays according to τi. The sequence of positions from Wi visited in
this play is exactly the sequence τi

“

q,m
‰

¨ α.
Since α P LpDi,mq, the priority at least 1 is visited infinitely often in this

play. Since τi is a winning strategy, also priority 2 has to be seen infinitely often.
But it means that τi constructs an accepting run of Ai over α. This run is the
τi-run of Ai over α from pq,mq.

Overview of the steps The construction of Ai`1 from Ai will be done in four
steps: we will define Apjqi and τ pjqi for j “ 1, 2, 3, 4. The steps of the construction
are illustrated on Figures 8, 9, 10, and 11. The convention for these figures
is as explained in Figure 7. Note that during the following four steps of the
construction we consider the original values rankipq,mq and optipqq (they are
not recomputed).

Let us overview the four steps that we will perform:

1. Ai to Ap1qi : determinise transitions q a
ÝÑ q1 if rankipq, tquq “ 0, see Figure 8,

2. Ap1qi to Ap2qi : determinise accepting transitions q a
ÝÑ q1, see Figure 9,

3. Ap2qi to Ap3qi : ensure that if q a
ÝÑ q1 is non-accepting then optipqq ě optipq1q,

see Figure 10,
4. Ap3qi to Ap4qi : make all transitions q a

ÝÑ q1 with optipqq ą optipq1q accepting,
see Figure 11.

Determinising self-dependent states The first step is focused on the so-
called self-dependent states. The dependency relation is defined as follows. It will
play crucial role in defining the polynomial deterministic automaton equivalent
to A.

Definition 30. If pq, tq1uq P Wi and rankipq, tq1uq “ 0 we say that q depends
on q1 and denote it q ãÑi q

1 (or q ãÑ q1 if i is known from the context).

At this point of the construction we will turn deterministic all non-accepting
transitions from a state q whenever rankipq, tquq “ 0 (i.e. q ãÑi q is self-
dependent). Note that by the definition we always have pq, tquq PWi.

Let Ap1qi be the automaton Ai with the following modification: if q a
ÝÑ q1 is

a non-accepting transition of Ai, rankipq, tquq “ 0, and τipq, tqu, aq “ pq1,m1q

then remove all the transitions q a
ÝÑ q2 with q2 ‰ q1. Let τ p1qi “ τi except for

the values pq,mq P Wi, a P A when τipq,m, aq “ pq2,m2q and the transition
q

a
ÝÑ q2 has been removed. Then let τ p1qi pq,m, aq “ τipq, tqu, aq. See Figure 8

for an illustration of the performed modifications.
To prove that the above operation guarantees that τ p1qi is a GFG-witness for

Ap1qi we will use the following notion.
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Fig. 8. The step from A, τi to Ap1qi , τ p1qi . The pair pq, tquq has ranki equal 0 and
therefore triggers removal of all other transitions q a

ÝÑ q2. τ p1qi maps all the values
pq,m2q from the removed transition to pq1,m1q “ τipq, tqu, aq.
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Fig. 9. The step from from Ap1qi , τ p1qi to Ap2qi to τ p2qi . The transition q a
ÝÑ q1 is accept-

ing, it triggers removal of the transition q a
ÝÑ q2 and modification of τ p1qi on the two

upper pairs of the form pq,mq. For these pairs any value m1 such that pq1,m1q P Wi is
used.
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Fig. 10. The step from from Ap2qi , τ p2qi to Ap3qi to τ p3qi . Both transitions q a
ÝÑ q1 and

q
a
ÝÑ q2 are non-accepting. The transition q

a
ÝÑ q2 increases the value of opti and

therefore is removed. The mapping by τ p2qi is modified appropriately.
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Fig. 11. The step from Ap3qi , τ p3qi to Ap4qi to τ p4qi . Both transitions q a
ÝÑ q1 and q a

ÝÑ q2

were non-accepting. The transition q a
ÝÑ q1 decreases the value of opti and after the

modification the it is made accepting.



Definition 31. For q P Qi let LfinpAi, qq be the set of finite words w P A˚ such
that there exists a finite run of Ai over w from q that contains at least one
accepting transition of Ai.

Note that except the accepting transitions of Ai, the automaton Di operates
as the standard powerset construction. Therefore, we obtain the following fact.
The second part of the fact follows from the definition of the ranks.

Fact 32. If pq,mq P Wi, q P m, and w P LfinpAi, qq then the finite run of Di

over w from m contains at least one accepting transition of Di.
If rankipq,mq “ 0, q P m, and w P LfinpAi, qq then the τi-run of Ai over w

from pq,mq contains an accepting transition of Ai.

Lemma 33. τ p1qi is a GFG-witness for Ap1qi .

Proof. First observe that by monotonicity we know that LpAp1qi , qq Ď LpAi, qq
for every q P Qi, since we just removed transitions. Therefore, it is enough to
prove Item 2 of Definition 27.

For the sake of the contradiction assume that for pq,mq PWi and α P LpAi, qq

the τ p1qi -run of Ap1qi over α from pq,mq does not contain any accepting transition.
Since τi is a GFG-witness for Ai, it means that in the above run over α infinitely
many times a triple pq,m, aq appears with

τipq,m, aq ‰ τ
p1q
i pq,m, aq “ τipq, tqu, aq.

Moreover, notice that if no accepting transition is witnessed in Ap1qi , then the
invariant that q P m is preserved by all other transitions (of two types: powerset
transitions and new transitions). Therefore, we can start our considerations from
such a triple with rankipq,mq “ 0 and q P m.

Since α P LpAi, qq, there exists a finite prefix w of α such that w P LfinpAi, qq.
The contradiction follows from the following claim.

Claim. If pq,mq P Wi, rankipq,mq “ 0, q P m, and w P LfinpAi, qq then the
τ
p1q
i -run of Ap1qi over w from pq,mq contains an accepting transition of Ap1qi .

Note that the claim holds for w “ ε as ε R LfinpAi, qq for every q. The proof
of the claim is inductive in the length of w. Assume that w “ av and the claim
holds for all words of length at most |v|. Let pq1,m1q “ τ

p1q
i pq,m, aq. Note that

either pq1,m1q “ τipq,m, aq or pq1,m1q “ τipq, tqu, aq with rankipq, tquq “ 0. In
the latter case we can assume without loss of generality that m “ tqu and thus
τ
p1q
i pq,m, aq “ τipq,m, aq (the τ p1qi -runs over w from pq,mq and from pq, tquq are
the same except the first state).

If the transition q
a
ÝÑ q1 is accepting in Ai then the claim clearly holds.

Assume the opposite. Since rankipq,mq “ 0, the transition m a
ÝÑ m1 is a non-

accepting transition of Di. Therefore, q1 P m1 and rankipq1,m1q “ 0. Thus, it
remains to prove that v P LfinpAi, q

1q and use the inductive assumption.



By Fact 32 we know that the τi-run of Ai over av from pq,mq contains
an accepting transition. But this run starts with the non-accepting transition
q

a
ÝÑ q1, therefore it witnesses the fact that v P LfinpAi, q

1q. See Figure 12 for
an illustration of this proof.

