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Chapter 1

Introduction

The finite volume method is a discretization method which is well suited for the numerical simulation of
various types (elliptic, parabolic or hyperbolic, for instance) of conservation laws; it has been extensively
used in several engineering fields, such as fluid mechanics, heat and mass transfer or petroleum engineer-
ing. Some of the important features of the finite volume method are similar to those of the finite element
method, see ODEN [121]: it may be used on arbitrary geometries, using structured or unstructured
meshes, and it leads to robust schemes. An additional feature is the local conservativity of the numerical
fluxes, that is the numerical flux is conserved from one discretization cell to its neighbour. This last
feature makes the finite volume method quite attractive when modelling problems for which the flux is of
importance, such as in fluid mechanics, semi-conductor device simulation, heat and mass transfer. .. The
finite volume method is locally conservative because it is based on a “ balance” approach: a local balance
is written on each discretization cell which is often called “control volume”; by the divergence formula,
an integral formulation of the fluxes over the boundary of the control volume is then obtained. The fluxes
on the boundary are discretized with respect to the discrete unknowns.

Let us introduce the method more precisely on simple examples, and then give a description of the
discretization of general conservation laws.

1 Examples

Two basic examples can be used to introduce the finite volume method. They will be developed in details
in the following chapters.

Example 1.1 (Transport equation) Consider first the linear transport equation

{ uy(z,t) + div(vu)(z,t) = 0,z R*tecR,, (1.1)

u(x,0) = uop(z), r € R?

where u; denotes the time derivative of u, v € C*(IR*, IR?), and uy € L>(IR?). Let 7 be a mesh of
IR? consisting of polygonal bounded convex subsets of IR? and let K € T be a “control volume”, that
is an element of the mesh 7. Integrating the first equation of (1.1) over K yields the following “balance
equation” over K:

/K ug(z, t)de + /6}( v(z,t) -ng(z)u(x,t)dy(z) = 0,Vt € R4, (1.2)

where ng denotes the normal vector to 0K, outward to K. Let k € IR’ be a constant time discretization
step and let ¢, = nk, for n € IN. Writing equation (1.2) at time ¢,, n € IN and discretizing the time



partial derivative by the Euler explicit scheme suggests to find an approximation (") (x) of the solution
of (1.1) at time ¢, which satisfies the following semi-discretized equation:

l w "D (1) — ™) (2))dx v(z cng(2)u™ (x ) = n
7] W@ - @t [ vt mi@u @) <0 vm e NYE €T, (13

where dvy denotes the one-dimensional Lebesgue measure on 0K and u(®) (z) = u(x,0) = uo(z). We need

to define the discrete unknowns for the (finite volume) space discretization. We shall be concerned here

principally with the so-called “cell-centered” finite volume method in which each discrete unkwown is

associated with a control volume. Let (u%)) KeTneN denote the discrete unknowns. For K € T, let Ex

be the set of edges which are included in 0K, and for ¢ C 0K, let ng , denote the unit normal to o
outward to K. The second integral in (1.3) may then be split as:

/ V(@ tn) g (@)u™ (@)dy(z) = > [ v, tn) g ou™ (@)dy(); (1.4)
oK o€E VY
for o C 0K, let

ue, :/v(z,tn)nK,G(x)dy(m.

Each term of the sum in the right-hand-side of (1.4) is then discretized as

w _ [ v i, >0,
Fro= ™) (n) e (n) (1.5)
Vi UL, if vy, <0,

where L denotes the neighbouring control volume to K with common edge o. This “upstream” or
“upwind” choice is classical for transport equations; it may be seen, from the mechanical point of view,
as the choice of the “upstream information” with respect to the location of ¢. This choice is crucial in
the mathematical analysis; it ensures the stability properties of the finite volume scheme (see chapters 5
and 6). We have therefore derived the following finite volume scheme for the discretization of (1.1):

m(K)
k

U(}?) :/ uo(z)dz,
K

(W) — () 4 3 F') =0,¥K € T,¥n e N,
o (1.6)

where m(K) denotes the measure of the control volume K and F I(("L is defined in (1.5). This scheme
is locally conservative in the sense that if o is a common edge to the control volumes K and L, then
Fr,o = —FL . This property is important in several application fields; it will later be shown to be a key
ingredient in the mathematical proof of convergence. Similar schemes for the discretization of linear or
nonlinear hyperbolic equations will be studied in chapters 5 and 6.

Example 1.2 (Stationary diffusion equation) Consider the basic diffusion equation

{ —Au = f on Q=]0,1[x]0, 1],

u =0 on 0f). (1.7)

Let 7 be a rectangular mesh. Let us integrate the first equation of (1.7) over a control volume K of the
mesh; with the same notations as in the previous example, this yields:

> /fvu(z)-nK,(,dy(z):/Kf(z)dz. (1.8)

o€l VY



For each control volume K € T, let xx be the center of K. Let ¢ be the common edge between the
control volumes K and L. One way to approximate the flux — [ Vu(z) - ng sdy(z) (although clearly
not the only one), is to use a centered finite difference approximation:

__m(o)
FK,a = — dg (’LLL — UK), (19)

where (ug)rke7 are the discrete unknowns and d, is the distance between xx and xy. This finite
difference approximation of the first order derivative Vu - n on the edges of the mesh (where n denotes
the unit normal vector) is consistent: the truncation error on the flux is of order h, where h is the
maximum length of the edges of the mesh. We may note that the consistency of the flux holds because
for any o = K|L common to the control volumes K and L, the line segment [xx x| is perpendicular
to 0 = K|L. Indeed, this is the case here since the control volumes are rectangular. This property is
satisfied by other meshes which will bestudied hereafter. It is crucial for the discretization of diffusion
operators.
In the case where the edge o is part of the boundary, then d, denotes the distance between the center
zg of the control volume K to which o belongs and the boundary. The flux — [ Vu(z) - ng odvy(z), is
then approximated by

Fro = md(0>uK, (1.10)

o

Hence the finite volume scheme for the discretization of (1.7) is:

Y Fro=m(K)fx,VK €T, (1.11)

ocelk

where Fi . is defined by (1.9) and (1.10), and fx denotes (an approximation of) the mean value of f
on K. We shall see later (see chapters 2, 3 and 4) that the finite volume scheme is easy to generalize
to a triangular mesh, whereas the finite difference method is not. As in the previous example, the finite
volume scheme is locally conservative, since for any edge o separating K from L, one has Fi » = —FT, 5.

2 The finite volume principles for general conservation laws

The finite volume method is used for the discretization of conservation laws. We gave in the above section
two examples of such conservation laws. Let us now present the discretization of general conservation
laws by finite volume schemes. As suggested by its name, a conservation law expresses the conservation
of a quantity ¢(x,t). For instance, the conserved quantities may be the energy, the mass, or the number
of moles of some chemical species. Let us first assume that the local form of the conservation equation
may be written as

qi(x,t) + divF (z,t) = f(x,t), (2.1)

at each point = and each time ¢ where the conservation of ¢ is to be written. In equation (2.1), (-):
denotes the time partial derivative of the entity within the parentheses, div represents the space divergence
operator: divF = 0F /0x1+---+0F/0xq, where F = (Fy,. .., F;)t denotes a vector function depending
on the space variable x and on the time ¢, x; is the i-th space coordinate, for : = 1,...,d, and d is the
space dimension, i.e. d = 1,2 or 3; the quantity F is a flux which expresses a transport mechanism of
q; the “source term” f expresses a possible volumetric exchange, due for instance to chemical reactions
between the conserved quantities.

Thanks to the physicist’s work, the problem can be closed by introducing constitutive laws which relate
q, F, f with some scalar or vector unknown u(x, t), function of the space variable 2 and of the time ¢. For
example, the components of u can be pressures, concentrations, molar fractions of the various chemical
species by unit volume. .. The quantity ¢ is often given by means of a known function g of u(x,t), of the



space variable z and of the time ¢, that is ¢(x,t) = q(«,t,u(x,t)). The quantity F may also be given by
means of a function of the space variable z, the time variable ¢ and of the unknown u(x,t) and (or) by
means of the gradient of u at point (x,t).... The transport equation of Example 1.1 is a particular case
of (2.1) with ¢(x,t) = u(z,t), F(x,t) = vu(z,t) and f(z,t) = f(2); so is the stationary diffusion equation
of Example 1.2 with ¢(x,t) = u(x), F(x,t) = —Vu(x), and f(z,t) = f(x). The source term f may also
be given by means of a function of z, t and u(x,t).

Example 2.1 (The one-dimensional Euler equations) Let us consider as an example of a system
of conservation laws the 1D Euler equations for equilibrium real gases; these equations may be written
under the form (2.1), with

() (e )

where p,u, E' and p are functions of the space variable x and the time ¢, and refer respectively to the
density, the velocity, the total energy and the pressure of the particular gas under consideration. The
system of equations is closed by introducing the constitutive laws which relate p and E to the specific
volume 7, with 7 = % and the entropy s, through the constitutive laws:

Oe u?
b= E(Ta S) and B = p(E(T,S) + 7)5

where ¢ is the internal energy per unit mass, which is a given function of 7 and s.

Equation (2.1) may be seen as the expression of the conservation of ¢ in an infinitesimal domain; it is
formally equivalent to the equation

/Kq(x,tg)dz/Kq(:c,t1)dz+/: /m( F(z,t) - n(z)dy(x)dt (2.2)

/tltz/Kf(x,t)dzdt,

for any subdomain K and for all times ¢; and t2, where ng () is the unit normal vector to the boundary
0K, at point x, outward to K. Equation (2.2) expresses the conservation law in subdomain K between
times ¢; and t3. Here and in the sequel, unless otherwise mentionned, dx is the integration symbol for
the d-dimensional Lebesgue measure in R? and dy is the integration symbol for the (d — 1)-dimensional
Hausdorff measure on the considered boundary.

2.1 Time discretization

The time discretization of Equation (2.1) is performed by introducing an increasing sequence (t,)nenN
with tg = 0. For the sake of simplicity, only constant time steps will be considered here, keeping in
mind that the generalization to variable time steps is straightforward. Let k& € IR’ denote the time step,
and let t,, = nk, for n € IN. Tt can be noted that Equation (2.1) could be written with the use of a
space-time divergence. Hence, Equation (2.1) could be either discretized using a space-time finite volume
discretization or a space finite volume discretization with a time finite difference scheme (the explicit
Euler scheme, for instance). In the first case, the conservation law is integrated over a time interval and
a space “control volume” as in the formulation (2.1). In the latter case, it is only integrated space wise,
and the time derivative is approximated by a finite difference scheme; with the explicit Euler scheme, the
term (q); is therefore approximated by the differential quotient (¢ — ¢(™)/k, and ¢(™ is computed
with an approximate value of u at time t¢,, denoted by u("). Implicit and higher order schemes may also
be used.



2.2 Space discretization

In order to perform a space finite volume discretization of equation (2.1), a mesh T of the domain  of
IR?, over which the conservation law is to be studied, is introduced. The mesh is such that © = U xeTK,
where an element of 7', denoted by K, is an open subset of 2 and is called a control volume. Assumptions
on the meshes will be needed for the definition of the schemes; they also depend on the type of equation
to be discretized.

For the finite volume schemes considered here, the discrete unknowns at time ¢,, are denoted by ugg),

K € T. The value u&?) is expected to be some approximation of u on the cell K at time t,,. The basic
principle of the classical finite volume method is to integrate equation (2.1) over each cell K of the mesh
T. One obtains a conservation law under a nonlocal form (related to equation (2.2)) written for the
volume K. Using the Euler time discretization, this yields

(D) () — () (1
/K g <>k ) g /6 Flat) mx(a)d(x) = /K f (@, tn)de, (23)

where ng (z) is the unit normal vector to 0K at point z, outward to K.

The remaining step in order to define the finite volume scheme is therefore the approximation of the “flux”,
F(xz,t,) - nk(z), across the boundary 0K of each control volume, in terms of {u(Ln), L € T} (this flux
approximation has to be done in terms of {u7"', L € T’} if one chooses the implicit Euler scheme instead of
the explicit Euler scheme for the time discretization). More precisely, omitting the terms on the boundary
of Q, let K|L =KNL, with K, L €T, the exchange term (from K to L), fK|LF(z,tn) “ng(x)dy(x),
between the control volumes K and L during the time interval [t,,, t,+1) is approximated by some quantity,
FI((n)L, which is a function of {ug\z), M € T} (or a function of {u};*, M € T} for the implicit Euler scheme,

or more generally a function of {ug\z), M € T} and {u?f', M € T} if the time discretization is a one-step

method). Note that FI(QL = 0 if the Hausdorff dimension of K N L is less than d — 1 (e.g. KN L is a
point in the case d = 2 or a line segment in the case d = 3).

Let us point out that two important features of the classical finite volume method are
1. the conservativity, that is FI(?)L = —Fé"l)(, for all K and L € T and for all n € IN.

2. the “consistency” of the approximation of F(x,t,) - nk(x), which has to be defined for each relation
type between F and the unknowns.

These properties, together with adequate stability properties which are obtained by estimates on the
approximate solution, will give some convergence properties of the finite volume scheme.

3 Comparison with other discretization techniques

The finite volume method is quite different from (but sometimes related to) the finite difference method
or the finite element method. On these classical methods see e.g. DAHLQUIST and BJORCK [44], THOMEE
[147], CIARLET [29], CIARLET [30], ROBERTS and THOMAS [129].

Roughly speaking, the principle of the finite difference method is, given a number of discretization points
which may be defined by a mesh, to assign one discrete unknown per discretization point, and to write
one equation per discretization point. At each discretization point, the derivatives of the unknown are
replaced by finite differences through the use of Taylor expansions. The finite difference method becomes
difficult to use when the coefficients involved in the equation are discontinuous (e.g. in the case of
heterogeneous media). With the finite volume method, discontinuities of the coefficients will not be any
problem if the mesh is chosen such that the discontinuities of the coefficients occur on the boundaries of
the control volumes (see sections 7 and 11, for elliptic problems). Note that the finite volume scheme is
often called “finite difference scheme” or “cell centered difference scheme”. Indeed, in the finite volume



method, the finite difference approach can be used for the approximation of the fluxes on the boundary
of the control volumes. Thus, the finite volume scheme differs from the finite difference scheme in that
the finite difference approximation is used for the flux rather than for the operator itself.

The finite element method (see e.g. CIARLET [29]) is based on a variational formulation, which is written
for both the continuous and the discrete problems, at least in the case of conformal finite element methods
which are considered here. The variational formulation is obtained by multiplying the original equation
by a “test function”. The continuous unknown is then approximated by a linear combination of “shape”
functions; these shape functions are the test functions for the discrete variational formulation (this is
the so called “Galerkin expansion”); the resulting equation is integrated over the domain. The finite
volume method is sometimes called a “discontinuous finite element method” since the original equation
is multiplied by the characteristic function of each grid cell which is defined by 1x(x) = 1, if x € K,
1g(x) =0, if © ¢ K, and the discrete unknown may be considered as a linear combination of shape
functions. However, the techniques used to prove the convergence of finite element methods do not
generally apply for this choice of test functions. In the following chapters, the finite volume method will
be compared in more detail with the classical and the mixed finite element methods.

From the industrial point of view, the finite volume method is known as a robust and cheap method
for the discretization of conservation laws (by robust, we mean a scheme which behaves well even for
particularly difficult equations, such as nonlinear systems of hyperbolic equations and which can easily be
extended to more realistic and physical contexts than the classical academic problems). The finite volume
method is cheap thanks to short and reliable computational coding for complex problems. It may be more
adequate than the finite difference method (which in particular requires a simple geometry). However,
in some cases, it is difficult to design schemes which give enough precision. Indeed, the finite element
method can be much more precise than the finite volume method when using higher order polynomials,
but it requires an adequate functional framework which is not always available in industrial problems.
Other more precise methods are, for instance, particle methods or spectral methods but these methods
can be more expensive and less robust than the finite volume method.

4 General guideline

The mathematical theory of finite volume schemes has recently been undertaken. Even though we choose
here to refer to the class of scheme which is the object of our study as the ”finite volume” method, we
must point out that there are several methods with different names (box method, control volume finite
element methods, balance method to cite only a few) which may be viewed as finite volume methods.
The name "finite difference” has also often been used referring to the finite volume method. We shall
mainly quote here the works regarding the mathematical analysis of the finite volume method, keeping
in mind that there exist numerous works on applications of the finite volume methods in the applied
sciences, some references to which may be found in the books which are cited below.

Finite volume methods for convection-diffusion equations seem to have been first introduced in the early
sixties by TICHONOV and SAMARSKII [145], SAMARSKII [133] and SAMARSKII [134].

The convergence theory of such schemes in several space dimensions has only recently been undertaken.
In the case of vertex-centered finite volume schemes, studies were carried out by SAMARSKII, LAZAROV
and MAKAROV [135] in the case of Cartesian meshes, HEINRICH [83], BANK and ROSE [7], CA1 [20],
CA1, MANDEL and Mc CoORMICK [21] and VANSELOW [152] in the case of unstructured meshes; see
also MORTON and SULI [114], SULT [142], MACKENZIE, and MORTON [106], MORTON, STYNES and
SULI [115] and SHASHKOV [139] in the case of quadrilateral meshes. Cell-centered finite volume schemes
are addressed in MANTEUFFEL and WHITE [107], FORSYTH and SAMMON [69], WEISER and WHEELER
[161] and LAzZAROV, MISHEV and VASSILEVSKI [102] in the case of Cartesian meshes and in VASSILESKI,
PETROVA and LAZAROV [153], HERBIN [84], HERBIN [85], LAZAROV and MISHEV [101], MISHEV [112]
in the case of triangular or Voronoi meshes; let us also mention COUDIERE, VILA and VILLEDIEU [40] and
COUDIERE, VILA and VILLEDIEU [41] where more general meshes are treated, with, however, a somewhat
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technical geometrical condition. In the pure diffusion case,the cell centered finite volume method has also
been analyzed with finite element tools: AGOUZAL, BARANGER, MAITRE and OUDIN [4], ANGERMANN
[1], BARANGER, MAITRE and OUDIN [8], ARBOGAST, WHEELER and YOTOV [5], ANGERMANN [1].
Semilinear convection-diffusion are studied in FEISTAUER, FELCMAN and LUKACOVA-MEDVIDOVA [62]
with a combined finite element-finite volume method, EYMARD, GALLOUET and HERBIN [55] with a
pure finite volume scheme.

Concerning nonlinear hyperbolic conservation laws, the one-dimensional case is now classical; let us men-
tion the following books on numerical methods for hyperbolic problems: GODLEWSKI and RAVIART [75],
LEVEQUE [103], GODLEWSKI and RAVIART [76], KRONER [94], and references therein. In the multidi-
mensional case, let us mention the convergence results which where obtained in CHAMPIER, GALLOUET
and HERBIN [25], KRONER and ROKYTA [95], COCKBURN, COQUEL and LEFLOCH [33] and the error
estimates of COCKBURN, COQUEL and LEFLOCH [32] and VILA [158] in the case of an explicit scheme
and EYMARD, GALLOUET, GHILANI and HERBIN [52] in the case of explicit and implicit schemes. The
proof of the error estimate of EYMARD, GALLOUET, GHILANI and HERBIN [52], which is concerned with
a flux of the form wv(x,t)f(u) can easily be adapted for general fluxes of the form F'(x,t, u) CHAINAIS-
HILLAIRET [23].

The purpose of the following chapters is to lay out a mathematical framework for the convergence and
error analysis of the finite volume method for the discretization of elliptic, parabolic or hyperbolic partial
differential equations under conservative form, following the philosophy of the works of CHAMPIER,
GALLOUET and HERBIN [25], HERBIN [84], EYMARD, GALLOUET, GHILANI and HERBIN [52] and
EYMARD, GALLOUET and HERBIN [55]. In order to do so, we shall describe the implementation of the
finite volume method on some simple (linear or non-linear) academic problems, and develop the tools
which are needed for the mathematical analysis. This approach helps determine the properties of finite
volume schemes which lead to “good” schemes for complex applications.

Chapter 2 introduces the finite volume discretization of an elliptic operator in one space dimension.
The resulting numerical scheme is compared to finite difference, finite element and mixed finite element
methods in this particular case. An error estimate is given; this estimate is in fact contained in results
shown later in the multidimensional case; however, with the one-dimensional case, one can already un-
derstand the basic principles of the convergence proof, and understand the difference with the proof of
MANTEUFFEL and WHITE [107] or FORSYTH and SAMMON [69], which does not seem to generalize to
the unstructured meshes. In particular, it is made clear that, although the finite volume scheme is not
consistent in the finite difference sense since the truncation error does not tend to 0, the conservativity of
the scheme, together with a consistent approximation of the fluxes and some “stability” allow the proof of
convergence. The scheme and the error estimate are then generalized to the case of a more general elliptic
operator allowing discontinuities in the diffusion coefficients. Finally, a semilinear problem is studied, for
which a convergence result is proved. The principle of the proof of this result may be used for nonlinear
problems in several space dimensions. It is used in Chapter 3 in order to prove convergence results for
linear problems when no regularity on the exact solution is known.

In Chapter 3, the discretization of elliptic problems in several space dimensions by the finite volume
method is presented. Structured meshes are shown to be an easy generalization of the one-dimensional
case; unstructured meshes are then considered, for Dirichlet and Neumann conditions on the boundary
of the domain. In both cases, admissible meshes are defined, and, following EYMARD, GALLOUET and
HERBIN [55], convergence results (with no regularity on the data) and error estimates assuming a C?
or H? regular solution to the continuous problems are proved. As in the one-dimensional case, the
conservativity of the scheme, together with a consistent approximation of the fluxes and some “stability”
are used for the proof of convergence. In addition to the properties already used in the one-dimensional
case, the multidimensional estimates require the use of a “discrete Poincaré” inequality which is proved
in both Dirichlet and Neumann cases, along with some compactness properties which are also used and
are given in the last section. It is then shown how to deal with matrix diffusion coefficients and more
general boundary conditions. Singular sources and mesh refinement are also studied.
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Chapter 4 deals with the discretization of parabolic problems. Using the same concepts as in Chapter 3,
an error estimate is given in the linear case. A nonlinear degenerate parabolic problem is then studied,
for which a convergence result is proved, thanks to a uniqueness result which is proved at the end of the
chapter.

Chapter 5 introduces the finite volume discretization of a hyperbolic operator in one space dimension.
Some basics on entropy weak solutions to nonlinear hyperbolic equations are recalled. Then the concept
of stability of a scheme is explained on a simple linear advection problem, for which both finite difference
and finite volume schemes are considered. Some well known schemes are presented with a finite volume
formulation in the nonlinear case. A proof of convergence using a “weak BV inequality” which was found
to be crucial in the multidimensional case (Chapter 6) is given in the one-dimensional case for the sake of
clarity. For the sake of completeness, the proof of convergence based on “strong BV estimates” and the
Lax-Wendroff theorem is also recalled, although it is not used for general meshes in the multidimensional
case.

In Chapter 6, finite volume schemes for the discretization of multidimensional nonlinear hyperbolic con-
servation equations are studied. Under suitable assumptions, which are satisfied by several well known
schemes, it is shown that the considered schemes are L stable (this is classical) but also satisfy some
“weak BV inequality”. This “weak BV” inequality is the key estimate to the proof of convergence of the
schemes. Following EYMARD, GALLOUET, GHILANI and HERBIN [52], both time implicit and explicit
discretizations are considered. In the case of the implicit scheme, the existence of the solution must first
be proved. The approximate solutions are shown to satisfy some discrete entropy inequalities. Using the
weak BV estimate, the approximate solution is also shown to satisfy some continuous entropy inequali-
ties. Introducing the concept of “entropy process solution” to the nonlinear hyperbolic equations (which
is similar to the notion of measure valued solutions of DIPERNA [46]), the approximate solutions are
proved to converge towards an entropy process solution as the mesh size tends to 0. The entropy process
solution is shown to be unique, and is therefore equal to the entropy weak solution, which concludes the
convergence of the approximate solution towards the entropy weak solution. Finally error estimates are
proved for both the explicit and implicit schemes.

The last chapter is concerned with systems of equations. In the case of hyperbolic systems which are
considered in the first part, little is known concerning the continuous problem, so that the schemes which
are introduced are only shown to be efficient by numerical experimentation. These “rough” schemes seem
to be efficient for complex cases such as the Euler equations for real gases. The incompressible Navier-
Stokes equations are then considered; after recalling the classical staggered grid finite volume formulation
(see e.g. PATANKAR [126]), a finite volume scheme defined on a triangular mesh for the Stokes equation
is studied. In the case of equilateral triangles, the tools of Chapter 3 allow to show that the approximate
velocities converge to the exact velocities. Systems arising from modelling multiphase flow in porous
media are then considered. The convergence of the approximate finite volume solution for a simplified
case is then proved with the tools introduced in Chapter 6.

More precise references to recent works on the convergence of finite volume methods will be made in the
following chapters. However, we shall not quote here the numerous works on applications of the finite
volume methods in the applied sciences.



Chapter 2

A one-dimensional elliptic problem

The purpose of this chapter is to give some developments of the example 1.2 of the introduction in the
one-dimensional case. The formalism needed to define admissible finite volume meshes is first given
and applied to the Dirichlet problem. After some comparisons with other relevant schemes, convergence
theorems and error estimates are provided. Then, the case of general linear elliptic equations is handled
and finally, a first approach of a nonlinear problem is studied and introduces some compactness theorems
in a quite simple framework; these compactenss theorems will be useful in further chapters.

5 A finite volume method for the Dirichlet problem

5.1 Formulation of a finite volume scheme

The principle of the finite volume method will be shown here on the academic Dirichlet problem, namely a
second order differential operator without time dependent terms and with homogeneous Dirichlet bound-
ary conditions. Let f be a given function from (0, 1) to IR, consider the following differential equation:

(x), z=€(0,1),
, (5.1)

—Uge(x) =

u(0) =

u(l) =
If f € C([0,1],R), there exists a unique solution u € C?([0,1],IR) to Problem (5.1). In the sequel, this
exact solution will be denoted by u. Note that the equation —u,, = f can be written in the conservative
form div(F) = f with F = —u,.
In order to compute a numerical approximation to the solution of this equation, let us define a mesh,
denoted by T, of the interval (0, 1) consisting of N cells (or control volumes), denoted by K;, i =1,..., N,
and N points of (0,1), denoted by x;, i = 1,..., N, satisfying the following assumptions:

° o=

Definition 5.1 (Admissible one-dimensional mesh) An admissible mesh of (0, 1), denoted by T, is
given by a family (K;)i=1,... v, N € IN", such that K; = (;,_1,2;,1), and a family (z;)i—o,... N+1 such
that

xozx%:0<$1<x%<~~~<$i_%<xi<xi+%<~~~<$N<:EN+%::EN+1:1.
One sets
N
hi:m(Ki):xH%—xifé,izl,...,N, and therefore E h; =1,
. i=1
h; :xi—xifé,hi :xH%—xi,z:l,...,N,
hiJr :xi+1—$i,’i:0,...,N,

sizefT) =h=max{h;,;i=1,...,N}.

