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Risk Bounds for Learning Multiple Components with

Permutation-Invariant Losses

Fabien Lauer

Université de Lorraine, CNRS, LORIA, F-54000 Nancy, France

Abstract

This paper proposes a simple approach to derive efficient error bounds for learning mul-
tiple components with sparsity-inducing regularization. We show that for such regularization
schemes, known decompositions of the Rademacher complexity over the components can be
used in a more efficient manner to result in tighter bounds without too much effort. We give
examples of application to switching regression and center-based clustering/vector quantiza-
tion. Then, the complete workflow is illustrated on the problem of subspace clustering, for
which decomposition results were not previously available. For all these problems, the pro-
posed approach yields risk bounds with mild dependencies on the number of components and
completely removes this dependence for nonconvex regularization schemes that could not be
handled by previous methods.

1 INTRODUCTION

This paper focuses on learning problems involving multiple components. A good example is vec-
tor quantization (or center-based clustering), in which one is interested in estimating a model (or
codebook) made of a finite number of components (or codepoints) that can well approximate the
observations of a random variable. Other examples include subspace clustering, where the data
points are approximated by a collection of subspaces rather than codepoints, and switching regres-
sion, that works similarly but with random input–output pairs and components that are functions
approximating the output given the input. In this paper, we propose a unified approach to derive
generalization error bounds for all these problems which yields bounds with a mild dependence on
the number of components for classes of interdependent components. While generalization might
not be the primary goal in these problems, such error bounds can lead to model selection strategies
and have been the subject of many studies, see, e.g., Bartlett et al. (1998); Biau et al. (2008);
Lauer (2019) and references therein.

More precisely, we show how to efficiently take into account the invariance of the loss with
respect to permutations of the components to derive risk bounds in multiple component learning
problems. The proposed approach is simple and applies to different problems merely by plugging
known decomposition results for these problems. For products of independent component classes, a
decomposition result is one that decomposes the Rademacher complexity of the loss class into a sum
of Rademacher complexities over the component classes. Previous works used such decompositions
to obtain risk bounds that grow linearly with the number C of components. But for classes
constrained in terms of a sparsity-inducing complexity measure, such as an ℓp-norm over the
complexities of the components, our approach yields risk bounds with a dependence on C that varies
for instance betweenO(

√
C) for p = 2 andO(logC) for p = 1. Such sparsity-inducing regularization

schemes were already considered by Lei et al. (2015); Maurer (2016), where similar dependencies
on the number of categories were obtained for multi-class classification. However, the method of
Lei et al. (2015); Maurer (2016) relies on more complex arguments involving structural results
on Rademacher and Gaussian complexities, duality, strong convexity and other tools developed
by Kakade et al. (2012). Here, we develop the approach in Sect. 2 in a few lines with simple
arguments and without invoking other tools. In addition, the proposed method also allows for
the use of nonconvex regularization by ℓp-quasi-norms with p ∈ (0, 1), which favors even sparser
models. While the analysis of Lei et al. (2015); Maurer (2016) was limited to p ≥ 1 and a
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logarithmic dependence on C, our approach completely removes the dependence on C for nonconvex
regularization with p < 1.

In Sect. 3, we apply our approach to switching regression, i.e., the problem of learning a col-
lection of regression models from a mixed data set. For sparsity-inducing regularization schemes,
this allows us to tighten the bounds of Lauer (2019) from a linear dependence on C to the ones
discussed above for the different values of p. Similar results are obtained in Sect. 4 for vector
quantization/clustering in Hilbert space, for which the literature only provides error bounds with
either a radical dependence on C in the finite-dimensional case (Bartlett et al., 1998) or a linear
one for infinite-dimensional Hilbert spaces (Biau et al., 2008). Finally, Section 5 is dedicated to
the subspace clustering problem, which has a lot of applications in computer vision, for instance
for motion segmentation or face clustering (Vidal, 2011; Vidal et al., 2016), but has not yet re-
ceived much attention from the viewpoint of learning theory and risk bounds. This offers us the
opportunity to illustrate the complete workflow for the application of the proposed approach.

Technically, our bounds are based on the analysis of the Rademacher complexity of the loss
class to derive uniform risk bounds. More advanced tools, such as those of Bartlett et al. (2005)
or Mendelson (2014), could be used to derive bounds with faster convergence rates or even for
unbounded variables. However, these tools are particularly efficient to bound the risk of the
empirical risk minimizer, which, for all the multiple component learning problems we consider,
cannot be easily computed (and there is no satisfactory convex surrogate loss whose minimizer
could be analyzed instead). Therefore, we must focus on uniform error bounds in order to apply
them to the models returned by practical algorithms.