Ai, τ p1qi

a

q

q2

q1

v

0m

m1

v

Fig. 12. The inductive proof of Lemma 33. By the assumption that w “ av P Lfin
pAi, qq

we know that the upper path exists in Ai and contains an accepting transition. The
value m is fixed such that q P m, rankipq,mq “ 0, and τ

p1q
i pq,m, aq “ τipq,m, aq “

pq1,m1q. If the transition q a
ÝÑ q1 is not accepting then τi constructs a run from pq1,m1q

over v that contains an accepting transition (lower path). This path witnesses the fact
that v P Lfin

pAi, q
1
q.

Deterministic accepting transitions Now we will enforce that if Ap1qi can
perform from a state q an accepting transition over a: q a

ÝÑ q1 then this is the
only transition from q over a. Let Ap2qi be obtained from Ap1qi by consequent
picking an accepting transition q a

ÝÑ q1 and removing all other transitions (both
accepting and non-accepting) q a

ÝÑ q2 with q2 ‰ q1. The order in which we pick
the accepting transitions is not relevant.

Now we need to define a new function τ p2qi . Let τ p2qi equal τ p1qi except for the
values pq,mq P Wi, a P A such that τ p2qi pq,m, aq “ pq2,m2q with the transition
q

a
ÝÑ q2 removed from Ap1qi . In such a case let q a

ÝÑ q1 be the accepting transition



that triggered the removal and let m1 be any value such that pq1,m1q P Wi. Let
us put τ p1qi pq,m, aq “ pq1,m1q instead of pq2,m2q. See Figure 9 for an illustration
of the construction of τ p2qi from τ

p1q
i .

Lemma 34. τ p2qi is a GFG-witness for Ap2qi .

Proof. First observe that by monotonicity we know that LpAp2qi , qq Ď LpAi, qq
for every q P Qi, since we only removed transitions. Therefore, it is enough to
prove Item 2 of Definition 27.

Consider a pair pq,mq PWi and an ω-word α P LpAi, qq. Let

τ
p1q
i

“

q,m
‰

¨ α “ pq0,m0q, . . .

τ
p2q
i

“

q,m
‰

¨ α “ pq10,m
1
0q, . . .

We will prove that the run q10, q11, . . . contains at least one accepting transition.
Indeed, the first place where the runs pq1nqn and pqnqn can differ is, by the
definition of τ p2qi , an accepting transition in pq1nqn. If the runs do not differ then
pq1nqn is accepting because pqnqn was accepting (τ p1qi was a GFG-witness for
Ap1qi ).

Decreasing optipqq We now want to modify Ap2qi and τ
p2q
i in such a way to

guarantee that if q a
ÝÑ q1 is a non-accepting transition of Ap2qi then optipqq ě

optipq1q. What we know is that the values of ranki decrease along such transi-
tions, see Lemma 26. It does not imply that the values of opti decrease, see the
left-hand part of Figure 10.

Let τ p3qi “ τ
p2q
i except for pq,mq P Wi and a P A such that τ p2qi pq,m, aq “

pq2,m2q and optipqq ă optipq2q. For such values, let mq be a value realising the
minimal ranki in q, i.e. pq,mqq P Wi and rankipq,mqq “ optipqq. In that case
put τ p3qi pq,m, aq “ τ

p2q
i pq,mq, aq “ pq1,m1q, see Figure 10. Also, remove from

Ap2qi all the non-accepting transitions q a
ÝÑ q2 such that optipqq ă optipq2q and

obtain Ap3qi .
Note that for the values pq,mq P Wi and a P A where τ

p2q
i pq,m, aq ‰

τ
p3q
i pq,m, aq “ pq1,m1q as above, we have:

ranki
`

τ
p3q
i pq,m, aq

˘

“ rankipq1,m1q by the definition of τ p3qi

ď rankipq,mqq because τ p2qi pq,mq, aq “ pq
1,m1q

“ optipqq by the choice of mq

ă optipq2q by the assumption
ď rankipq2,m2q by of the definition of opti
ď rankipq,mq because τ p2qi pq,m, aq “ pq2,m2q.



Summing up, if τ p2qi pq,m, aq ‰ τ
p3q
i pq,m, aq then

ranki
`

τ
p3q
i pq,m, aq

˘

ă rankipq,mq. (5)

Lemma 35. τ p3qi is a GFG-witness for Ap3qi .

Proof. As before, by monotonicity we know that LpAp3qi , qq Ď LpAi, qq for every
q P Qi, since we only removed transitions. Therefore, it is enough to prove Item 2
of Definition 27.

Assume contrarily, that there exists pq,mq P Wi and α P LpAi, qq such that
the τ p3qi -run over α from pq,mq does not contain any accepting transition. Let

τ
p3q
i

“

q,m
‰

¨ α “ pq10,m
1
0q, pq

1
1,m

1
1q, . . . .

For every n P N there are two possibilities:

– τ
p2q
i pq1n,m

1
n, αpnqq “ pq

1
n`1,m

1
n`1q (i.e. τ

p2q
i and τ p3qi agree in that case)

– τ
p2q
i pq1n,m

1
n, αpnqq ‰ pq

1
n`1,m

1
n`1q “ τ

p3q
i pq1n,m

1
n, αpnqq because of the above

modification.

In the first case rankipq1n,m1nq ě rankipq1n`1,m
1
n`1q because the transition

q1n
αpnq
ÝÑ q1n`1 is non-accepting in Ap3qi and therefore also in Ai and τ p2qi is a GFG-

witness. In the second case we know that rankipq1n,m1nq ą rankipq1n`1,m
1
n`1q

by (5). Therefore, the second case can happen only finitely many times (ranks
are non-negative). It means that from some point on, the τ p3qi -run over α agrees
with the τ p2qi -run over some suffix of α and thus is accepting (see the first item
in Lemma 28).

More formally, let N be a number such that for all n ě N only the first case
above happens. Let

τ
p2q
i

“

q1N ,m
1
N

‰

¨
`

αpNq, αpN ` 1q, . . .
˘

“ pqN ,mN q, pqN`1,mN`1q, . . . .

It means that for n ě N we have:

pq1n,m
1
nq “ pqn,mnq.

Since τ p2qi is GFG-witness and
`

αpNq, αpN ` 1q, . . .
˘

P LpAi, qN q we know
that the run pqN , qN`1, . . .q is an accepting run of Ap3qi over

`

αpNq, αpN`1q, . . .
˘

and so is the original run pq10, q11, . . .q.

Let us note that the construction of Ap3qi guarantees the following fact.

Fact 36. If q a
ÝÑ q1 in Ap3qi is a non-accepting transition of Ap3qi then optipqq ě

optipq1q.



