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Innovative tools and modeling 
methodology for impact prediction 
and assessment of the contribution of materials 
on indoor air quality
V Desauziers1*, D Bourdin1,2, P Mocho3 and H Plaisance1

Abstract 

Background: The combination of more and more airtight buildings and the emission of formaldehyde and other 
volatile organic compounds (VOCs) by building, decoration and furniture materials lead to lower indoor air quality. 
Hence, it is an important challenge for public health but also for the preservation of cultural heritage, as for example, 
artworks in museum showcases and other cultural objects. Indeed, some VOCs such as organic acids or carbonyl 
compounds may play a role in the degradation of some metallic objects or historic papers. Thus, simple and cost 
effective sampling tools are required to meet the recent and growing demand of on-site diagnostic of indoor air qual-
ity, including emission source identification and their ranking.

Results: In this aim, we developed new tools based on passive sampling (Solid-Phase Micro Extraction, SPME) to 
measure carbonyls compounds (including formaldehyde) and other VOCs and both in indoor air and at the material/
air interface. On one hand, the coupling of SPME with a specially designed emission cell allows the screening and 
the quantification of the VOCs emitted by building, decoration or furniture materials. On the other hand, indoor air is 
simply analysed using new vacuum vial sampling combined with VOCs pre-concentration by SPME. These alternative 
sampling methods are energy free, compact, silent and easy to implement for on-site measurements. They show sat-
isfactory analytical performance as detection limits range from 0.05 to 0.1 µg m−3 with an average Relative Standard 
Deviation (RSD) of 18 %. They already have been applied to monitoring of indoor air quality and building material 
emissions for a 6 months period. The data obtained were in agreement with the prediction of a physical monozonal 
model which considers building materials both as VOC sources and sinks and air exchange rate in one single room 
(“box model”).

Conclusion: Results are promising, even if more data are required to complete validation, and the model could be 
envisaged as a predictive tool for indoor air quality. This new integrated approach involving measurements and mod-
eling could be easily transposed to historic environments and to the preservation of cultural heritage.

Keywords: Indoor air quality, Materials, Emission, VOC, Formaldehyde, SPME, Modeling

© 2015 Desauziers et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
The impact of building and decoration materials on 
indoor air quality (IAQ) is now well known and rec-
ognized [1, 2]. For many Volatile Organic Compounds 

(VOCs) found in indoor environments (formaldehyde, 
α-pinene,…), the main sources are located inside the 
building [3]. Moreover, the development of low energy 
buildings which promotes more and more airtight con-
structions tends to raise indoor pollutant concentra-
tion levels. Therefore, indoor air quality became a major 
public health issue and, in France, a new legislation 
was implemented. The labeling of all building materials 
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according to their emissions of VOCs is effective since 
2013 (decree 2011-321, 23 March 2011), and the compul-
sory measurement of some pollutants in public buildings 
(formaldehyde and benzene) is being considered. In the 
near future, museum and libraries might be concerned.

The preservation of cultural heritage is also challenging 
as VOCs and carbonyl compounds may damage artwork 
exposed to the confined atmosphere of showcases. In 
this context, relevant tools are needed to perform on-site 
indoor air diagnosis, including emission sources identifi-
cation and monitoring.

The proposed methodological approach includes a 
diagnosis step involving new methods relying on pas-
sive solid-phase microextraction (SPME). This technique 
is particularly relevant for sensitive environments (e.g. 
historic buildings, showcases displaying artwork, etc.) 
because it is non-invasive, easy to use and noiseless. Two 
SPME sampling methods were developed to study nine 
VOCs, both in indoor air and at the material/air inter-
face [4, 5] for highlighting and quantifying emission or 
sink effects, and then identifying and ranking material 
sources. The ability to measure in  situ the surface con-
centration of building materials allows to predict the 
indoor air quality by modeling approaches. The model 
developed here was adapted from box models which 
were the most widely applied to indoor environments [6]. 
As a decision support tool, the model could help in the 
selection of low emission materials and the optimization 
of air exchange [7, 8].

