D. Azzimonti and D. Ginsbourger, Estimating orthant probabilities of high-dimensional Gaussian vectors with an application to set estimation, Journal of Computational and Graphical Statistics, vol.27, issue.2, pp.255-267, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01289126

J. Bect, F. Bachoc, and D. Ginsbourger, A supermartingale approach to Gaussian process based sequential design of experiments, Bernoulli, vol.25, issue.4A, pp.2883-2919, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01351088

R. Benassi, J. Bect, and E. Vazquez, Robust Gaussian process-based global optimization using a fully Bayesian expected improvement criterion, International Conference on Learning and Intelligent Optimization, pp.176-190, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00607816

Z. I. Botev, The normal law under linear restrictions: simulation and estimation via minimax tilting, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.79, issue.1, pp.125-148, 2017.

A. D. Bull, Convergence rates of efficient global optimization algorithms, Journal of Machine Learning Research, vol.12, pp.2879-2904, 2011.

M. A. Gelbart, J. Snoek, and R. P. Adams, Bayesian optimization with unknown constraints, UAI, 2014.

A. Genz, Numerical computation of multivariate normal probabilities, Journal of computational and graphical statistics, vol.1, issue.2, pp.141-149, 1992.

D. Ginsbourger, R. Le-riche, and L. Carraro, Kriging is well-suited to parallelize optimization, Computational intelligence in expensive optimization problems, pp.131-162, 2010.
URL : https://hal.archives-ouvertes.fr/emse-00436126

D. Ginsbourger, O. Roustant, and N. Durrande, On degeneracy and invariances of random fields paths with applications in Gaussian process modelling, Journal of statistical planning and inference, vol.170, pp.117-128, 2016.
URL : https://hal.archives-ouvertes.fr/emse-01222506

R. Gramacy and H. Lee, Optimization under unknown constraints, Bayesian Statistics, vol.9, 2011.

R. B. Gramacy, G. A. Gray, S. L. Digabel, H. K. Lee, P. Ranjan et al., Modeling an augmented Lagrangian for blackbox constrained optimization, vol.58, pp.1-11, 2016.

J. M. Hernandez-lobato, M. Gelbart, M. Hoffman, R. Adams, and Z. Ghahramani, Predictive entropy search for Bayesian optimization with unknown constraints, International Conference on Machine Learning, pp.1699-1707, 2015.

D. Jones, M. Schonlau, and W. Welch, Efficient global optimization of expensive black box functions, Journal of Global Optimization, vol.13, pp.455-492, 1998.

O. Kallenberg, Foundations of Modern Probability, 2002.

K. Kandasamy, W. Neiswanger, J. Schneider, B. Poczos, and E. P. Xing, Neural architecture search with Bayesian optimisation and optimal transport, Advances in Neural Information Processing Systems, pp.2016-2025, 2018.

A. Keane and P. Nair, Computational approaches for aerospace design: the pursuit of excellence, 2005.

D. V. Lindberg and H. K. Lee, Optimization under constraints by applying an asymmetric entropy measure, Journal of Computational and Graphical Statistics, vol.24, issue.2, pp.379-393, 2015.

A. F. López-lopera, F. Bachoc, N. Durrande, and O. Roustant, Finite-dimensional Gaussian approximation with linear inequality constraints, SIAM/ASA Journal on Uncertainty Quantification, vol.6, issue.3, pp.1224-1255, 2018.

H. Maatouk and X. Bay, A New Rejection Sampling Method for Truncated Multivariate Gaussian Random Variables Restricted to Convex Sets, pp.521-530, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01063978

S. P. Meyn and R. L. Tweedie, Markov chains and stochastic stability, 2012.

J. B. Mockus, V. Tiesis, and A. ?ilinskas, The application of Bayesian methods for seeking the extremum, Towards Global Optimization, vol.2, pp.117-129, 1978.

H. Nickisch and C. E. Rasmussen, Approximations for binary Gaussian process classification, Journal of Machine Learning Research, vol.9, pp.2035-2078, 2008.

A. Pakman and L. Paninski, Exact Hamiltonian Monte Carlo for truncated multivariate Gaussians, Journal of Computational and Graphical Statistics, vol.23, issue.2, pp.518-542, 2014.

V. Picheny, A stepwise uncertainty reduction approach to constrained global optimization, Artificial Intelligence and Statistics, pp.787-795, 2014.

V. Picheny, R. B. Gramacy, S. Wild, and S. L. Digabel, Bayesian optimization under mixed constraints with a slack-variable augmented Lagrangian, Advances in Neural Information Processing Systems, pp.1435-1443, 2016.

C. Rasmussen and C. Williams, Gaussian Processes for Machine Learning, 2006.

O. Roustant, D. Ginsbourger, Y. Deville, and . Dicekriging, DiceOptim: Two R packages for the analysis of computer experiments by Kriging-based metamodeling and optimization, Journal of statistical software, vol.51, issue.1, pp.1-55, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00495766

M. Sacher, R. Duvigneau, O. Le-maitre, M. Durand, E. Berrini et al., A classification approach to efficient global optimization in presence of noncomputable domains. Structural and Multidisciplinary Optimization, vol.58, pp.1537-1557, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01877105

M. J. Sasena, P. Papalambros, and P. Goovaerts, Exploration of metamodeling sampling criteria for constrained global optimization. Engineering optimization, vol.34, pp.263-278, 2002.

M. Schonlau, W. J. Welch, and D. R. Jones, Global versus local search in constrained optimization of computer models, Lecture Notes-Monograph Series, pp.11-25, 1998.

J. Snoek, H. Larochelle, and R. P. Adams, Practical Bayesian optimization of machine learning algorithms, Advances in neural information processing systems, pp.2951-2959, 2012.

N. Srinivas, A. Krause, S. Kakade, and M. Seeger, Gaussian process optimization in the bandit setting: no regret and experimental design, Proceedings of the 27th International Conference on Machine Learning, pp.1015-1022, 2010.

J. Taylor and Y. Benjamini, RestrictedMVN: multivariate normal restricted by affine constraints, 2017.

E. Vazquez and J. Bect, Convergence properties of the expected improvement algorithm with fixed mean and covariance functions, Journal of Statistical Planning and inference, vol.140, issue.11, pp.3088-3095, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00217562

E. Vazquez and J. Bect, Pointwise consistency of the kriging predictor with known mean and covariance functions, mODa 9-Advances in Model-Oriented Design and Analysis, pp.221-228, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00440827

J. Wu and P. Frazier, The parallel knowledge gradient method for batch Bayesian optimization, Advances in Neural Information Processing Systems, pp.3126-3134, 2016.

A. Zhigljavsky and A. ?ilinskas, Selection of a covariance function for a Gaussian random field aimed for modeling global optimization problems, Optimization Letters, vol.13, issue.2, pp.249-259, 2019.

A. ?ilinskas and J. Calvin, Bi-objective decision making in global optimization based on statistical models, Journal of Global Optimization, vol.74, issue.4, pp.599-609, 2019.