Adding Büchi transitions We can now proceed to the crucial step of the
modifications of Ai — we will add some new Büchi transitions to it. Because of
a special care that will be taken, we will ensure that the added transitions do
not enlarge the language recognised by the automaton. Intuitively, the values of
ranki`1 computed with respect to this enriched automaton will be smaller — it
will be easier to use an accepting transition of Ai`1 and thus take an edge of
priority 2 in Gi`1.

Let τ p4qi “ τ
p3q
i and Ap4qi be the automaton Ap3qi with all the transitions

q
a
ÝÑ q1 such that optipqq ą optipq1q made accepting. Figure 11 illustrates the

modifications.

Lemma 37. τ p4qi is a GFG-witness for Ap4qi .

Proof. It is enough to prove that for q P Qi we have LpAp4qi , qq Ď LpAp3qi , qq.
Let ρ be an accepting run of Ap4qi over an ω-word α from q P Qi. Of course ρ

is also a run of Ap3qi over α from q. We want to prove that ρ is also accepting with
respect to Ap3qi . Assume contrarily that ρ does not contain any accepting tran-
sition of Ap3qi (as before, we inductively focus on this case). Let ρ “ pq0, q1, . . .q.
Observe that by Fact 36 we know that optipq0q ě optipq1q ě . . .. By the con-
struction of Ap4qi if the transition qn

αpnq
ÝÑ qn`1 is accepting in Ap4qi but not in

Ap3qi then optipqnq ą optipqn`1q. Therefore, there may be only finitely many
such transitions in ρ and therefore ρ is rejecting with respect to Ap4qi as well.

Defining Ai`1 We now define Ai`1 “ Ap4qi and since τ p4qi is a GFG-witness for
Ap4qi we know that it is a GFG automaton recognising our language L. Clearly
the invariants stated at the beginning of Section 4 are preserved by all the steps
of our construction. This way we have completed the definition of Ai`1 from Ai.

B.6 Monotonicity

We will now show that there is some form of monotonicity of the values of
rankipq,mq with respect to the set of states m, as expressed by the following
lemma. Figure 13 shows that if we skip the assumption that rankipq,mq “ 0
then the monotonicity does not hold any more.

Lemma 38. Assume that pq,mq P Wi and rankipq,mq “ 0. If H ‰ m1 Ď m
then pq,m1q PWi and rankipq,m1q “ 0.

Proof. The fact that pq,m1q P Wi follows from the definition of Wi. To prove
that also rankipq,m1q “ 0 we will use Proposition 25 — it is enough to provide
a winning strategy σ of D in Gi from pq,m1q that stays within the winning region
(i.e. the whole set Wi) and does not visit any edge of priority 1 before the first
edge of priority 2. Recall that the only choice of D in Gi is which state of Ai to
choose (the successive state of Di is taken deterministically).
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Fig. 13. An ω-word α witnessing that rankipq0,m10q ě 3 and rankipq0,m0q ě 1 with
m10 Ď m0. The states in circles are elements of m0, m1, . . . , the states in squares are
elements of m10, m11, . . . . We assume that q0 “ q10, τipqn,mn, αpnqq “ pqn`1,mn`1q,
τipq

1
n,m

1
n, αpnqq “ pq1n`1,m

1
n`1q, and the runs pqnq, pq1nq over α do not contain any

accepting transitions of Ai. Then, the run pmnq over α contains one accepting transition
of Di while the run pm1nq over α contains three accepting transitions of Di.

Let σ play from pq,m1q as would play τi from pq,mq, i.e. after @ played
w P A˚ let pqw,mwq be the successive state according to τi and let D play qw
(the successive state will in that case be pqw,m1wq for m1w possibly different than
mw). When the first accepting transition of Ai is taken let σ follow some winning
strategy from a given position.

Clearly, since τi does not visit any accepting transition of Di before an ac-
cepting transition of Ai is taken, during this simulation we always preserve that
m1w Ď mw. Therefore, we do not visit any accepting transition of Di before the
first accepting transition of Ai in all the plays consistent with σ from pq,m1q.

Lemma 39. Assume that pq,mq PWi and pq1,m1q PWi such that q1 P m. Then
pq,m1q PWi and if rankipq,mq “ rankipq1,m1q “ 0 then also rankipq,m1q “ 0.

Proof. The fact that pq,m1q P Wi follows directly from the definition of Wi.
Similarly as above we will provide a winning strategy σ of D from pq,m1q that
guarantees not visiting any accepting transition of Di before an accepting tran-
sition of Ai is visited.

This claim can be proved inductively: it is enough to provide a response q1
for one letter a played by @ from the position pq,m1q. We need to guarantee that
we do not pass through an accepting transition of Di before we take an accepting
transition of Ai.

First assume that there is an accepting transition of Ai of the form q
a
ÝÑ q1.

In that case just take it and stay within the winning region Wi.
Assume that there is no such transition and τi moves over a: from pq,mq to

pq1,m1q and from pq1,m1q to pq11,m11q, see Figure 14. Since rankipq,mq “ 0, the
transition m a

ÝÑ m1 of Di is not accepting, in particular the transition q1 a
ÝÑ q11

of Ai is not accepting (recall that q1 P m).
By monotonicity of ranki over non-accepting transitions of Ai we know that

rankipq1,m1q “ rankipq11,m11q “ 0. By the definition ofm1 we know that q11 P m1.
Let σ move from pq,m1q over a to q1. By repeating the above construction we
preserve the invariant that rankipqn,mnq “ rankipq1n,m1nq “ 0 and q1n P mn,
therefore the strategy σ is a witness that rankipq,m1q “ 0.



aq

q1

0q1 P m

0 m1 Q q
1
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aq1

q11

0m1

0 m11

Fig. 14. An illustration of the proof of Lemma 39. We know that q1 P m and
rankipq,mq “ rankipq1,m1q “ 0. The arrows are actions of τi. The implications go
as follows: the transition q a

ÝÑ q1 is not accepting so the transition m a
ÝÑ m1 is not

accepting so the transition q1
a
ÝÑ q11 is not accepting so the transition m1

a
ÝÑ m11 is

not accepting. Therefore, rankipq1,m1q “ rankipq11,m11q “ 0 and q11 P m1. Note that
m1 is one of the dots in the state q but we do not care what is the value τipq,m1, aq.

B.7 Stabilisation point
The above inductive construction of Ai`1 from Ai is monotone with respect to
the set of states Qi, set of transition ∆i, and set of non-accepting transitions
∆izFi (see the invariants at the beginning of Section 4). Therefore, there exists
I such that AI`1 “ AI . We will prove the following lemma. It says that in the
limit we succeed with diminishing the ranks to 0 (at least the optI ones).
Lemma 40. If AI`1 “ AI and q P QAI then optIpqq “ 0.
Proof. Assume contrarily that there exists a state q P QI such that optIpqq ą 0.
Let m be a memory value such that pq,mq PWI and rankIpq,mq “ optIpqq ą 0.
Consider a play consistent with τI in GI that witnesses this fact: an ω-word α such
that there is at least one edge of priority 1 taken before the first edge of priority
2 is taken. Let τI

“

q,m
‰

¨ α “ pqn,mnqnPN be the sequence of positions visited
during the play. Assume that mN

αpNq
ÝÑ mN`1 is the first accepting transition of

DI in this play and all the transitions qn
αpnq
ÝÑ qn`1 for n ď N are non-accepting

in AI .
Our aim is to prove that for some transition qn

αpnq
ÝÑ qn`1 with n ď N we have

optIpqnq ą optIpqn`1q. In that case this transition should be made accepting
by the step performed in Section B.5. Observe that optIpqnq ě optIpqn`1q for
n ď N , otherwise some transition would be removed by the step performed in
Section B.5.

