S. K. Godunov, A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics, Matematicheskii Sbornik, vol.89, issue.3, pp.271-306, 1959.

R. J. Leveque, Finite volume methods for hyperbolic problems, vol.31, 2002.

J. L. Steger and R. Warming, Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods, Journal of computational physics, vol.40, issue.2, pp.263-293, 1981.

B. Van-leer, Flux-vector splitting for the euler equation, Upwind and High-Resolution Schemes, pp.80-89, 1997.

P. L. Roe, Approximate riemann solvers, parameter vectors, and difference schemes, Journal of computational physics, vol.43, issue.2, pp.357-372, 1981.

S. Osher and F. Solomon, Upwind difference schemes for hyperbolic systems of conservation laws, Mathematics of computation, vol.38, issue.158, pp.339-374, 1982.

A. Harten, P. D. Lax, and B. V. Leer, On upstream differencing and godunov-type schemes for hyperbolic conservation laws, SIAM review, vol.25, issue.1, pp.35-61, 1983.

B. Einfeldt, On godunov-type methods for gas dynamics, SIAM Journal on Numerical Analysis, vol.25, issue.2, pp.294-318, 1988.

V. V. Rusanov, Calculation of interaction of non-steady shock waves with obstacles, NRC, Division of Mechanical Engineering, 1962.

S. D. Kim, B. J. Lee, H. J. Lee, and I. Jeung, Robust hllc riemann solver with weighted average flux scheme for strong shock, Journal of Computational Physics, vol.228, issue.20, pp.7634-7642, 2009.

E. F. Toro, Riemann solvers and numerical methods for fluid dynamics: a practical introduction, 2013.

B. Einfeldt, C. Munz, P. L. Roe, and B. Sjögreen, On godunovtype methods near low densities, Journal of computational physics, vol.92, issue.2, pp.273-295, 1991.

J. J. Quirk, A contribution to the great riemann solver debate, Upwind and High-Resolution Schemes, pp.550-569, 1997.

K. Huang, H. Wu, H. Yu, and D. Yan, Cures for numerical shock instability in hllc solver, International journal for numerical methods in fluids, vol.65, issue.9, pp.1026-1038, 2011.

H. Wu, L. Shen, and Z. Shen, A hybrid numerical method to cure numerical shock instability, Commun. Comput. Phys, vol.8, pp.1264-1271, 2010.

H. Nishikawa and K. Kitamura, Very simple, carbuncle-free, boundary-layer-resolving, rotated-hybrid riemann solvers, Journal of Computational Physics, vol.227, issue.4, pp.2560-2581, 2008.

Z. Shen, W. Yan, and G. Yuan, A robust hllc-type riemann solver for strong shock, Journal of Computational Physics, vol.309, pp.185-206, 2016.

J. Mandal and V. Panwar, Robust hll-type riemann solver capable of resolving contact discontinuity, Computers & Fluids, vol.63, pp.148-164, 2012.

A. V. Rodionov, Artificial viscosity in godunov-type schemes to cure the carbuncle phenomenon, Journal of Computational Physics, vol.345, pp.308-329, 2017.

S. Chen, C. Yan, B. Lin, L. Liu, and J. Yu, Affordable shock-stable item for godunov-type schemes against carbuncle phenomenon, Journal of Computational Physics, vol.373, pp.662-672, 2018.

S. Chen, C. Yan, B. Lin, and Y. Li, A new robust carbuncle-free roe scheme for strong shock, Journal of Scientific Computing, vol.77, issue.2, pp.1250-1277, 2018.

Z. Chen, X. Huang, Y. Ren, and M. Zhou, General procedure for riemann solver to eliminate carbuncle and shock instability, AIAA Journal, vol.55, issue.6, pp.2002-2015, 2017.

S. Simon and J. , A cure for numerical shock instability in hllc riemann solver using antidiffusion control, Computers & Fluids, vol.174, pp.144-166, 2018.

S. Simon and J. , A simple cure for numerical shock instability in the hllc riemann solver, Journal of Computational Physics, vol.378, pp.477-496, 2019.

Z. Jiang, C. Yan, J. Yu, and B. Gao, Effective technique to improve shock anomalies and heating prediction for hypersonic flows, AIAA Journal, pp.1475-1479, 2017.

Z. Sun, S. Inaba, and F. Xiao, Boundary variation diminishing (bvd) reconstruction: A new approach to improve godunov schemes, Journal of Computational Physics, vol.322, pp.309-325, 2016.

F. Xiao, S. Ii, and C. Chen, Revisit to the thinc scheme: a simple algebraic vof algorithm, Journal of Computational Physics, vol.230, issue.19, pp.7086-7092, 2011.

F. Xiao, Y. Honma, and T. Kono, A simple algebraic interface capturing scheme using hyperbolic tangent function, International Journal for Numerical Methods in Fluids, vol.48, issue.9, pp.1023-1040, 2005.

S. Davis, Simplified second-order godunov-type methods, SIAM Journal on Scientific and Statistical Computing, vol.9, issue.3, pp.445-473, 1988.