Notation. We use [C] = {1, . . . , C} to refer to the set of integers from 1 to C. Matrices are
written in bold and uppercase letters, while vectors are in non-bold lowercase letters. Random
variables are written in uppercase letters. Thus, X will refer to a random vector, while X is a
matrix. The identity matrix is denoted by I. The Frobenius norm ‖A‖F of a matrix A ∈ R

m×n of

entries Aij is defined as ‖A‖F =
√

∑m
i=1

∑n
j=1 A

2
ij . Tr(A) denotes the trace of the matrix A and

we have ‖A‖F =

√

Tr(A⊤
A). For a vector a ∈ R

C and any p ∈ (0,∞), ‖a‖p =
(

∑C
k=1 |ak|p

)1/p

denotes its ℓp-norm for p ≥ 1 or ℓp-quasi-norm for p ∈ (0, 1), while ‖a‖∞ = maxk∈[C] |ak| is its
ℓ∞-norm. Given two sets, X and Y, YX stands for the set of functions from X into Y.

2 GENERAL APPROACH

We focus on learning problems in which the aim is to learn C ≥ 2 components from a set V on the
basis of data points zi ∈ Z, i = 1, . . . n. In the following, Z will be instantiated either as X × Y
for problems with input space X and output space Y or just as X in contexts without outputs.

Specifically, let Z be a random variable taking values in Z. A particular problem is characterized
by a loss functional ℓ : VC × Z, which measures the pointwise error of a model f = (fk)1≤k≤C

made of C components fk from V . Then, the aim is to minimize, over a predefined model class
F ⊂ VC , the risk

L(f) = Eℓ(f, Z) (1)

on the basis of a sample of n independent copies Zi of Z. In particular, we concentrate on the
standard strategy that minimizes the empirical risk

L̂n(f) =
1

n

n
∑

i=1

ℓ(f, Zi). (2)

However, we here focus on statistical aspects of learning and will not discuss algorithmic issues
related to the actual minimization of this quantity, which can be highly nontrivial (Aloise et al.,
2009; Lauer, 2016). Instead, we will particularly pay attention to the derivation of upper bounds
on the risk that hold uniformly over the class F , and thus not only for the empirical risk minimizer
which remains elusive in many practical cases.

Before we expose our approach to the derivation of such bounds, we first give a few definitions
and start with the one that characterizes the losses considered in this paper.
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Definition 1 (Permutation-invariant loss). A permutation-invariant loss over C components from
a set V is a loss functional ℓ : VC × Z such that, for any permutation (l(k))1≤k≤C of [C], any
f = (fk)1≤k≤C ∈ VC and any z ∈ Z,

ℓ(f, z) = ℓ((fl(k))1≤k≤C , z).

Definition 2 (Loss class). Given a bounded loss ℓ : VC × Z → [0,M ] and a class F ⊂ VC, the
loss class induced by F is

LF =
{

ℓf ∈ [0,M ]Z : ℓf (z) = ℓ(f, z), f ∈ F
}

.

Definition 3 (Rademacher complexities). Let T be a random variable with values in T . For
n ∈ N

∗, let T n = (Ti)1≤i≤n be an n-sample of independent copies of T , let σn = (σi)1≤i≤n

be a sequence of independent random variables uniformly distributed in {−1,+1}. Let F be a
class of real-valued functions with domain T . The empirical Rademacher complexity of F given
T n = tn = (ti)1≤i≤n is

R̂n (F) = E sup
f∈F

1

n

n
∑

i=1

σif (ti) ,

and its Rademacher complexity, Rn (F) = ER̂n (F), is obtained by taking the expectation wrt. T n.

The regularization schemes for learning multiple components that we consider are based on two
levels of complexity measures. On the first level, let ω : V → [0,+∞) be a complexity measure for
a single component from V and, for any model f ∈ VC , let Ω(f) = (ω(fk))1≤k≤C denote the vector

of RC obtained by a component-wise application of ω to f . Then, at a second level, we measure
the complexity of the overall model f by the ℓp-(quasi-)norm of Ω(f). Therefore, in this paper we
will focus on the derivation of error bounds for classes

F =
{

f ∈ VC : ‖Ω(f)‖p ≤ Λ
}

. (3)

Definition 4 (Ordered class F̃). Given a complexity measure ω as defined above, we denote by f̃
an ordered version of f ∈ VC with its components ordered in decreasing order of their complexity:

∀f = (fk)1≤k≤C ∈ VC , f̃ = (fl(k))1≤k≤C ,

where l(k) is the kth element of a permutation of [C] that ensures

ω(f̃1) ≥ · · · ≥ ω(f̃C).