12
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The discrete unknowns are denoted by w;, ¢ = 1,..., N, and are expected to be some approximation of
u in the cell K; (the discrete unknown w; can be viewed as an approximation of the mean value of u
over K, or of the value of u(z;), or of other values of u in the control volume Kj...). The first equation
of (5.1) is integrated over each cell K;, as in (2.3) and yields

fuz(xH%)jLuz(xif%):/ f(x)dx, i=1,...,N.
K;

A reasonable choice for the approximation of —us(z;; 1) (at least, for i =1,..., N — 1) seems to be the
differential quotient

i1 — Uy
Fyy=———

1 =
2 hisi

This approximation is consistent in the sense that, if u € C2(]0,1],IR), then there exists C' € IR only
depending on u such that

By = F2y ) < O, e = — 2222002 (52)

The quantity R, 1 is called the consistency error .

Remark 5.1 (Using the mean value) Assume that x; is the center of K;. Let @; denote the mean
value over K; of the exact solution u to Problem (5.1). One may then remark that |@; — u(x;)| < Ch2,
with some C only depending on u; it follows easily that (@41 — @:)/h;y1 = uaz(2;4 1) + 0(h) also holds,
fori=1,...,N —1 (recall that h = max{h;,i=1,..., N}). Hence the approximation of the flux is also
consistent if the discrete unknowns u;, i = 1,--- , N, are viewed as approximations of the mean value of
u in the control volumes.

The Dirichlet boundary conditions are taken into account by using the values imposed at the boundaries to
compute the fluxes on these boundaries. Taking these boundary conditions into consideration and setting
fi = hi / . f(x)dx for i = 1,..., N (in an actual computation, an approximation of f; by numerical

integration can be used), the finite volume scheme for problem (5.1) reads

Fiy—Fs=hifi,i=1,..,N (5.3)
Uit1 — Uq
Fioy === izl N -1, (5.4)
w1
Fpn=—— .
L= 55)
2
uN
r = —. 5.6
N+3 hN-{-% (5.6)
Note that (5.4), (5.5), (5.6) may also be written
le:,w, =0,...,N, (5.7)
2 hH—%
setting
Uy = UN+1 = 0 (58)

The numerical scheme (5.3)-(5.6) may be written under the following matrix form:

AU = b, (5.9)
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where U = (ug,...,un)t, b= (by,...,bx)t, with (5.8) and with A and b defined by

1 (7 Ujp1 — Ui | Uj — Uj—1
h; h,_1

AU); =
(AU) i
b-—l/ﬂ )d
z—hi K r)ax,

),1:1,...,N, (5.10)

"

i=1,...,N, (5.11)

Remark 5.2 There are other finite volume schemes for problem (5.1).

1. For instance, it is possible, in Definition 5.1, to take 1 > 0, xx < 1 and, for the definition of the
scheme (that is (5.3)-(5.6)), to write (5.3) only for i = 2,..., N —1 and to replace (5.5) and (5.6) by
u; = uy = 0 (note that (5.4) does not change). For this so-called “modified finite volume” scheme,
it is also possible to obtain an error estimate as for the scheme (5.3)-(5.6) (see Remark 6.2). Note
that, with this scheme, the union of all control volumes for which the “conservation law” is written
is slightly different from [0, 1] (namely [z3/2, 2n—1/2] # [0,1]) .

2. Another possibility is to take (primary) unknowns associated to the boundaries of the control

volumes KELLER [93], COURBET and CROISILLE [42]. We do not consider this case here.

5.2 Comparison with a finite difference scheme

With the same notations as in Section 5.1, consider that w; is now an approximation of w(z;). It is
interesting to notice that the expression

1 Lo/ Uipr —ui | U — Ui
02u=- (F,1—F :—(7 + )
iU ( it+3 ) hi hiy1 N hi_1

2 2

i—

S
|
Wl

is not a consistent approximation of —u,,(z;) in the finite difference sense, that is the error made by
replacing the derivative by a difference quotient (the truncation error DAHLQUIST and BJORCK [44]) does

not tend to 0 as h tends to 0. Indeed, let U = (u(z1),... ,u(l‘N))t; with the notations of (5.9)-(5.11), the
truncation error may be defined as o
r =AU — b,

with 7 = (r1,...,rn)t. Note that for f regular enough, which is assumed in the sequel, b; = f(z;) +0(h).
An estimate of r is obtained by using Taylor’s expansion:

1 1

for some &; € (2, x;41), which yields

1 hipy +hg :
— Tyt (@) + e (@) +0(h), =1, N,

which does not, in general tend to 0 as h tends to 0 (except in particular cases) as may be seen on the
simple following example:

T, =

Example 5.1 Let f = 1 and consider a mesh of (0, 1), in the sense of Definition 5.1, satisfying h; = h
for even i, h; = h/2 for odd i and x; = (v;11/2 +i_1/2)/2, fori=1,..., N. An easy computation shows
that the truncation error r is such that

*iv for even i
Ty = .
—|—%, for odd i.

Hence sup{|r;|,i=1,...,N} A 0as h — 0.
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Therefore, the scheme obtained from (5.3)-(5.6) is not consistent in the finite difference sense, even
though it is consistent in the finite volume sense, that is, the numerical approximation of the fluxes is
conservative and the truncation error on the fluxes tends to 0 as h tends to 0.

If, for instance, x; is the center of Kj, for ¢ = 1,..., N, it is well known that for problem (5.1), the
consistent finite difference scheme would be, omitting boundary conditions,

4 Uipl — Uy Uy — U1 .
- = flay),i=2,...,N—1, 5.12
2h; + hi—1 + hig [ hiy1 h,_1 Fl@i), i (5.12)
2 2
Remark 5.3 Assume that z; is, for i = 1,..., N, the center of K; and that the discrete unknown wu; of

the finite volume scheme is considered as an approximation of the mean value 4; of u over K; (note that
;i = u(z;) + (h?/24)ugy(x;) + 0(h3), if w € C3([0,1],IR)) instead of u(x;), then again, the finite volume
scheme, considered once more as a finite difference scheme, is not consistent in the finite difference sense.
Indeed, let R = AU — b, with U = (@1, ..., 4y)", and R = (Ry,..., Ry)*, then, in general, R; does not
go to 0 as h goes to 0. In fact, it will be shown later that the finite volume scheme, when seen as a finite
difference scheme, is consistent in the finite difference sense if u; is considered as an approximation of
w(x;) — (h?/8)uzz(x;). This is the idea upon which the first proof of convergence by Forsyth and Sammon
in 1988 is based, see FORSYTH and SAMMON [69] and Section 6.2.

In the case of Problem (5.1), both the finite volume and finite difference schemes are convergent. The
finite difference scheme (5.12) is convergent since it is stable, in the sense that || X||s < C|AX| o,
for all X € RY, where C is a constant and || X||ec = sup(|Xi|,...,|Xn]), X = (X1,...,Xn)t, and
consistent in the usual finite difference sense. Since A(U — U) = R, the stability property implies that
|U - Ullee < C||R||sc which goes to 0, as h goes to 0, by definition of the consistency in the finite
difference sense. The convergence of the finite volume scheme (5.3)-(5.6) needs some more work and is
described in Section 6.1.

5.3 Comparison with a mixed finite element method

The finite volume method has often be thought of as a kind of mixed finite element method, since both
methods involve the fluxes. However, we show here that, on the simple Dirichlet problem (5.1), the
two methods yield two different schemes. For Problem (5.1), the discrete unknowns of the finite volume
method are the valuesu;, ¢ = 1,..., N. The finite volume method also introduces one discrete unknown
at each of the control volume extremities, namely the numerical flux between the corresponding control
volumes. And so indeed, the finite volume method for elliptic problems may appear closely related to
the mixed finite element method. Recall that the mixed finite element method consists in introducing in
Problem (5.1) the auxiliary variable ¢ = —u,, which yields the following system:

Q+Uz=0,
G = f;

assuming f € L?((0,1)), a variational formulation of this system is:

q€ H'Y((0,1)), u e L*(0,1)), (5.13)
/ q(z)p(z)dz = / u(z)pe(z)dz, ¥Vp € H((0,1)), (5.14)
0

0
1 1
/ Gz (x)v(2)de = / f(x)v(x)dz, Vv € L*((0,1)). (5.15)
0 0

Considering an admissible mesh of (0,1) (see Definition 5.1), the usual discretization of this variational
formulation consists in taking the classical piecewise linear finite element functions for the approximation
H of H*((0,1)) and the piecewise constant finite element for the approximation L of L?((0,1)). Then,
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the discrete unknowns are {u;,i = 1,..., N} and {gj+1/2,i = 0,..., N} (u; is an approximation of u in
K; and ¢;41/2 is an approximation of —u,(z;41/2)). The discrete equations are obtained by performing
a Galerkin expansion of u and ¢ with respect to the natural basis functions ¢y, I = 1,..., N (spanning

L), and ¢;i1/2, j = 0,..., N (spanning H) and by taking p = @;41/2, @ = 0,...,N in (5.14) and
v="1p,k=1,...,Nin (5.15). Let hog = hnyy1 =0, up = un41 = 0 and q_1/2 = qn43/2 = 0. Then the
discrete system obtained by the mixed finite element method has 2N 4+ 1 unknowns and reads

hi+ hi hi
qz‘+%(Tﬂ)+qz‘—%(_)+qz’+g(

6 6
4itl — 41 :/ flx)dz,i=1,...,N.
K;

hiJrl

):ui*ui+1ai:05"'7N7

Note that the unknowns ¢;, 1/, cannot be eliminated from the system. The resolution of this system of
equations does not give the same values {u;,7i = 1,..., N} than those obtained by using the finite volume
scheme (5.3)-(5.6). In fact it is easily seen that, in this case, the finite volume scheme can be obtained
from the mixed finite element scheme by using the following numerical integration for the left handside

of (5.14):

This is also true for some two-dimensional elliptic problems and therefore the finite volume error estimates
for these problems may be obtained via the mixed finite element theory, see AGOUZAL, BARANGER,
MAITRE and OUDIN [4], BARANGER, MAITRE and OUDIN [§].

6 Convergence and error analysis for the Dirichlet problem

6.1 Error estimate with C? regularity

We shall now prove the following error estimate, which will be generalized to more general elliptic problems
and in higher space dimensions.

Theorem 6.1

Let f € C([0,1],IR) and let u € C*([0,1],IR) be the (unique) solution of Problem (5.1). Let T =
(Ki)izl,___,N be an admissible mesh in the sense of Definition 5.1. Then, there exists a unique vector
U= (uy,...,un)" € RN solution to (5.3) -(5.6) and there exists C >0, only depending on u, such that

N )2
Z M < C?h?, (6.1)
T hi+l
1=0 2
and
le;] < Ch, Vi e {1,...,N}, (6.2)
with eg = en+1 =0 and e; = u(x;) —u;, for alli € {1,...,N}.
Proor

First remark that there exists a unique vector U = (uy,...,uy)* € R solution to (5.3)-(5.6). Indeed,
multiplying (5.3) by w; and summing for ¢ = 1,..., N gives

2 N—-1 9 9 N
uj (wit1 — u;) u
Ty + E 5 + 3 N — E wih; fi
% =1 +; N""% i=1

Therefore, if f; = 0 for any ¢ € {1,..., N}, then the unique solution to (5.3) is obtained by taking u; = 0,
for any i € {1,..., N}. This gives existence and uniqueness of U = (u1,...,uy)" € R" solution to (5.3)
(with (5.4)-(5.6)).
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One now proves (6.1). Let
FH% = —Ug(x;y1), i=0,...,N,
Integrating the equation —u,, = f over K; yields

Fioy —Fiy=hifi,i=1,...,N.

i—g

Therefore, with GH% :FH% — Fi+%v
GH% —GF% =0,i=1,...,N.

Using the consistency of the fluxes (5.2), there exists C' > 0, only depending on u, such that

Fz:-;__i-i-%—i_RH-% and |Ri+%|.§0h, (6.3)
Hence with e; = u(x;) — u;, for i = 1,..., N, and eg = enx4+1 = 0, one has
_ Cit1 — €& .
Gi+% __T_Ri+%’l_0’-“,N,
i+3
so that (e;)i=o,... n+1 satisfies
— S R+ LRy =0, Vi€ {1 N} (6.4)
2 .1 2

hiys i1

Multiplying (6.4) by e; and summing over ¢ = 1,..., N yields

N

N
72 61—1—1 +Z 67, 1 ZR 1€Z+ZR+1€Z

Noting that ey = 0, ey4+1 = 0 and reordering by parts, this yields (with (6.3))

N (e e:)? N
i+l — €

E Jrhil < Ch E leir1 — €4 (6.5)

i=0 ity i=0

The Cauchy-Schwarz inequality applied to the right hand side gives

i leiv1 — €] < (Z (eZH ) (Z hivi )%. (6.6)
=0 i=

N
Since Z hiy1 =11in (6.6) and from (6.5), one deduces (6.1).

=0
Since, for all i € {1,..., N}, e; = Z(ej —ej_1), one can deduce, from (6.6) and (6.1) that (6.2) holds.

j=1
|

Remark 6.1 The error estimate given in this section does not use the discrete maximum principle (that
is the fact that f; > 0, for all ¢ = 1,..., N, implies u; > 0, for all ¢ = 1,..., N), which is used in the
proof of error estimates by the finite difference techniques, but the coerciveness of the elliptic operator,
as in the proof of error estimates by the finite element techniques.
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Remark 6.2

1. The above proof of convergence gives an error estimate of order h. It is sometimes possible to
obtain an error estimate of order h?. Indeed, this is the case, at least if u € C*([0,1],IR), if z; is
the center of K; for all i = 1,..., N. One obtains, in this case, |e;| < Ch?, for all i € {1,..., N},
where C' only depends on u (see FORSYTH and SAMMON  [69]).

2. It is also possible to obtain an error estimate for the modified finite volume scheme described in the
first item of Remark 5.2 page 14. It is even possible to obtain an error estimate of order h? in the
case 1 = 0, xy = 1 and assuming that ;1 /o = (1/2)(2z; + 2441), foralli =1,..., N — 1. In fact,
in this case, one obtains |R;11/2| < C1h?, for alli=1,..., N —1. Then, the proof of Theorem 6.1
gives (6.1) with h* instead of h? which yields |e;| < Coh?, for all i € {1,..., N} (where C; and Cy
are only depending on u). Note that this modified finite volume scheme is also consistent in the
finite difference sense. Then, the finite difference techniques yield also an error estimate on |e;|, but
only of order h.

3. It could be tempting to try and find error estimates with respect to the mean value of the exact
solution on the control volumes rather than with respect to its value at some point of the control
volumes. This is not such a good idea: indeed, if z; is not the center of K; (this will be the general
case in several space dimensions), then one does not have (in general) |&;| < C3h? (for some Cj
only depending on u) with é; = 4; — u; where @; denotes the mean value of u over K;.

Remark 6.3

1. If the assumption f € C([0,1],IR) is replaced by the assumption f € L?((0,1)) in Theorem 6.1, then
uw € H?((0,1)) instead of C?([0,1],IR), but the estimates of Theorem 6.1 still hold. In this case,
the consistency of the fluxes must be obtained with a Taylor expansion with an integral remainder.
This is feasible for C? functions, and since the remainder only depends on the H? norm, a density
argument allows to conclude; see also Theorem 9.4 page 55 below and EYMARD, GALLOUET and
HERBIN [55].

2. If the assumption f € C([0,1],IR) is replaced by the assumption f € L'((0,1)) in Theorem 6.1,
then v € C?([0,1],IR) no longer holds and neither does u € H?((0,1)), but the convergence still
holds; indeed there exists C(u, h), only depending on u and h, such that C'(u,h) — 0, as h — 0, and
le;| < C(u,h), for alli =1,..., N. The proof is similar to the one above, except that the estimate
(6.3) is replaced by |R;y1/2| < Ci(u,h), for all i = 0,..., N, with some C(u, h), only depending
on u and h, such that C(u,h) — 0, as h — 0.

Remark 6.4 Estimate (6.1) can be interpreted as a “discrete Hi” estimate on the error. A theoretical

result which underlies the L™ estimate (6.2) is the fact that if { is an open bounded subset of IR, then
H}(Q) is imbedded in L*°(©2). This is no longer true in higher dimension. In two space dimensions,
for instance, a discrete version of the imbedding of H{ in LP allows to obtain (see e.g. FIARD [65])
|lell, < Ch, for all finite p, which in turn yields ||« < Chlnh for convenient meshes (see Corollary 9.1
page 62).

The important features needed for the above proof seem to be the consistency of the approximation of
the fluxes and the conservativity of the scheme; this conservativity is natural the fact that the scheme is
obtained by integrating the equation over each cell, and the approximation of the flux on any interface
is obtained by taking into account the flux balance (continuity of the flux in the case of no source term
on the interface).

The above proof generalizes to other elliptic problems, such as a convection-diffusion equation of the form
—Ugzy + au, + bu = f, and to equations of the form —(Au,), = f where A € L® may be discontinuous,
and is such that there exist o and § in IR} such that o < A < . These generalizations are studied
in the next section. Other generalizations include similar problems in 2 (or 3) space dimensions, with
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meshes consisting of rectangles (parallepipeds), triangles (tetrahedra), or general meshes of Voronoi type,
and the corresponding evolutive (parabolic) problems. These generalizations will be addressed in further
chapters.

Let us now give a proof of Estimate (6.2), under slightly different conditions, which uses finite difference
techniques.

6.2 An error estimate using a finite difference technique

Convergence can be obtained via a method similar to that of the finite difference proof of convergence
(following, for instance, FORSYTH and SAMMON [69], MANTEUFFEL and WHITE [107], FAILLE [58]).
Most of these methods, are, however, limited to the finite volume method for Problem (5.1). Using the
notations of Section 5.2 (recall that U = (u(x1),...,u(zy))t, and r = AU — b = 0(1)), the idea is to find
U “close” to U, such that

AU = b+7, with 7 = 0(h).

This value of U was found in FORSYTH and SAMMON [69] and is such that T=U- V', where

h2 xx\Li
V= (v,...,on)" andvi:ZuT(x),izl,...,N.

Then, one may decompose the truncation error as
r=AU —U) = AV +7 with |Vl = 0(h?) and 7 = 0(h).

The existence of such a V' is given in Lemma 6.1. In order to prove the convergence of the scheme, a
stability property is established in Lemma 6.2.

Lemma 6.1 Let T = (K;)i=1,... n be an admissible mesh of (0,1), in the sense of Definition 5.1 page 12,
such that x; is the center of K; for alli=1,...,N. Let ar > 0 be such that h; > agh foralli=1,...,N
(recall that h = max{hy,...,hnx}). Let U = (u(z1),...,u(zy))t € RN, where u is the solution to (5.1),
and assume u € C3([0,1],IR). Let A be the matriz defining the numerical scheme, given in (5.10) page
14. Then there exists a unique U = (u1,...,un) solution of (5.3)-(5.6) and there exists T and V € RY
such that

r=AU -U) = AV + 7, with |V]e < Ch?® and ||F| s < Ch,

where C only depends on u and oy .

PROOF of Lemma 6.1

The existence and uniqueness of U is classical (it is also proved in Theorem 6.1).
For i =0,... N, define

u(@iy1) — u(z)
s = ey
+35
Remark that
1
h;

T =

(Ri-',-l_Ri—%)a fori=0,...,N, (6.7)

2

where 7; is the i—th component of r = A(U — U).
The computation of R, 1 yields
R
By

= 7%(}7”#‘1’1 - hz)uzz(xwr%) + 0(h2)7 i=1,...,N—-1,
—1h1ug(0) + 0(h%), Ryy1 = fhvugs(1) + 0(h?).

|| Wl

Define V = (vy, ..., vy)! with v; = 2242 5 — 1 N Then,
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_bit1 7 U — Ry 1 4+0(h%),i=1,...,N—1,
hiJr; 2
2
2’U1 2
—— =R1 +0(h
hl 3 + ( )’
2’UN 2
Since h; > arh, for i =1,..., N, replacing R; 1 in (6.7) gives that r; = (AV); +0(h), for i =1,..., N,
and ||V ||o = 0(h?). Hence the lemma is proved. ]

Lemma 6.2 (Stability) Let T = (K;)i=1,... n be an admissible mesh of [0, 1] in the sense of Definition
5.1. Let A be the matriz defining the finite volume scheme given in (5.10). Then A is invertible and

1

Al < -, 6.8
14 < 5 (68)
PROOF of Lemma 6.2

First we prove a discrete maximum principle; indeed if b; > 0, for all2 = 1,..., N, and if U is solution of

AU = b then we prove that u; >0 foralli=1,..., N.
Let a = min{u;,i =0,..., N + 1} (recall that ug = uns+1 = 0) and ip = min{i € {0,..., N +1}; u; = a}.
If 79 # 0 and 79 # N + 1, then

hig
this is impossible since w;,+1 — i, > 0 and u;, — ui,—1 < 0, by definition of ig. Therefore, i = 0 or
N+ 1. Then,a=0and u; >0 foralli=1,..., N.
Note that, by linearity, this implies that A is invertible.
Next, we shall prove that there exists M > 0 such that |47} < M (indeed, M = 1/4 is convenient).
Let ¢ be defined on [0,1] by ¢(z) = $2(1 —z). Then —¢,,(z) =1 for all z € [0,1]. Let ® = (¢1,...,dn)
with ¢; = ¢(z;); if A represented the usual finite difference approximation of the second order derivative,
then we would have A® = 1, since the difference quotient approximation of the second order derivative
of a second order polynomial is exact (¢r.. = 0). Here, with the finite volume scheme (5.3)-(5.6), we
have A® —1 = AW (where 1 denotes the vector of IRY the components of which are all equal to 1), with

W = (wy,...,wy) € RY such that W; = —%2 (see proof of Lemma 6.1). Let b € RY and AU = b, since
A(® — W) =1, we have

1 /uj, — wi,— U; — U;
0 i0—1 i0+1 i0 \
( h ~h ) =bi 20,
io—% io+3

AU = [[blloo(® = W)) <0,

this last inequality being meant componentwise. Therefore, by the above maximum principle, assuming,
without loss of generality, that h < 1, one has

bl
w; < ||b]|oo (s — w;), so that u; < %
(note that ¢(x) < §). But we also have
AU A+ [[bl]oo (@ = W) = 0,

and again by the maximum principle, we obtain

s Lt
(- 4 .

Hence [|U||oc < 1/|b]|oo. This shows that |47} || < 1. "

This stability result, together with the existence of V' given by Lemma 6.1, yields the convergence of the
finite volume scheme, formulated in the next theorem.
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Theorem 6.2 Let T = (K;)i=1,... N be an admissible mesh of [0,1] in the sense of Definition 5.1 page
12. Let ar € RY be such that h; > arh, for alli =1,...,N (recall that h = max{hy,...,hn}). Let
U = (u(x1),...,u(zy)) € RY, and assume u € C3([0,1],R) (recall that u is the solution to (5.1)). Let
U= (u1,...,un) be the solution given by the numerical scheme (5.3)-(5.6). Then there exists C' > 0,
only depending on ar and u, such that |U — Ul|s < Ch.

Remark 6.5 In the proof of Lemma 6.2, it was shown that A(U — V) = b+ 0(h); therefore, if, once
again, the finite volume scheme is considered as a finite difference scheme, it is consistent, in the finite
difference sense, when wu; is considered to be an approximation of u(x;) — (1/8)hZ .. (z;).

Remark 6.6 With the notations of Lemma 6.1, let 7 be the function defined by
r(x)=r; ifaxekK; i=1,...,N,

the function r does not necessarily go to 0 (as h goes to 0) in the L> norm (and even in the L' norm),
but, thanks to the conservativity of the scheme, it goes to 0 in L°°((0, 1)) for the weak-* topology, that
is

/1 r(z)p(z)dr — 0, as h—0, Yo L'((0,1)).
0

This property will be called “weak consistency” in the sequel and may also be used to prove the conver-
gence of the finite volume scheme (see FAILLE [58]).

The proof of convergence described above may be easily generalized to the two-dimensional Laplace
equation —Awu = f in two and three space dimensions if a rectangular or a parallepipedic mesh is used,
provided that the solution u is of class C®. However, it does not seem to be easily generalized to other
types of meshes.

7 General 1D elliptic equations

7.1 Formulation of the finite volume scheme

This section is devoted to the formulation and to the proof of convergence of a finite volume scheme for
a one-dimensional linear convection-diffusion equation, with a discontinuous diffusion coefficient. The
scheme can be generalized in the two-dimensional and three-dimensional cases (for a space discretization
which uses, for instance, simplices or parallelepipedes or a “Voronoi mesh”, see Section 9.2 page 37) and
to other boundary conditions.

Let A € L®((0,1)) such that there exist A and X € RY with A <X < X a.e. and let a,b,c,d € IR, with
b>0,and f € L*((0,1)). The aim, here, is to find an approximation to the solution, u, of the following
problem:

u(0) = ¢, u(l) = d. (7.2)

The discontinuity of the coefficient A may arise for instance for the permeability of a porous medium,
the ratio between the permeability of sand and the permeability of clay being of an order of 10%; heat
conduction in a heterogeneous medium can also yield such discontinuities, since the conductivities of the
different components of the medium may be quite different. Note that the assumption b > 0 ensures the
existence of the solution to the problem.

Remark 7.1 Problem (7.1)-(7.2) has a unique solution u in the Sobolev space H!((0,1)). This solution
is continuous (on [0,1]) but is not, in general, of class C? (even if A\(z) = 1, for all 2 € [0,1]). Note that
one has —Aug(z) = [ g(t)dt + C, where C' is some constant and g = f — au, — bu € L'((0,1)), so that
Aug is a continuous function and u, € L>°((0,1)).
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Let 7 = (K;)i=1,..,~v be an admissible mesh, in the sense of Definition 5.1 page 12, such that the
discontinuities of A coincide with the interfaces of the mesh.
The notations being the same as in section 5, integrating Equation (7.1) over K; yields

f(/\uz)(xi_‘_%)Jr(/\uz)(zi_%)nLau(:ci_i_%)fau(:ci_%)Jr/K. bu(z)dz:/K. flx)dx, 1=1,...,N.