D. S. Balsara, Self-adjusting, positivity preserving high order schemes for hydrodynamics and magnetohydrodynamics, Journal of Computational Physics, vol.231, issue.22, pp.7504-7517, 2012.

M. Dumbser and D. S. Balsara, A new efficient formulation of the hllem riemann solver for general conservative and nonconservative hyperbolic systems, Journal of Computational Physics, vol.304, pp.275-319, 2016.

L. Flandrin and P. Charrier, An improved approximate riemann solver for hypersonic bidimensional flows, Fourteenth International Conference on Numerical Methods in Fluid Dynamics, pp.251-258, 1995.

M. Pandolfi and D. , Numerical instabilities in upwind methods: analysis and cures for the "carbuncle" phenomenon, Journal of Computational Physics, vol.166, issue.2, pp.271-301, 2001.

X. Deng, B. Xie, R. Loubère, Y. Shimizu, and F. Xiao, Limiter-free discontinuity-capturing scheme for compressible gas dynamics with reactive fronts, Computers & Fluids, vol.171, pp.1-14, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01791898

X. Deng, S. Inaba, B. Xie, K. Shyue, and F. Xiao, High fidelity discontinuity-resolving reconstruction for compressible multiphase flows with moving interfaces, Journal of Computational Physics, vol.371, pp.945-966, 2018.

B. Van-leer, Towards the ultimate conservative difference scheme. v. a second-order sequel to godunov's method, Journal of computational Physics, vol.32, issue.1, pp.101-136, 1979.

H. Guillard and C. Viozat, On the behaviour of upwind schemes in the low mach number limit, Computers & fluids, vol.28, issue.1, pp.63-86, 1999.
URL : https://hal.archives-ouvertes.fr/hal-01534938

B. Thornber, D. Drikakis, R. J. Williams, and D. Youngs, On entropy generation and dissipation of kinetic energy in highresolution shock-capturing schemes, Journal of Computational Physics, vol.227, issue.10, pp.4853-4872, 2008.

F. Rieper, On the dissipation mechanism of upwind-schemes in the low mach number regime: A comparison between roe and hll, Journal of Computational Physics, vol.229, issue.2, pp.221-232, 2010.

G. A. Sod, A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, Journal of computational physics, vol.27, issue.1, pp.1-31, 1978.
URL : https://hal.archives-ouvertes.fr/hal-01635155

C. Shu and S. Osher, Efficient implementation of essentially nonoscillatory shock-capturing schemes, Journal of computational physics, vol.77, issue.2, pp.439-471, 1988.

C. W. Schulz-rinne, Classification of the riemann problem for two-dimensional gas dynamics, SIAM journal on mathematical analysis, vol.24, issue.1, pp.76-88, 1993.

A. Kurganov and E. Tadmor, Solution of two-dimensional riemann problems for gas dynamics without riemann problem solvers, Numerical Methods for Partial Differential Equations: An International Journal, vol.18, issue.5, pp.584-608, 2002.

M. Dumbser, O. Zanotti, R. Loubère, and S. Diot, A posteriori subcell limiting of the discontinuous galerkin finite element method for hyperbolic conservation laws, Journal of Computational Physics, vol.278, pp.47-75, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01914588

X. Deng, B. Xie, H. Teng, and F. Xiao, High resolution multi-moment finite volume method for supersonic combustion on unstructured grids, Applied Mathematical Modelling, vol.66, pp.404-423, 2019.

X. Deng, B. Xie, F. Xiao, and H. Teng, New accurate and efficient method for stiff detonation capturing, AIAA Journal, vol.56, issue.10, pp.4024-4038, 2018.

P. Yang, H. D. Ng, H. Teng, and Z. Jiang, Initiation structure of oblique detonation waves behind conical shocks, Physics of Fluids, vol.29, issue.8, p.86104, 2017.
DOI : 10.1063/1.4999482

Y. Zhang, L. Zhou, J. Gong, H. D. Ng, and H. Teng, Effects of activation energy on the instability of oblique detonation surfaces with a one-step chemistry model, Physics of Fluids, vol.30, issue.10, p.106110, 2018.

L. I. Sedov, Similarity and dimensional methods in mechanics, 1993.

J. Peng, X. Deng, and F. Xiao, A direct ale multi-moment finite volume scheme for the compressible euler equations, Communications in Computational Physics, vol.24, pp.1300-1325, 2018.

S. Kumar, B. Patnaik, and G. Liu, A skewed kernel approach for the simulation of shocks using sph, International Journal for Numerical Methods in Engineering, vol.111, issue.4, pp.383-400, 2017.

P. Woodward and P. Colella, The numerical simulation of twodimensional fluid flow with strong shocks, Journal of computational physics, vol.54, issue.1, pp.115-173, 1984.

Z. Xu and C. Shu, Anti-diffusive flux corrections for high order finite difference weno schemes, Journal of Computational Physics, vol.205, issue.2, pp.458-485, 2005.
DOI : 10.1016/j.jcp.2004.11.014

S. Kumar and B. Patnaik, A multimass correction for multicomponent fluid flow simulation using smoothed particle hydrodynamics, International Journal for Numerical Methods in Engineering, vol.113, issue.13, pp.1929-1949, 2018.