Then, for any class F ⊂ VC , the ordered class F̃ is defined by reordering the elements of F :

F̃ =
{

f̃ : f ∈ F
}

.

Note that for classes built as F = FC
0 = F0 × · · · × F0 for some F0 ⊂ V , the ordered class F̃

is a subset of F : ∀f ∈ FC
0 , f̃ ∈ FC

0 . This is also true for classes F as in (3), which introduce a
dependence between components, encoded in the choice of ℓp-(quasi-)norm. For instance, if we let
p = ∞, then F in (3) can be written as a product of independent component classes:

F∞ =

{

f ∈ VC : max
k∈[C]

ω(fk) ≤ Λ

}

(4)

=

C
∏

k=1

{fk ∈ V : ω(fk) ≤ Λ} .

But if we consider p ∈ (0,∞), then F in (3) cannot be written as a mere product, since the com-
plexity ω(fk) influences the range of values allowed for ω(fj), j 6= k. For such classes, the ordered

class is a strict subset of F : F̃ ⊂ F , and F̃ 6= F . The inclusion results from the permutation-
invariance of the ℓp-norm: ‖Ω(f̃)‖p = ‖Ω(f)‖p ≤ Λ; and this also implies that there are some

f ∈ F with ω(f2) > ω(f1) and thus that do not belong to F̃ .
The interest of the ordered class F̃ and the fact that it is a subset of F is highlighted by the

following, which shows that for permutation-invariant losses, we can restrict the analysis to this
subset of F .
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Lemma 1. Given a bounded permutation-invariant loss ℓ : VC ×Z → [0,M ] and a class F ⊂ VC ,
the risk of any f ∈ F can be bounded in terms of the Rademacher complexity of the loss class
induced by the ordered class F̃ instead of F , namely, each of the following holds with probability at
least 1− δ:

∀f ∈ F , L(f) ≤ L̂n(f) + 2Rn(LF̃ ) +M

√

log 1
δ

2n
,

∀f ∈ F , L(f) ≤ L̂n(f) + 2R̂n(LF̃ ) + 3M

√

log 2
δ

2n
.

Proof. By Definitions 1 and 4, L(f) = L(f̃) and L̂n(f) = L̂n(f̃). Therefore, the lemma is just
a direct consequence of standard error bounds, e.g., Theorem 3.1 in Mohri et al. (2012), holding
uniformly over the ordered class F̃ instead of F .

For classes F as in (3) with dependent components, a second interest lies in the fact that F̃ can
be easily embedded in a product of independent component classes with decreasing complexity:

Lemma 2. Let F be as in (3) with p ∈ (0,∞]. Then,

F̃ ⊆ Πp =

C
∏

k=1

{

fk ∈ V : ω(fk) ≤ k−
1

pΛ
}

.

Proof. Assume p < ∞ (see (4) for the case p = ∞). Then, with F as in (3), the permutation-
invariance of the ℓp-norm implies that, for all f ∈ F ,

‖Ω(f̃)‖pp = ‖Ω(f)‖pp ≤ Λp,

while, for any k ∈ [C],

‖Ω(f̃)‖pp =

C
∑

l=1

ω(f̃l)
p ≥

k
∑

l=1

ω(f̃l)
p ≥ kω(f̃k)

p,

where the last inequality is due to the ordering of the f̃k’s in Def. 4. Therefore, for all f̃ ∈ F̃ and
all k ∈ [C],

ω(f̃k)
p ≤ Λp

k
,

which proves the claimed set inclusion.

Note that for p = ∞ the product class Πp in Lemma 2 is exactly F due to (4), whereas for

all finite p, Πp is strictly larger than F and thus F̃ : there exist f in the product of component

classes with
∑C

k=1 ω(fk)
p > Λp that are thus not in F and not in F̃ ⊂ F . Therefore, the in-

clusion provided by Lemma 2 is not tight, but its interest lies at another level, namely, the fact
that decomposition results available for products of independent classes can help us to bound the
Rademacher complexity of LF̃ .

Instead of deriving a generic framework with cumbersome notations that would encompass
many different settings but would also hide the simplicity of the approach, the following illustrates
the application of the method on a few examples. In particular, we detail below the settings of
switching regression and center-based clustering, for which decomposition results can be found in
the literature. Then, we will show in Sect. 5 how to develop the complete workflow for subspace
clustering from the definition of the loss function to the derivation of efficient bounds, including
the obtention of a decomposition result.