Let (u;)i=1,...,nv be the discrete unknowns. In the case a > 0, which will be considered in the sequel,
the convective term au(z;41/2) is approximated by au; (“upstream”) because of stability considerations.
Indeed, this choice always yields a stability result whereas the approximation of au(z;41/2) by (a/2)(u; +
u;+1) (with the approximation of the other terms as it is done below) yields a stable scheme if ah < 2,
for a uniform mesh of size h and a constant diffusion coefficient A\. The case a < 0 is easily handled in the
same way by approximating au(z;41/2) by auiy1. The term J X, bu(z)dz is approximated by bh;u;. Let
us now turn to the approximation H; /2 of —Aug(%;41/2). Let \; = hi fK'L A(z)dx; since Nk, € CY(K;),
there exists ¢y € R4, only depending on A, such that |[A\; — A(z)| < eah, Vo € K;. In order that the
scheme be conservative, the discretization of the flux at x;,/, should have the same value on K; and
K;11. To this purpose, we introduce the auxiliary unknown u; 1,2 (approximation of u at x;, 1 /2). Since
on K; and K1, A is continuous, the approximation of —Au, may be performed on each side of x;; 1,2
by using the finite difference principle:

’LLH_% — U; .
Hz‘+§:_)‘i T on K;,i=1,...,N,
i
Ui+l — Uiy 1
Hypjs = —Aig1— = 2 o0 Kiy1,i=0,...,N -1,

i1
with uy/9 = ¢, and un41/2 = d, for the boundary conditions. (Recall that h:r = Tiy1/2 — v and
h; = x; — x;_1/2). Requiring the two above approximations of Au,(x;41/2) to be equal (conservativity

of the flux) yields the value of u; /o (fori=1,...,N —1):

i i
Ui+1hT+1 + Uzh—+
U1 = itl i (7.3)
i+l Nit1 . A :
hitq h;r

which, in turn, allows to give the expression of the approximation H; 1 of Ay (05, 1 ):

Hi+% = _Ti+%(ui+1 _ui)a i = 1)"'7N_ 1,
A

Hi = ——(u1 —c¢),

> h;( 17¢) (7.4)
A

HN+l77h_i(d7uN)
N

with

Aii .

T, s i=1,...,N—1. (7.5)

T W N+ b
Example 7.1 If h; = h, for all i € {1,..., N}, and =; is assumed to be the center of K;, then h;” =
h; = %, so that

I 2NNt Uikl — Uy
TN Ait1 ho 7

and therefore the mean harmonic value of \ is involved.
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The numerical scheme for the approximation of Problem (7.1)-(7.2) is therefore,

F‘iJr%—F‘if%-i-bhiui:hifi, ViE{l,...,N}, (76)
with f; = h%f;ﬂ% f(z)dz, for i = 1,...,N, and where (F;1)ic(o,. .~} is defined by the following
expressions ’

F;:J’_% - 7Ti+é(ui+1 - uz) + au;, Vi € {15 e '7N - 1}7 (77>
A1 Ay

FL=——(u1 —c)+ac, Fy;1 =——"2(d—un)+auy. (7.8)
2 hl 2 hN

Remark 7.2 In the case a > 0, the choice of the approximation of au(z;41/2) by au;y1 would yield an
unstable scheme, except for h small enough (when a < 0, the unstable scheme is au;).

Taking (7.5), (7.7) and (7.8) into account, the numerical scheme (7.6) yields a system of N equations
with N unknowns uq,...,un.

7.2 Error estimate

Theorem 7.1

Let a,b>0, c,d € R, A € L>((0,1)) such that A < X < X a.e. with some A, \ € R’ and f € L*((0,1)).
Let u be the (unique) solution of (7.1)-(7.2). Let T = (K;)i=1,... N be an admissible mesh, in the sense of
Definition 5.1, such that A € C*(K;) and f € C(K;), foralli=1,--- | N. Let v = max{||toq|| 1o (), i =
L.+ N} and 0 = max{[[A|| o (x,),4 = 1,--- , N}. Then,

1. there exists a unique vector U = (uy,...,uy)" € RY solution to (7.5)-(7.8),

2. there exists C, only depending on A, \,~y and &, such that

N
ZTiJr%(ei*l —e;)* < Ch?, (7.9)
=0

where 7, 1 is defined in (7.5), and
lei| < Ch, Vi€ {1,...,N}, (7.10)

with eg = en+1 = 0 and e; = u(x;) — u;, for alli € {1,...,N}.

PROOF of Theorem 7.1

Step 1. Existence and uniqueness of the solution to (7.5)-(7.8).

Multiplying (7.6) by u; and summing for ¢ = 1,..., N yields that if ¢ = d = 0 and f; = 0 for any
i €{1,..., N}, then the unique solution to (7.5)-(7.8) is obtained by taking u; = 0, for any ¢ € {1,..., N}.
This yields existence and uniqueness of the solution to (7.5)-(7.8).

Step 2. Consistency of the fluxes.
Reca_ll that h = max{hi,...,hx}. Let us first show the consistency of the fluxes.
Let Hi+1/2 = *()\Uz)(l'i_;’_l/g) and H;+1/2 = 77—1'-‘,—1/2 (’U,(ZL',H,l)*’U,(Z'Z)), fori = 0, ey N, with T1/2 = )\1/}?,1_

and Tn41/2 = )\N/hE. Let us first show that there exists €7 € IR:, only depending on A\, A,y and 0,
such that

. =
Hi+% - Hl-‘r% +71i+%;

7.11
T,y 1| < Cih,i=0,...,N. (7.11)
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In order to show this, let us introduce

w(wipr) —u(w )

b

wlwyy) —ule)
D s DR

3

H;"% =\ (7.12)
since A € C*(K;), one has u € C?(K;); hence, there exists C € IR’ , only depending on v and §, such
that

Hi*[% = FH% +R;+%, where |R;+%| <Ch,i=1,...,N, (7.13)
and
Hj =H; s +RZT:%, where |RL%| <Ch,i=0,...,N —1. (7.14)

This yields (7.11) for ¢ =0 and ¢ = N.
The following equality:

FZ#:H;‘; R;%:H;E—R;%JZL...,N—L (7.15)
yields that
i i
hflu(%url) + h—+u($i)
u(wy,y) = = x Aml + 811, i=1,...,N -1, (7.16)
W i
where N B
g Rz‘+% Rz‘+§
S-S VIS VIT)
Wi hig,
so that N
1 h'h,,
S| <~ —"*|RY  —R_,|
| H’%|_Ahz++h;+1| i+3 l+§|

Let us replace the expression (7.16) of u(z;41/2) in H:J’FI/Q defined by (7.12) (note that the computation

is similar to that performed in (7.3)-(7.4)); this yields
i

o Sig =1 N =1 (7.17)

H" —Tit1 (u(ip1) —u(x;)) —

1 =
i+35

Using (7.15), this implies that HZ.*JF% = FH% + T}, 1 where
) .

Using (7.13) and (7.14), this last inequality yields that there exists C;, only depending on X, \,7, §, such
that

[HY s —H o| = T3] <Cihyi=1,...,N — 1.

Therefore (7.11) is proved.

Define now the total exact fluxes;

FH% = —()\um)(xiJr%)—i—au(xiJr%), Vie{0,...,N},
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and define
,N —1},

= —Tip 1 (u(@ip1) — u(@;)) + au(z;), Vi€ {1,.

" A . A
Fi = ——%(u(:cl) —c)+ac, Fy 1 =——(d—u(zn)) +aun.

Then, from (7.11) and the regularity of u, there exists Csy, only depending on A, A,y and ¢, such that
(7.18)

Z*Jr% :FH_l JrRH_%, with |Ri+%| < Csh,i=0
Hence the numerical approximation of the flux is consistent

Step 3. Error estimate.
Integrating Equation (7.1) over each control volume yields that
Fi-l—% — Fi—% + bhl(’u(l'l) + Sz) =h;f;, Vie {1, ey N}, (719)
where S; € R is such that there exists C3 only depending on u such that |S;| < Csh, fori=1,..., N.
(7.20)

Using (7.18) yields that
F* 1 +bhz(u(zz)+5}) = hzfz+RZ+% *Ri,L, Vi € {1,...,]\7}.

sz% -l
—u;, fori=1,...,N, and eg = exy1 = 0. Substracting (7.6) from (7.20) yields
R,_1,Vie{l,...,N}.

Let e¢; = u(x;)
i-%

—€i—1) + bhe; = —bh;S; + RH_A —

N, reorder the summations. Remark that

—Ti+%(€i+1 —e€i) + Ti_%(ei —ei—1) +ale;

Let us multiply this equation by e;, sum for ¢ = 1
| N+l
— €i— 1 5 Z (ei - 61'71)2

i=1 =1

and therefore
N o N1 N N N
ZTH% (eip1 —€:) + : Zl o ;bhief =- ;bhiSiei - 2 Rip1(€ip1 — ).
Since |S;| < Csh and thanks to Z(; 18), one has - - .
N

N N

ZTZ-JF% (€i+1 - 61')2 < Zb03hlh|€l| + Z Cgh|€i+1 — €i|.

=0 i=1 i=1

1 1
2 zandB:(ZN 1 )2.

1=
0 'ri+%

Remark that |e;| < 32 |e; —e;_1|. Denote by A = (ZZ—Z\LO i1 (e —ei) )

The Cauchy-Schwarz inequality yields
N
A% <> "bCshihAB + C2hAB.

i=1
Now, since
N

N
(hiy + 1), Y (hiyy +hf) =1, with h§ =hy,, =0, and Y h; =1
1=1

Tivd X’ i—0
one obtains that A < Cyh, with C4 only depending on A, \,~ and &, which yields Estimate (7.9)
i .10). [

Applying once again_ the Cauchy-Schwarz inequality yields Estimate (7.10)
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7.3 The case of a point source term

In many physical problems, some discontinuous or point source terms appear. In the case where a
source term exists at the interface x;;1/2, the fluxes relative to K; and K;;1 will differ because of this
source term. The computation of the fluxes is carried out in a similar way, writing that the sum of
the approximations of the fluxes must be equal to the source term at the interface. Consider again the
one-dimensional conservation problem (7.1), (7.2) (with, for the sake of simplification,a =b=c=d =0,
we use below the notations of the previous section), but assume now that at x € (0,1), a point source of
intensity « exists. In this case, the problem may be written in the following way:

(Mg (@) = fl2), z€(0,2)U(z,1), (7.21)
u(0) =0, (7.22)

u(1) =0, (7.23)

(uz)F(z) = ue) ™ (2) = —a, (7.24)

where
Aug)T(2) = lim  (Aug)(w) and (\ug)” (z) =  lim (Dug) ().

T—=T,T>T =T, r<T

Equation (7.24) states that the flux is discontinuous at point z. Another formulation of the problem is
the following;:

—(Aug)z = g in D'((0,1)), (7.25)
u(0) =0, (7.26)
u(1) =0, (7.27)

where g = f + ad,, where J, denotes the Dirac measure, which is defined by < d5, ¢ >p/ p= ¢(z), for
any ¢ € D((0,1)) = C((0,1),IR), and D’'((0,1)) denotes the set of distributions on (0,1), i.e. the set of
continuous linear forms on D((0, 1)).

Assuming the mesh to be such that z = xzﬂ 2 for some i € 1,..., N — 1, the equation corresponding to
the unknown uz is i, /2~ Fi 10 = f X, x)dx, while the equamon corresponding to the unknown ;41
Fiiz/2 — l+1/2 fK x)dz. In order to compute the values of the numerical fluxes F+1/2, one

must take the source term mto account while writing the conservativity of the flux; hence at x;; /2, the
two numerical fluxes at © = x, namely FZ‘: , and F; ,, must satisfy, following Equation (7.24),
2 2

Fi"jr% — F;% = . (7.28)
Next, the fluxes F+1/2 and Fz+1/2 must be expressed in terms of the discrete variables ug, k=1,...,N;

in order to do so, introduce the auxiliary variable ;41,2 (which will be eliminated later), and write

Wit1 — Uip l

Fly==Xin e
_ Uiyl — U
Py = A= —
Replacing these expressions in (7.28) yields
hih; i Ai
i+1 Z+1

Ujyl = —— — Uiy + —U; +
" (hz'+1)‘i + hi Ait1) [hi i h+ !

and therefore
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th)\z i
F*, 1 - (i1 — w)
z+2 h )\ + h )\Z+1 hi-i-l)‘i + hz Ait1
F’iJrl = +1 o — +i_ (uiJrl — ’LLZ)
2 hz-l-l)‘ + hz )\Z'Jrl hH_l)\- + hi )\i+1

Note that the source term « is distributed on either side of the interface proportionally to the coefficient
A, and that, when a = 0, the above expressions lead to

Aidit1
iv1hi i A

Note that the error estimate given in Theorem 7.1 still holds in this case (under adequate assumptions).

Fr, =F~

+3 i+3 = g (it1 — ui).

8 A semilinear elliptic problem

8.1 Problem and Scheme

This section is concerned with the proof of convergence for some nonlinear problems. We are interested,
as an example, by the following problem:

—Uz(x) = f(z,u(z)), 2 € (0,1), (8.1)

u(0) =u(l) =0, (8.2)
with a function f: (0,1) x R — IR such that

f(z, s) is measurable with respect to x € (0,1) for all s € R
and continuous with respect to s € R for a.e. z € (0,1),

feL®((0,1) x R). (8.4)

It is possible to prove that there exists at least one weak solution to (8.1), (8.2), that is a function u such
that

(8.3)

u € H&((O, 1)), /0 Uy (2) v, (2)dr = /0 fla,u(x))v(z)de, Vo € H&((O, 1)). (8.5)

Note that (8.5) is equivalent to “u € H}((0,1)) and —uy, = f(-,u) in the distribution sense in (0,1)”.
The proof of the existence of such a solution is possible by using, for instance, the Schauder’s fixed point
theorem (see e.g. DEIMLING [45]) or by using the convergence theorem 8.1 which is proved in the sequel.

Let T be an admissible mesh of [0, 1] in the sense of Definition 5.1. In order to discretize (8.1), (8.2), let
us consider the following (finite volume) scheme

Fioo=——Hl" 8 i—0 N, (8.7)
2 hiJrl
2
Ug = UN+1 = 0, (88)
Wlthfzul—th (v, u;)dx, i =1,...,N.
The discrete unknowns are therefore ui,...,uyn. In order to give a convergence result for this scheme

(Theorem 8.1), one first proves the existence of a solution to (8.6)-(8.8), a stability result, that is, an
estimate on the solution of (8.6)-(8.8) (Lemma 8.1) and a compactness lemma (Lemma 8.2).



28

Lemma 8.1 (Existence and stability result) Let f: (0,1) x R — R satisfying (8.3), (8.4) and T
be an admissible mesh of (0,1) in the sense of Definition 5.1. Then, there exists (ui,...,uy)' € RY
solution of (8.6)-(8.8) and which satisfies:

uz—i—l - Uz)2

Mz

<C, (8.9)
=0 i é

for some C > 0 only depending on f.

PROOF of Lemma 8.1

Define M = || f[|zc((0,1)xr)- The proof of estimate (8.9) is given in a first step, and the existence of a
solution to (8.6)-(8.8) in a second step.

Step 1 (Estimate)

Let V = (v1,...,ux)" € RY, there exists a unique U = (u1,...,uy)? € RY solution of (8.6)-(8.8) with
fi(v;) instead of f;(u;) in the right hand-side (see Theorem 6.1 page 16). One sets U = F(V), so that F
is a continuous application from IR™ to R”Y, and (uy,...,uy) is a solution to (8.6)-(8.8) if and only if
U = (ug,...,un)! is a fixed point to F.

Multiplying (8.6) by u; and summing over i yields

N

Yo ) (“““1 < MZh gl (8.10)

i=0 Z+2

and from the Cauchy-Schwarz inequality, one has

S (w1 — uy) )
< (3 Gy
=0 hj+

N

then (8.10) yields, with C' = M?,

al (i1 — u;)?

» ” L) o (8.11)

i=0 i +3
This gives, in particular, Estimate (8.9) if (u1,...,ux)’ € R” is a solution of (8.6)-(8.8) (that is u; = v;
for all 7).

Step 2 (Existence)
The application F : RY — IRY defined above is continuous and, taking in R" the norm

al Uerl )? l t
HVH* Z 27 fOI‘V:(’Ul,...,’UN) ) with UOZUN+1:07
i=0 hiy +3

one has F(By;) C By, where By is the closed ball of radius M and center 0 in RY. Then, F' has a
fixed point in Bjs thanks to the Brouwer fixed point theorem (see e.g. DEIMLING [45]). This fixed point
is a solution to (8.6)-(8.8). L]

8.2 Compactness results
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Lemma 8.2 (Compactness)

For an admissible mesh T of (0,1) (see definition 5.1), let (uy,...,un)" € RY satisfy (8.9) for some
C € R (independent of T ) and let uy : (0,1) = R be defined by ur(z) =u; ifx € K;, i=1,...,N.
Then, the set {u, T admissible mesh of (0,1)} is relatively compact in L?((0,1)). Furthermore, if
ur, — u in L2((0,1)) and size(T,) — 0, as n — oo, then, u € Ha((0,1)).

PROOF of Lemma 8.2

A possible proof is to use “classical” compactness results, replacing ur by a continuous function, say
uT, piecewise affine, such that wr(z;) = u; for i = 1,..., N, and u7(0) = uy(1) = 0. The set {uy, T
admissible mesh of (0,1)} is then bounded in Hg((0,1)), see Remark 9.9 page 49.

Another proof is given here, the interest of which is its simple generalization to multidimensional cases
(such as the case of one unknown per triangle in 2 space dimensions, see Section 9.2 page 37 and Section
14 page 94) when the construction of such a function, @y, “close” to ur and bounded in Hg((0,1))
(independently of 7)), is not so easy.

In order to have ur defined on IR, one sets uy(z) =0 for « ¢ [0, 1]. The proof may be decomposed into
four steps.

Step 1. First remark that the set {u7, 7 an admissible mesh of (0,1)} is bounded in L?(IR). Indeed, this
an easy consequence of (8.9), since one has, for all = € [0, 1] (since up = 0 and by the Cauchy-Schwarz
inequality),

N N U
1
lur (2 E [wivr — ] < ( E ZH )z <C.
=0

=0 i

Step 2. Let 0 < n < 1. One proves, in this step, that

lur (- + 1) = urllfzm) < Cn(n+ 2h). (8.12)

(Recall that h = size(T).)
Indeed, for i € {0,..., N} define x;41/2 : R — IR, by X;41/2(z) = 1, if 2i411/2 € [z, 2+n] and X;41/2(2) =
0, if ;412 ¢ [z, 4+ n]. Then, one has, for all z € IR,

N
(ur(@ + ) —ur@)® < (3 uiss — wilxis s ()
=0

(i i L (@) (Z Xir s @iy )- (8.13)

1=0 l 5

Since Zfio Xit1/2(®)hix172 < n+ 2h, for all € IR, and fIR Xit1/2(x)dx = n, for all i € {0,..., N},
integrating (8.13) over IR yields (8.12).

Step 3. For 0 < n < 1, Estimate (8.12) implies that

Jur (- + 1) = urll72m) < 3C.

This gives (with Step 1), by the Kolmogorov compactness theorem (recalled in Section 14, see Theorem
14.1 page 94), the relative compactness of the set {u7, 7 an admissible mesh of (0,1)} in L?((0,1)) and
also in L?(IR) (since u7 =0 on R\ [0, 1]).

Step 4. In order to conclude the proof of Lemma 8.2, one may use Theorem 14.2 page 94, which we prove
here in the one-dimensional case for the sake of clarity. Let (7, )nen be a sequence of admissible meshes
of (0,1) such that size(7,) — 0 and ur, — u, in L?((0,1)), as n — oo. Note that uz, — u, in L*(R),



with . = 0 on IR\ [0, 1]. For a given n € (0, 1), let n — oo in (8.12), with w7z, instead of uy (and size(7,,)
instead of h). One obtains

u(-+n)—u

||#|\%2(1R) <C. (8.14)

Since (u(-+n) —u)/n tends to Du (the distribution derivative of «) in the distribution sense, as n — 0,

Estimate (8.14) yields that Du € L?*(IR). Furthermore, since u = 0 on IR \ [0, 1], the restriction of u to
(0,1) belongs to H3((0,1)). The proof of Lemma 8.2 is complete. ]

8.3 Convergence

The following convergence result follows from lemmata 8.1 and 8.2.

Theorem 8.1 Let f: (0,1) x R — R satisfying (8.3), (8.4). For an admissible mesh, T, of (0,1) (see
Definition 5.1), let (uy,...,un)t € RY be a solution to (8.6)-(8.8) (the existence of which is given by
Lemma 8.1), and let uyr : (0,1) = R by uy(x) =u;, ifx € K;, i =1,...,N.

Then, for any sequence (Tn)neN of admissible meshes such that size(T,) — 0, as n — oo, there exists a
subsequence, still denoted by (Tp)new, such that ur, — u, in L*((0,1)), as n — oo, where u € HE((0,1))
is a weak solution to (8.1), (8.2) (that is, a solution to (8.5)).

PROOF of Theorem 8.1

Let (T, )nen be a sequence of admissible meshes of (0, 1) such that size(7,) — 0, as n — oco. By lemmata
8.1 and 8.2, there exists a subsequence, still denoted by (7, )new, such that uy, — u, in L2((0,1)), as
n — oo, where u € Hg((0,1)). In order to conclude, it only remains to prove that —u,, = f(-,u) in the
distribution sense in (0, 1).

To prove this, let ¢ € C2°((0,1)). Let 7 be an admissible mesh of (0,1), and ¢; = (), i =1,..., N,
and 9 = on+1 = 0. If (ug,...,uy) is a solution to (8.6)-(8.8), multiplying (8.6) by ¢; and summing
over t =1,..., N yields

| wr@r@ae = [ frer@as, (8.15)

where

L gi—pi-1 @ig1 —¢i :
Ur(e) = - (P = SR, fr(w) = [ u) and o7 (2) = @, i @ € K.
7 ) i+§

L)
Note that, thanks to the regularity of the function ¢,

Yi+1 — Pi

h :(Pz(xiJr%)'i_RiJr%’ |Ri+§| < Cih,

1
i+3

with some C; only depending on ¢, and therefore
1 N w N
/o ur(z)Yr(z)de = Z; /K h_z (%(%—%) - <Pz($z'+%))d$ + ;Ui(Rif% - Ri+%)

1 N
= / —ur(2)07(v)dr + Y Ry 1 (uig — ug),
0 i=0

with ug = uny1 = 0, where the piecewise constant function

zzilfxxifl
by 3 £ty

1k
h; i

i=1,N
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tends to ¢, as h tends to 0.
Let us consider (8.15) with 7,, instead of T; thanks to the Cauchy-Schwarz inequality, a passage to the
limit as n — oo gives, thanks to (8.9),

[ wpntwre= [ s unea,

and therefore —u,, = f(-,u) in the distribution sense in (0,1). This concludes the proof of Theorem 8.1.
Note that the crucial idea of this proof is to use the property of consistency of the fluxes on the regular
test function . [

Remark 8.1 It is possible to give some extensions of the results of this section. For instance, Theorem
8.1 is true with an assumption of “sublinearity” on f instead of (8.4). Furthermore, in order to have
both existence and uniqueness of the solution to (8.5) and a rate of convergence (of order i) in Theorem
8.1, it is sufficient to assume, instead of (8.3) and (8.4), that f € C1([0,1] x IR, IR) and that there exists
v < 1, such that (f(z,s) — f(z,t))(s —t) < v(s —t)?, for all (z,s) € [0,1] x R.



Chapter 3

Elliptic problems in two or three
dimensions

The topic of this chapter is the discretization of elliptic problems in several space dimensions by the
finite volume method. The one-dimensional case which was studied in Chapter 2 is easily generalized
to nonuniform rectangular or parallelipedic meshes. However, for general shapes of control volumes,
the definition of the scheme (and the proof of convergence) requires some assumptions which define an
“admissible mesh”. Dirichlet and Neumann boundary conditions are both considered. In both cases, a
discrete Poincaré inequality is used, and the stability of the scheme is proved by establishing estimates
on the approximate solutions. The convergence of the scheme without any assumption on the regularity
of the exact solution is proved; this result may be generalized, under adequate assumptions, to nonlinear
equations. Then, again in both the Dirichlet and Neumann cases, an error estimate between the finite
volume approximate solution and the C? or H? regular exact solution to the continuous problems are
proved. The results are generalized to the case of matrix diffusion coefficients and more general boundary
conditions. Section 12 is devoted to finite volume schemes written with unknowns located at the vertices.
Some links between the finite element method, the “classical” finite volume method and the “control
volume finite element” method introduced by FORSYTH [67] are given. Section 13 is devoted to the
treatment of singular sources and to mesh refinement; under suitable assumption, it can be shown that
error estimates still hold for “atypical” refined meshes. Finally, Section 14 is devoted to the proof of
compactness results which are used in the proofs of convergence of the schemes.

9 Dirichlet boundary conditions
Let us consider here the following elliptic equation

—Au(x) + div(vu)(x) + bu(z) = f(z), x € Q, (9.1)

with Dirichlet boundary condition:
u(z) = g(x), x €N, (9.2)

where

Assumption 9.1
1. Q is an open bounded polygonal subset of R, d =2 or 3,
2. 6>0,
3. fe L),

32
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4. v e CYQ,RY);divy > 0,
5. g € C(0Q,IR) is such that there exists g € H'(Q) such that ¥(§) = g a.e. on Q.

Here, and in the sequel, “polygonal” is used for both d = 2 and d = 3 (meaning polyhedral in the latter
case) and 7 denotes the trace operator from H' () into L?(99). Note also that “a.e. on 9Q” is a.e. for
the d — 1-dimensional Lebesgue measure on 0f).

Under Assumption 9.1, by the Lax-Milgram theorem, there exists a unique variational solution u € H*(Q)
of Problem (9.1)-(9.2). (For the study of elliptic problems and their discretization by finite element
methods, see e.g. CIARLET [29] and references therein). This solution satisfies u = w + g, where
g € HY(Q) is such that 7(g) = g, a.e. on 9, and w is the unique function of HJ () satisfying

/ (Vw(x) -Vi(z) + div(vw) (z)Y(x) + bw(x)w(x)) dx =
Q

(9.3)
[ (=9i@) - Vota) —div(va) @)i(e) = ba(e)is(o) + Fa)la) o, Vi < HY(©).

9.1 Structured meshes

If Q is a rectangle (d = 2) or a parallelepiped (d = 3), it may then be meshed with rectangular or
parallelepipedic control volumes. In this case, the one-dimensional scheme may easily be generalized.

Rectangular meshes for the Laplace operator

Let us for instance consider the case d = 2, let Q = (0,1)x(0,1), and f € C?(©2,IR) (the three dimensional
case is similar). Consider Problem (9.1)-(9.2) and assume here that b =0, v =0 and g = 0 (the general
case is considered later, on general unstructured meshes). The problem reduces to the pure diffusion
equation:

—Au(m,y) = f(xay)a (w,y) S Q,
u(z,y) =0, (z,y) € 9Q. (9.4)

In this section, it is convenient to denote by (z,y) the current point of R> (elsewhere, the notation x is
used for a point or a vector of R?).