By Lemma 26 we know that rankIpqN ,mN q ą rankIpqN`1,mN`1q. Therefore
we obtain

optIpq0q “ rankIpq0,m0q ě rankIpqN ,mN q “

“ rankIpqN ,mN q ą rankIpqN`1,mN`1q ě optIpqN`1q.



It means that on the traversed path from q0 to qN`1 the value optIpqnq has to
strictly decrease, see Figure 15.

pq0,m0q pqN ,mN q pqN`1,mN`1q

Fig. 15. An illustration of the proof of Lemma 40. The path is the plot of values
of rankIpqn,mnq for n ď N ` 1. The gray rectangles denote the range of values
rankIpqn,m1q for possible values m1. At the beginning optIpq0q “ rankIpq0,m0q and
then rankIpqN ,mN q ą rankIpqN`1,mN`1q. The horizontal dashed line marks the dif-
ference between rankIpqN ,mN q and rankIpqN`1,mN`1q. Therefore, somewhere on the
path there is the first rectangle crossing the dashed line (i.e. a transition qn

αpnq
ÝÑ qn`1

with optIpqnq ą optIpqn`1q).

Let us recall the dependency relation from Definition 30: q depends on q1

(denoted q ãÑ q1) if pq, tq1uq P WI and rankIpq, tq1uq “ 0. The following lemma
summarises the properties of the dependency relation using the results of Sec-
tion B.6.

Lemma 41. The following conditions hold:

1. For every q P QI there exists q1 P QI such that q ãÑ q1.
2. If q ãÑ q1 and q1 ãÑ q2 then q ãÑ q2.
3. For every q P QI there exists q̄ P QI such that q ãÑ q̄ and q̄ ãÑ q̄.
4. If q ãÑ q, a P A, and τIpq, tqu, aq “ pq1,m1q such that q a

ÝÑ q1 is a non-
accepting transition of AI then q1 ãÑ q1.

Proof. For the first claim observe that by Lemma 40 we know that optIpqq “ 0.
Let m be the value such that pq,mq P Wi and rankIpq,mq “ 0. Since m ‰

H, we can choose q1 to be any element of m. By Lemma 38 we know that
rankIpq, tq1uq ď rankIpq,mq “ 0.

Now take q ãÑ q1 and q1 ãÑ q2. In that case q1 P tq1u so Lemma 39 applies
and rankIpq, tq2uq “ 0 (i.e. q ãÑ q2).

For the third claim it is enough to apply the previous two inductively and
use the fact that QI is finite.



Consider q P QI such that q ãÑ q and let τipq, tqu, aq “ pq1,m1q. In that case
we know that rankIpq1,m1q “ 0 and q1 P m1 therefore by Lemma 38 we know
that also rankIpq1, tq1uq “ 0 and q1 ãÑ q1.

B.8 Construction of B

Now we move to the construction of a small deterministic Büchi automaton B
recognising L. We start by defining a GFG-witness for AI that will involve only
polynomially many pairs pq,mq P WI . Let τ̄I “ τI for all values pq,mq P WI ,
a P A such that τIpq,m, aq “ pq1,m1q with the transition q a

ÝÑ q1 non-accepting
in AI . If the above transition is accepting in AI , let τ̄Ipq,m, aq “ pq1, tq̄1uq where
q̄1 is the state given by Item 3 of Lemma 41.

Lemma 42. The function τ̄I is a GFG-witness for AI .

Proof. It is enough to verify Item 2 of Definition 27. Since the action of τ̄I differs
from τI only on accepting transitions of AI , this modification cannot lead to a
non-accepting τ̄I -run over α P Aω.

We will now define the automaton B. Let the set of states of B be the sub-
set of elements WI accessible from pqI, tq̄Iuq via τ̄I . The transition function of
B is given by τ̄I , the accepting transitions are those of the form pq,mq

a
ÝÑ

pq1,m1q “ τ̄Ipq,m, aq with q
a
ÝÑ q1 an accepting transition of AI . This way B is

a deterministic Büchi automaton.

Lemma 43. If pq,mq is a state of B then m is a singleton.

Proof. We will in fact prove that if pq,mq is a state of B then m “ tq1u with
q1 ãÑ q1. It is enough to prove that τ̄I preserves this property. Clearly the initial
state of B is of this form and the states obtained via accepting transitions of B
are of this form. Consider a transition pq, tq1uq

a
ÝÑ pq1,m1q “ τ̄Ipq, tq1u, aq of B

such that q a
ÝÑ q1 is not an accepting transition of AI . By the assumption that

q1 ãÑ q1 we know that rankIpq1, tq1uq “ 0. In the step performed in Section B.5
we have determinised all the transitions of the form q1

a
ÝÑ q11 with q1 ãÑ q1.

It means that m1 “ δDiptq1u, aq is a singleton. Since q11 P m1, m1 “ tq11u. By
Item 4 of Lemma 41 we know that in that case also q11 ãÑ q11 so the invariant is
preserved.

Corollary 44. The number of states of B is at most |QA|2.

Lemma 45. The language LpBq is equal to the language L.

Proof. Clearly LpBq Ď LpAIq “ L because of the definition of B. It remains to
prove that if α P LpAIq then B accepts α. But this follows directly from the fact
that τ̄I is a GFG-witness for AI .

Therefore, we have completed the proof of Theorem 15 by constructing a de-
terministic Büchi automaton B recognising L that has at most |QA|2 states. The
construction presented in this section is effective but not efficient. In Section 5
we discuss how to determinise a Büchi GFG automaton efficiently.



B.9 Example of the determinisation procedure
In this section we provide an example of the application of our determinisation
procedure to a particular automaton A. The automaton comes from [BKKS13]
and it is GFG but not DBP (determinisable by pruning), i.e. it does not contain
any equivalent deterministic subautomaton. The automaton A is depicted on
Figure 16. It recognises the language

L “ rpxa` xbq˚pxaxa` xbxbqsω.

The accepting transitions A2 a
ÝÑ I and B2

a
ÝÑ I are marked by dashed

edges. For the sake of readability the sink state K and some of the transitions
to it (i.e. I a

ÝÑ K) are not presented.
The only non-determinism is in the state I when the letter x is read. In that

case the automaton has to guess whether the successive letter will be a or b.
One of the strategies for resolving this non-determinism is to move to A or B
depending on the previous letter (a or b). Correctness of this strategy relies on
the fact that the language recognised by the automaton requires that infinitely
many times the previous letter a or b reappears.