This methodology was applied to recent buildings 
and some examples are presented in this paper. If the 
first applications aimed to support IAQ management in 
household and public buildings, the methodology could 
be easily transposed to cultural heritage issues. These 
examples can address libraries, museum or galleries 
which can be placed in new buildings. In this case, indoor 
VOCs differ from VOCs in old buildings but may also 
influence the preservation of cultural objects.

Experimental
SPME methods
VOCs are concentrated on a SPME fibre which is then 
directly desorbed into the injector of a gas chromatograph 
(GC) coupled to mass spectrometry (MS) for analysis [9]. 
A PDMS-DVB SPME fibre (Supelco, Bellafonte, PA, USA) 
treated with O-(2,3,4,5,6-pentafluorobenzyl)hydroxy-
lamine hydrochloride (PFBHA) was especially developed 
for GC–MS analysis of carbonyl compounds including 
formaldehyde [10]. As SPME is a passive sampler, the 
amount of pollutants adsorbed on the fibre is directly 
proportional to the product of the concentration of the 
pollutant and the exposure time, product which is called 
“exposure dose” and expressed in µg m−3 min [11, 12].

Air sampling was performed in 250 mL glass vials pro-
vided by Entech Instruments (Simi Valley, CA, USA) 
equipped with SPME-adapters [13, 14]. The vials were 
cleaned with wet nitrogen and evacuated until 10 mtorr 
before sampling thanks to a 3100A Canister Cleaner 
(Entech Instruments). On site, they were filled with air 
and then stored no longer than 2 days at room tempera-
ture (20  °C). Then, the SPME fibre was introduced into 
the vial for 20  min prior to its thermal desorption and 
analysis by GC–MS.

For material emissions passive sampling was chosen 
as it represents an interesting means for field investiga-
tions requiring a large number of sampling points. This 
sampling is made in static mode by diffusion of chemi-
cals from the material surface to a trap media, inside a 
closed air volume. The emission rate can be determined 
as described in the following Eq.  1 (from first Fick law 
under steady state conditions) [15]:

where F is the emission rate of the target VOC 
(µg m−2 s−1), D, the diffusion coefficient (m2 s−1), Ca the 
concentration in indoor air (µg  m−3), Cas the gas phase 
concentration at the material surface (µg  m−3), L the 
thickness of the gas phase boundary layer (m). In this 
study, the passive sampler was a home-made cylindri-
cal glass cell inspired by previous work [12]. This “Device 
for On-Site Emission Control” (DOSEC) was optimized 
for SPME coupling and will be fully described in future 
papers. The sampling involves two steps: first, VOCs dif-
fusion from the material to the gas phase (DOSEC head-
space) and second, after introduction of SPME fibre in the 
DOSEC, the VOCs transfer from the gas phase to the fibre 
coating. Assuming equilibrium is reached in the DOSEC, 
the headspace concentration could be assimilated to 
the gas phase concentration at the material surface, Cas 
(Eq.  1). Thus, the data measured is the concentration at 
the material/air interface expressed in µg m−3.

After sampling, the fibres were then stored up to 
3 days in stainless steel tubes [16] and were analyzed by 
GC–MS.

Chromatographic analysis and target VOCs
The SPME fibres were analyzed on a Varian 3800 gas 
chromatograph coupled with a 1200Q quadrupole mass 
spectrometer (MS) (Varian, Les Ulis, France). The PTV 
injection port was equipped with a 0.75 mm i.d. liner and 
was operated at 250  °C. Acquisition was made in single 
ion monitoring (SIM) and scan modes.

The method was especially developed to identify 
and quantify nine VOCs which were selected from the 
compounds listed in the French regulation for material 

(1)F= − D
dC

dx
= −D

Ca − Cas

L
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emission labeling (decree 2011-321, 23 March 2011). 
As buildings and showcases may contain wood-based 
materials, hexanal and α-pinene were included in the 
compound list. The target VOCs were: formaldehyde, 
acetaldehyde, toluene, tetrachloroethylene, p-xylene, 
1,2-dichlorobenzene, styrene, hexanal and α-pinene.