For all these settings we shall derive error bounds with a dependence on C characterized by p
via the function

α(C, p) =



















C, if p = ∞
p

p−1C
1−1/p, if 1 < p < ∞

1 + logC, if p = 1
1

1−p , if 0 < p < 1.

(5)
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In particular, the dependence on C will be linear for p = ∞ (the case of independent component
classes), radical for p = 2 (the most common case), logarithmic for p = 1 (a common choice for
sparsity-inducing regularization) and bounded by a constant for p < 1 (corresponding to nonconvex
regularizers).

3 SWITCHING REGRESSION

In a regression problem, one must learn a model that can accurately predict the real output
Y ∈ Y ⊂ R given the input X ∈ X . Switching regression refers to the specific case where
the process generating Y can arbitrarily switch between different behaviors. The difficulty then
comes from the fact that the switchings are not observed and the association of the data points
(xi, yi) ∈ Z = X × Y to these behaviors is unknown. Thus, the aim is to learn a collection of
functions fk : X → R from a mixed training sample including examples from multiple sources. An
important application is that of switched system identification in control theory, see Paoletti et al.
(2007); Lauer and Bloch (2019) for an overview.

In such a context, the goal is to find f ∈ (RX )C so that at least one of its components can
accurately estimate the output Y given X . The loss can thus be defined on the basis of

min
k∈[C]

(y − fk(x))
2.

More precisely, we assume that Y is bounded and, without loss of generality, that Y = [−1/2, 1/2].
Thus, we can clip the outputs of the components at 1/2 without increasing the error and compute
the loss with respect to the clipped functions as in Lauer (2019):

ℓ(f, x, y) = min
k∈[C]

(

y −min

{

1

2
,max

{−1

2
, fk(x)

}})2

. (6)

This ensures that the loss is bounded by 1 for all y ∈ Y. In addition, it is easy to see that this loss
remains permutation-invariant in the sense of Definition 1.

Here, we focus on kernel machines and consider models with components from a reproducing
kernel Hilbert space (RKHS) H ⊂ R

X of reproducing kernel K (see Berlinet and Thomas-Agnan
(2004) for details). Thus, we set V = H and the complexity measure ω to the RKHS norm ‖·‖ in the
approach described above, which yields the risk bound in Theorem 1 below for classes regularized
by ‖Ω(f)‖p = (

∑C
k=1 ‖fk‖p)1/p.

Theorem 1. Let F =
{

f ∈ HC :
∥

∥

[

‖f1‖ . . . ‖fC‖
]
∥

∥

p
≤ Λ

}

and α(C, p) be as in (5).

Then, with probability at least 1 − δ on the random draw of the training sample (Zi)1≤i≤n =
((Xi, Yi))1≤i≤n, the switching regression risk based on the loss (6) is uniformly bounded for all
f ∈ F by

L(f)≤ L̂n(f) + 4α(C, p)
Λ
√

∑n
i=1K(Xi, Xi)

n
+ 3

√

log 2
δ

2n
.

Proof. By the permutation-invariance of ℓ in (6), we can apply Lemma 1 and the result follows
from the computation of the (empirical) Rademacher complexity of LF̃ . Then, Lemma 2 gives

F̃ ⊆ Πp and thus LF̃ ⊆ LΠp
, which further yields

R̂n(LF̃ ) ≤ R̂n(LΠp
).

Since Πp is a product of independent component classes, the decomposition result in Theorem 3
of Lauer (2019) then gives

R̂n(LF̃ ) ≤ 2

C
∑

k=1

R̂n

({

fk ∈ H : ‖fk‖ ≤ k−
1

pΛ
})

,

5



while standard computations for RKHS balls (see, e.g., Bartlett and Mendelson (2002)) further
ensure that

R̂n(LF̃ ) ≤
2Λ
√

∑n
i=1 K(Xi, Xi)

n

C
∑

k=1

k−
1

p .

Thus, the theorem is proved after a straightforward check that
∑C

k=1 k
− 1

p ≤ α(C, p) holds for all
C ≥ 2 and p ∈ (0,∞] (see Appendix A for details).

For independent component classes (p = ∞), this result coincides with that in Eq. (18) of Lauer
(2019). However, for p < ∞, the dependence on C improves according to the definition of α(C, p)
in (5). In particular, a radical dependence is obtained for p = 2, which could only be obtained in

Lauer (2019) through covering numbers and a loss in the order of log3/2 n in terms of convergence
rate. In addition, the dependence on C further improves for smaller values of p.