Figure 17 presents the automaton A0 “ A together with the data values
M0 and a GFG-witness τ0. The red edges are transitions of A0 while the black
edges are transitions of τ0. Dashed red edges are accepting transitions of A0 and
dashed black edges correspond to the accepting transitions of D0. The numbers
denote rank0pq,mq and opt0pqq respectively. Only the relevant pairs pq,mq are
presented.

The only freedom in the choice of the strategy τ0 is in the position pq,mq “
pI, tIuq when the letter x is played. The depicted strategy moves then to A. The
choice that from the position pI, tI, A1uq the strategy moves to A over x (and
dually for b) follows from the fact that the strategy is optimal with respect to
the ranks (see Proposition 25).

In the first step of the construction the following steps are performed. The
only modification of A0 is done in the last step.
– all the transitions from the self-dependant states are already deterministic,
– all the accepting transitions are already deterministic,
– no non-accepting transition increases opt0pqq,
– the transitions A a

ÝÑ A1 and B b
ÝÑ B1 are made deterministic because they

decrease opt0pqq.
This way the automaton A1 is obtained, see Figure 18. In this automaton all

the states q satisfy opt1pqq “ 0. Further steps of the construction do not modify
the automaton A1 and therefore I “ 1.

The following dependencies are important when constructing the determin-
istic automaton B:

I ãÑ A1 A1 ãÑ A1 I ãÑ B1 B1 ãÑ B1.

The states A1, B1, A2, B2 are self-dependant. There is a freedom in choosing Ī: it
can either be A1 or B1, we assume that it is A1. Figure 19 presents the automaton
B obtained via our construction.
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Fig. 16. The automaton A — an example of a Büchi GFG automaton that is not DBP.

C Reduction to parity games

In this section we prove Theorem 9.

Theorem 9. Finding the winner of a parity game of index pi, jq is polynomi-
ally equivalent to deciding whether a given parity automaton of index pi, jq that
accepts all ω-words is GFG.

Proof. First, if we are given a parity automaton of index pi, jq that accepts all ω-
words then deciding whether it is GFG is a parity game of index pi, jq: @ chooses
letters, D chooses transitions, and D wins if the resulting run is accepting over the
given ω-word. Therefore, solving this parity game allows us to decide whether
the input automaton is GFG, provided this automaton accepts all ω-words.

Conversely, let G “ xVD, V@, vI, Γ,Ω
Gy be a parity game of index pi0, j0q.

We build an automaton A “ xA,Q, qI, ∆,Ω
Ay where the non-determinism

corresponds to the choices of D, while the choices of @ lie in the input alphabet.
The set of statesQ is V \tJu and qI “ vI. We define the alphabet A def

“ ΓXV@ˆV
— the edges that can be taken by @ (we assume that there are at least two edges
that can be taken by @ in G). The state J is a sink accepting state with only
self-loops J a

ÝÑ J of even priority.
Finally, we define the set of transitions ∆ of A for states other than J:

– for v P V@ and a “ pv, v1q P A let ∆ contain the transition v a
ÝÑ v1,

– for v P V@ and a “ pv1, v2q P A with v1 ‰ v let ∆ contain the transition
v

a
ÝÑ J,

– for v P VD and any a P A let ∆ contain all the transitions v a
ÝÑ v1 for

pv, v1q P Γ (in that case a does not play any role).

The priority ΩA of a transition v
a
ÝÑ v1 with both v, v1 different than J is

ΩGpv, v1q.
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Fig. 17. The automaton A0 together with τ0.
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Fig. 19. The automaton B — the polynomial determinisation of A.

This way the games G and GpAq are equivalent — in positions v P V@ D has
no choice in GpAq because there is a unique transition to take and in positions
v P VD the letters chosen by @ in GpAq does not play any role. If A accepts all
ω-words then the winning condition of GpAq requires that the run proposed by
D is accepting and therefore is equivalent to the winning condition of G.

However, if A does not accept all ω-words then D may lose the game G but
the automaton A might still be GFG for a smaller language. To avoid this, we
need to build another automaton B which accepts all ω-words in any case but is
GFG if and only if D wins G.

We fix an arbitrary letter a P A and build an automaton B “ xA,Q \
tqi, qa, qau, qi, ∆

1, Ω1y. We build ∆1 from ∆ by adding the following transitions:
qi

A
ÝÑ qa, qi

A
ÝÑ qa , qa

a
ÝÑ J, qa

a
ÝÑ qA

I , and for all b ‰ a, qa
b
ÝÑ J and

qa
b
ÝÑ qA

I .
First, it is clear that LpBq “ Aω: every ω-word can be accepted by guessing if

the second letter is a, and reaching the accepting sink state J. We claim that B
is GFG if and only if D wins G. Assume B is GFG with a function σ : A˚ Ñ QB

witnessing that. Then, there is a letter b P A such that σpabq “ qA
I (take b ‰ a

if σpaq “ qa and b “ a otherwise). Let σ1 : abw ÞÑ σpwq be the GFG strategy
starting in qA

I . Since all ω-words are in LpBq, σ1 must accept every ω-word α,
and therefore corresponds to a winning strategy in G. Conversely, every winning
strategy in G can be turned into a GFG strategy in B, by adding an arbitrary
choice at the beginning between qa and qa.



qi

qa

qa

J

A

A

A

a

Aztau

Aztau

a

A

Fig. 20. The construction of the automaton B simulating a parity game G. The sub-
automaton A corresponds to G while the rest guarantees that LpBq “ Aω.

Finally, we showed that from a parity game G, we can build an automaton
B with same parity index, such that G is winning for D if an only if B is GFG.
Moreover, the language of B is Aω.

D Recognising Büchi GFG automata

We give the detailed proof of the following theorem:

Theorem 10. It is in NP to decide whether a given non-deterministic Büchi
automaton A is GFG. Moreover, if A is GFG then we can construct an equivalent
deterministic Büchi automaton in NP.

Proof. Let A be an input Büchi automaton and let Q be its set of states. By
Theorem 15, if A is GFG, it is witnessed by a strategy τ̄I with memoryM of size
|QA|. Therefore, we can guess such a structure M , and build the deterministic
automaton B “ A ˆM , where runs of A are guided by the current memory
state in M . The acceptance component is inherited from A, and therefore we
have LpBq Ď LpAq, since every accepting run of B contains in particular an
accepting run of A. It remains for the algorithm to check LpAq Ď LpBq, which
can be done in polynomial time because B is deterministic. More precisely, we
can complement B in Bc and check for emptiness of LpAq X LpBcq.

Conversely, if such a memory structureM is guessed by the non-deterministic
algorithm, it is a witness that A is GFG. Therefore, this non-deterministic poly-
nomial algorithm is correct. Clearly if A is GFG then a side-effect of a successful
run of the algorithm is an equivalent deterministic automaton B.



E Recognising co-Büchi GFG automata

In this section, we show that for the particular case of co-Büchi automata, the
problem of deciding GFGness is in PTIME.