Let T = (Ki,j)i=1,- Ny;j=1,--,N, be an admissible mesh of (0,1) x (0,1), that is, satisfying the following
assumptions (which generalize Definition 5.1)

Assumption 9.2 Let Ny € N*, Ny € IN*, hy,...,hy, >0, k1,...,kn, > 0 such that

Ny No
> hi=1Y k=1,
i=1 i=1

and let ho = 0,hn,41 = 0,ko = 0,kn,+1 = 0. Fori=1,..., Ny, let r1 =021 =21+ hi, (so that
Ty 41 = 1), and for j=1,..., N, yr=0,y51 =y; 1+ k;, (so that YNpr L = 1) and

Kij;= [zif%azzﬁr%] X [yj—%vygdr%]-
Let (x;)i=0,N,+1, and (Y;)j=0,N,+1, Such that

Ly

1 < <Tyyg, fori=1,...,N1,20=0, xn,41 =1,
Yi—1 <y; <Y1, forj=1,...,N2, 50 =0, yn,1 =1,

and let x; j = (z3,y;), fori=1,...,Nq,, j=1,..., Na; set

- _ + _ S _ S
h; fxif:cifé,hi =T 1 — Ty, forzfl,...,Nl,hH%f:rzqu—zi, fori=20,..., Ny,
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kj_ =Y 7yj7%7 kj+ :yj+% —Yj fO’f’j = 17"'5N27 k]+% =Yj+1 — Yy fOT’j :07"';N2-
Let h = max{(h;,i =1,--- ,Nq1),(k;,j=1,---,Na)}.

As in the 1D case, the finite volume scheme is found by integrating the first equation of (9.4) over each
control volume Kj; ;j, which yields

1 1
L) il
[P pdo- [ uedo= [ faydedy
x K

1 T, 1
2

i-3 i—

The fluxes are then approximated by differential quotients with respect to the discrete unknowns (u; ;,7 =

1,--+Ny,7=1,---,Ns) in a similar manner to the 1D case; hence the numerical scheme reads
F;-l‘%,j - F;—%,j + Fi,j—i—% — Fi,j—% = hi,jfi,jv v (’L,]) S {1, .. .,Nl} X {1, .. .,NQ}, (95)

where h; ; = h; x kj, f; ; is the mean value of f over K; ;, and

F;-l‘%aj - 7h—]1(ui+11j 7ui7]—)7 for i = 05' o 7N15.7 = 17" . ;N2a
e 9.6)
hi _ _ (9.
F;,j+% :*—k ! (ui7j+17uiﬁj), fOI"L:L"' ,Nl,]:0,~~~ ,NQ,
Jt+3
U, = UN;+1,j = Ui, 0 = Wi, Ny+1 = 0, for i = 1,.. .,Nl,j =1,...,Ns. (97)

The numerical scheme (9.5)-(9.7) is therefore clearly conservative and the numerical approximations of
the fluxes can easily be shown to be consistent.

Proposition 9.1 (Error estimate) Let Q = (0,1) x (0,1) and f € L?(2). Let u be the unique varia-
tional solution to (9.4). Under Assumptions 9.2, let { > 0 be such that h; > Ch fori=1,...,N1 and
k; > Ch for j = 1,...,Na. Then, there exists a unique solution (w; ;)i=1,... Ny, j=1,- N, to (9.5)-(9.7).
Moreover, there exists C > 0 only depending on u, Q0 and ¢ such that

) . )2 - 5. )2
Z (eerl}i ez,]) k/’j + Z (GZJJF]; 61,]) hi < Ch2 (9.8)
i i+3 i it+3
and
eii)?hik; < Ch?, 9.9
J j
4,7

where e; ; = w(x; ;) — ui , fori=1,---  Ny,j=1,--- Na.

In the above proposition, since f € L*(2) and © is convex, it is well known that the variational solution
u to (9.4) belongs to H?(2). We do not give here the proof of this proposition since it is in fact included
in Theorem 9.4 page 55 (see also LAZAROV, MISHEV and VASSILEVSKI [102] where the case u € H®,
s > 2 is also studied).

In the case u € C?(Q), the estimates (9.8) and (9.9) can be shown with the same technique as in the 1D
case (see e.g. FIARD [65]). If u € C? then the above estimates are a consequence of Theorem 9.3 page
52; in this case, the value C' in (9.8) and (9.9) independent of ¢, and therefore the assumption h; > Ch
fori=1,...,N; and k; > Ch for j =1,..., N3 is no longer needed.

Relation (9.8) can be seen as an estimate of a “discrete H} norm” of the error, while relation (9.9) gives
an estimate of the L? norm of the error.



35

Remark 9.1 Some slight modifications of the scheme (9.5)-(9.7) are possible, as in the first item of
Remark 5.2 page 14. It is also possible to obtain, sometimes, an “h?” estimate on the L? (or L°) norm
of the error (that is “h*” instead of “h?” in (9.9)), exactly as in the 1D case, see Remark 6.2 page 18. In
the case equivalent to the second case of Remark 6.2, the point x; ; is not necessarily the center of Kj ;.

When the mesh is no longer rectangular, the scheme (9.5)-(9.6) is not easy to generalize if keeping to
a b points scheme. In particular, the consistency of the fluxes or the conservativity can be lost, see
FAILLE [58], which yields a bad numerical behaviour of the scheme. One way to keep both properties is
to introduce a 9-points scheme.

Quadrangular meshes: a nine-point scheme

Let © be an open bounded polygonal subset of IR?, and f be a regular function from € to IR. We still
consider Problem 9.4, turning back to the usual notation z for the current point of IR?,

—Au(z) = f(z), z € Q,

() = 0, x € OO, (9.10)

Let T be a mesh defined over §2; then, integrating the first equation of (9.10) over any cell K of the mesh

yields
7/ gradu~nK:/ 1,
oK K

where ng is the normal to the boundary 0K, outward to K. Let ux denote the discrete unknown
associated to the control volume K € 7. In order to obtain a numerical scheme, if ¢ is a common edge
to K € T and L € T (denoted by K|L) or if ¢ is an edge of K € T belonging to 92, the expression
gradu - nxg must be approximated on o by using the discrete unknowns. The study of the finite volume
scheme in dimension 1 and the above straightforward generalization to the rectangular case showed that
the fundamental properties of the method seem to be

1. conservativity: in the absence of any source term on K |L, the approximation of gradu-ng on K|L
which is used in the equation associated with cell K is equal to the approximation of —gradu - ny,
which is used in the equation associated with cell L. This property is naturally obtained when
using a finite volume scheme.

2. cousistency of the fluxes: taking for uy the value of u in a fixed point of K (for instance, the center
of gravity of K), where u is a regular function, the difference between gradu - nx and the chosen
approximation of gradu - ngx is of an order less or equal to that of the mesh size. This need of
consistency will be discussed in more detail: see remarks 9.2 page 37 and 9.8 page 48

Several computer codes use the following “natural” extension of (9.6) for the approximation of gradu-ng
on K NL:
gradu -ny = LUK

dg |1,
where dg | is the distance between the center of the cells K" and L. This choice, however simple, is far
from optimal, at least in the case of a general (non rectangular) mesh, because the fluxes thus obtained
are not consistent; this yields important errors, especially in the case where the mesh cells are all oriented
in the same direction, see FAILLE [58], FAILLE [59]. This problem may be avoided by modifying the
approximation of gradu - nx so as to make it consistent. However, one must be careful, in doing so, to
maintain the conservativity of the scheme. To this purpose, a 9-points scheme was developped, which is
denoted by FVO9.
Let us describe now how the flux gradu - ng is approximated by the FV9 scheme. Assume here, for
the sake of clarity, that the mesh 7 is structured; indeed, it consists in a set of quadrangular cells
{K;;,i=1,...,N;j=1,...,M}. Asshown in Figure 3.1, let C; ; denote the center of gravity of the cell
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Kij, 0ij-1/2, Cix1/2,5> Oijs1/2, Oi—1/2,; the four edges to K ; and n; ;_1/2, Niv1/2.55 Mij+1/2> Mi-1/2,j
their respective orthogonal bisectors. Let (; j_1/2, (resp. (it1/2.5, Gij+1/25 Gi—1/2,5) be the lines joining
pOiDtS C@j and Ci7j_1 (resp. Ci,j and Ci-i-l,j’ C@j and Ci7j+1, Ci—l,j and C@j).

Cit1,j+1

Figure 3.1: F'V9 scheme

Consider for instance the edge o; ;1,2 which lies between the cells K; ; and K; ;11 (see Figure 3.1). In
order to find an approximation of gradu - ng, for K = K; ;, at the center of this edge, we shall first
derive an approximation of u at the two points U; ;1,2 and D; ;12 which are located on the orthogonal
bisector 7; ;11,2 of the edge o; j11/2, on each side of the edge. Let ¢; ;11,2 be the approximation of
—gradu - nk at the center of the edge 0; j11/2. A natural choice for ¢; j 1/ consists in taking

U D
Wij+1/2 — Wijv1/2 (9.11)
d(U; j41/2> Dij11/2)

Gijr1j2 = —

where Ugj+1/2 and U5j+1/2 are approximations of u at Ui,j+1/2 and Di,j-‘rl/Qa and d(Ui,j-‘rl/Qv Di,j+1/2)
is the distance between points U; ;11,2 and D; j4q/2-
The points U; j 11,2 and D; ;12 are chosen so that they are located on the lines ¢ which join the centers
of the neighbouring cells. The points U; j;1/2 and D; ;1,2 are therefore located at the intersection of
the orthogonal bisector 7; ;11,2 with the adequate ¢ lines, which are chosen according to the geometry
of the mesh. More precisely,

Uijri2 =Nijr12 NGo1y2541 i mi 1172 is to the left of € 41
="Nijt+1/2 N Giy1/2,541  Otherwise

Dijv172 =nijr12 NGic1y2,5 if m;j11/2 is to the left of C; ;
=i 4172 N GCit1/2,5 otherwise

In order to satisfy the property of consistency of the fluxes, a second order approximation of u at points
Ui jy1/2 and D; ;11,9 is required. In the case of the geometry which is described in Figure 3.1, the

following linear approximations of ung/Q and “szH/z can be used in (9.11);
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d(Cij1,Ui jr1/2)
d(Cs j+1, Cit1,5+1)
igr Dij+1/2

d(Ci-1,5,Ci ;)
The approximation of gradu - nk at the center of a “vertical” edge 0;41/2,; is performed in a similar way,
by introducing the points R; /5 ; intersection of the orthogonal bisector 7,,; /2 ; and, according to the
geometry, of the line (; j_1/2 or (; j11/2, and Ly /2 ; intersection of ;41,2 5 and (41172 OF (41 j41/2-
Note that the outmost grid cells require a particular treatment (see FAILLE [58]).
The scheme which is described above is stable under a geometrical condition on the family of meshes
which is considered. Since the fluxes are consistent and the scheme is conservative, it also satisfies a
property of “weak consistency”, that is, as in the one dimensional case (see remark 6.6 page 21 of Section
7), the exact solution of (9.10) satisfies the numerical scheme with an error which tends to 0 in L*°(2)
for the weak-x topology. Under adequate restrictive assumptions, the convergence of the scheme can be
deduced, see FAILLE [58].
Numerical tests were performed for the Laplace operator and for operators of the type —div( A grad.),
where A is a variable and discontinuous matrix (see FAILLE [58]); the discontinuities of A are treated in
a similar way as in the 1D case (see Section 7). Comparisons with solutions which were obtained by the
bilinear finite element method, and with known analytical solutions, were performed. The results given
by the VF9 scheme and by the finite element scheme were very similar.
The two drawbacks of this method are the fact that it is a 9-points scheme, and therefore computationally
expensive, and that it yields a nonsymmetric matrix even if the original continuous operator is symmetric.
Also, its generalization to three dimensions is somewhat complex.

ung/Q = atiq1,j41 + (1 —a)ui iy where o=

U
—~

u5j+1/2 = PBui—1,; + (1 — Bu, where 3=

Remark 9.2 The proof of convergence of this scheme is hindered by the lack of consistency for the
discrete adjoint operator (see Section 9.4). An error estimate is also difficult to obtain because the
numerical flux at an interface K|L cannot be written under the form TK| (ur —up) with T > 0. Note,
however, that under some geometrical assumptions on the mesh, see FAILLE [58] and COUDIERE, VILA
and VILLEDIEU [41], error estimates may be obtained.

9.2 General meshes and schemes

Let us now turn to the discretization of convection-diffusion problems on general structured or non
structured grids, consisting of any polygonal (recall that we shall call “polygonal” any polygonal domain
of IR? or polyhedral domain or IRB) control volumes (satisfying adequate geometrical conditions which
are stated in the sequel) and not necessarily ordered in a Cartesian grid. The advantage of finite volume
schemes using non structured meshes is clear for convection-diffusion equations. On one hand, the stability
and convergence properties of the finite volume scheme (with an upstream choice for the convective flux)
ensure a robust scheme for any admissible mesh as defined in Definitions 9.1 page 37 and 10.1 page 63
below, without any need for refinement in the areas of a large convection flux. On the other hand, the
use of a non structured mesh allows the computation of a solution for any shape of the physical domain.

We saw in the previous section that a consistent discretization of the normal flux —Vu-n over the interface
of two control volumes K and L may be performed with a differential quotient involving values of the
unknown located on the orthogonal line to the interface between K and L, on either side of this interface.
This remark suggests the following definition of admissible finite volume meshes for the discretization of
diffusion problems. We shall only consider here, for the sake of simplicity, the case of polygonal domains.
The case of domains with a regular boundary does not introduce any supplementary difficulty other than
complex notations. The definition of admissible meshes and notations introduced in this definition are
illustrated in Figure 3.2

Definition 9.1 (Admissible meshes) Let Q be an open bounded polygonal subset of R? d=2,or3.
An admissible finite volume mesh of €, denoted by T, is given by a family of “control volumes”, which
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are open polygonal convex subsets of Q , a family of subsets of Q contained in hyperplanes of IR%, denoted
by £ (these are the edges (two-dimensional) or sides (three-dimensional) of the control volumes), with
strictly positive (d — 1)-dimensional measure, and a family of points of Q denoted by P satisfying the
following properties (in fact, we shall denote, somewhat incorrectly, by T the family of control volumes):

(i) The closure of the union of all the control volumes is Q;

(ii) For any K € T, there exists a subset Ex of £ such that 0K = K \ K = Uycg, 0. Furthermore,
6 = UKeTgK

(iii) For any (K, L) € T2 with K # L, either the (d — 1)-dimensional Lebesgue measure of K N L is 0
or K NL =7 for some ¢ € &, which will then be denoted by K|L.

(iv) The family P = (zx)xe7 is such that xx € K (for all K € T) and, if o = K|L, it is assumed that
i # xr, and that the straight line Dk j, going through zx and xy, is orthogonal to K|L.

(v) For any o € & such that o C 99, let K be the control volume such that o € Ex. If xx ¢ o, let
Dk - be the straight line going through zx and orthogonal to o, then the condition Dk , No # 0
is assumed; let y, = Do No.

In the sequel, the following notations are used.

The mesh size is defined by: size(T) = sup{diam(K), K € T}.

For any K € T and 0 € £, m(K) is the d-dimensional Lebesgue measure of K (it is the area of K in the
two-dimensional case and the volume in the three-dimensional case) and m(o) the (d — 1)-dimensional
measure of o.

The set of interior (resp. boundary) edges is denoted by Eint (resp. Eext), that is &y = {0 € &; 0 ¢ 9N}
(resp. Eext = {0 € &; 0 C 00}).

The set of neighbours of K is denoted by N'(K), that is N(K) = {L € T; 30 € £k, 7= K N L}.

If o = K|L, we denote by d, or d|;, the Euclidean distance between xx and xy (which is positive) and
by dg,» the distance from zx to o.

If 0 € Ex N Eext, let dy denote the Euclidean distance between xx and y, (then, d, = di ).

For any o € &; the “transmissibility” through o is defined by 7, = m(c¢)/d, if d, # 0.

In some results and proofs given below, there are summations over o € &, with & = {0 € &; d, # 0}.
For simplicity, (in these results and proofs) £ = & is assumed.

m(o) | .
TK X,,,i ,<y‘{ ,,,,,, ><.TL
1
B

Figure 3.2: Admissible meshes

Remark 9.3 (i) The definition of y, for o € Eext Tequires that y, € o. However, In many cases, this
condition may be relaxed. The condition xx € K may also be relaxed as described, for instance, in
Example 9.1 below.
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(ii) The condition xx # xy, if 0 = K|L, is in fact quite easy to satisfy: two neighbouring control volumes
K, L which do not satisfy it just have to be collapsed into a new control volume M with z; = zx = xp,
and the edge K|L removed from the set of edges. The new mesh thus obtained is admissible.

Example 9.1 (Triangular meshes) Let Q be an open bounded polygonal subset of R% Let 7 be a
family of open triangular disjoint subsets of €2 such that two triangles having a common edge have also two
common vertices. Assume that all angles of the triangles are less than /2. This last condition is sufficient
for the orthogonal bisectors to intersect inside each triangle, thus naturally defining the points zx € K.
One obtains an admissible mesh. In the case of an elliptic operator, the finite volume scheme defined on
such a grid using differential quotients for the approximation of the normal flux yields a 4-point scheme
HERBIN [84]. This scheme does not lead to a finite difference scheme consistent with the continuous
diffusion operator (using a Taylor expansion). The consistency is only verified for the approximation of
the fluxes, but this, together with the conservativity of the scheme yields the convergence of the scheme,
as it is proved below.

Note that the condition that all angles of the triangles are less than 7/2 (which yields zx € K) may
be relaxed (at least for the triangles the closure of which are in ) to the so called “strict Delaunay
condition” which is that the closure of the circumscribed circle to each triangle of the mesh does not
contain any other triangle of the mesh. For such a mesh, the point zx (which is the intersection of the
orthogonal bisectors of the edges of K') is not always in K, but the scheme (9.17)-(9.19) is convenient since
(9.18) yields a consistent approximation of the diffusion fluxes and since the transmissibilities (denoted
by T |1) are positive.

Example 9.2 (Voronoi meshes) Let {2 be an open bounded polygonal subset of IR, An admissible
finite volume mesh can be built by using the so called “Voronoi” technique. Let P be a family of points
of Q. For example, this family may be chosen as P = {(kih, ..., kqh), k1,...kqg € Z} N, for a given
h > 0. The control volumes of the Voronoi mesh are defined with respect to each point = of P by

where |z — y| denotes the Euclidean distance between z and y. Voronol meshes are admissible in the
sense of Definition 9.1 if the assumption “on the boundary”, namely part (v) of Definition 9.1, is satisfied.
Indeed, this is true, in particular, if the number of points & € P which are located on 0f2 is “large
enough”. Otherwise, the assumption (v) of Definition 9.1 may be replaced by the weaker assumption
“d(yo,0) < size(T) for any o € Eqxt” which is much easier to satisfy. Note also that a slight modification
of the treatment of the boundary conditions in the finite volume scheme (9.20)-(9.23) page 42 allows us
to obtain convergence and error estimates results (as in theorems 9.1 page 45 and 9.3 page 52) for all
Voronoi meshes. This modification is the obvious generalization of the scheme described in the first item
of Remark 5.2 page 14 for the 1D case. It consists in replacing, for K € T such that Ex N Eext # 0, the
equation (9.20), associated to this control volume, by the equation ux = g(zx ), where zx is some point
on 0NN OK. In fact, Voronoi meshes often satisfy the following property:

gngext7é®:>$K€aQ

and the mesh is therefore admissible in the sense of Definition 9.1 (then, the scheme (9.20)-(9.23) page
42 yields ux = g(xk) if K € T is such that Ex N Eext # 0).
An advantage of the Voronoi method is that it easily leads to meshes on non polygonal domains €.

Let us now introduce the space of piecewise constant functions associated to an admissible mesh and
some “discrete Hi” norm for this space. This discrete norm will be used to obtain stability properties
which are given by some estimates on the approximate solution of a finite volume scheme.

Definition 9.2 (Discrete space and norm) Let Q be an open bounded polygonal subset of RY,
d=2or 3, and 7 be an admissible finite volume mesh in the sense of Definition 9.1 page 37. . Let X (T)
as the set of functions from €2 to IR which are constant over each control volume of the mesh.
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For u € X (T), define the discrete H} norm by

Jullr = (ZTU(DGU)Q)%, (9.12)

el

where 7, = m(0)/d, and Dyu = |ug —uyp| if 0 € Eint, 0 = K|L, Dou = |ug| if 0 € Eoxt N Ek, and where
u denotes the value taken by w on the control volume K and the sets &, Eint, Eoxt and Ex are defined
in Definition 9.1 page 37.

The discrete Hg norm is used in the following sections to prove the congergence of finite volume schemes
and, under some regularity conditions, to give error estimates. It is related to the H} norm, see the
convergence of the norms in Theorem 9.1. One of the tools used below is the following “discrete Poincaré
inequality” which may also be found in TEMAM [144]:

Lemma 9.1 (Discrete Poincaré inequality) Let Q be an open bounded polygonal subset of RY, d=2
or 3, T an admissible finite volume mesh in the sense of Definition 9.1 and uw € X (T) (see Definition
9.2), then

lull2(e) < diam(€Q)|ull,7, (9.13)

where || - ||1,7 is the discrete H} norm defined in Definition 9.2 page 39.

Remark 9.4 (Dirichlet condition on part of the boundary) This lemma gives a discrete Poincaré
inequality for Dirichlet boundary conditions on the boundary 0. In the case of a Dirichlet condition on
part of the boundary only, it is still possible to prove a Discrete boundary condition provided that the
polygonal bounded open set () is also connex, thanks to Lemma 9.1 page 40 proven in the sequel.

PROOF of Lemma 9.1
For o € &, define x, from R? x R? to {0,1} by xo(x,y) = 1 if 0 N[z,y] # 0 and x,(z,y) = 0 otherwise.

Let u € X(T). Let d be a given unit vector. For all z € Q, let D, be the semi-line defined by its origin, z,
and the vector d. Let y(x) such that y(x) € D, NIN and [z, y(z)] C Q, where [z, y(x)] = {tz+ (1 —t)y(x),
t €10,1]} (i.e. y(x) is the first point where D, meets 092).

Let K € T. For a.e. x € K, one has

|UK| < ZDUU’ Xa(xa y($)),
e

where the notations D,u and ug are defined in Definition 9.2 page 39. We write the above inequality
for a.e x € Q and not for all x € € in order to account for the cases where an edge or a vertex of the
mesh is included in the semi-line [z, y(z)]; in both cases one may not write the above inequality, but there
are only a finite number of edges and vertices, and since d is fixed, the above inequality may be written
almost everywhere.

Let ¢y = |d - n,| (recall that ¢ - denotes the usual scalar product of ¢ and 7 in IR?). By the Cauchy-
Schwarz inequality, the above inequality yields:

Dyu)?
url? € P o y(#) Y docoxo (@ y(@)). for ne. x € K. (9.14)
oce 77 oee

Let us show that, for a.e. x € €,

Zd,,chg(m,y(x)) < diam(Q2). (9.15)
o€

Let x € K, K € T, such that o N [z,y(x)] contains at most one point, for all o € &, and [z, y(x)] does
not contain any vertex of 7 (proving (9.15) for such points x leads to (9.15) a.e. on €2, since d is fixed).
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There exists 0, € Eext such that y(z) € o,. Then, using the fact that the control volumes are convex,
one has:

Zxa(w,y(w))daca =|(zx — 75,) - d.
c€e€

Since 2 and z,, € Q (see Definition 9.1), this gives (9.15).
Let us integrate (9.14) over §2; (9.15) gives

/ [ug] dm<d1am(Q)Z (l;:(i) /ng($,y($))dx.

KeT e

Since [, Xo (@, y(x))dz < diam(Q)m(o)cy, this last inequality yields

Z/ lug |*dr < (diam(Q Z|D |2In

KeT oe&

Hence the result. ]

Let 7 be an admissible mesh. Let us now define a finite volume scheme to discretize (9.1), (9.2) page 32.
Let

1

Let (ug)rxe7 denote the discrete unknowns. In order to describe the scheme in the most general way,
one introduces some auxiliary unknowns (as in the 1D case, see Section 7), namely the fluxes Fi ., for all
K € T and 0 € €k, and some (expected) approximation of u in o, denoted by u,, foralle € £. For K € T
and o € £k, let ng , denote the normal unit vector to o outward to K and vg , = fg v(z) - ng sdy(z).
Note that dv is the integration symbol for the (d — 1)-dimensional Lebesgue measure on the considered
hyperplane. In order to discretize the convection term div(v(z)u(z)) in a stable way (see Section 7 page
21), let us define the upstream choice uy + of u on an edge o with respect to v in the following way. If
o = K|L, then uy + = ug if vg, > 0, and us 4y = uy otherwise; if o C K N 0N, then u, 4 = ug if
vk, > 0 and us + = g(y,) otherwise.

Let us first assume that the points x i are located in the interior of each control volume, and are therefore
not located on the edges, hence dg , > 0 for any o € £k, where dk , is the distance from zx to 0. A
finite volume scheme can be defined by the following set of equations:

Z Fro+ Z VK ol + + m(K)ug =m(K)fx, VK €T, (9.17)
oc€EK 0€EK

FK_’(,:—TK‘L(UL—UK),VUE&M, ifJ:K|L, (918)

Fr o =—To(9(yo) — uk), Yo € Eext such that o € Ek. (9.19)

In the general case, the center of the cell may be located on an edge. This is the case for instance when
constructing Voronoi meshes with some of the original points located on the boundary 0€2. In this case,
the following formulation of the finite volume scheme is valid, and is equivalent to the above scheme if
no cell center is located on an edge:

Z Fro+ Z VK ol + + m(K)ug =m(K)fx, VK €T, (9.20)

ocefk oefk

Fro = —Fp ., Y0 € E, if 0 = K|L, (9.21)
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Fk odi o = —m(0)(uy —ug), Vo € Eg, VK € T, (9.22)

Ug = g(ya)a Vo € Eext- (923)

Note that (9.20)-(9.23) always lead, after an easy elimination of the auxiliary unknowns, to a linear
system of N equations with N unknowns, namely the (ur)xe7, with N = card(7).

Remark 9.5
1. Note that one may have, for some o € £k, xx € o, and therefore, thanks to (9.22), u, = uk.