4 VECTOR QUANTIZATION/CLUSTERING

Let X be a Hilbert space and ‖ ·‖ denote its norm. The aim of vector quantization, as described by
Bartlett et al. (1998), is to learn a subset {fk}Ck=1 ⊂ X of C elements from X , called codepoints,
that can well represent the observations of the random variable X ∈ X . Specifically, we can limit
the analysis to nearest neighbors quantizers, for which the error of a model f = (fk)1≤k≤C is
measured via the loss

ℓ(f, x) = min
k∈[C]

‖x− fk‖2. (7)

Then, the quantity (1) (with Z = X) is known as the distortion of f for which upper bounds are
of primary importance.

This problem can also be seen as a center-based clustering one, in which the goal is to divide
the observations of X into C groups centered at the fk’s by minimizing the empirical risk (2) based
on (7). By considering the Voronöı partition of X associated to these centers, Biau et al. (2008)
interpret the quantity (1) as the clustering risk measuring the performance of a particular model
f ∈ XC .

The setting just described enters our framework in a straightforward manner with V = Z = X
and ω = ‖ · ‖. We can thus easily obtain efficient bounds on the clustering risk for regularized
classes on the basis of the results of Biau et al. (2008).

Theorem 2. Let X ∈ X be such that P (‖X‖ ≤ Λx) = 1, F = {f ∈ XC :
∥

∥

[

‖f1‖ . . . ‖fC‖
]∥

∥

p
≤

Λ} and α(C, p) be as in (5). Then, with probability at least 1−δ on the random draw of the training
sample (Xi)1≤i≤n, the clustering risk based on the loss (7) is uniformly bounded for all f ∈ F by

L(f) ≤ L̂n(f) + 2α(C, p)

(

2Λ
√

∑n
i=1 ‖Xi‖2
n

+
Λ2

√
n

)

+ 3(Λ2
x + Λ2)

√

log 2
δ

2n
.

Proof. It is easy to see that the clustering loss (7) is permutation-invariant in the sense of Defini-
tion 1 and uniformly bounded by M = Λ2

x+Λ2. Thus, as for the switching regression case, we can

apply Lemmas 1 and 2. Then, it remains only to show that R̂n(LΠp
) is smaller than

∑C
k=1 k

− 1

p

times a term independent of k, C and p, in order to conclude with the use of
∑C

k=1 k
− 1

p ≤ α(C, p)
(see Appendix A).

This can be done by following the proof of Theorem 2.1 in Biau et al. (2008), which includes
both a decomposition result and the computation of the Rademacher complexity of the loss class
for Hilbert space balls. In fact, the statements in Biau et al. (2008) do not concern the empirical
version of Rademacher complexity and focus on products of similar classes so that the result is C
times the Rademacher complexity wrt. a single component. However, Biau et al. (2008) give all
the ingredients to obtain the result in the form stated here. For completeness, we give the details
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in Appendix B, which lead to

R̂n(LΠp
) ≤

C
∑

k=1

(

2k−
1

pΛ
√
∑n

i=1 ‖Xi‖2
n

+
k−

2

pΛ2

√
n

)

(8)

≤
(

2Λ
√

∑n
i=1 ‖Xi‖2
n

+
Λ2

√
n

)

C
∑

k=1

k−
1

p . (9)

As for switching regression, this result encompasses for p = ∞ the case of independent com-
ponent classes found in Biau et al. (2008). For p < ∞, the improved bound could also have been
obtained by following the approach of Lei et al. (2015) or Maurer (2016), which is also very efficient

for regularized classes constrained by
∑C

k=1 ‖fk‖p ≤ Λp. However, as highlighted in the introduc-
tion, this would have required p ≥ 1 and a much heavier machinery, whereas our approach remains
simple and provides a proof of Theorem 2 also valid for nonconvex regularizers with p ∈ (0, 1) as
an almost direct consequence of previous decomposition results.

5 SUBSPACE CLUSTERING

Subspace clustering differs from center-based clustering in that the components fk are subspaces
of X instead of points. In the following, we drop the notation fk and instead focus on the subspace
basis in the form of matrices Bk ∈ R

d×dk .
Our starting point in Sect. 5.1 is a uniform bound on the error when learning a single subspace.

Then, we extend this to multiple subspaces in Sect. 5.2 and finally tighten the bound for classes
defined by ℓp-norm regularization in Sect. 5.3.