Theorem 11. Given a non-deterministic co-Büchi automaton, we can decide
whether it is GFG in polynomial time.

Let A “ 〈A,Q, qI, ∆,R〉 be a non-deterministic co-Büchi automaton.

E.1 Normalised automata

The following notion will be important when we will consider the safety game
Gsafe.

Definition 46. A co-Büchi automaton is normalised if for any path p
w
ÝÑ q

without rejecting transition there is a path q w1

ÝÑ p without rejecting transition.

Lemma 47. Any co-Büchi automaton A can be turned into an equivalent nor-
malised automaton NpAq by changing some transitions to rejecting. This can be
done in polynomial time.

For every α, the sets of accepting runs of A and NpAq over α coincide. In
particular LpA, pq “ LpNpAq, pq for every p P Q.

Proof. We start by computing the strongly-connected components (SCC) of the
graph of the automaton without rejecting transitions. Then, all transitions that
change SCC are switched to rejecting.

The accepting runs are preserved, because if an infinite path contains in-
finitely many new rejecting transitions, it also contains infinitely many original
rejecting transitions. We get a normalised automaton, because the graph of the
automaton restricted to non-rejecting transitions is a disjoint union of strongly-
connected components.

E.2 Joker game

The crucial ingredient of the construction is the Joker Game, as defined below.

Definition 48. The Joker Game on A (denoted GJoker, A is fixed in this sec-
tion) is defined on the set of positions Q ˆ Q. The initial position is pqI, qIq.
The game is played in rounds n “ 0, 1, . . ., in a round n starting in a position
ppn, qnq the following actions are performed:

– @ chooses a letter an P A,
– D chooses a transition pn

an
ÝÑ pn`1 of A,

– @ either:
‚ chooses a transition qn

an
ÝÑ qn`1 of A,

‚ or plays joker and chooses a transition pn
an
ÝÑ qn`1 of A.



After such a round the game moves to the position ppn`1, qn`1q.
Now, the priority of an edge corresponding to a round as above is either:

– 2 if @ played joker,
– otherwise 2 if the transition qn

an
ÝÑ qn`1 is rejecting in A,

– otherwise 1 if the transition pn
an
ÝÑ pn`1 is rejecting in A,

– otherwise 0.

An infinite play of the above game produces: an ω-word α “ a0a1 . . ., a run
ρ “ p0p1 . . . of A, and a pseudo-run τ “ q0q1 . . . — each time @ plays joker,
the successive state qn`1 may not be accessible from qn via a transition of A.
However, since the acceptance condition is prefix-independent, if @ played only
finitely many times joker then it makes sense to ask whether the pseudo-run τ
is accepting over α.

Note that there are the following possibilities for the limes superior of the
priorities of edges during this play:

– 0 and both ρ and τ are accepting over α,
– 1 and the pseudo-run τ is accepting over α but ρ is not,
– 2 and either @ played infinitely many times joker or τ is not accepting over
α.

Therefore, we obtain the following fact.

Fact 49. D wins a play as above if and only if either:

– @ played joker infinitely many times,
– τ is not accepting over α, or
– ρ is accepting over α.

A variant of the Joker Game with a bounded number of times @ could play
joker would be enough for our purposes. However, the unbounded variant pre-
sented above allows us to provide more elegant proofs.

Lemma 50. If the automaton A is GFG then D wins GJoker.

Proof. Assume that A is GFG and let use the function witnessing that A is GFG
as her strategy in the game GJoker, regardless of the current value qn. We will
prove that this strategy is winning. Assume contrarily and consider a play α, ρ,
τ in which @ won. Therefore, there exists n such that in the nth round @ played
joker for the last time (or he did not play joker at all and n “ 0). After that
he managed to propose an accepting run of A over α1 “ pαpnq, αpn ` 1q, . . .q
from the state ρpnq. In means that α1 P LpA, ρpnqq. Since ρp0q αp0q...αpn´1q

ÝÑ ρpnq,
we know that also α P LpA, ρp0qq “ LpAq. Therefore, the run constructed by
the function witnessing that A is GFG has to be accepting in A. So D won this
play.



Therefore, we can start our procedure by verifying (in polynomial time) if
D wins GJoker. If she loses then A is not GFG. From that point on we assume
that D wins this game and W J Ď Q ˆ Q is her winning region. Let QJ be the
projection of W J onto the first coordinate — the set of states p such that D can
win from some position of the form pp, qq. The winning condition of GJoker is a
parity condition so we can fix a uniform positional winning strategy of D of the
form

σJD : W J ˆAÑ QJ (6)

We say that a transition p
a
ÝÑ p1 is used by σJD if there exists a position

pp, qq PW J such that σJD pp, q, aq “ p1. Let AJ be the non-deterministic co-Büchi
automaton obtained by restricting A to the set of states QJ and transitions used
by σJD , and by normalising the resulting automaton using Lemma 47. Notice
that normalising does not change the winning region, as the accepting runs are
unchanged. The strategy σJD witnesses that if p P QJ and α P LpA, pq then also
α P LpAJ , pq (in particular, LpAJq “ LpAq).

E.3 Structure of AJ

Now we will study the structure of the automaton AJ .

Lemma 51. If p P QJ then pp, pq PW J .

Proof. Let pp, qq PW J be a witness that p is used in σJD . It is enough to observe
that every strategy of @ from pp, pq can be also used by @ from pp, qq at the cost
of playing joker at the first round of the play. Therefore, if D wins from pp, qq
then she wins from pp, pq as well.

Lemma 52. If p a
ÝÑ p1 is a transition of AJ then LpA, p1q “ a´1LpA, pq.

Proof. The Ď containment is trivial. For the Ě consider an ω-word aα P LpA, pq.
We need to prove that α P LpA, p1q. Let τ be an accepting run of A over aα from
p. Assume that the transition p a

ÝÑ p1 is used by σJD from a position pp, qq PW J .
Consider the play of GJoker from pp, qq in which D plays according to σJD and

@ plays: in the first round the letter a and then joker to use the transition
p “ τp0q a

ÝÑ τp1q; and in further rounds successive letters of α and successive
transitions of τ . Since σJD is winning and the run τ proposed by @ is accepting
over aα, also the run ρ constructed by D has to be accepting over aα. But
the first transition of this run is p a

ÝÑ p1, therefore the run witnesses that
α P LpA, p1q.

Similarly as in Section B.1 we can obtain a variant of Corollary 19 for AJ .

E.4 Equivalence relation

We define an equivalence relation E Ď QJ ˆ QJ that will keep track of states
that are accessible in AJ via the same word from a common state.



Definition 53. Let E Ď QJ ˆ QJ be the smallest equivalence relation on QJ

such that for any pp, qq P E and a P A, if there are transitions p a
ÝÑ p1 and

q
a
ÝÑ q1 in AJ then pp1, q1q P E.

The relation E can be computed in polynomial time via a standard saturation
algorithm.