Modeling method
The mass-balance model aims to simulate average indoor 
air pollutant concentration as a function of outdoor con-
centration, building characteristics (volume, air exchange 
rate…) and indoor sources/sinks. It is a single zone model 
which considers the room (or other closed environment) 
as a zone where pressure, temperature, and pollutant 
concentration are homogeneous. The mass balance of 
a VOC i is written according to the following equation 
(Eq.  2) where materials are considered both as VOC 
sources and sinks from indoor air.

where Ci is the average indoor air concentration of the 
pollutant i (µg m−3), Qij the contribution of the material j 
to the IAQ (source or sink of pollutant i) (µg m−3 s−1), λ 
the outdoor air exchange rate (s−1), Ciout the average out-
door air concentration of pollutant i (µg m−3), t the time 
and m the total number of materials within the room. In 
Fig. 1, Csij is the air concentration of the pollutant i at the 
surface of the material j.

At the material/air interface, VOC mass transfer can be 
expressed as:

where hij is the convective mass transfer coefficient of 
pollutant i through the boundary layer over the material j 
(determined from empirical relationships [8] ), Aj the sur-
face area of the material j and V the volume of the room.

Substituting (Eq. 3) into (Eq. 2), under steady state con-
ditions, we finally obtain (Eq. 4) [8]:

Air exchange rate measurement
Air exchange rate was determined from the elimina-
tion kinetic of injected CO2 according to the method 
described in ASTM standards [17].

Building description
Three new buildings (or constructed less than 2  years 
before the measurement campaigns) were studied: a 

(2)
∂Ci

∂t
=

m∑

j=1

Qij + �Ciout − �Ci

(3)Qij = hij
Aj

V
(Csij − Ci)

(4)Ci =

∑m
j=1

hij
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V Csij + �Ciout

∑m
j=1

hij
Aj

V + �

meeting room in an office building (Fig. 1a), a classroom 
in a high school built according to the HQE® (High Envi-
ronmental Quality) French label (Fig.  1b) and the liv-
ing room of an unoccupied and non-furnished house 
(Fig. 1c). All the buildings are located in the south west 
of France and measurements were made when the rooms 
were unoccupied in order to only consider material 
sources of VOCs. The high school, which is studied here 
in details, is located in a rural area, near a pine forest. The 
presented results will mostly concern the classroom for 

Fig. 1 Buildings and rooms studied—a meeting room; b classroom; 
c living room.
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which the sampling campaigns began just after the build-
ing delivery, and took place every 2 weeks over a period 
of 6 months.

The Table  1 presents the building materials and the 
furniture of the classroom. All the VOCs surface concen-
trations were determined using the DOSEC, indoor and 
outdoor air were sampled using the vacuum vials. All the 
building materials were rated “A+” by the new French 
regulation on sanitary labeling (including exposure con-
centration less than 10 µg m−3 of formaldehyde).

Results
Analytical performance
The limits of detection (LOD) and of quantification 
(LOQ) (Table  2) were determined for the target VOCs 
analyzed by GC–MS. LOD and LOQ were evaluated for 
a signal to noise ratio of 3 and 10 respectively. They cor-
respond to 20 min extraction of standard gas in vacuum 
vials. It can be pointed out that the DOSEC performance 
is comparable to that of the vial as the device volumes are 
similar.

All the LOD and LOQ were below the µg m−3 level and 
the average RSD (relative standard deviation) for 6 repli-
cates is 18 %.