2. The choice u, = g(y,) in (9.23) needs some discussion. Indeed, this choice is possible since g is
assumed to belong to C(99Q,IR) and then is everywhere defined on 0§). In the case where the
solution to (9.1), (9.2) page 32 belongs to H?(2) (which yields g € C(99,R)), it is clearly a good
choice since it yields the consistency of fluxes (even though an error estimate also holds with other
choices for u,, the choice given below is, for instance, possible). If g € H 1/2 (and not continuous),
the value g(yo) is not necessarily defined. Then, another choice for u, is possible, for instance,

5 | s@ara)

With this latter choice for u,, a convergence result also holds, see Theorem 9.2.

Ugy =

For the sake of simplicity, it is assumed in Definition 9.1 that xx # zp, for all K, L € 7. This condition

may be relaxed; it simply allows an easy expression of the numerical flux Fr , = —7x(ur — ug) if
o= K]|L.

9.3 Existence and estimates

Let us first prove the existence of the approximate solution and an estimate on this solution. This estimate
ensures the stability of the scheme and will be obtained by using the discrete Poincaré inequality (9.13)
and will yield convergence thanks to a compactness theorem given in Section 14 page 94.

Lemma 9.2 (Existence and estimate) Under Assumptions 9.1, let T be an admissible mesh in the
sense of Definition 9.1 page 37; there exists a unique solution (uk)keT to equations (9.20)-(9.23).
Furthermore, assuming g = 0 and defining ur € X(T) (see Definition 9.2) by ur(xz) = ux for a.e.
x € K, and for any K € T, the following estimate holds:

[urll7 < diam(Q)[| £l 20, (9.24)
where || - ||1,7 is the discrete H} norm defined in Definition 9.2.

PROOF of Lemma 9.2

Equations (9.20)-(9.23) lead, after an easy elimination of the auxiliary unknowns, to a linear system of
N equations with N unknowns, namely the (uk)ker, with N = card(T).

Step 1 (existence and uniqueness)
Assume that (ux)re7 satisfies this linear system with g(y,) = 0 for any o € Eex, and fx = 0 for all
K € T. Let us multiply (9.20) by ux and sum over K; from (9.21) and (9.22) one deduces

bz m(K)u% + Z Z Frg ouk + Z Z VK, oUg+UK =0, (9.25)

KeT KeToelk KeToelk
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which gives, reordering the summation over the set of edges

0> m(K)uk + Y 1o (Dow)? + > v, (um_,_ - u,,,_)u,,,+ —0, (9.26)

KeT oe& oe&

where

|Dou| = |lug —ug|, if c = K|L and |Dyu| = |uk], if 0 € Ex N Eext;

vo = | [, v(z) - ndy(z)|, n being a unit normal vector to o;

Ug,— is the downstream value to o with respect to v, i.e. if 0 = K|L, then us - = ug if vg, < 0, and
Uy, — = ur, otherwise; if 0 € Eg N Eext, then uy - = ug if v <0 and vy — = vy if VK > 0.

Note that vy, =0 if 0 € Eext.

Now, remark that

1
ngugﬁ(uggr — Uy ) = 5200 ((Uo,Jr — g )+ (ul , — ui,)) (9.27)
ocel oc€e€
and, thanks to the assumption divv > 0,
z:v,,(ufwr —ui )= Z (/ v(z) -anv(ac))uK = /(divv(m))uT(x)dx > 0. (9.28)
oel KeT JOK £
Hence,
blurllizi) + lurlfr = b m(K)ui + Y 75 (Deu)* <0, (9.29)
KeT oce€

One deduces, from (9.29), that ux =0 for all K € T.
This proves the existence and the uniqueness of the solution (ux)ker, of the linear system given by
(9.20)-(9.23), for any {g(ys), 0 € Eext} and {fx, K € T}.

Step 2 (estimate)
Assume g = 0. Multiply (9.20) by ug, sum over K; then, thanks to (9.21), (9.22), (9.27) and (9.28) one
has

bllur |2y + lurlis < D m(K)frux.
KeT

By the Cauchy-Schwarz inequality, this inequality yields

lurll} 7 < (Y- mE)uz)? (D m(K)f)? < | fllzzwllurllzeo)-
KeT KeT
Thanks to the discrete Poincaré inequality (9.13), this yields |ur|l1,7 < HfHLz(Q)diam(Q), which con-
cludes the proof of the lemma. [

Let us now state a discrete maximum principle which is satisfied by the scheme (9.20)-(9.23); this is an
interesting stability property, even though it will not be used in the proofs of the convergence and error
estimate.

Proposition 9.2 Under Assumption 9.1 page 32, let T be an admissible mesh in the sense of Definition
9.1 page 37, let (fx)xer be defined by (9.16). If fx >0 for all K € T, and g(ys) > 0, for all 0 € Eext,
then the solution (ur)xer of (9.20)-(9.23) satisfies ux > 0 for all K € T.
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PROOF of Proposition 9.2

Assume that fx >0 for all K € T and g(y,) > 0 for all 0 € Eext. Let a = min{ug, K € T}. Let K{ be
a control volume such that ux, = a. Assume first that Ky is an “interior” control volume, in the sense
that Ex C Eing, and that ug, < 0. Then, from (9.20),

Z FKO,U + Z VKy,0lUo,+ Z 07 (930)

UESKO UESKO

since for any neighbour L of K one has uy, > ug,, then, noting that divv > 0, one must have uy, = ug,
for any neighbour L of K. Hence, setting B = {K € T, ux = a}, there exists K € B such that Ex ¢ Eint,
that is K is a control volume “neighbouring the boundary”.

Assume then that K is a control volume neighbouring the boundary and that ux, = a < 0. Then, for
an edge 0 € o N Ek, relations (9.22) and (9.23) yield g(y,) < 0, which is in contradiction with the
assumption. Hence Proposition 9.2 is proved. [

Remark 9.6 The maximum principle immediately yields the existence and uniqueness of the solution
of the numerical scheme (9.20)-(9.23), which was proved directly in Lemma 9.2.

9.4 Convergence

Let us now show the convergence of approximate solutions obtained by the above finite volume scheme
when the size of the mesh tends to 0. One uses Lemma 9.2 together with the compactness theorem 14.2
given at the end of this chapter to prove the convergence result. In order to use Theorem 14.2, one needs
the following lemma.

Lemma 9.3 Let Q) be an open bounded set of RY, d =2 or3. Let T be an admissible mesh in the sense
of Definition 9.1 page 37 and u € X(T) (see Definition 9.2). One defines @ by @ = u a.e. on ), and
=0 ae. onR? \ Q. Then there exists C' > 0, only depending on 2, such that

(- +m) = @l 2 (gay < Il lul(Inl + Csize(T)), vy € R, (9.31)

PRrROOF of Lemma 9.3

For o € &, define y, from R? x R? to {0,1} by xo(z,y) = 1if [z,y] N o # 0 and x,(z,y) = 0 if
[z,y)No=0.

Let n € R%, 1 # 0. One has

[a(z + 1) —a(x)] < ng(x,x +n)|Dyul, for ae. xe€Q
o€l

(see Definition 9.2 page 39 for the definition of Dyu).
This gives, using the Cauchy-Schwarz inequality,
|Doul?

[ + ) = a@) < 3 xo @ w )=

ng(z, z +n)dycy, for ae. zelRY (9.32)
o€& S

where ¢, = |n, - %L and n, denotes a unit normal vector to o.
Let us now prove that there exists C' > 0, only depending on €2, such that

ng(ac, x4+ n)dyco < |n|+ Csize(T), (9.33)
o€

for a.e. z € R%.
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Let 2 € R? such that o N [z, 2 + 5] contains at most one point, for all o € &, and [z, + 1] does not
contain any vertex of 7~ (proving (9.33) for such points z gives (9.33) for a.e. z € IR?, since 7 is fixed).
Since € is not assumed to be convex, it may happen that the line segment [z, + 7] is not included in Q.
In order to deal with this, let y, z € [z, x + 1] such that y # z and [y, 2] C Q; there exist K, L € T such
that y € K and z € L. Hence,

> o (Y 2)doco = (1 — 21) - 7o,

= Il

where y; = TK Or Yo with 0 € Eext NEK and z1 = xp, or Yz with 6 € Eext NEL, depending on the position
of y and z in K or L respectively.
Since y1 = y + y2, with |yo| < size(T), and z; = z + 23, with |z2| < size(T), one has

|(y1 — 21) - i| <y — 2| + |ya| + |22] < |y — 2| + 2size(T)

il

and

ng(y, 2)dyco < |y — z| + 2size(T). (9.34)
c€e€
Note that this yields (9.33) with C' = 2 if [z, + ] C Q.
Since 2 has a finite number of sides, the line segment [z, z + 7] intersects 9 a finite number of times;
hence there exist t1,...,t, such that 0 < t; <t < ... <t, <1, n < N, where N only depends on )

(indeed, it is possible to take N = 2 if ) is convex and N equal to the number of sides of ) for a general
) and such that

ZXU($7$+U)dUCU = Z ZXU(zi;zi+1)dG’cG’7

oce& i=l,n—10c€&
oddi

with z; =z +t;m, for i = 1,...,n, z; € 0N if t; ¢ {0,1} and [z, 2;41] C Qif i is odd.
Then, thanks to (9.34) with y = a; and z = x;41, for i =1,...,n— 1, one has (9.33) with C =2(N — 1)
(in particular, if Q is convex, C' = 2 is convenient for (9.33) and therefore for (9.31) as we shall see below).

In order to conclude the proof of Lemma 9.3, remark that, for all o € &,

/ Xo (2, 2+ n)dz < m(o)cq|n].
]R'i

Therefore, integrating (9.32) over IR? yields, with (9.33),

[+ 1)~ gy < (3 D) (] + Csize(T)).
oel a

We are now able to state the convergence theorem. We shall first prove the convergence result in the case
of homogeneous Dirichlet boundary conditions, i.e. g = 0; thenonhomogenous case is then considered
(see Theorem 9.2 page 51), following EYMARD, GALLOUET and HERBIN [55].

Theorem 9.1 (Convergence, homogeneous Dirichlet boundary conditions) Under Assumption
9.1 page 32 with g = 0, let T be an admissible mesh (in the sense of Definition 9.1 page 37). Let(uk)keT
be the solution of the system given by equations (9.20)-(9.23) (existence and uniqueness of (uk)keT are
given in Lemma 9.2). Define ur € X(T) by ur(z) = ug for a.e. x € K, and for any K € T. Then ur
converges in L*(Q) to the unique variational solution u € Hg(2) of Problem (9.1), (9.2) as size(T) — 0.
Furthermore |[ur||1,7 converges to |[ul| g (q) as size(T) — 0.
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Remark 9.7

1. In Theorem 9.1, the hypothesis f € L?(Q) is not necessary. It is used essentially to obtain a bound
on |[ur|1,7. In order to pass to the limit, the hypothesis “f € L!(Q)” is sufficient. Then, in
Theorem 9.1, the hypothesis f € L?(Q) can be replaced by f € LP(2) for some p > 1, if d = 2,
and for p > g, if d = 3, provided that the meshes satisfy, for some fixed ¢ > 0, di » > (d,, for all
o € Ex and for all control volumes K. Indeed, one obtains, in this case, a bound on ||ur|1,7 by
using a “discrete Sobolev inequality” (proved in Lemma 9.5 page 60).

It is also possible to obtain convergence results, towards a “very weak solution” of Problem (9.1),
(9.2), with only f € L'(f), by working with some discrete equivalent of the Wol’q—morm7 with
q < %. This is not detailed here.

2. In Theorem 9.1, it is also possible to prove convergence results when f(x) (resp. v(x)) is replaced
by some nonlinear function f(z,u(x)), (resp. v(z,u(x)) under adequate assumptions, see [55].

PROOF of Theorem 9.1

Let Y be the set of approximate solutions, that is the set of uy where T is an admissible mesh in the
sense of Definition 9.1 page 37. First, we want to prove that us tends to the unique solution (in H}(f2))
to (9.3) as size(T) — 0.

Thanks to Lemma 9.2 and to the discrete Poincaré inequality (9.13), there exists C; € IR, only depending
on  and f, such that ||ur|17 < C1 and |lur||2q) < C1 for all ur € Y. Then, thanks to Lemma 9.3
and to the compactness result given in Theorem 14.2 page 94, the set Y is relatively compact in L?(2)
and any possible limit (in L?(2)) of a sequence (u7, Jnew C Y (such that size(7,,) — 0) belongs to H ().
Therefore, thanks to the uniqueness of the solution (in H}(Q2)) of (9.3), it is sufficient to prove that if
(uT, )new C Y converges towards some u € HJ(2), in L?(Q2), and size(7,) — 0 (as n — o0), then u is
the solution to (9.3). We prove this result below, omiting the index n, that is assuming u7 — u in L*(Q)
as size(T) — 0.

Let ¢ € C°(Q) and let size(7) be small enough so that ¢(z) = 0 if x € K and K € T is such that
OK N o # (. Multiplying (9.20) by ¥(xk), and summing the result over K € T yields

T+ Ty +T5 =Ty, (9.35)
with

T1 = b Z m(K)uKz/J(xK),

KeT

To==> > 7xwlur —uk)per),

KeT LeN(K)

15 = Z Z 'UK,aUa,er(xK)v

KeToelk

Ty =Y m(K)p(rr) fx.

KeT

First remark that, since us tends to u in L?(Q),
T — b/u(m)z/}(x)dx as size(7T) — 0.
Q

Similarly,

Ty — /Qf(z)w(z)dz as size(T) — 0.
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Let us now turn to the study of Tb;
== Y rn(un - uk)(@(ex) - v(zn)).

K|L€EEint

Consider the following auxiliary expression:

T = /Q wr () Av(z)dz
— S /K Adp(z)dz

KeT

— Z (uKuL)/KLVdJ(:c) “ng rdy(z).

K|L€EEint

Since ur converges to u in L?(Q), it is clear that T4 tends to /u(z)Az/J(x) dx as size(T) tends to 0.
Q
Define

1 Y(rr) — P(zk)
R = 7/ Vi(x) -nk rdy(r) - —————7,
m(KI[L) Jg|1 dg|L
where ng 1, denotes the unit normal vector to K|L, outward to K, then
T+ T3 =] Y m(K|L)(ux —ur)Re L]
K|L€EEint
ug —ur)? 1/2
<[ ¥ mun ™ S K D (ren?]
K|LEEim KIL KLegm

Regularity properties of the function 1 give the existence of Co € IR, only depending on 1, such that
|Ri, 1| < Casize(T). Therefore, since

> m(K[L)dg, < dm(Q),
K|LEEn

from Estimate (9.24), we conclude that T + 75 — 0 as size(7) — 0.
Let us now show that T3 tends to — [, v(z)u(x)Vip(z)dz as size(T) — 0. Let us decompose T = T5+Ty
where

Té = Z Z VKo (Uo+ — UK )V(TK)

KeToelk

and

Ty = Z Z VKoUK (TK) :/Qdivv(x)uT(z)wT(z)dz,

KeToelk

where 97 is defined by ¢7(z) = ¥(xk) if 2 € K, K € T. Since ur — u and 7 — v in L*(Q) as
size(T) — 0 (indeed, 17 — 1 uniformly on § as size(7) — 0) and since divv € L*(2), one has

Ty — | divv(z)u(x)y(x)dx as size(T) — 0.
Q

Let us now rewrite T4 as T4 = T4" + r3 with

Ty = Z Z (to,+ *UK)/V(:C) ‘g, P(x)dy(x)

KeToelk
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and

= 3 3 (e ) [ V(o) i (o) — b)) o)

KeToelk
Thanks to the regularity of v and v, there exists C3 only depending on v and % such that
|ra] < Casize(T) Y |uk — ur/m(K|L),
K|LEE&nt
which yields, with the Cauchy-Schwarz inequality,
|T3| S CgSiZG(T)( Z TK\L|UK — uL|2)5( Z (KlL)dlﬂL)E
K|LEEn K|LEEnt

from which one deduces, with Estimate (9.24), that r3 — 0 as size(7) — 0.
Next, remark that

Ty ==Y uk Yy / g th(z ZuK/ div(v(z)(z))dz.

KeT  o€fk KeT
This implies (since ur — w in LQ(Q)) that 73" — — [, div(v(z)¢(z))u(x)dz, so that T3 has the same
limit and T3 — — [, v(x) - Vip(x)u(x)dx
)

Hence, letting size(7) — 0 in (9.35) yields that the function u € H}(Q) satisfies

/Kz (b“(x)w(w) —u(z)Ay(z) — v(z)u(z) V() — f(w)lﬂ(x)) dz =0, Vi € (),

which, in turn, yields (9.3) thanks to the fact that u € H}(Q), and to the density of C2°() in Hg ().
This concludes the proof of ur — u in L?(2) as size(T) — 0, where u is the unique solution (in H}(€2))
0 (9.3).

S Let us now prove that [[ur([1,7 tends to [lu|[z; ) in the pure diffusion case, i.e. assuming b = 0 and
v = 0. Since

urlli - = / fr(@)ur(x)de — / f(z)u(z)dx as size(T) — 0,
where fr is defined from Q to IR by fr(x) = fx a.e. on K for all K € T, it is easily seen that
l|lwr||? T / f(@)u(z)de = HuHHl () as size(T) — 0.
This concludes the proof of Theorem 9.1. [

Remark 9.8 (Consistency for the adjoint operator) The proof of Theorem 9.1 uses the property
of consistency of the (diffusion) fluxes on the test functions. This property consists in writing the
consistency of the fluxes for the adjoint operator to the discretized Dirichlet operator. This consistency is
achieved thanks to that of fluxes for the discretized Dirichlet operator and to the fact that this operator
is self adjoint. In fact, any discretization of the Dirichlet operator giving “L2-stability” and consistency
of fluxes on its adjoint, yields a convergence result (see also Remark 9.2 page 37). On the contrary, the
error estimates proved in sections 9.5 and 9.6 directly use the consistency for the discretized Dirichlet
operator itself.



49

Remark 9.9 (Finite volume schemes and H! approximate solutions)

In the above proof, we showed that a sequence of approximate solutions (which are piecewise constant
functions) converges in L?(£2) to a limit which is in H(£2). An alternative to the use of Theorem 14.2 is
the construction of a bounded sequence in H'* (le) from the sequence of approximate solutions. This can
be performed by convoluting the approximate solution with a mollifier “of size size(7)”. Using Rellich’s
compactness theorem and the weak sequential compactness of the bounded sets of H', one obtains that
the limit of the sequence of approximate solutions is in Hg.

Let us now deal with the case of non homogeneous Dirichlet boundary conditions, in which case g €
H'/2(99) is no longer assumed to be 0. The proof uses the following preliminary result:

Lemma 9.4 Let Q be an open bounded polygonal subset of R?, § € H'(Q) and g = 75(j) (recall that 7 is
the “trace” operator from H () to HY/?(9RQ)). Let T be an admissible mesh (in the sense of Definition
9.1 page 37) such that, for some ¢ > 0, the inequality di , > (diam(K) holds for all control volumes
K €T and for all 0 € Ek, and let M € IN be such that card(Ex) < M for all K € T. Let us define g
for all K € T by

i = — g(x)dx
gKm(K)/Kg( )d

and G, for all o € Eoxy by

1
9o = (o) /Ug(w)dv(w)-
Let us define
NGT =( Y mwplx g+ Y wolixe — %) (9.36)
0=K|LEEint oE€Eext

where K(0) = K if 0 € Eext N Ex. Then there exists C € Ry, only depending on ¢ and M, such that
NG, T) < Cllgllm (- (9.37)

PROOF of Lemma 9.4

Lemma 9.4 is given in the two dimensional case, an analogous result is possible in the three dimensional
case. Let Q, g, T, ¢, M satisfying the hypotheses of Lemma 9.4. By a classical argument of density, one
may assume that g € C*(Q,R).

A first step consists in proving that there exists C; € IR, only depending on (, such that

diam(K)
m(o)

where gx (resp. Jo) is the mean value of § on K (resp. o), for K € T (resp. o € £). Indeed, without

loss of generality, one assumes that o = {0} x Jy, with Jp is a closed interval of R and K C R4 x IR.

Let o = max{x1,7 = (z1,22)! € K} and a = (a, 8)! € K. In the following, a is fixed. For all 2, € (0, a),

let J(x1) = {x2 € IR, such that (z1,22)" € K}, so that Jy = J(0).

For a.e. © = (z1,72)! € K and a.e., for the 1-Lebesgue measure, y = (0,%)" € ¢ (with § € Jy), one sets

z(z,y) = ta+(1—t)y with t = £-. Note that, since K is convex, z(z,y) € K and z(z,y) = (21, 22(21,7))",

with zo(21,7) = 28 + (1 — Z1)7.

One has, using the Cauchy-Schwarz inequality,

(G — 30)2 < C1 / V5(2)[2da, VK € T Yo € Ex, (9.38)
K

(Gx — §o)? < W(A + B), (9.39)

where



/ / 9l z,9)) dy(y)de,
- /K/ (§(=(x.)) — () " dr(y)d.

and

Let us now obtain a bound of A. Let D;g, i = 1 or 2, denote the partial derivative of § w.r.t.

components of & = (z1,22)" € IR?. Then,

(e o
- / / / (/ Doj(a1,5)ds)” dydwsda: .
0 J(z1) J/ J(0) z2(21,7)

The Cauchy-Schwarz inequality yields

A< diam(K)/ / / / (Dgg(:cl, s))stdydzgdzl
0 J(xz1) 4 J(0) JJ(x1)

and therefore

A< diam(K)g/K (Daj()) da.

One now turns to the study of B, which can be rewritten as

/ / / / [D1G(s, z2(5,7)) + uDgg(s 29(s, y))]ds)2dydx2dx1.
J(xz1) 4 J(0)

The Cauchy-Schwarz inequality and the fact that o > (diam(K) give that

. 1
B < 2diam(K)(By + ?Bg),

Bi:// / / (Dig(s, 22(s,7))) *dsdydzadar, i = 1, 2.
0 JJ(z1)JJ(0)JO

First, using Fubini’s theorem, one has

J(0) JO s J(x1)

B; < diam(K / / Didi(s, 22(5,9)))* (a — )dyds.

with

Therefore

Then, with the change of variables zo = 25(s,7), one gets

B; < diam(K) / / (Dig(s, zz))2 fé — f dzods.
0 JJ(s) T a

B; gdiam(K)Q/K (Dig(x))Qdac.

Hence
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the

(9.40)

(9.41)

(9.42)

Using the fact that m(K) > 7(? (diam(K))2, (9.39), (9.40), (9.41) and (9.42), one concludes (9.38).
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In order to conclude the proof of (9.37), one remarks that

( (9, )<2Z ZTUQK o)’

KeToelk
Because, for all K € T and o € £k, d, > (diam(K), one gets thanks to (9.38), that

W )<22201/IV ) 2da.

KeToelk

The above inequality shows that

(V@m) <22 [ Ve,

which implies (9.37). L]

Theorem 9.2 (Convergence, non homogeneous Dirichlet boundary condition)

Assume items 1, 2, 3 and 4 of Assumption 9.1 page 32 and g € H'/?(0Q). Let ¢ € Ry and M € IN
be given values. Let T be an admissible mesh (in the sense of Definition 9.1 page 37) such that di o >
¢diam(K) for all control volumes K € T and for all o € Ek, and card(Ex) < M for all K € T. Let
(ur) ket be the solution of the system given by equations (9.20)-(9.22) and

1

m(c)

Uy = /g(m)dv(m), Vo € Eoxt- (9.43)
(note that the proofs of existence and uniqueness of (ui)xe which were given in Lemma 9.2 page
42 remain valid). Define ur € X(T) by ur(x) = ug for a.e. * € K and for any K € T. Then, ur
converges, in L*($)), to the unique variational solution u € H'(Q) of Problem (9.1), (9.2) as size(T) — 0.

PROOF of Theorem 9.2

The proof is only detailed for the case b = 0 and v = 0 (the extension of the proof to the general case
is straightforward using the proof of Theorem 9.1 page 45). Let g € H*(2) be such that the trace of
g on 0X) is equal to g. One defines @ € X(7T) by @y = wr — gy where gr € X(7) is defined by
glx) = m(K) Jx G(y)dy for all x € K and all K € T. Then (ix)xe7 satisfies

Y Fro=m(K)fx— > Grq VKeT, (9.44)
0€EK 0€EK
FK,U = —1gp (UL — UK ), Vo € Eine, if 0 = K|L, (9.45)
FKJ =T7,(lK), Vo € Eext such that o € Ek. (9.46)
GK70' :7TK|L(§L*§L)5 Vo € Ent, ifO':K|L, (947)
GKU = —7,(Jo — g1.), Vo € Eext such that o € E, (9.48)
where §, = f g(x x) Multiplying (9.44) by @, summing over K € T, gathering by edges in the

right hand 81de and usmg the Cauchy-Schwarz inequality yields

a7l - < Y m(E)frix +N (G, Tl

KeT

from the definition (9.36) page 49 of N'(g,T) and Definition 9.2 page 39 of || - [[1,7. Therefore, thanks
to Lemma 9.4 page 49 and the discrete Poincaré inequality (9.13), there exists C; € IR, only depending
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on Q, [|glla1 (), ¢, M and f, such that |[ar|1,7 < C1 and [[i7|[z2(q) < C1. Let us now prove that ir
converges in L%(Q), as size(7) — 0, towards the unique solution in H{(2) to (9.3). We proceed as in
Theorem 9.1 page 45. Using Lemma 9.3, the compactness result given in Theorem 14.2 page 94 and the
uniqueness of the solution (in HE(Q)) of (9.3), it is sufficient to prove that if 47 converges towards some
@€ HY(Q), in L?(Q) as size(T) — 0, then 4 is the solution to (9.3). In order to prove this result, let us
introduce the function g7 defined by

1
i) = o | Wy e e K VK €T,
= wmw S
which converges to g in L?(€2), as size(T) — 0. Then the function u7 converges in L?(§2), as size(T) — 0
tou =a+g € H*(Q) and the proof that @ is the unique solution of (9.3) is identical to the corresponding
part in the proof of Theorem 9.1 page 45. This completes the proof of Theorem 9.2. [

Remark 9.10 (Lipschitz continuous boundary data) A simpler proof of convergence for the finite
volume scheme with non homogeneous Dirichlet boundary condition is possible if g is the trace of a
Lipschitz-continuous function g. In thiscase, ¢ and M do not have to be introduced and Lemma 9.4 is
not used. The scheme is defined with u, = ¢(y,) instead of the average value of g on o, and the proof
uses §(x ) instead of the average value of g on K.