Remark 2. By Lemma 52, for all pp, qq P E we have LpA, pq “ LpA, qq.

E.5 Safety game

We will now consider a variant Gsafe of the game GpAJ ,AJq where the first
rejecting transition is losing for the respective player. Let the set of positions of
Gsafe be E Ď QJ ˆQJ . In such a position pp, qq the following choices are done:

– first @ proposes a letter a P A,
– then D proposes a transition p a

ÝÑ p1 of AJ ,
– then @ proposes a transition q a

ÝÑ q1 of AJ .

If the transition p
a
ÝÑ p1 (resp. q a

ÝÑ q1) is rejecting in AJ then D (resp. @)
immediately loses (if both transitions are rejecting then @ immediately loses).
All the infinite plays are won by D.

Let WS Ď E be the winning region of D and let σSD : WS ˆ A Ñ QJ be a
uniform positional winning strategy of D in her winning region of Gsafe.

For each p P Q, we now define the language LsafepAJ , pq as the set of ω-words
α such that there exists a run of AJ from p over α that does not contain any
rejecting transition of AJ .

The winning region WS provides us a dependency relation on QJ . Let us
write p á q if pp, qq P WS . This relation will be essential in the rest of the
construction.

Lemma 54. For every q P QJ there exists p P QJ such that pá q.

Proof. Assume contrarily that there exists q P QJ such that for no p P QJ we
have pá q.

We will inductively construct a play of GJoker from pq, qq. Let us start with
p0 “ q. The invariant is that ppn, qq P QJ ˆQJ belongs to W J X E. Lemma 51
implies that for n “ 0 the invariant holds. Assume that n steps of the construc-
tion have been done and a state pn is defined. Since pn á q does not hold, @ has
a winning strategy σS@ in Gsafe from ppn, qq. Consider the play of Gsafe resulting
from @ playing σS@ and D using her strategy σJD from GJoker.

Since σS@ is winning, after a finite word wn has been played the two con-
structed runs are pn

wn
ÝÑ p1n and q

wn
ÝÑ q1n with the first path containing a

rejecting transition of AJ and the second one not containing any rejecting tran-
sition of AJ . Since the automaton AJ is normalised, we know that there exists
a path q1n

w1
n

ÝÑ q without any rejecting transition. Let @ proceed along this path
and D play using σJD : p1n

w1
n

ÝÑ pn`1. After this finite play we reached the position



ppn`1, qq and the invariant that ppn`1, qq PW
J XE holds because we simulated

the winning strategy σJD of D, and only took transitions of AJ .
After infinitely many steps of the above construction we obtain a play of

GJoker that is consistent with σJD . In this play @ never plays joker, the con-
structed ω-word α is w0w

1
0w1w

1
1 . . ., the pseudo-run τ over α does not contain

any rejecting transition of AJ while the run ρ over α contains infinitely many
rejecting transitions of AJ . Therefore, τ is an accepting run over α of A as well
and ρ is not accepting. Therefore, we obtain a contradiction with the fact that
σJD is winning.

Lemma 55. If pá q and q á r then pá r.

Proof. We need to provide a winning strategy of D in Gsafe from the position
pp, rq. Since the winning condition of Gsafe is safety, it is enough to show how D
can survive one round. The invariant is that pp, qq P WS , pq, rq P WS , and the
current position is pp, rq. Assume that @ plays a letter a P A. We will simulate
two plays of Gsafe from pp, qq and pq, rq. Let the strategy σSD move from pp, qq
over a to p1 and from pq, rq over a to q1. Let D play from pp, rq the state p1 and
assume that @ replied by r1.

Since q a
ÝÑ q1 so q1 is a valid reply of @ in the play from pp, qq. Similarly,

r
a
ÝÑ r1 so r1 is a valid reply in the play from pq, rq. The only possibility for D

to lose in this round would be if the transition r a
ÝÑ r1 was non-rejecting in AJ

but the transition p a
ÝÑ p1 was rejecting in AJ . But in that case, the transition

q
a
ÝÑ q1 cannot be rejecting in AJ (otherwise pq, rq RWS) and therefore neither

p
a
ÝÑ p1 can be rejecting in AJ (otherwise pp, qq R WS). Therefore, D did not

lose in this round, pp1, q1q PWS and pq1, r1q PWS so the invariant holds.

The following corollary follows directly from the two above lemmas and the
fact that QJ is finite.

Corollary 56. For every q P QJ there exists p P QJ such that pá p and pá q.

Lemma 57. If pá q then LsafepAJ , pq Ě LsafepAJ , qq.

Proof. Consider α P LsafepAJ , qq and a play of Gsafe from pp, qq where D plays
according to her winning strategy and @ plays α together with a run τ of AJ from
q over α that does not contain any rejecting transition. Since D plays according
to her winning strategy, we know that the run ρ over α proposed by D neither
contains a rejecting transition. Therefore, α P LsafepAJ , pq.

E.6 Deterministic part

Now we will focus on states p P QJ such that pá p. Similarly as in Section B.5
we will define a structure of a deterministic automaton D on this set of states.
The automaton will be a safety automaton — this time we allow its transition
function to be partial, and we consider the run non-accepting if it is finite and



accepting if it is infinite. Notice that we could equivalently define D as a co-
Büchi automaton by adding a sink state with rejecting self-loop, and all other
transitions non-rejecting.

We will use D def
“ tp P QJ | pá pu as the set of states of D.

Lemma 58. If p P D and σSD pp, p, aq “ p1 with the transition p
a
ÝÑ p1 not

rejecting in AJ then p1 P D (i.e. p1 á p1).

Proof. If @ plays a in the position pp, pq of Gsafe then the reply of σSD is p1 as above.
This round can be finished by @ playing p1 as well and reaching the position
pp1, p1q. If the transition p a

ÝÑ p1 is non-rejecting in AJ then this round does not
finish the game and therefore D is able to win from pp1, p1q (i.e. pp1, p1q PWS and
therefore pá p).

Now we define the transitions of the automaton D: let pp, aq P D ˆ A, we
define δDpp, aq

def
“ σSD pp, p, aq if p

a
ÝÑ σSD pp, p, aq is non-rejecting, and δDpp, aq

undefined (noted K) otherwise.
This deterministic automaton D has safety condition, meaning a run is ac-

cepting if and only it is infinite. The initial state qD
I of D is any state p such

that pá qA
I (such a state exists by Lemma 54).

Lemma 59. For all p P D we have LsafepAJ , pq “ LpD, pq.

Proof. Clearly the Ě containment is trivial — an accepting run of D from p over
α is a run of AJ from p over α that does not contain any rejecting transition. It
remains to prove that if α P LsafepAJ , pq then α P LpD, pq. The proof is inductive
proving that D does not get blocked when reading α from p. The invariant is
that D is in a state p P D and α P LsafepAJ , pq.