5.1 Uniform Error Bounds for Subspace Estimation

A d1-dimensional subspace of R
d can be represented by a basis {b1, . . . , bd1

} ⊂ R
d, i.e., by a

matrix B ∈ R
d×d1 with B

⊤
B = I, which yields the projection matrix P = BB

⊤. Then, the
approximation error incurred by the projection of a point x onto the subspace is measured by the
loss

ℓ(B, x) = ‖Px− x‖2 = ‖BB
⊤x− x‖2. (10)

We are interested here in bounding the expected approximation error (or risk), L(B) = Eℓ(B, X),
in terms of its empirical estimation, L̂n(B) = 1

n

∑n
i=1 ℓ(B, Xi), for any distribution of X over

X = {x ∈ R
d : ‖x‖ ≤ Λx} and uniformly over the class of d1-dimensional subspaces of Rd with

basis in
B =

{

B ∈ R
d×d1 : B⊤

B = I

}

. (11)

This can be done as follows (see Appendix C for the proof).

Theorem 3. Let X ∈ R
d be a random vector such that P (‖X‖ ≤ Λx) = 1. Then, with probability

at least 1−δ on the random draw of a data matrix X = [X1, . . . , Xn] ∈ R
d×n made of n independent

copies of X, for any subspace of dimension d1 and any basis B of that subspace,

L(B) ≤ L̂n(B) + 2

√
d1‖X‖F

n
+ 3Λ2

x

√

log 2
δ

2n
.

Note that this bound is uniform and is of the same order as the non-uniform one obtained by
Shawe-Taylor et al. (2005).
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5.2 Multiple Subspace Learning/Subspace Clustering

We now consider the problem of learning multiple subspaces, represented by basis Bk ∈ R
d×dk

and projection matrices P k, k = 1, . . . , C, to obtain an approximation of the distribution of X .
This setting extends the vector quantization framework to models with subspace components and
can be formally encoded by the loss

ℓ((Bk)1≤k≤C , x) = min
k∈[C]

‖BkB
⊤
k x− x‖2. (12)

In this context, the subspace clustering risk, L(B) = Eℓ(B, X), of a collection B = (Bk)1≤k≤C

of subspace basis Bk can be bounded in terms of the sum of the square roots of the subspace
dimensions as follows.

Theorem 4. Let X ∈ R
d be a random vector such that P (‖X‖ ≤ Λx) = 1. Then, with probability

at least 1−δ on the random draw of a data matrix X = [X1, . . . , Xn] ∈ R
d×n made of n independent

copies of X, for any collection of basis B of subspaces with fixed dimensions dk,

L(B) ≤ L̂n(B) + 2

∑C
k=1

√
dk‖X‖F
n

+ 3Λ2
x

√

log 2
δ

2n
.

Proof. Define the loss class LB as in Definition 2 from

B =

C
∏

k=1

Bk, with Bk =
{

Bk ∈ R
d×dk : B⊤

k Bk = I

}

.

Then, its complexity can be decomposed as a sum of those of classes induced by the Bk’s. To see
this, note that, with P k = BkB

⊤
k , the loss can be reformulated as

ℓ((Bk)1≤k≤C , x) = ‖x‖2 − max
k∈[C]

‖P kx‖2.

Thus, given (Xi)1≤i≤n = (xi)1≤i≤n,

R̂n(LB) = E sup
B∈B

1

n

n
∑

i=1

σi min
k∈[C]

‖P kxi − xi‖2

≤ E
1

n

n
∑

i=1

σi‖xi‖2 + E sup
B∈B

1

n

n
∑

i=1

−σi max
k∈[C]

‖P kxi‖2

= E sup
B∈B

1

n

n
∑

i=1

σi max
k∈[C]

‖P kxi‖2

≤
C
∑

k=1

E sup
Bk∈Bk

1

n

n
∑

i=1

σi‖P kxi‖2,

where the third line uses E
1
n

∑n
i=1 σi‖xi‖2 = 1

n

∑n
i=1 ‖xi‖2Eσi = 0 and the fact that σi and −σi

share the same distribution, while the last line is due to Lemma 8.1 in Mohri et al. (2012). Then,
similar computations as in the proof of Theorem 3 (see Appendix C) give, for any k ∈ [C],

E sup
Bk∈Bk

1

n

n
∑

i=1

σi‖P kxi‖2 ≤
√
dk‖X‖F

n

and the result follows from the application of Theorem 3.1 in Mohri et al. (2012) and the fact that
the loss defined as the pointwise minimum of losses bounded by Λ2

x is also bounded by Λ2
x.

Theorem 4 applies to products of independent component classes, which here means that the
dimensions of the subspaces do not depend one on the other, and yields a linear dependence on
C. The next result below yields tighter bounds by precisely taking dependencies between the
dimensions into account.
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5.3 Tighter Bounds with ℓp-norm Regularization

We have now all the basic building blocks necessary to apply the approach of Sect. 2 and produce
tighter bounds for subspace clustering. Specifically, we set ω(fk) =

√
dk and focus on the set of

basis collections with ℓp-norm regularization:

Bp =
{

B = (Bk)1≤k≤C : Bk ∈ R
d×dk ,B⊤

k Bk = I,
∥

∥

[√
d1 . . .