9.5 (? error estimate

Under adequate regularity assumptions on the solution of Problem (9.1)-(9.2), one may prove that the
error between the exact solution and the approximate solution given by the finite volume scheme (9.20)-
(9.23) is of order size(T) = supg 7 diam(K), in a certain sense which we give in the following theorem:

Theorem 9.3 Under Assumption 9.1 page 32, let T be an admissible mesh as defined in Definition 9.1
page 37 and ur € X(T) (see Definition 9.2 page 39) be defined a.e.in Q by ur(x) = ug for a.e. v € K,
for all K € T, where (ux)iket is the solution to (9.20)-(9.23). Assume that the unique variational
solution u of Problem (9.1)-(9.2) satisfies u € C?(Q). Let, for each K € T, ex = u(rk) — ur, and
er € X(T) defined by er(x) = ex for a.e. x € K, for all K € T.
Then, there exists C > 0 only depending on u, v and € such that

lerll7 < Csize(T), (9.49)

where || - ||1,7 is the discrete Hi norm defined in Definition 9.2,

lerllL2(a) < Csize(T) (9.50)
and
Z m(o)dg(uL —ux _ 1 / Vu(z) -ng Ud’y(x))2+
0€Eint do m(o) g 7
o=K|L
-) — 1 2 (9.51)
Z m(o)dg(g(yil L ( )/Vu(x)-n;ggdv(ac)) < Csize(T)?.
et o m(o) J,
o€ KNox
Remark 9.11

1. Inequality (9.49) (resp. (9.50)) yields an estimate of order 1 for the discrete H} norm (resp. L>
norm) of the error on the solution. Note also that, since u € C1(), one deduces, from (9.50), the
existence of C' only depending on u and €2 such that |[u — ur|[z2(q) < Csize(T). Inequality (9.51)
may be seen as an estimate of order 1 for the L? norm of the flux.
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2. In BARANGER, MAITRE and OUDIN [8], finite element tools are used to obtain error estimates of
order size(7)? in the case d = 2, v = b = g = 0 and if the elements of T are triangles of a finite
element mesh satisfying the Delaunay condition (see section 12 page 85). Note that this result is
quite different of those of the remarks 6.2 page 18 and 9.1 page 35, which are obtained by using a
higher order approximation of the flux.

3. The proof of Theorem 9.3 given below is close to that of error estimates for finite element schemes
in the sense that it uses the coerciveness of the operator (the discrete Poincaré inequality) instead
of the discrete maximum principle of Proposition 9.2 page 43 (which is used for error estimates
with finite difference schemes).

PROOF of Theorem 9.3

Let ur € X(T) be defined a.e. in Q by ur(xz) = ug for a.e. x € K, for all K € T, where (ux)xeT 18
the solution to (9.20)-(9.23). Let us write the flux balance for any K € T;

> (Frco Vi) 40 [ ut@do = [ foyie 952)

oc€EK

where Fg o, = — [ Vu(z) ng dy(z), and Vg, = [ u(z)v(z)-ng ody(z) are respectively the diffusion
and convection fluxes through o outward to K.
Let F , and Vi ; be defined by

Fr o = —r(u(zr) —u(rk)), Vo = K|L € Ek N &nt, VK € T,
F od(rg,0) = —m(0)(u(ys) —u(rk)), Vo € Ex N Eext, VK €T,

VE.o = VK,ou(Toq),Vo € Ex, VK €T,

where z, = xx (resp. xr) if 0 € &g, 0 = K|L and vk o > 0 (resp. vk, < 0) and 2,4 = xx (resp.
Yo) if 0 = Ex N Eex, and vk, > 0 (resp. vk, < 0). Then, the consistency error on the diffusion and
convection fluxes may be defined as

1 —
o = F o — Fg ) .
RK, m(a) ( K, K,a) (9 53)
1 7 *
TK,c = m(‘/[{yg — VK,J)) (954)

Thanks to the regularity of w and v, there exists C; € IR, only depending on u and v, such that
|Rk.o| + |rk,o| < Cysize(T) for any K € T and 0 € Ek. For K € T, let

pic = u(wx) ~ (1/m(K) [ u(e)ds,
K
so that |px| < Casize(T) with some Cz € IR only depending on u.
Substract (9.20) to (9.52); thanks to (9.53) and (9.54), one has
3 (GK,(, + WK,G) +bm(K)ex = bm(K)px — 3 m(0)(Rico + i), (9.55)

oc€EK oc€EK
where
Gk.o = Ik, — Fik o is such that

GKU :—TKlL(eL—eK), VKGT, VUESK ﬂgint,U:K|L,

)
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Grod(xx,0) =m(o)ex, VK € T, Vo € Ex N Eext,

with ex = u(zx) —ur, and Wi o = Vi , — Vo = VK0 (W(T0,1) — Uo,+)
Multiply (9.55) by ek, sum for K € T, and note that

Z Z GKaeK = Z|Da |2m

KeToelk oc€e€
Hence
He7—||i7—+z Z vKﬁgegereKerHeTH%z(Q) Sme( VPKEK — Z Z 0)(Rk.o+7K.0)ex, (9.56)
KeTo€elk KeT KeTo€elk
where

er € X(T), er(z) = ek for a.e. x € K and for all K € T,
|Dye| = |lex —epl], if 0 € Ent, 0 = K|L, |Dye| = |ex|, if 0 € Ex N Eext,

ot = U(To+) — Uy +-
By Young’s inequality, the first term of the left hand side satisfies:

1 1 .
| m(E)prcer < 5ler o, + 3C3(size(T))Pm(@) (957)
KeT
Thanks to the assumption divv > 0, one obtains, through a computation similar to (9.27)-(9.28) page 43

that
Z Z VK, 0€o,+€K = 0.

KeToelk

Hence, (9.56) and (9.57) yield that there exists C3 only depending on w,b and €2 such that

ler I + b||€THL2 (@) < Ca(size(T))* = Y Y m(0)(Ri.o + ri.o)ex, (9.58)
KeToelk
Thanks to the property of conservativity, one has Rg , = —Rp,» and rg » = —7rp s for o € &y such that

o =K|L. Let R, = |Rg,,| and 1, = |rk | if 0 € Ex. Reordering the summation over the edges and
from the Cauchy-Schwarz inequality, one then obtains

|Z Z 0)(Rk,o +TK,0 €K|<Zm (Dye)(Ro +14) <

KeToelk e

(52 00)! (Lo 427’

g

(9.59)

Now, since |Ry + 75| < Cisize(T) and since Zm(o)dg = dm(f), (9.58) and (9.59) yield the existence

e
of C4 € IR only depending on u,v and  such that

1 . .
ler 2.7 + Sbllerl72() < Ca(size(T)* + Casize(T)|le[l1,7-
Using again Young’s inequality, there exists C5 only depending on u, v, b and €2 such that

le7[I%,7 + bllerlZzo) < Cs(size(T))?. (9.60)

This inequality yields Estimate (9.49) and, in the case b > 0, Estimate (9.50). In the case where b = 0,
one uses the discrete Poincaré inequality (9.13) and the inequality (9.60) to obtain
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le7 172 () < diam(€2)*Cs (size(T))?,
which yields (9.50).

Remark now that (9.49) can be written

Z m(g)dg(uL —urx  u(wr) — u(xK))2+

do do
O'Egi?i
o=K
B B 9 (9.61)
Z m(o')da(g(ydzl UK . u(ya) y ’U,(ZL'K)) < (CSiZG(T))2.
0EEext 7 7
c€KNON
From Definition (9.53) and the consistency of the fluxes, one has
u(zr) —u(zk) 1 2
G; m(o)dg( i " mo) /UVu(x) -nKJdv(x)) +
o=K|L
u(ys) —ulzrx) 1 2
0-; m(o)dg( o o V@ nK,Gdy(x)) - (9.62)
G’E?I’?’bﬂ
Zm(o)ngi < dm(Q)C% (size(T))>.
o€l
Then (9.61) and (9.62) give (9.51). ]

9.6 H? error estimate

In Theorem 9.3, the hypothesis u € C?(Q) was used. In the following theorem (Theorem 9.4), one obtains
Estimates (9.49) and (9.50), in the case b = v = 0 and assuming some additional assumption on the
mesh (see Definition 9.3 below), under the weaker assumption v € H?(Q2). This additional assumption
on the mesh is not completely necessary (see Remark 9.13 and GALLOUET, HERBIN and VIGNAL [72]).
It is also possible to obtain Estimates (9.49) and (9.50) in the cases b # 0 or v # 0 assuming u € H?(Q)
(see Remark 9.13 and GALLOUET, HERBIN and VIGNAL [72]). Some similar results are also in LAZAROV,
MISHEV and VASSILEVSKI [102] and COUDIERE, VILA and VILLEDIEU [41].

Definition 9.3 (Restricted admissible meshes) Let 2 be an open bounded polygonal subset of R,
d =2 or 3. A restricted admissible finite volume mesh of €2, denoted by 7, is an admissible mesh in the
sense of Definition 9.1 such that, for some ¢ > 0, one has di,, > (diam(K) for all control volumes K
and for all o0 € k.

Theorem 9.4 (H? regularity) Under Assumption 9.1 page 32 with b = v = 0, let T be a restricted
admissible mesh in the sense of Definition 9.3 and uyp € X(T) (see Definition 9.2 page 39) be the
approzimate solution defined in Q by ur(x) = uk for a.e. © € K, for all K € T, where (ux)xer 1
the (unique) solution to (9.20)-(9.23) (existence and uniqueness of (ux)xer are given by Lemma 9.2).
Assume that the unique solution, u, of (9.3) (with b =v = 0) belongs to H*(Q). For each control volume
K, let ex = u(xg) — uk, and er € X(T) defined by er(x) = ex for a.e. x € K, for all K € T.

Then, there exists C, only depending on u, ¢ and ), such that (9.49), (9.50) and (9.51) hold.

Remark 9.12

9

1. In Theorem 9.4, the function e is still well defined, and so is the quantity “Vu - n,” on o, for all
o € &. Indeed, since u € H%(Q2) (and d < 3), one has u € C(Q) (and then u(xx) is well defined for
all control volumes K) and Vu-n, belongs to L?(o) (for the (d — 1)-dimensional Lebesgue measure
on o) for all o € &.
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2. Note that, under Assumption 9.1 with b = v = g = 0 the (unique) solution of (9.3) is necessarily
in H2(2) provided that € is convex.

PROOF of Theorem 9.4

Let K be a control volume and o € Ex. Define Vi , = {txx + (1 —t)z, x € 0, t € [0,1]}. For o € Ep,
let V, = Vo UV, if K and L are the control volumes such that o = K|L. For 0 € e N Ek, let
Va' = VK,G"

The main part of the proof consists in proving the existence of some C, only depending on the space
dimension d and ¢ (given in Definition 9.3), such that, for all control volumes K and for all o € £k,

ol < S [ )P (9.63)

whereH is the Hessian matrix of u and

d
[H(w)(2)] = Y |DiDju(2)P,

ij=1

and D; denotes the (weak) derivative with respect to the component z; of z = (z1,--- , zg)! € R%
Recall that Rk . is the consistency error on the diffusion flux (see (9.53)), that is:

u(zr) —u(rk)

RK,U = da’

1
) /UVU(SC) ‘i edy(x), if 0 € &y and 0 = K|L,

RK(T — U’(yo') - U(:CK)
» do’

Note that Rk, is well defined, thanks to u € H?((2), see Remark 9.12.

In Step 1, one proves (9.63), and, in Step 2, we conclude the proof of Estimates (9.49) and (9.50).

1 .
" mo) /UVu(x) ‘N edy(x), if 0 € Eexy NEK.

Step 1. Proof of (9.63).

Let 0 € £. Since u € H%(Q), the restriction of u to V, belongs to H?(V,). The space C?(V,) is dense in
H?%(V,) (see, for instance, NECAS [116], this can be proved quite easily be a regularization technique).
Then, by a density argument, one needs only to prove (9.63) for u € C2(V,). Therefore, in the remainder
of Step 1, it is assumed u € C%(V,).

First, one proves (9.63) if o € &iny. Let K and L be the 2 control volumes such that o = K|L.

It is possible to assume, for simplicity of notations and without loss of generality, that o = 0 x &, with
some & C R4 and 2k = (—a,0)!, 2 = (8,0), with some a > (diam(K), 8 > (diam(L) (¢ is defined
in Definition 9.3 page 55).

Let z = (0,Z)" € 0. In order to obtain a suitable integral remainder for the consistency error, as suggested
in Remark 6.3, we introduce the function ¢ : [0,1] — IR, defined by () = u(txx + (1 — t)x), which is
twice continuously differentiable and we have:

p(1) =z, p(0) = u(x),¢'(t) = Vultex + (1 - t)z) - (1 — )
and ¢ (t) = Hu(trx + (1 —t)z)(vx — ) - (xx — @),

where H(u)(z) denotes the Hessian matrix of v at point z. Therefore, writing that

yields that

u(rg) —u(z) = /0 Hu)(tz + (1 —t)ag)(zx — ) - (v — 2)tdt for ae. = (0,%)' € &
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(for the (d — 1)-dimensional Lebesgue measure on o). Similarly, we have

u(zL)u(x)Vu(z)~(zL:c)+/o H(u)(te + (1 —t)ap)(xr — x) - (xr, — z)tdt.

Subtracting one equation to the other and integrating over o yields (note that z; — 2x = ng ,ds)
|Rk.»| < B,o + Br,o, with

% / /o [H (u)(tz + (1 = ax)llox — o*tdtdy(x), (9.64)

Br,o =
m(o

)

for some C; only depending on d, The quantity By, , is obtained with Bk , by changing K in L.
Let us perform the change of variables
h:0,1[x0 — VK.o
(t,z) = h(t,x) =te + (1 — t)ak,
in (9.64). let z; denote the first component of z and z the d — 1 last components of z; thus z = (z1,%)"

and z1 = (t — 1)a, so that
dz =t rastdy(z).

Since |rx — x| < diam(K) we obtain

C1 (diam(K))? al=2

B < W/VK,U |H(U)(Z)|Wdz-

This gives, with the famous Cauchy-Schwarz inequality,

C1a%3(diam(K))? 9, \ % I T :
By, < m(o)d, (/VK,G |H (u)(2)] dz) (/VK,C, (=1 +a)(d—2)2d ) :

W=

For d = 2, (9.6) gives

Cy(diam(K))2 ,am(o) . 1 o N1
Brs < ((m(g)(d(,)) ( 2( ))2(/1% |H (u)(z)|*dz)?,
and therefore Oy (di (K))2
Bro < —/—— 1am1 . Hw)(2)|?dz 7
’ 22 (m(0)d, )2 (dea)? (/VK,C,| (w)(=) )

A similar estimate holds on By, by changing K in L and « in 8. Since o, > (diam(K) and d, =
a+ 8 > (diam(K), these estimates on By, and By, , yield (9.63) for some C only depending on d and
¢.

For d = 3, the computation of the integral A = va mdz by the following change of variable (see
Figure (9.6)):

0
1
A:/ —— ([ d9)dz, wheret =112
—a (21 + @) Jzes K,o

- (21 + @)®
/Eet& dz = /ye& t2dy = 0 m(o),

and therefore A = ™) and (9.6) yields that:

[e3

i 2 12 size
B < p e ( /| |H(u)(2)|2d2> < e ) v,

Now,
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Figure 3.3: Consistency error, d = 3

and therefore (9.6) gives:

jam 2 9 m(o 1 1
BK,g S Cl(dl (K)) (/ ( )dzl)z(/v |H(u)(z)|2dz)2,

m(o)d, a?

—Q

and then

Crldam(R)7 w)(2)|2dz 3
(m(o)dg)%(dga)%(/\% |[H (u)(2)]*dz)*.

With a similar estimate on By, ., this yields (9.63) for some C only depending on d and (.

BK,U S

Now, one proves (9.63) if 0 € Eexi. Let K be the control volume such that o € £x. One can assume,
without loss of generality, that zx = 0 and ¢ = {20} x & with & ¢ R*"" and some o > 1(diam(K).
The above proof gives (see Definition 9.1 page 37 for the definition of y, ), with some Cs only depending
on d,

ulye) —ulox) 1 u(z) - n x)|? M w)(2)2dz
| o m@/&v () - g dy(z)]* < Cy (o) /V |H (u)(2)[?dz, (9.65)

with ¢ = {(a 3),z €6}, and Vs = {tyo + (1 —t)z, x €6, t € [0,1]} U {tex + (1 —t)z, x € 6, t € [0,1]}.
Note that m(6) = 2 and that Vs C V,.

One has now to compare I, = ﬁ [, Vu(z) - ng gdy(x) with I, = ﬁ [ Vu(z) - ng gdy(z).

A Taylor expansion gives

1

Iy —I5 =
m(o)

//l Hu)(zxg +t(r —2k))(x — 2K) - ng odtdy(x).

The change of variables in this last integral z = xx +t(x — 2 ), which gives dz = 2at?~dtdy(x), yields,
with E, = {tz + (1 — t)zx, z € 0, t € [3,1]} and some C3 only depending on d (note that t > 3),

G
m(o)a

I, — I < /E |H(u)(2)||z — zx|dz.

o

Then, from the Cauchy-Schwarz inequality and since |z — 2| < diam(K),
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1 15 < CEEEOL [ o) (9.66)

with some Cj only depending on d and (.

Inequalities (9.65) and (9.66) yield (9.63) for some C' only depending on d and (.

One may therefore choose C' € IR 4 such that (9.63) holds for o € &y, or 0 € Eext. This concludes Step 1.
Step 2. Proof of Estimates (9.49), (9.50) and (9.51).

In order to obtain Estimate (9.49) (and therefore (9.50) from the discrete Poincaré inequality (9.13)),
one proceeds as in Theorem 9.3. Inequality (9.56) reads here, since Rk, = —RL ., if 0 = K|L,

lerli7 < Y Ro|Doelm(o),
c€e€

with Ry = |Rk o], if 0 € Ek. Recall also that |Dye| = |ex — er| if 0 € Eing, 0 = K|L and |Dye| = |ek],
if 0 € Eext N Ex. Cauchy and Schwarz strike again:

l 1
ler 2+ < (3" R2m(0)ds)* (Y IDs Fm )2

oce€ oce

The main consequence of (9.63) is that

Zm )dy R% < C(size(T Z/ (2)|?dz = C(size(T /|H 2)|%dz. (9.67)

oce€ oce

Then, one obtains

m\»—A

ler |7 < VCsize(T / |H (u)(2)|?dz)?.

This concludes the proof of (9.49) since u € H?(Q2) implies [, |[H (u)(z)[*dz < oc.
Estimate (9.51) follows from (9.67) in a similar manner as in the proof of Theorem 9.3. This concludes
the proof of Theorem 9.4. n

Remark 9.13 (Generalizations)

1. By developping the method used to bound the consistency error on the flux on the elements of Eqxt,
it is possible to replace, in Theorem 9.4, the hypothesis dx » > (diam(K) in Definition 9.3 page
55 by the weaker hypothesis d, > (diam(o) provided that V, is convex. Note also that, in this
case, the hypothesis 2 € K is not necessary, it suffices that 7, — g = dong s, for all o € Eiy,
o0 = K|L (for 0 € Eext, one always needs yo — g = doNK o).

2. Tt is also possible to prove Theorem 9.4 if b # 0 or v # 0 (or, of course, b # 0 and v # 0). Indeed,
if the solution, u, to (9.3) is not only in H?(f2) but is also Lipschitz continuous on Q (this is the
case if, for instance, there exists p > d such that u € W2P(Q)), the treatment of the consistency
error terms due to the terms involving b and v are exactly as in Theorem 9.3. If u is not Lipschitz
continuous on (2, one has to deal with the consistency error terms due to b and v similarly as in
the proof of Theorem 9.4 (see also EYMARD, GALLOUET and HERBIN [55] or GALLOUET, HERBIN
and VIGNAL [72]).

It is also possible, essentially under Assumption 9.1 page 32, to obtain an L7 estimate of the error, for
2<g¢g<+0ifd=2,and for 1 < g < 6if d = 3, see [39]. The error estimate for the L? norm is a
consequence of the following lemma:
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Lemma 9.5 (Discrete Sobolev Inequality) Let Q2 be an open bounded polygonal subset of R? and T
be a general finite volume mesh of Q) in the sense of definition 10.1 page 63, and let { > 0 be such that

VK € T Vo €&k,  di.o > Cdo, (9.68)

Let be u € X(T) (see definition 9.2 page 39), then, there exists C > 0 only depending on Q and (, such
that for all g € [2,400), if d =2, and q € [2,6], if d =3,

(9.69)

where || - ||1,7 is the discrete Hi norm defined in definition 9.2 page 39.

PROOF of Lemma 9.5

Let us first prove the two-dimensional case. Assume d = 2 and let ¢ € [2,4+00). Let d; = (1,0)" and
dy = (0,1)%; for x € Q, let D! and D? be the straight lines going through x and defined by the vectors
d; and d».

Let v € X (7). For all control volume K, one denotes by vy the value of v on K. For any control volume
K and a.e. x € K, one has

v?( < ZDU’U xf,l)(x)Zng XS,Q) (x), (9.70)
oel oeé

a ()

are defined by

where Y4 )andx
0 ifonD. =10

Recall that Dyv = |vg — v, if 0 € &g, 0 = K|L and Dyv = vk, if 0 € Eoxt N Ex. Integrating (9.70)
over K and summing over K € T yields

| e dx</(ZDvx1) DI ))de.
(2)

Note that X((Tl) (resp. xo ) only depends on the second component x5 (resp. the first component z) of
x and that both functions are non zero on a region the width of which is less than m(c); hence

/ 2)dz < (Zm ) . (9.71)

o€l
Applying the inequality (9.71) to v = |u|*sign(u), where u € X(T) and a > 1 yields
/ lu(z)|**dx < (Zm ) .
oe€

Now, since [v — v | < a(jur|*t +|ur|* Hlukx —url, if 0 € Ene, 0 = K|L and |vg| < a(jug|* ) |ukl,
ifoEEextﬂé'K,

/|u |2°‘d:c : <ozz Z o)|ur|* * Dyu.

KeToelk

Using Holder’s inequality with p,p’ € R4 such that 1—1) + 17 =1 yields that

([ )t <a(X 3 e Dmiepi o) (Y 3 P i, )?

KeToelk KeToelk dKU

1
I
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Since Z 0)dk - = 2m(K), this gives

0€EK
)2 3 (a—1) 1.\ 7 |D U| o
|u )| O‘dw < a2p |u P dr) E E (0)dro)”

KGTUEgK U

which yields, choosing p such that p(aw — 1) = 2a, i.e. p= 2% and p/ = a?—fl,

22 D v 27
||U||Lq(Q) - (/Q |u(x)|2ad$) < 042 Z Z | U| dKa') , (972)

KeToelk dio"

where ¢ = 2. Let r = % and r’ = 5= p,, Holder’s inequality yields
D, up D,u 4 L,
S Y o < (Y T Do) (2 3 miolis)”,
Keroeey K" KeToex Ko KeToefx

replacing in (9.72) gives
1,201 1
[ullLaqa) < aQF(EH?m(Q))P 7l
and then (9.69) with, for instance, C' = (2)%((2m(Q))% + 1).
Let us now prove the three-dimensional case. Let d = 3. Using the same notations as in the two-
dimensional case, let d; = (1,0,0)!, do = (0,1,0)! and d3 = (0,0,1)! ; for z € Q, let DL, D? and D3

be the straight lines going through = and defined by the vectors di, d2 and d3. Let us again define the

functions XS,I), ng) and ng) by

(%) _ 1 lfO'ﬂD;?é@ -
Xy () {0 it oA DL = fori=1,2,3.

Let v € X(7) and let A € IRy such that Q C [~A, A]3; we also denote by v the function defined on
[~ A, A]? which equals v on Q and 0 on [—A, A]? \ . By the Cauchy-Schwarz inequality, one has:

A A ,
/ / [v(a1, 2, 23)|2 dw1das
—AJ-a (9.73)

AT A 1A A 1
< (/ / |v(m1,x2,x3)|dx1dac2) (/ / |U($1,x2,x3)|2dx1dac2) .
—aJ-a —AaJ-a

Now remark that
/ / v(x1, T2, x3)|dr1drs < ZD v/ / 3) x)dxidrs < Zm
o€l
Moreover, computations which were already performed in the two-dimensional case give that
A A
/ / |v(x1, 20, 23)|>d21 das S/ / ZD oxV(x) ZD X (2)dxy dry < (Zm Ozs)D ’U) ,
—AJ-A Agee océ ock

where o, denotes the intersection of o with the plane which contains the point (0, 0, x3) and is orthogonal
to d3. Therefore, integrating (9.73) in the third direction yields:

lo(z)| ¥ dz < (Zm(J)DUU)%. (9.74)

Q ocel
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Now let v = |u|sign(u), since |vg —vr| < 4(Juk]® + |ur]?)|ux — ur|, Inequality (9.74) yields:

lu(z)[Cdz < [4 3 |uK|3D0um(a)]

Q KeToelk

By Cauchy-Schwarz’ inequality and since Z m(o)dg . = 3m(K), this yields
o€l

lulle < 4V3 Y 3 (Dyu)? 2l

d b
KeToeEx Ko

and since dg o > (dy, this yields (9.69) with, for instance, C' = 4—\‘//25.

Remark 9.14 (Discrete Poincaré Inequality) In the above proof, Inequality (9.71) leads to another
proof of some discrete Poincaré inequality (as in Lemma 9.1 page 40) in the two-dimensional case. Indeed,
let © be an open bounded polygonal subset of IR?. Let 7 be an admissible finite volume mesh of € in
the sense of Definition 9.1 page 37 (but more general meshes are possible). Let v € X (7). Then, (9.71),
the Cauchy-Schwarz inequality and the fact that Zm(a)dg =2m(Q) yield

o€l

[v]1Z2() < 2m(Q)lJv]T 7

A similar result holds in the three-dimensional case.

Corollary 9.1 (Error estimate) Under the same assumptions and with the same notations as in The-
orem 9.3 page 52, or as in Theorem 9.4 page 55, and assuming that the mesh satisfies, for some ( > 0,
di,e > (dy, for all o € Ex and for all control volume K, there exists C' > 0 only depending on u, ¢ and
Q such that

[1,6] if d =3,

[1,400) ifd=2; (9.75)

leT L) < Casize(T); for any q € {
furthermore, there exists C' € R4 only depending on u, ¢, (7 = min .m(—K)d,K €T}, and Q, such that
size(T)

ler | L) < Csize(T)(|In(size(T))| + 1),  if d = 2. (9.76a)
ler Lo (o) < Csize(T)*®,  if d=3. (9.76b)

PRrROOF of Corollary 9.1

Estimate (9.49) of Theorem 9.3 (or Theorem 9.4) and Inequality (9.69) of Lemma 9.5 immediately yield
Estimate (9.75) in the case d = 2. Let us now prove (9.76). Remark that

1 1

ler|l Lo (o) = max{lex|, K € T} S(CTTG(T)Q) ezl za- (9.77)

For d = 2, a study of the real function defined, for ¢ > 2, by ¢+ Ing + (1 — %) Inh (with h = size(T))

shows that its minimum is attained for ¢ = —2Inh, if Inh < —1. Therefore (9.75) and (9.77) yield(9.76).
The 3 dimensional case is an immediate consequence of(9.75) with ¢ = 6. L]
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10 Neumann boundary conditions

This section is devoted to the proof of convergence of the finite volume scheme when Neumann boundary
conditions are imposed. The discretization of a general convection-diffusion equation with Dirichlet,
Neumann and Fourier boundary conditions is considered in section 11 below, and the convection term is
largely studied in the previous section. Hence we shall limit here the presentation to the pure diffusion
operator. Consider the following elliptic problem:

—Au(z) = f(z), z € Q, (10.1)
with Neumann boundary conditions:
Vu(z) - n(z) = g(x), x € 09, (10.2)

where 0f) denotes the boundary of 2 and m its unit normal vector outward to €.
The following assumptions are made on the data:

Assumption 10.1
1. Q is an open bounded polygonal connected subset of R, d =2 or 3,
2. g€ L*(09), f € L*(Q) and [, g(x)dy(x) + [, f(x)dx = 0.