SPME air sampling was compared to standard 
methods for three model compounds (formaldehyde, 
α-pinene and styrene) identified in the indoor air of 
the unoccupied house. The temperature was 17.6  °C 
and the relative humidity 64 %. For formaldehyde, the 
standard method consists in active sampling on a car-
tridge filled with Florisil® treated with 2,4-dinitrophe-
nyl hydrazine (DNPH) which specifically reacts with 
carbonyls. The cartridge is eluted by acetonitrile and 
the resulting extract is analyzed by high performance 
liquid chromatography equipped with UV detection 
(HPLC–UV) [18]. For the other VOCs, active sampling 
is carried out on a Tenax® tube further analyzed by 
thermal desorption coupled to GC–MS [19]. Results 
presented in Table  3 show that there is no significant 
difference between SPME and standard methods for 
the compounds investigated. Therefore, SPME is rel-
evant and could be considered as an alternative to 
standard methods, even if a full validation should be 
further performed.

Identification of material sources in the classroom
As formaldehyde is an important pollutant of indoor air, 
the presented results will focus on this compound.

The Fig.  2 presents the identification of the formal-
dehyde material sources in the classroom studied. The 
surface concentrations obtained by DOSEC sampling 
are reported for each material at the beginning of the 

Table 1 Building materials and furniture of the classroom

Material Surface (m2) French sanitary labeling

Wall Paint 52.2 A+
Floor PVC 49.0 Not supplied by the architect

Ceiling Plasterboard 29.0 A+
Door Particle board 2.0 A+
Interactive whiteboard Melamine resin 1.9 Materials not concerned by the sanitary labeling

Whiteboard 2.3

Chairs Varnished beech 6.7

Desks (top + bottom) Laminate + melamine resin 20.0

Curtain Polyester 11.0

Table 2 Limits of  detection and  limits of  quantification 
determined for SPME–GC–MS analysis

VOCs LOD (µg m−3) LOQ (µg m−3)

Toluene 0.012 0.042

p-Xylene 0.027 0.091

Styrene 0.013 0.043

1,2-Dichlorobenzene 0.011 0.037

Tetrachloroethylene 0.014 0.048

Formaldehyde 0.005 0.016

Acetaldehyde 0.051 0.170

Hexanal 0.124 0.414

α-Pinene 0.049 0.164

Table 3 Comparison of  SPME and  standard methods 
for  the analysis of  formaldehyde, α-pinene and  styrene 
in indoor air

C concentration, SD standard deviation, n number of replicates.

SPME C ± SD  
(µg m−3) (n = 3)

Standard method 
C ± SD (µg m−3) (n = 3)

Formaldehyde 11.5 ± 1.5 12.3 ± 1.0

α-Pinene 101.5 ± 21.0 103.3 ± 8.1

Styrene 1.3 ± 0.3 2.4 ± 1.0
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sampling campaign (September 2012) and at the end, 
6  months later (March 2013). The lines indicate the 
indoor air concentrations for the two sampling periods, 
showing a factor two decrease within the first 6 months 
after the building delivery (from 13.5  µg  m−3 for Sep-
tember 2012 to 5.5  µg  m−3 for March 2013). Material 
emissions, which are the main sources of VOCs, also 
significantly decreased during this period. As expected, 
formaldehyde is mostly emitted by wood based materi-
als. The surface concentration of the desk underside is 
particularly high (125 µg m−3). The high emission of the 
interactive board (125  µg  m−3) is more surprising: this 
can be explained by its coating made of melamine resin 
which contains formaldehyde. Another unexpected result 
is the emission of the PVC flooring which normally does 
not emit formaldehyde. It is supposed that the adhesive 
or other products (underlayment…) used for the floor are 
responsible for this emission. This result demonstrates 
that it is important to perform in  situ surface measure-
ments in order to take into account the way the material 
is implemented.