√
dC
]
∥

∥

p
≤ Λ

}

.

Theorem 5. Let X ∈ R
d be a random vector such that P (‖X‖ ≤ Λx) = 1 and α(C, p) be as in (5).

Then, with probability at least 1−δ on the random draw of a data matrix X = [X1, . . . , Xn] ⊂ R
d×n

made of n independent copies of X, for any collection of subspace basis B ∈ Bp,

L(B) ≤ L̂n(B) + 2α(C, p)
Λ‖X‖F

n
+ 3Λ2

x

√

log 2
δ

2n
.

Proof. First, note that the subspace clustering loss (12) is permutation-invariant according to
Def. 1. Thus, Lemmas 1 and 2 apply and it remains only to bound R̂n(LΠp

) with

Πp =

C
∏

k=1

{

Bk ∈ R
d×dk : B⊤

k Bk = I,
√

dk ≤ k−
1

pΛ
}

.

Here, the proof of Theorem 4 provides us with

R̂n(LΠp
) ≤

∑C
k=1

√
dk‖X‖F
n

≤ Λ‖X‖F
n

C
∑

k=1

k−
1

p

and plugging
∑C

k=1 k
− 1

p ≤ α(C, p) (see Appendix A) completes the proof.

Thus, we recover bounds for subspace clustering with similar dependencies on the main pa-
rameters (C and n) as those obtained for switching regression and center-based clustering. Again,
we emphasize that once a bound was found for products of independent component classes with
a linear dependence on C (Theorem 4), our approach easily yielded mild dependencies for classes
with dependent components.

6 CONCLUSIONS

The paper presented a simple approach to derive risk bounds with mild dependence on the number
C of components for classes with interdependent components. Only two ingredients are needed
to obtain such results with the proposed approached: a permutation-invariant loss and a bound
holding for products of independent component classes and providing a decomposition of their
Rademacher complexity into a sum of the component complexities.

Future work will consider the application of the proposed approach to other settings and
permutation-invariant losses. The new bounds for subspace clustering could also lead to novel
model selection strategies in order to tune the number of subspaces and their dimensions from the
data.

A USEFUL BOUNDS

We show here that, for any integer C ≥ 2 and p ∈ (0,∞], with α(C, p) as defined in (5),

C
∑

k=1

k−
1

p ≤ α(C, p).

9



For p = ∞, we easily see that
∑C

k=1 k
− 1

p =
∑C

k=1 1 = C. For p < ∞, we can write

C
∑

k=1

k−
1

p = 1 +

C
∑

k=2

k−
1

p ≤ 1 +

∫ C

1

x− 1

p dx.

Then, for p = 1, we have

C
∑

k=1

k−
1

p ≤ 1 +

∫ C

1

1

x
dx = 1 + logC − log 1 = 1 + logC,

while for p 6= 1, we have

C
∑

k=1

k−
1

p ≤ 1 +
p

p− 1
(C(p−1)/p − 1) =

pC1−1/p − 1

p− 1
.

So for p > 1, we get
C
∑

k=1

k−
1

p <
pC1−1/p

p− 1
,

while for p < 1, we obtain
C
∑

k=1

k−
1

p ≤ 1− pC1−1/p

1− p
≤ 1

1− p
.

B COMPLEMENTS FOR THE PROOF OF THEOREM 2

We here restate the results embedded in the proof of Theorem 2.1 in Biau et al. (2008) with
empirical Rademacher complexities and a summation over the component classes, as used in the
proof of Theorem 2. First, we reformulate the clustering loss as

ℓ(f, x) = min
k∈[C]

‖x− fk(x)‖2

= ‖x‖2 + min
k∈[C]

−2 〈x, fk〉+ ‖fk‖2,

which, for Πp =
∏C

k=1 Πp,k and given (Xi)1≤i≤n = (xi)1≤i≤n, leads to

R̂n

(

LΠp

)

= E sup
f∈Πp

1

n

n
∑

i=1

σi

(

‖xi‖2 + min
k∈[C]

−2 〈xi, fk〉+ ‖fk‖2
)

≤ E
1

n

n
∑

i=1

σi‖xi‖2 + E sup
f∈Πp

1

n

n
∑

i=1

σi min
k∈[C]