Under Assumption 10.1, Problem (10.1), (10.2) has a unique (variational) solution, u, belonging to H'()
and such that [, u(z)dz = 0. It is the unique solution of the following problem:

u€ HY(Q), /u(x)dx:(), (10.3)
Q
/ Vu(@) V(o) = [ Fle)b@)de + / o (@TW) (@)dy (2), Vi € H'(9). (10.4)
Q Q o0

Recall that 7 is the “trace” operator from H () to L2(8€) (or to Hz (99)).

10.1 Meshes and schemes
Admissible meshes

The definition of the scheme in the case of Neumann boundary conditions is easier, since the finite volume
scheme naturally introduces the fluxes on the boundaries in its formulation. Hence the class of admissible
meshes considered here is somewhat wider than the one considered in Definition 9.1 page 37, thanks to
the Neumann boundary conditions and the absence of convection term.

Definition 10.1 (Admissible meshes) Let Q be an open bounded polygonal connected subset of RY,
d = 2, or 3. An admissible finite volume mesh of € for the discretization of Problem (10.1), (10.2), denoted
by T, is given by a family of “control volumes”, which are open disjoint polygonal convex subsets of €2,
a family of subsets of Q contained in hyperplanes of IR?, denoted by & (these are the “sides” of the
control volumes), with strictly positive (d — 1)-dimensional Lebesgue measure, and a family of points of
Q) denoted by P satisfying properties (i), (ii), (iii) and (iv) of Definition 9.1 page 37.

The same notations as in Definition 9.1 page 37 are used in the sequel.

One defines the set X (7)) of piecewise constant functions on the control volumes of an admissible mesh
as in Definition 9.2 page 39.
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Definition 10.2 (Discrete H' seminorm) Let 2 be an open bounded polygonal subset of R% d=2
or 3, and 7 an admissible finite volume mesh in the sense of Definition 10.1.
For u € X(T), the discrete H! seminorm of u is defined by

lul, 7 = ( Z TU(DUU)2)%,

0€Eint

where 7, = md(o) and &yt are defined in Definition 9.1 page 37, ug is the value of u in the control volume
K and Dyu = |ug —ur| if 0 € &g, 0 = K| L.

The finite volume scheme

Let T be an admissible mesh in the sense of Definition 10.1 . For K € T, let us define:

1
fx = —/ f(x)dx, 10.5)
(i) (
1
= d if m(OK NoY) #0
o5 = o [, (@) it mOK 169) 70 00
gk =0 if m(OK NIN) = 0.
Recall that, in formula (10.5), m(K) denotes the d-dimensional Lebesgue measure of K, and, in (10.6),
m(0K NIQ) denotes the (d — 1)-dimensional Lebesgue measure of 0K N 9. Note that gx = 0 if the

dimension of 9K N 0N is less than d — 1. Let (ux)xer denote the discrete unknowns; the numerical
scheme is defined by (9.20)-(9.22) page 42, with b = 0 and v = 0. This yields:

_> TK‘L(UL _ uK) = m(K)fx +m(0K NI gx, VK € T, (10.7)
LeN(K)

(see the notations in Definitions 9.1 page 37 and 10.1 page 63). The condition (10.3) is discretized by:

> m(K)ug =0. (10.8)

KeT

Then, the approximate solution, ur, belongs to X (7)) (see Definition 9.2 page 39) and is defined by

ur(z) =uk, for ae ze€ K, VK € T.

The following lemma gives existence and uniqueness of the solution of (10.7) and (10.8).

Lemma 10.1 Under Assumption 10.1. let T be an admissible mesh (see Definition 10.1) and {fxk,
K € T}, {gx, K € T} defined by (10.5), (10.6). Then, there exists a unique solution (ug)ker to
(10.7)-(10.8).

PROOF of lemma 10.1

Let N = card(T). The equations (10.7) are a system of N equations with N unknowns, namely (ux)rke7T-
Ordering the unknowns (and the equations), this system can be written under a matrix form with a N x N
matrix A. Using the connexity of €2, the null space of this matrix is the set of “constant” vectors (that
isug = ug, for all K,L € T). Indeed, if fx = gx =0 for all K € T and {ug, K € T} is solution of
(10.7), multiplying (10.7) (for K € T) by ux and summing over K € T yields

Z 7o (Dyu)? = 0,

0€E&int

where Dyu = |ug —up| if 0 € &Ent, 0 = K|L. This gives, thanks to the positivity of 7, and the connexity
of Q, ug =ug, forall K, L €T.
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For general (fi)ke7 and (9x)keT, a necessary condition, in order that (10.7) has a solution, is that

> (m(K)fx +m(0K NoQ)gk) = 0. (10.9)
KeT

Since the dimension of the null space of A is one, this condition is also a sufficient condition. Therefore,
System (10.7) has a solution if and only if (10.9) holds, and this solution is unique up to an additive
constant. Adding condition (10.8) yields uniqueness. Note that (10.9) holds thanks to the second item
of Assumption 10.1; this concludes the proof of Lemma 10.1. [

10.2 Discrete Poincaré inequality

The proof of an error estimate, under a regularity assumption on the exact solution, and of a convergence
result, in the general case (under Assumption 10.1), requires a “discrete Poincaré” inequality as in the
case of the Dirichlet problem.

Lemma 10.2 (Discrete mean Poincaré inequality) Let Q be an open bounded polygonal connected
subset of R, d =2 or 3. Then, there ezists C € Ry, only depending on ), such that for all admissible
meshes (in the sense of Definition 10.1 page 63), T, and for all u € X(T) (see Definition 9.2 page 39),
the following inequality holds:

lullZz() < Cluli 7+ 2(111(9))*1(/Q u(@)dr)?, (10.10)

where | - |1 7 is the discrete H seminorm defined in Definition 10.2.

PROOF of Lemma 10.2

The proof given here is a “direct proof”’; another proof, by contradiction, is possible (see Remark 10.2).
Let 7 be an admissible mesh and v € X (7). Let mq(u) be the mean value of u over €, that is

1
mao(u) = m/ﬁu(m)dm

Since
ull72qy < 2llu = ma(u)lF2q) + 2(ma(w))*m(Q),

proving Lemma 10.2 amounts to proving the existence of D > 0, only depending on €2, such that

lu = ma(w)[2aq) < Dlul?r- (10.11)
The proof of (10.11) may be decomposed into three steps (indeed, if {2 is convex, the first step is sufficient).

Step 1 (Estimate on a convex part of 1)
Let w be an open convex subset of Q, w # () and m,(u) be the mean value of u on w. In this step, one
proves that there exists Cy, depending only on €2, such that
2 1 2
lu(@) = mew(u)l2w) < ——=Coluli,r- (10.12)

m(w)

(Taking w = Q, this proves (10.11) and Lemma 10.2 in the case where € is convex.)

Noting that

[ @) =mo@yar < —= [ ([ o)~ ut)?d)a.

m(w)

(10.12) is proved provided that there exists Cp € R4, only depending on €2, such that
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/ /(U(w) —u(y))*dzdy < Coluli - (10.13)

For o € &, let the function x4 from IRY x R? to {0,1} be defined by
Xo(z,y) =1, if 2,y € Q, [z,y] No # 0,
Xol(2,y) =0, if 2 ¢ Q ory ¢ Q or [z,y]No = 0.
(Recall that [x,y] = {tz + (1 —t)y, t € [0,1]}.) For a.e. z,y € w, one has, with Dyu = Jug — ur| if
o€ &mnt, 0 =K|L,

(u(@) —u@))® < (D [Doulxe(z,3)),

0€E&int

(note that the convexity of w is used here) which yields, thanks to the Cauchy-Schwarz inequality,

@) —uw)? < 3 L2 wy) 3 deoy o (e0), (10.14)

0€Eint daco,y—z 0€Eint
with
_|\y—-=z
Ca—7y7I - |H : |5

recall that n, is a unit normal vector to o, and that xx — z, = +d,n, if 0 € &y, 0 = K|L. For a.e.
T,y € w, one has

y—x |

ly — x| "

Z dacmy—zxa(xay) = |($K - -TL) :

0€Eint

for some convenient control volumes K and L, depending on x, y and o (the convexity of w is used again
here). Therefore,

Z daca,ymea(xvy) < dlam(Q)

0€E&int

Thus, integrating (10.14) with respect to x and y in w,
D, ul?
/ / Vdxdy < dlam(Q)/ / Z &XU(Z', y)dxdy,
w w daca' y—x
o€€int ’
which gives, by a change of variables,

// )2dxdy < diam(Q / Z |fcj|z /w o(z, @ + 2)dz)dz. (10.15)

0€E&in
Noting that, if |z] > diam(Q2), x,(z,2 + z) = 0, for a.e. z € Q, and

/ Xo(z, 2 + 2)dz < m(0)|z - n,| = m(0)|z|c,.. for ae. z € RY,
Q

therefore, with (10.15):

//(U(w) — u(y))?dedy < (diam(2))*m(Bg) Y %ﬁw’

0€Ein¢

where Bg denotes the ball of IR? of center 0 and radius diam(€).
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This inequality proves (10.13) and then (10.12) with Cy = (diam(£2))?m(Bg) (which only depends on 2).
Taking w = €2, it concludes the proof of Lemma 10.2 in the case where 2 is convex.

Step 2 (Estimate with respect to the mean value on a part of the boundary)

In this step, one proves the same inequality than (10.12) but with the mean value of u on a (arbitrary)
part I of the boundary of w instead of m,,(u) and with a convenient C; depending on I, 2 and w instead
of Co.

More precisely, let w be a polygonal open convex subset of Q and let I C dw, with m(I) > 0 (m(I) is
the (d — 1)-Lebesgue measure of I). Assume that I is included in a hyperplane of R%. Let (u) be the
“trace” of u on the boundary of w, that is J(u)(x) = ux if z € OwN K, for K € T. (If z € KN L, the
choice of F(u)(x) between ugx and uy, does not matter). Let m;(u) be the mean value of F(u) on I. This
step is devoted to the proof that there exists C, only depending on 2, w and I, such that

= ms (W) 3y < Calul? - (10.16)

For the sake of simplicity, only the case d = 2 is considered here. Since I is included in a hyperplane, it
may be assumed, without loss of generality, that I = {0} x J, with J C IR and w C R4 x IR (one uses
here the convexity of w).

Let @ = max{z1, = (z1,22)" € @} and a = (a,B)" € w. In the following, a is fixed. For a.e.
x = (z1,22)" € w and for a.e. (for the 1-Lebesgue measure) y = (0,7)" € I (with § € J), one sets
2(z,y) = ta+ (1 — t)y with ¢t = z1/a. Note that, thanks to the convexity of w, z(z,y) = (21, 22)" € @,
with z; = 1. The following inequality holds:

£(u(r) =7(w)(y)) < |u(@) —ulz(z,y))| + |u(z(z, y) =7 (u)(y))]-
In the following, the notation C;, i € IN*, will be used for quantities only depending on €, w and I.

Let us integrate the above inequality over y € I, take the power 2, from the Cauchy-Schwarz inequality,
an integration over x € w leads to

2

L(Z(x) —my(u))’dr < ) /w /I(u(x) — u(2(z,y)))2dy(y)da
+W/w/,(“(z(xvy)) —u(y))*dy(y)dz.

Then

)

with, since w is convex,

A= / / S Doulxo(®, 2(z, 1)) *dy(y)dz,
w I gEEint
and
B=// S IDoulxo(2(@,1),9)) dr(y)de.
wJI o€&int

Recall that, for £, € Q, xo(£,m) = 1if [€,n]No # 0 and x,(£,m) = 0 if [¢,7] No = (. Let us now look
for some bounds of A and B of the form Clul3 .

The bound for A is easy. Using the Cauchy-Schwarz inequality and the fact that

Z Ca,m—z(m,y)da'XO'('rv Z(:L', y)) < dlam(Q)

0€Ein¢

(recall that ¢y, = |‘—:77—‘ -n,| (for n € R*\ 0) gives
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// 3 |Dou|*xo (2 Elw,y))dzdy(y)_

C
c€&m e wTe

Since z1 = x1, one has ¢, ;_.(4,y) = Co,e, With e = (0,1)". Let us perform the integration of the right
hand side of the previous inequality, with respect to the first component of x, denoted by x1, first. The
result of the integration with respect to x; is bounded by |u|%7- Then, integrating with respect to x»
and y € I gives A < Cslul

In order to obtain a bound B, one remarks, as for A, that

B<C4// Z |Doul®xo (2 )da)7y>dzd7(y)'

¢
o€€int 7y =2,

In the right hand side of this inequality, the integration with respect to y € I is transformed into an
integration with respect to £ = (£1,&2)" € o, this yields (note that ¢y y—(s,y) = Coa—y)

B<(Cy Z |D<Tu|2/ lﬂa(%f) |a_y(§)|dl‘d’7(€),

0 CEm dd o Cl,a—y(ﬁ) |a - §|

where y(&) = s§ + (1 — s)a, with s& + (1 — s)a = 0, and where ), is defined by
Yo(x, &) =1, if y(&) € T and & <
Vo (2,8) =0, if y(§) € I or & > a1.

Noting that c7 4—y) = C5 > 0, one deduces that

pec 3 2 [ [ ool =t anyarie) < crluf

0E€Eint €|
with, for instance, C7 = Cg(diam(w))?. The bounds on A and B yield (10.16).

Step 3 (proof of (10.11))
Let us now prove that there exists D € IR, only depending on 2 such that (10.11) hold. Since € is

a polygonal set (d = 2 or 3), there exists a finite number of disjoint convex polygonal sets, denoted by

{Q1,...,Q,}, such that Q = U, Q,. Let I, ; = ;N Q;, and B be the set of couples (i,) € {1,...,n}?
such that i # j and the (d — 1)-dimensional Lebesgue measure of I; ;, denoted by m(Z; ;), is posmve.
Let m; denote the mean value of uw on €;, ¢ € {1,...,n}, and m; ; denote the mean value of v on I, ;,

(i,7) € B. (For o € &g, in order that u be defined on o, a.e. for the (d — 1)-dimensional Lebesgue
measure, let K € T be a control volume such that ¢ € £k, one sets u = ug on o.) Note that m, ; = m;;
for all (¢,5) € B.

Step 1 gives the existence of C;, ¢ € {1,...,n}, only depending on  (since the ©; only depend on ),
such that

lu— mil|72(0,) < Cilulf 7, Vi€ {1,...,n}, (10.17)
Step 2 gives the existence of C; ;, 4,7 € B, only depending on (2, such that

lu = mi il 72, < Ciglulir, ¥(i,j5) € B.

Then, one has (m; — m; ;)*m(Q;) < 2(C; + Ci ;) |u|17—, for all (i,7) € B. Since Q is connected, the
above inequality yields the existence of M, only depending on €, such that |m; —m;| < M|ul|; 7 for all
(i,5) € {1,...,n}?, and therefore |mq(u) — m;| < Mluly 7 for all i € {1,...,n}. Then, (10.17) yields
the existence of D, only depending on 2, such that (10.11) holds. This completes the proof of Lemma
10.2. m
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An easy consequence of the proof of Lemma 10.2 is the following lemma. Although this lemma is not
used in the sequel, it is interesting in its own sake.

Lemma 10.3 (Mean boundary Poincaré inequality) Let 2 be an open bounded polygonal connected
subset of IRd, d =2 or3. Let I C 09 such that the (d—1)- Lebesgue measure of I is positive. Then, there
exists C € R4, only depending on Q and I, such that for all admissible mesh (in the sense of Definition
10.1 page 63) T and for all uw € X(T) (see Definition 9.2 page 39), the following inequality holds:

[u—mi(u)[|72qy < Clulf 7

where |- |1,7 is the discrete H seminorm defined in Definition 10.2 and mp(u) is the mean value of 7¥(u)
on I with 7(u) defined a.e. on OQ by Y(u)(x) =ug ifx €0, 0 € Eext NEK, K €T.

Note that this last lemma also gives as a by-product a discrete Poincaré inequality in the case of a
Dirichlet boundary condition on a part of the boundary if the domain is assumed to be connex, see
Remark 9.4.

Finally, let us point out that a continuous version of lemmata 10.2 (known as the Poincaré-Wirtinger
inequality) and 10.3 holds and that the proof is similar and rather easier. Let us state this continuous
version which can be proved by contradiction or with a technique similar to Lemma 9.4 page 49. The
advantage of the latter is that it gives a more explicit bound.

Lemma 10.4 Let Q be an open bounded polygonal connected subset of R?, d =2 or 3. Let I C 9Q such
that the (d —1)- Lebesgue measure of I is positive.

Then, there exists C' € R4, only depending on ), and Ce Ry, only depending on Q and I, such that,
for all u € HY(Q), the following inequalities hold:

Jul20) < ClufZ o +2(m(€2)) 7 ( / u(z)dz)?

and

[ —mp(u)[|72(q) < C~’|u|ip(9),
where |-| g (q) is the H' seminorm defined by |v %,1(9) = HVuH?LQ(Q))d = [ |Vu(z)[*dz for allv € H' (),
and my(u) is the mean value of F(u) on I. Recall that ¥ is the trace operator from H'(Q) to H'/?(0Q).

10.3 Error estimate

Under Assumption 10.1, let 7 be an admissible mesh (see Definition 10.1) and {fx, K € T}, {9x,
K € T} defined by (10.5), (10.6). By Lemma 10.1, there exists a unique solution (ux)xe7 to (10.7)-

(10.8). Under an additional regularity assumption on the exact solution, the following error estimate
holds:

Theorem 10.1 Under Assumption 10.1 page 63, let T be an admissible mesh (see Definition 10.1 page
63) and h = size(T). Let (ux)xer be the unique solution to (10.7) and (10.8) (thanks to (10.5) and
(10.6), existence and uniqueness of (uk)ker s given in Lemma 10.1). Let ur € X(T) (see Definition
9.2 page 39) be defined by ur(x) = uk for a.e. x € K, for all K € T. Assume that the unique solution,
u, to Problem (10.3), (10.4) satisfies u € C?(12).

Then there exists C € R which only depends on u and Q0 such that

|ur —ullL2(0) < Ch, (10.18)

uyp —uUg 1 2 2
> mlo)d, (- /,, Vau(z) - ng.ody(z))? < CR2. (10.19)

o=K|LEEny



70

Recall that, in the above theorem, K|L denotes the element o of &, such that @ = 0K N 0L, with K,
LeT.

PROOF of Theorem 10.1
Let Cr € IR be such that

Z u(xg)m(K) =0,

KeT

where w = u + C'r.
Let, for each K € T, ex = u(zx) — uk, and er € X(T) defined by er(x) = e for a.e. x € K, for all
K € T. Let us first prove the existence of C' only depending on u and €2 such that

leTli,7 < Ch and |ler]/12(q) < Ch. (10.20)
Integrating (10.1) page 63 over K € T, and taking (10.2) page 63 into account yields:

Z /Vu ‘N dy(x /f dx—’—/mmaﬁ (x)dy(x). (10.21)

oc€lk
For o € &yt such that o = K|L, let us define the consistency error on the flux from K through o by:
u(zr) — u(xg)
dy '
Note that the definition of Rk , remains with @ instead of u in (10.22).

Thanks to the regularity of the solution u, there exists C; € R4, only depending on u, such that
|Rk,1| < Cih. Using (10.21), (10.22) and (10.7) yields

RK(T:

)

x) ng ody(z) — (10.22)

> Trnler —ex)? < dm(Q)(Cih)?,

K|LEEint

which gives the first part of (10.20).
Thanks to the discrete Poincaré inequality (10.10) applied to the function e, and since

Z m(K)ex =0

KeT

(which is the reason why e was defined with @ instead of u) one obtains the second part of (10.20), that
is the existence of Cy only depending on u and €2 such that

> m(K)(ex)? < Coh?.

KeT

From (10.20), one deduces (10.18) from the fact that u € C*(Q2). Indeed, let Cy be the maximum value
of |[Vu| in Q. One has |u(x) — u(y)| < Cah, for all z, y € K, for all K € T. Then, from [, u(x)dz =0,
one deduces C'y+ < C3h. Furthermore, one has

Z/ $K —u d.%'< Z Cgh (Q)(Cgh)Q

KeT KeT
Then, noting that

Jur =l = 3 [ (wr —ula)*da

KeT

<3Z )2+ 3(C7)*m( +SZ/ u(zr) — u(x))?de

KeT KeT
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yields (10.18).

The proof of Estimate (10.19) is exactly the same as in the Dirichlet case. This property will be useful
in the study of the convergence of finite volume methods in the case of a system consisting of an elliptic
equation and a hyperbolic equation (see Section 37.6). [

As for the Dirichlet problem, the hypothesis u € C?(Q) is not necessary to obtain error estimates.
Assuming an additional assumption on the mesh (see Definition 10.3), Estimates (10.20) and (10.19)
hold under the weaker assumption u € H?(f2) (see Theorem 10.2 below). It is therefore also possible to
obtain (10.18) under the additional assumption that u is Lipschitz continuous.

Definition 10.3 (Neumann restricted admissible meshes) Let Q be an open bounded polygonal
connected subset of RY, d = 2 or 3. A restricted admissible mesh for the Neumann problem, denoted by 7T,
is an admissible mesh in the sense of Definition 10.1 such that, for some ¢ > 0, one has di , > (diam(K)
for all control volume K and for all o € Ex N Eipt.

Theorem 10.2 (H? regularity, Neumann problem) Under Assumption 10.1 page 63, let T be an
admissible mesh in the sense of Definition 10.3 and h = size(T). Let ur € X(T) (see Definition 9.2
page 39) be the approximated solution defined in Q by ur(x) = uk for a.e. © € K, for all K € T,
where (ug ) ket 18 the (unique) solution to (10.7) and (10.8) (thanks to (10.5) and (10.6), existence and
uniqueness of (ui)xeT 18 given in Lemma 10.1). Assume that the unique solution, u, of (10.3), (10.4)
belongs to H?(Y). Let Cr € R be such that

Z u(xx)m(K) =0 where uw = u+ Cr.
KeT

Let, for each control volume K € T, ex =u(xk) — uk, and e € X(T) defined by er(x) = ex for a.e.
e K, forall KeT.
Then there exists C', only depending on u, ¢ and Q, such that (10.20) and (10.19) hold.

Note that, in Theorem 10.2, the function ey is well defined, and the quantity “Vu - n,” is well defined
on o, for all o € € (see Remark 9.12).

PROOF of Theorem 10.2

The proof is very similar to that of Theorem 9.4 page 55, from which the same notations are used.
There exists some C, depending only on the space dimension (d) and ¢ (given in Definition 10.3), such
that, for all o € &,

2 L uz 2 y4
Rl < O [ )P, (10.23)
and therefore
> m(o)d,R2 < Ch /Q |H (u)(2)|?dz. (10.24)

0€Eint

The proof of (10.23) (from which (10.24) is an easy consequence) was already done in the proof of Theorem
9.4 (note that, here, there is no need to consider the case of 0 € Euxt). In order to obtain Estimate (10.20),
one proceeds as in Theorem 9.4. Recall

lerlir < Y RolDoelm(o),

o€Eint

where |Dye| = |ex — er| if 0 € Eng is such that o = K|L; hence, from the Cauchy-Schwarz inequality,
one obtains that
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|eT|i7— <( Z Rim(o)dg)%( Z |Dae|2%j))%.

0EEint o€Eint

Then, one obtains, with (10.24),

ler|r < \/Eh(/Q |H(u)(z)|2dz)%.

This concludes the proof of the first part of (10.20). The second part of (10.20) is a consequence of the
discrete Poincaré inequality (10.10). Using (10.24) also easily leads (10.19).

Note also that, if u is Lipschitz continuous, Inequality (10.18) follows from the second part of (10.20) and
the definition of w as in Theorem 10.1.

This concludes the proof of Theorem 10.2. [

Some generalizations of Theorem 10.2 are possible, as for the Dirichlet case, see Remark 9.13 page 59.

10.4 Convergence

A convergence result, under Assumption 10.1, may be proved without any regularity assumption on the
exact solution.

The proof of convergence uses the following preliminary inequality on the “trace” of an element of X (7))
on the boundary:

Lemma 10.5 (Trace inequality) Let Q2 be an open bounded polygonal connected subset of R% d=2
or 3 (indeed, the connexity of Q is not used in this lemma). Let T be an admissible mesh, in the sense
of Definition 10.1 page 63, and w € X(T) (see Definition 9.2 page 39). Let uy be the value of u in the
control volume K. Let %(u) be defined by ¥(u) = ug a.e. (for the (d—1)-dimensional Lebesgue measure)
on o, if 0 € Eext and o € Ex. Then, there exists C, only depending on ), such that

[l 200) < Clul, T + [[uflL2()- (10.25)

Remark 10.1 The result stated in this lemma still holds if € is not assumed connected. Indeed, one
needs only modify (in an obvious way) the definition of admissible meshes (Definition 10.1 page 63) so
as to take into account non connected subsets.