Let α “ aα1 and ρ be a run of AJ from p over α witnessing that α P

LsafepAJ , pq. Now let p1 “ δDpp, aq and q1 “ ρp1q. Since ρ1 does not contain
any rejecting transition over aα, we know that the transition p

a
ÝÑ q1 is a

non-rejecting transition of AJ . Since p á p, the transition p
a
ÝÑ p1 cannot be

rejecting, otherwise D would lose in the position pp, pq of Gsafe. What remains is
to prove that α1 P LsafepAJ , p1q. But α1 P LsafepAJ , q1q and since pp, pq P WS ,
also pp1, q1q P WS (i.e. p1 á q1) as @ can lead the strategy of D from pp, pq to
pp1, q1q. Therefore, by Lemma 57 we know that α1 P LpAJ , p1q. Thus, the invariant
holds.

E.7 Building a GFG automaton

We will now build a co-Büchi GFG automaton B on top of D, recognising LpAq.
The set of states of B is D and the initial state is qD

I . Consider a state p P D and
a letter a P A. For each transition p a

ÝÑ q1 of AJ and each pp1, q1q P DˆQJ XE
we have a transition p a

ÝÑ p1 in ∆B. Moreover, if δDpp, aq “ p1 (in particular it is
defined) then the transition is non-rejecting, otherwise it is rejecting. Note that
if δDpp, aq “ p1 is defined then by the definition of E there is a (non-rejecting)
transition p a

ÝÑ p1 in B.



Intuitively, the automaton B follows D as long as possible, and at any time
it can jump to any E-equivalent state via a rejecting transition.

By the definition of B we obtain the following fact.

Fact 60. For every p P D we have LsafepB, pq “ LpD, pq.

Lemma 61. The following relations between paths in AJ and B hold.

1. Assume that pp, qq P D ˆ QJ X E and there is a path q u
ÝÑ q1 in AJ with

u ‰ ε then

tp1 P D | p
u
ÝÑ p1 is a path of Bu “ tp1 P D | pp1, q1q P Eu ‰ H.

2. Conversely, if pp, qq P D ˆ QJ X E and there is a path p u
ÝÑ p1 in B then

there exists q1 P QJ and a path q u
ÝÑ q1 in AJ such that pp1, q1q P E.

In particular, the above properties hold for p “ qB
I and q “ qA

I because
pqB

I , q
A
I q P E.

Proof. Both items are proved by induction on u. In Item 2 it is important that
AJ can always perform at least one transition from a given state q P QJ over a
letter a P A.

Lemma 62. LpBq “ LpAq.

Proof. Let α P LpAq “ LpAJq. We know that there exists a decomposition
α “ uα1 and a path qA

I
u
ÝÑ q1 in AJ such that α1 P LsafepAJ , q1q. Let p1 P D such

that p1 á q1 (in particular pp1, q1q P E). By Lemma 57 we have α1 P LsafepAJ , p1q.
Therefore, by Lemma 59 we know that α1 P LpD, p1q and by Fact 60 also α1 P
LsafepB, p1q. Item 1 of Lemma 61 implies that there exists a path qB

I
u
ÝÑ p1 in B.

This path together with the fact that α1 P LsafepB, pq provides an accepting run
of B over uα1 “ α.

Conversely, let α P LpBq. Since the acceptance condition of B is co-Büchi,
we know that there exists a state p1 P D and a decomposition α “ uα1 such
that qB

I
u
ÝÑ p1 and α1 P LsafepB, p1q. In particular α1 P LsafepAJ , p1q Ď LpAJ , p1q.

Item 2 of Lemma 61 implies that there exists a path qA
I

u
ÝÑ q1 in AJ with q1 P QJ

and pp1, q1q P E. Since pp1, q1q P E, we know that α1 P LpAJ , q1q. Therefore, we
can find an accepting run of AJ over uα1 “ α that starts with the path qA

I
u
ÝÑ q1.

This run is an accepting run of AJ over α and therefore α P LpAq.

E.8 B is GFG

We now define a strategy σGFG in the game GpBq proving that B is in fact
GFG. Intuitively, the strategy will try the non-rejecting paths in B (we can
deterministically follow these paths as in D) one after another. Consider the
memory structure M “ Dď|D|ztεu — finite non-empty sequences of states from
D. The invariant of our strategy is that if we are in a position p of GpBq and our
memory state is m “ d0 . . . d` then:



– p “ d0,
– each state appears at most once in m,
– for all i, j ď ` we have pdi, djq P E.

The initial memory value is m0 “ tq
B
I u. The memory states m can be seen as a

simplification of the structure of Last-Appearance-Record from [Büc83].
Consider a position p in GpBq when the memory state is m “ d0d1 . . . d` PM

and @ plays a letter a P A. For each i “ 0, . . . , ` let us define d1i as:

– ε if δDpdi, aq “ K,
– ε if δDpdi, aq is among d1j for j ă i,
– δDpdi, aq otherwise.

Let p1 “ σSD pp, p, aq and let r P D˚ be a list of all states q P D such that
pp1, qq P E and q is not any of d1i. Now m1 “ d10 . . . d

1
` ¨r (clearly p1 appears in this

list, either as d10 or later if d10 “ ε). By the construction, each state in m1 appears
at most once and all of them are E-equivalent. Now let D move in such a case to
the position m1p0q and set the memory state to m1. By Lemma 61 and the fact
that all d1i are E-equivalent we know that there exists a transition p a

ÝÑ m1p0q
of B.

Note that the transition taken by D according to the above strategy may be
rejecting in B if δDpd0, aq “ K. Clearly if d appears in m at a position i and
δDpd, aq “ d1 ‰ K then d1 appears in m1 at a position i1 such that i ě i1. If the
transition played by D in the given round is rejecting in B then i ą i1.

Lemma 63. The strategy σGFG is a winning strategy in GpBq.

Proof. Consider a play in which @ proposed an ω-word α and D produced an
infinite run ρ of B over α. Assume that α P LpBq, in particular α “ uα1 with
qB

I
u
ÝÑ p a path in B and α1 P LsafepB, pq. Let ρ be a run of B from p over α

witnessing that α1 P LsafepB, pq — ρ does not contain any rejecting transition of
B. Therefore, ρ is an accepting run of D from p over α.

For n “ 0, . . . let mn be the memory state of the above strategy of D after
@ has played uαp0q ¨ αpn ´ 1q. By Lemma 61, we know that the state p “ ρp0q
appears in m0 at some position i0. By the definition of σGFG it will always be
there — for every n the state ρpnq appears inmn at a position in. As we observed
above, we know that in ě in`1 and whenever D plays a rejecting transition of B
then in ą in`1. Therefore, there can be at most i0 such transitions played after
@ has played the word u.

E.9 Deciding GFGness of A

Putting together the results from this section, we get the following theorem:

Theorem 64. Given a co-Büchi automaton A, there is a polynomial time algo-
rithm that either

– answers “A is not GFG” (if @ wins the Joker game GJoker)



– builds a co-Büchi GFG automaton B in polynomial time, of the same size
and language as A.

Now Theorem 11 follows by applying Theorem 14 to the automata A and B
in the second case above.
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