−2 〈xi, fk〉+ ‖fk‖2

= E sup
f∈Πp

1

n

n
∑

i=1

σi max
k∈[C]

2 〈xi, fk〉 − ‖fk‖2

≤
C
∑

k=1

E sup
fk∈Πp,k

1

n

n
∑

i=1

σi(2 〈xi, fk〉 − ‖fk‖2),

where the last line is due to Lemma 8.1 in Mohri et al. (2012). Then, with Λk = k−1/pΛ, for any
k ∈ [C],

E sup
fk∈Πp,k

1

n

n
∑

i=1

σi(2 〈xi, fk〉 − ‖fk‖2) ≤ 2E sup
fk∈Πp,k

1

n

n
∑

i=1

σi 〈xi, fk〉+ E sup
fk∈Πp,k

1

n

n
∑

i=1

σi‖fk‖2

≤ 2E sup
fk∈Πp,k

1

n

〈

n
∑

i=1

σixi, fk

〉

+
Λ2
k√
n

≤ 2
Λk

n
E

∥

∥

∥

∥

∥

n
∑

i=1

σixi

∥

∥

∥

∥

∥

+
Λ2
k√
n
≤ 2

Λk

n

√

√

√

√

n
∑

i=1

‖xi‖2 +
Λ2
k√
n
.
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The second inequality, i.e., (9), is merely due to the fact that k−2/p ≤ k−1/p for all k ≥ 1.

C PROOF OF THEOREM 3

Since P = BB
⊤ is a projection matrix, it is symmetric and idempotent: P⊤

P = PP = P . Thus,

ℓ(B, x) = ‖Px− x‖2 = x⊤
P

⊤
Px− 2x⊤

Px+ x⊤x

= −x⊤
Px+ ‖x‖2 = ‖x‖2 − ‖Px‖2.

Hence, the loss is bounded with probability one as 0 ≤ ℓ(B, X) ≤ ‖X‖2 ≤ Λ2
x and standard error

bounds such as Theorem 3.1 in Mohri et al. (2012) apply to the loss class based on (10) and (11),

LB =
{

ℓ ∈ [0,Λ2
x]

X : ℓ(x) = ‖BB
⊤x− x‖2, B ∈ B

}

.

Then, the statement is a consequence of the estimation of the empirical Rademacher complexity
of LB given (Xi)1≤i≤n = (xi)1≤i≤n:

R̂n(LB) = E sup
B∈B

1

n

n
∑

i=1

σi(‖xi‖2 − ‖Pxi‖2)

≤ E
1

n

n
∑

i=1

σi‖xi‖2 + E sup
B∈B

1

n

n
∑

i=1

−σi‖Pxi‖2,

where E
1
n

∑n
i=1 σi‖xi‖2 = 1

n

∑n
i=1 ‖xi‖2Eσi = 0 and −σi has the same distribution has σi. Thus,

using ‖Pxi‖2 = x⊤
i Pxi = Tr(x⊤

i Pxi) = Tr(Pxix
⊤
i ), we obtain

R̂n(LB) ≤ E sup
B∈B

1

n

n
∑

i=1

σi Tr(Pxix
⊤
i )

= E sup
B∈B

1

n
Tr

(

P

(

n
∑

i=1

σixix
⊤
i

))

≤ E sup
B∈B

1

n
‖P ‖F

∥

∥

∥

∥

∥

n
∑

i=1

σixix
⊤
i

∥

∥

∥

∥

∥

F

,

where

∥

∥

∥

∥

∥

n
∑

i=1

σixix
⊤
i

∥

∥

∥

∥

∥

2

F

= Tr

((

n
∑

i=1

σixix
⊤
i

)(

n
∑

i=1

σixix
⊤
i

))

=

n
∑

i=1

n
∑

j=1

σiσj Tr
(

xix
⊤
i xjx

⊤
j

)

=

n
∑

i=1

n
∑

j=1

σiσj Tr
(

(x⊤
i xj)

2
)

=

n
∑

i=1

n
∑

j=1

σiσj(x
⊤
i xj)

2.

In addition, since the trace of an idempotent matrix equals its rank and rank(B) = rank(BB
⊤),

we have

‖P ‖F =

√

Tr(P⊤
P ) =

√

Tr(P ) =
√

rank(P ) =
√

rank(B) =
√

d1.
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Thus,

R̂n(LB) ≤
1

n
E

√

√

√

√d1

n
∑

i=1

n
∑

j=1

σiσj(x⊤
i xj)2

≤ 1

n

√

√

√

√d1

n
∑

i=1

‖xi‖2 =

√
d1‖X‖F

n
.
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