Material source ranking
Thanks to the previous results, the material sources were 
ranked at the beginning and at the end of the sampling 
period. To rank these data, the surface concentration 
Casi of each material i was weighted by its surface Si in 
the room (Casi x Si) and expressed as a percentage of the 
total material contribution (∑(Casi x Si)). The results for 
formaldehyde are presented in Fig.  3. Two main mate-
rial sources are identified: the floor and the desks. As 
the desks are made of particle board, they are obviously 
a significant source of formaldehyde. If action by source 

reduction should be proposed, the replacement of desks 
would certainly be the easiest to implement, instead of 
removing the floor. Figure 3 indicates also that the source 

Fig. 2 Formaldehyde surface concentrations of the building materials and furniture of the classroom at the beginning and at the end of the sam-
pling period.
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Fig. 3 Formaldehyde source ranking in the classroom in September 
2012 and in January 2013.
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ranking is the same at the beginning of the sampling 
campaign (September 2012) and 4 months later (January 
2013). Despite these numerous formaldehyde sources, 
the impact on indoor air quality is limited thanks to an 
efficient air exchange rate (3.3  h−1). The formaldehyde 
concentrations determined all along the sampling period 
did not exceed 15  µg  m−3 in indoor air and are largely 
below the guide value of 30  µg  m−3 which could be 
imposed by the future French legislation.

Identification of adsorption/desorption
Another advantage of the DOSEC is the possibility to 
highlight VOCs adsorption/desorption on material sur-
faces. An example is given for α-pinene in Fig. 4. The main 
source of this compound is located outside the classroom, 
in the adjacent hall where the walls are covered by pine 
panels (see picture in Fig. 4). The concentration decreased 
in the classroom whereas the source (indoor air of the 
hall) remained nearly constant (the concentration in the 
hall was not measured during week 49). These data may 
suggest that α-pinene, and hence, other VOCs, can be 

deposited on the building material surfaces which may 
constitute VOCs sinks. To support this hypothesis, the 
Fig. 5 shows that there was a clear deposit of α-pinene on 
the PVC floor all along the measurement campaign: the 
concentration of α-pinene in the air of the classroom was 
58 times higher than the surface concentration of the PVC 
flooring. Then, this ratio strongly decreased to reach 0.2 
during week 4, meaning a concentration five times higher 
at the floor surface than in air.

VOCs deposit on material surfaces is also reported by 
the literature where sorption processes are described 
through laboratory chamber testings [20, 21]. These pro-
cesses are rarely identified in the on-site studies. The 
main reported influencing factors are the boiling point 
and the chemical properties of the compound, the physi-
cal properties of the material, such as the surface area, 
and the environmental conditions [20]. Hence, Jorgensen 
et  al. [22] showed that α-pinene is better adsorbed by 
surface materials than toluene which is more volatile. 
They also demonstrated the adsorption of α-pinene on 
PVC flooring.
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IAQ modeling
The Fig. 6 presents the first modeling applications to for-
maldehyde in the different buildings studied. The indoor 
air concentrations were predicted according to the model 
described in the experimental section. The input data 
were the surface concentrations of all the building and 
furniture materials, the outdoor air concentrations and 
the air exchange rates. These results are promising, but 
modeling should be further developed and validated with 
more experimental trials. It could become a useful tool 
for decision making for IAQ management (ventilation 
conditions, selection of low emission materials).

Conclusion
Simple, sensitive and non-destructive methods to analyze 
VOCs and formaldehyde in indoor air and at the mate-
rial/air interface were developed. They allow in situ meas-
urements to study materials in their real environments, 

by taking into account the conditions for their imple-
mentation. DOSEC measurements also permit source 
identification and their ranking, and the quantification 
of adsorption/desorption processes at the material sur-
faces. A predictive modeling using these new measure-
ments as input data was also developed as a decision 
making tool. If the first applications aimed to support 
IAQ management in new buildings, the methodology is 
easily transposable to cultural heritage to evaluate IAQ 
in old and new buildings (e.g. staff and visitors exposure), 
to study IAQ in showcases (modeling for design support, 
impact of building materials on IAQ), and finally to study 
the impact of IAQ on sensitive materials such as art-
works, papers, paints, textiles, furniture or other cultural 
objects.
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