PROOF of Lemma 10.5

By compactness of the boundary of 942, there exists a finite number of open hyper-rectangles (d = 2 or
3), {Ri,i =1,..., N}, and normalized vectors of R, {ni,i=1,...,N}, such that

aQCUij\LlRi,
n-n(z) >a>0foralz € RNV i€ {l,...,N},
{.T+t77i,.r€RiﬂaQ,t€IR+}ﬂRi c Q,

where « is some positive number and n(z) is the normal vector to 9 at z, inward to . Let {ay,i =
1,..., N} be a family of functions such that Zfil ai(z) = 1, for all z € 99, a; € C°(R?, R, ) and
a; = 0 outside of Ry, for all i = 1,...,N. Let I'; = R; N 0Q; let us prove that there exists C; only
depending on « and «; such that

lay (W)l L2ryy < Ci(lulr,7 + lullL2(0))- (10.26)

The existence of C, only depending on €2, such that (10.25) holds, follows easily (taking C' = vazl Ci,
and using Zf;l a;(z) = 1, note that o and «; depend only on ). It remains to prove (10.26).
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Let us introduce some notations. For o € £ and K € T, define x, and xx from R? x R? to {0,1}
by Xo(z,y) = 1, if [z,y] No # 0, xo(z,y) = 0, if [z,y] No =0, and xk(z,y) = 1, if [z,y] N K # 0,
Xk (z,y) =0, if [z,y) N K =0

Let i € {1,...,N} and let 2 € T';. There exists a unique ¢ > 0 such that x +tn; € OR;, let y(z) = z+tn;.
For o € &, let z,(x) = [x,y(z)] No if [z,y(x)] N o # 0 and is reduced to one point. For K € T, let

¢k (x),nK (z) be such that [z, y(x)] N K = [Ex(z), ni(x)] if [z,y(x)] N K # 0.

One has, for a.e. (for the (d — 1)-dimensional Lebesgue measure) z € T,

(@) < D ailze (@) (ux —ur)lxa (@, y(@) + Y (il (@) — ailx(@)ux xx (@, y (),

o=K|LEEnt KeT

that is,

|7 (u)(x)]? < A(z) + B(x) (10.27)
with

A)=2( Y lai(ze(@))(urx —ur)lxe (@, y(x)))?,

oc=K|LEEint
=20 l(lr (@) — ailn (@)))ux [xx (2, y(2)))*.
KeT

A bound on A(x) is obtained for a.e. x € T';, by remarking that, from the Cauchy-Schwarz inequality:

A <00 Y PR @) 3 docoxs e,y

0E€Eins Co 0EEint

where D; only depends on «; and ¢, = |n; - n,|. (Recall that Dyu = |ux — ur|.) Since

Z doCoXo(T,y(z)) < diam(Q2),

0€E&int
this yields:
| Doul®

G'C(T

A(z) < diam(Q) D, Z

0€Eint

Xo (2, y(x)).

Then, since
1
/ Yo (&, y(@)) () < Legm(0),
Iy @

there exists Dy, only depending on €2, such that

A= [ Awdr(@) < Dofuft -
I

7

A bound B(z) for a.e. x € T'; is obtained with the Cauchy-Schwarz inequality:

B@) < Dy 3 wdexac (@ y(@)x (@) — nic(@)]| 3 1€k (@) — mac (@)l (@, (@),

KeT KeT

where D3 only depends on «;. Since

Q|

> k(e (@)[xx (2,y(x)) < diam(§2) and / Xk (@, y(2)) €k (2) — nie(2)|dy(z) < —m(K),

KeT L
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there exists Dy, only depending on €, such that

B= [ By < Dillultx,
r;

Integrating (10.27) over T';, the bounds on A and B lead (10.26) for some convenient C; and it concludes

the proof of Lemma 10.5. [

Remark 10.2 Using this “trace inequality” (10.25) and the Kolmogorov theorem (see Theorem 14.1
page 94, it is possible to prove Lemma 10.2 page 65 (Discrete Poincaré inequality) by way of contra-
diction. Indeed, assume that there exists a sequence (u,)new such that, for all n € IN, [[u,[/z2(Q) = 1,
fQ up(x)de = 0, u, € X(T,) (where T, is an admissible mesh in the sense of Definition 10.1) and
lun|1,7, < L. Using the trace inequality, one proves that (u)new is relatively compact in L*(Q), as in
Theorem 10.3 page 74. Then, one can assume that u,, — u in L?(Q) as n — oco. The function u satisfies
[ull2) = 1, since |[un|lr2() = 1, and [, u(z)dz = 0, since [, uy(x)dr = 0. Using |upi,7, < 1,
a proof similar to that of Theorem 14.3 page 96, yields that D;u = 0, for all i« € {1,...,n} (even if
size(Tn) #» 0, as n — o0), where D;u is the derivative in the distribution sense with respect to x; of w.
Since € is connected, one deduces that u is constant on €, but this is impossible since ||u||z2(q) = 1 and
Jo ulz)dz = 0.

Let us now prove that the scheme (10.7) and (10.8), where (fx)rxe7 and (9x)rxe7 are given by (10.5)
and (10.6) is stable: the approximate solution given by the scheme is bounded independently of the mesh,
as we proceed to show.

Lemma 10.6 (Estimate for the Neumann problem) Under Assumption 10.1 page 63, let T be an
admissible mesh (in the sense of Definition 10.1 page 63). Let (ug) ket be the unique solution to (10.7)
and (10.8), where (fx)xer and (g ) ket are given by (10.5) and (10.6); the existence and uniqueness
of (ur)ker 1s given in Lemma 10.1. Let ur € X(T) (see Definition 9.2) be defined by ur(x) = ug for
a.e. x € K, for all K € T. Then, there exists C € Ry, only depending on 2, g and f, such that

lurl T <C, (10.28)
where | - |1,7 is defined in Definition 10.2 page 64.

PROOF of Lemma 10.6
Multiplying (10.7) by ux and summing over K € T yields

Y mplur —uk)® =Y m(K) frux + Y uk,gx,m(0), (10.29)

K|LEEns KeT o€ Eext

where, for 0 € Eext, K, € T is such that o € &k .
We get (10.28) from (10.29) using (10.25), (10.10) and the Cauchy-Schwarz inequality. ]

Using the estimate (10.28) on the approximate solution, a convergence result is given in the following
theorem.

Theorem 10.3 (Convergence in the case of the Neumann problem)

Under Assumption 10.1 page 63, let u be the unique solution to (10.3),(10.4). For an admissible mesh
(in the sense of Definition 10.1 page 63) T, let (ux)ker be the unique solution to (10.7) and (10.8)
(where (fx)ker and (g ) ket are given by (10.5) and (10.6), the existence and uniqueness of (uk) ket
is given in Lemma 10.1) and define ur € X(T) (see Definition 9.2) by ur(x) = ug for a.e. x € K, for
all K € T. Then,
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ur — u in L*(Q) as size(T) — 0,

|’U,7’|i7— — / |Vu(z)*dz as size(T) — 0
Q

and
F(ur) — F(u) in L*(0Q) for the weak topology as size(T) — 0,

where the function J(u) stands for the trace of u on O in the sense given in Lemma 10.5 when u € X (T)
and in the sense of the classical trace operator from HY(Q) to L2(9) (or H2(0SY)) when u € H'(Q).

PROOF of Theorem 10.3

Step 1 (Compactness)

Denote by Y the set of approximate solutions us for all admisible meshes 7. Thanks to Lemma 10.6
and to the discrete Poincaré inequality (10.10), the set Y is bounded in L?(£2). Let us prove that Y is
relatively compact in L?(Q), and that, if (7,),eN is a sequence of admissible meshes such that size(7,,)
tends to 0 and u7, tends to u, in L?(f2), as n tends to infinity, then u belongs to H'(£2). Indeed, these
results follow from theorems 14.1 and 14.3 page 96, provided that there exists a real positive number C'
only depending on 2, f and g such that

lar(-+n) — aTHiZ(W) < Cln|, for any admissible mesh 7 and for any n € R?, |n| <1,  (10.30)
and that, for any compact subset w of €2,

ur(-+n) —url|?, o) < CInl(In| + 2size(T)), for any admissible mesh T

10.31
and for any n € IR such that |n| < d(@, Q2°). ( )

0 otherwise. In order to prove (10.30)

Recall that @7 is defined by 7 (z) = ur(z) if z € Q and 7y (z) =
=1if [z,y]No # 0 and x,(z,y) = 0 if

and (10.31), define x, from R x R? to {0,1} by Yo (z,y)
[z,y]No = 0. Let n € R%\ {0}. Then:

la(z 4+ n) —a(x)| < Z Xo (2, 2+ n)|Dyu| + Z Xo(z, 2+ n)|uy|, for a.e. z€Q, (10.32)
o€Eint o€Eext
where, for ¢ € Eoxt, Uy = ug, and K is the control volume such that o € Ex. Recall also that

D,u = |ug —ur|, if ¢ = K|L. Let us first prove Inequality (10.31). Let @ be a compact subset of Q. If
x € @ and |n| < d(w,Q°), the second term of the right hand side of (10.32) is 0, and the same proof as
in Lemma 9.3 page 44 gives, from an integration over @ instead of 2 and from (9.33) with C' = 2 since
[z, +n] C Qfor z € w,

lur (- +0) = url|ia@ < luli 7nl(In] + 2 size(T)). (10.33)

In order to prove (10.30), remark that the number of non zero terms in the second term of the right hand
side of (10.32) is, for a.e. « € Q, bounded by some real positive number, which only depends on Q, which
can be taken, for instance, as the number of sides of 2, denoted by N. Hence, with C; = (N +1)? (which
only depends on Q. Indeed, if Q is convex, N = 2 is also convenient), one has

[i(z 4 1) —a(z)|* < Ci( Z Xo (2,7 +n)|Dyul)* + Cy Z Xo(z,x +n)uZ, for ae. z€Q. (10.34)

o€Eint 0€Eext

Let us integrate this inequality over IR?. As seen in the proof of Lemma 9.3 page 44,



76

O ol mIDpul)*de < uff plal(al + 20 = Dsize(T)):

0€E&int

hence, by Lemma 10.6 page 74, there exists a real positive number Cs, only depending on €2, f and g,
such that (if |n| < 1)

/Rd( S™ Xolw,@ +m)|Doul) da < Caln).

0€Eint

Let us now turn to the second term of the right hand side of (10.34) integrated over IR%;

[ (X wrsnidyis < 32 mia)l

0€Eext 0€Eext
< R un)lIZz o0 0k

therefore, thanks to Lemma 10.5, Lemma 10.6 and to the discrete Poincaré inequality (10.10), there exists
a real positive number C5, only depending on 2, f and g, such that

/]R ( Z xg(z,er?])u?,)dz < Csln.

0E€Eext

Hence (10.30) is proved for some real positive number C only depending on Q, f and g.

Step 2 (Passage to the limit)

In this step, the convergence of uy to the solution of (10.3), (10.4) (in L?(Q) as size(T) — 0) is first
proved.

Since the solution to (10.3), (10.4) is unique, and thanks to the compactness of the set Y described in
Step 1, it is sufficient to prove that, if ur, — u in L?(Q) and size(T,) — 0 as n — 0, then u is a solution
to (10.3)-(10.4).

Let (Tn)new be a sequence of admissible meshes and (u7, )new be the corresponding solutions to (10.7)-
(10.8) page 64 with 7 = T,,. Assume ur, — u in L*(Q) and size(7,) — 0 as n — 0. By Step 1, one has
u € H'(Q) and since the mean value of u7, is zero, one also has Jo u(z)dz = 0. Therefore, u is a solution
of (10.3). It remains to show that u satisfies (10.4). Since (F(ur,))nen is bounded in L?(92), one may
assume (up to a subsequence) that it converges to some v weakly in L?(09). Let us first prove that

- / u(z) Ap(z)dz + /6 V(o) n(a)u(e)d (z) = / f (@) pla)dx

+ | g(@)p(x)dy(x), Ve € C*(Q),
o0

(10.35)

and then that u satisfies (10.4).

Let 7 be an admissible mesh, u the corresponding approximate solution to the Neumann problem, given
by (10.7) and (10.8), where (fx)xeT and (gx)xer are given by (10.5) and (10.6) and let ¢ € C?(Q).
Let o = p(rk), define o7 by pr(x) = ¢k, for ae. x € K and for any control volume K, and
F(or)(x) = K for a.e. x € o (for the (d — 1)-dimensional Lebegue measure), for any o € Eut and
control volume K such that o € Ek.

Multiplying (10.7) by ¢k, summing over K € T and reordering the terms yields

UK Tl — o) = | f(@)pr(x)de + F(or)(x)g(x)dy(x). (10.36)
Ié; LG%EK) xL(or — ¢ /Q o7 /mv o7)(@)g(w)dy

Using the consistency of the fluxes and the fact that ¢ € C?(€2), there exists C' only depending on ¢ such
that
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> mnler—en) = [ Ap@de— [ Vo) n@dre)+ Y Rl

LEN(K) 0NIK LEN(K)

with Ri, = =Rk, for all L € N(K) and K € T, and |Rk 1| < Cym(K|L)size(T ), where Cy only
depends on . Hence (10.36) may be rewritten as

*/UT(x)Aw(x)d$+/ V() -n(x)y(ur)(@)dy(z) + (e, T) =
Q o0 (10.37)

f@)or (@)de + / Tor)@)g(x)dy (2),
Q o0

where

Ir(p, T)| = Cu Z | Dy ulm(o)size(T)
0€Eint

(Y |D0u|2$)%( 3 m(o)d,) *size(T)
0€Eint 7 o€E&ins

< Cpsize(T),

IN

where Cj5 is a real positive number only depending on f, g, 2 and ¢ (thanks to Lemma 10.6).
Writing (10.37) with 7 = 7, and passing to the limit as n tends to infinity yields (10.35).

Let us now prove that u satifies (10.4). Since u € H'(Q2), an integration by parts in (10.35) yields

| Vute) - Votayda + / Vo(a) - n(@)(0() — 7()(@)d)(2)
/ f@ela)ds + [_gl@)pwiin@).vo € @),

where J(u) denotes the trace of u on 99 (which belongs to L?(92)). In order to prove that u is solution

o (10.4) (this will conclude the proof of Theorem 10.3), it is sufficient, thanks to the density of C?(Q)
in H(Q), to prove that v = J(u) a.e. on 9Q (for the (d — 1) dimensional Lebesgue measure on 952). Let
us now prove that v = J(u) a.e. on 9 by first remarking that (10.38) yields

(10.38)

/Q Vula) - Volahde = [ fa)p(o)ds, Vo € C().

and therefore, by density of C2°(Q) in H} (1),

/QVu(:c) -Veo(z)dr = 5 f(x)p(z)dz, Yo € Hy(Q).

With (10.38), this yields

- Ve(r) -n(z)(v(z) —F(u)(z))dy(z) = 0, Ve € C*(Q) such that ¢ = 0 on Of. (10.39)
a0
There remains to show that the wide choice of ¢ in (10.39) allows to conclude v = F(u) a.e. on 9 (for
the (d — 1)-dimensional Lebesgue measure of 0f2). Indeed, let I be a part of the boundary 92, such that
I is included in a hyperplane of IRY. Assume that I = {0} x .J, where J is an open ball of IRY~" centered
on the origin. Let z = (a,2) € R witha € R%, 2 € R ' and B = {(t, = ‘tly—i— 12t € (—a,a),y € J};
assume that, for a convenient a, one has

-t t
BNQ={(t, a—"y—i—';'é);te 0,a),y € J}.
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Let ¢ € C°(J), and for x = (z1,y) € R x J, define ¢1(x) = —z1¢(y). Then,

1 € C°(R?) and 91 =1 on I.
on

(Recall that n is the normal unit vector to 052, outward to €.) Let po € C°(B) such that 2 = 1 on
a neighborhood of {0} x {¢» # 0}, where {¢) # 0} = {z € J; ¥(z) # 0}, and set ¢ = p1p2; @ is an
admissible test function in (10.39), and therefore

/] B(y)(Fw)(0, ) — v(0,))dy = 0,

which yields, since 1 is arbitrary in C$°(J), v = F(u) a.e. on I. Since J is arbitrary, this implies that
v =7(u) a.e. on ON.

This conclude the proof of ur — u in L?(Q) as size(T) — 0, where u is the solution to (10.3),(10.4).
Note also that the above proof gives (by way of contradiction) that ¥(u7) — F(u) weakly in L?(09), as
size(T) — 0.
Then, a passage to the limit in (10.29) together with (10.4) yields

|U7—|%,T — |||Vu|||2Lz(Q), as size(T) — 0.

This concludes the proof of Theorem 10.3. [

Note that, with some discrete Sobolev inequality (similar to (9.69)), the hypothesis “f € L?(2) g €
L?(99)” may be relaxed in some way similar to that of Item 2 of Remark 9.7.

11 General elliptic operators

11.1 Discontinuous matrix diffusion coefficients
Meshes and schemes

Let 2 be an open bounded polygonal subset of IR%, d = 2 or 3. We are interested here in the discretiza-
tion of an elliptic operator with discontinuous matrix diffusion coefficients, which may appear in real
case problems such as electrical or thermal transfer problems or, more generally, diffusion problems in
heterogeneous media. In this case, the mesh is adapted to fit the discontinuities of the data. Hence
the definition of an admissible mesh given in Definition 9.1 must be adapted. As an illustration, let us
consider here the following problem, which was studied in Section 7 page 21 in the one-dimensional case:

—div(AVu)(z) + div(vu)(z) + bu(x) = f(z), z € Q, (11.1)

u(z) = g(x), © € 99, (11.2)

with the following assumptions on the data (one denotes by IR the set of d x d matrices with real
coefficients):

Assumption 11.1

1. A is a bounded measurable function from § to R such that for any x € Q, A(x) is symmetric,
and that there exists X and X\ € RY. such that A& - & < A(x)§ - & < X - € for any € Q and any
¢eR™

2. veE Cl(ﬁ,]Rd), divv >0 0n Q, be R,.

3. f is a bounded piecewise continuous function from € to IR.
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4. g is such that there exists § € HY(Q) such that 7(§) = g (a.e. on O2) and is a bounded piecewise
continuous function from 0 to IR.

(Recall that 7 denotes the trace operator from H!(Q) into L?(9€).) As in Section 9, under Assumption
11.1, there exists a unique variational solution u € H*(€2) of Problem (11.1), (11.2). This solution satisfies
u = w + g, where § € H'(Q) is such that ¥(§) = g, a.e. on 99, and w is the unique function of Hg ()
satisfying

/Q (A(z)Vw(x) V() + div(vw)(z)y(z) + bw(z)w(z))dz -
[ (@) - T(a) — div(vg) (@)b(e) — bylayi(e) + f(a)i(a) ) da, Yo € HY(9).
Let us now define an admissible mesh for the discretization of Problem (11.1)-(11.2).

Definition 11.1 (Admissible mesh for a general diffusion operator) Let 2 be an open bounded
polygonal subset of IR?, d = 2 or 3. An admissible finite volume mesh for the discretization of Problem
(11.1)-(11.2) is an admissible mesh 7 of €2 in the sense of Definition 9.1 page 37 where items (iv) and (v)
are replaced by the two following conditions:

(iv)” The set T is such that
the restriction of g to each edge o € Eqxt is continuous.

For any K € T, let A denote the mean value of A on K, that is

1

There exists a family of points
P = (SCK)KGT such that 2 = Npeex PK,o € F,

where Dk , is a straigth line perpendicular to o with respect to the scalar product induced by Al}l
such that Dg,No =D, No # 0 if o = K|L. Furthermore, if 0 = K|L, let y, = Dk, No(=
Dr.» No) and assume that zx # xp.

(v)? For any o € Eext, let K be the control volume such that o € Ex and let Dk , be the straight line
going through xx and orthogonal to o with respect to the scalar product induced by Af_(l; then,
there exists yo € 0 N Dk o; let go = 9(Yo)-

The notations are are the same as those introduced in Definition 9.1 page 37.

We shall now define the discrete unknowns of the numerical scheme, with the same notations as in Section
9.2. As in the case of the Dirichlet problem, the primary unknowns (ux)xe7 will be used, which aim
to be approximations of the values u(z ), and some auxiliary unknowns, namely the fluxes F ,, for
all K € T and o € &k, and some (expected) approximation of u in o, say u,, for all o € £. Again,
these auxiliary unknowns are helpful to write the scheme, but they can be eliminated locally so that the
discrete equations will only be written with respect to the primary unknowns (uk)ker. For any o € Eoxt,
set uy = g(yo). The finite volume scheme for the numerical approximation of the solution to Problem
(11.1)-(11.2) is obtained by integrating Equation (11.1) over each control volume K, and approximating
the fluxes over each edge o of K. This yields

Y Fro+ Y koo +m(K)bug = fx, VK € T, (11.3)

o€l 0€EEK

where
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vko = [, v(z) ng dy(z) (where ng , denotes the normal unit vector to o outward to K); if o =
Ko +|Ko ) gy = Uk, ., where Ky 4 is the upstream control volume, i.e. vi , > 0, with K = K, ;
if 0 € Eext, then uy 4+ = ug if vg,, > 0 (ie. K is upstream to o with respect to v), and ue + = u,
otherwise.

Fk » is an approximation of fg —AxVu(z) - ng odvy(z); the approximation Fy , is written with respect
to the discrete unknowns (ux)kxe7 and (uy)oece. For K € T and o € €k, let Axo = |Axng | (recall
that | - | denote the Euclidean norm).

o If xx & 0, a natural expression for F , is then

Ug — UK
FKJ = 7111(0’))\[(16 Ud
K,o

Writing the conservativity of the scheme, ie. Fr, = —Fg, if 0 = K|L C Q, yields the value of
Ug, if xp, ¢ o, with respect to (uk)keT;

1 AK,o
AK.o AL.o (
dK,o dr,o

)\L,a UL) )

Uy = UK +

dK,a dL,a'

Note that this expression is similar to that of (7.3) page 22 in the 1D case.
e If v € 0, one sets u, = UK.
Hence the value of Fi q;

e internal edges:

FK,U = _TG(UL_UK); ifaeginta U:KlLa (114)
where e A
K,0N\L,o .
Te = M(0 : ’ if yo # i and y, # x
O g + A odrcy 7 7 7K a0y 7 01
and \
T = m(o)ﬁ if yo # i and y, = z;
dK,a
e boundary edges:
Fr.o = —Ts(90 —uk), if 0 € Eexy and zx & o, (11.5)
where
)\K,O'_
Toe = m(o)a,

if xx € o, then the equation associated to uk is ux = g, (instead of that given by (11.3)) and the
numerical flux Fk , is an unknown which may be deduced from (11.3).

Remark 11.1 Note that if A = Id, then the scheme (11.3)-(11.5) is the same scheme than the one
described in Section 9.2.
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Error estimate

Theorem 11.1
Let Q) be an open bounded polygonal subset of R?, d =2 or 3. Under Assumption 11.1, let u be the

unique variational solution to Problem (11.1)-(11.2). Let T be an admissible mesh for the discretization
of Problem (11.1)-(11.2), in the sense of Definition 11.1. Let (1 and (2 € Ry such that

G (size(T))? < m(K) < Co(size(T))?,
Cisize(T) < m(o) < (osize(T),
Gsize(T) < dy < (osize(T).

Assuming moreover that

the restriction of f to K belongs to C(K), for any K € T;

the restriction of A to K belongs to C*(K,IRY%), for any K € T;

the restriction of u (unique variational solution of Problem (11.1)-(11.2)) to K belongs to C*(K), for
any K € T.

(Recall that C"™(K,R") = {v|,., v € C"(R* R")} and C™(-) = C™(-,R).)

Then, there exists a unique family (ur)ikeT satisfying (11.3)-(11.5); furthermore, denoting by ex =
u(zg) — ug, there exists C € Ry only depending on (1, (2, ¥ = supger(|[D?ul Lo (x)) and § = supger
(DAl o= (k)) such that

Z(Ddﬂm(a) < C(size(T))? (11.6)
o€k 7
and
> efem(K) < C(size(T))?. (11.7)
KeT

Recall that Dye = ler, — ex| for 0 € Eing, 0 = K|L and Dye = |ek| for 0 € Eoxt N Ek .

PROOF of Theorem 11.1

First, one may use Taylor expansions and the same technique as in the 1D case (see step 2 of the proof
of Theorem 7.1, Section 7) to show that the expressions (11.4) and (11.5) are consistent approximations
of th exact diffusion flux [ —A(z)Vu(z) - ng sdvy(x), i.e. there exists C; only depending on u and A
such that, for all o € £, with Fj | = 75 (u(vr) — u(zk)), if 0 = K|L, and F , = 75 (u(y,) — u(zk)), if
0 € Eext NEK,

FI*(,U - fg’ 7A(ZL')V’U,(ZL') . nK,od’Y(fE) == RK,G’)
with |Rg »| < Cysize(T)m(o).

There also exists Cy only depending on u and v such that, for all o € £,

vgou(TK, ) — [V DEgou=TKkg,
with |1k | < Casize(T)m(o).

Let us then integrate Equation (11.1) over each control volume, subtract to (11.3) and use the consistency
of the fluxes to obtain the following equation on the error:

- Z Grot Z VK, 0€o+ + m(K)beg =

o€EK o€€K
Z (RK,G' + TK,G’) + SK; VK € Ta
oc€lk

where Gk o = 7o(eL — ex), if 0 = K|L, and Gk o = 7o(—€k), if 0 € Eext NEK, €0+ = €k, , is the
error associated to the upstream control volume to o and Sg = b(m(K)u(zk) — [, u(x)dz) is such that
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|Sk| < m(K)Csh, where C3 € R4 only depends on u and b. Then, similarly to the proof of Theorem 9.3
page 52, let us multiply by ex, sum over K € T, and use the conservativity of the scheme, which yields
that if 0 = K|L then Ri,, = —Rp . A reordering of the summation over o € £ yields the “discrete H&
estimate” (11.6). Then, following HERBIN [84], one shows the following discrete Poincaré inequality:

D,e)?
ZeKm ) < 042(76)1&1(0), (11.8)
do
KeT ocef
where O only depends on 2, ¢; and (2, which in turn yields the L? estimate (11.7). m

Remark 11.2 In the case where A is constant, or more generally, in the case where A(x) = A\(2z)Id, where
A(z) > 0, the proof of Lemma 9.1 is easily extended. However, for a general matrix A, the generalization
of this proof is not so clear; this is the reason of the dependency of the estimates (11.6) and (11.7) on (3
and (2, which arises when proving (11.8) as in HERBIN [84].

11.2 Other boundary conditions

The finite volume scheme may be used to discretize elliptic problems with Dirichlet or Neumann boundary
conditions, as we saw in the previous sections. It is also easily implemented in the case of Fourier (or
Robin) and periodic boundary conditions. The case of interface conditions between two geometrical
regions is also generally easy to implement; the purpose here is to present the treatment of some of these
boundary and interface conditions. One may also refer to ANGOT [3] and references therein, FIARD,
HERBIN [66] for the treatment of more complex boundary conditions and coupling terms in a system of
elliptic equations.

Let Q be (for the sake of simplicity) the open rectangular subset of IR? defined by Q = (0,1) x (0,2),
let @4 = (0,1) x (0.1), 2 = (0.1) x (1,2), Tt = [0,1] x {0}, Ty = {1} x [0,2], Ty = [0,1] x {2},
'y ={0} x[0,2] and I = [0,1] x {1}. Let A\; and Ay >0, f € C(Q), @ >0, 7 € IR, gE C(T4), 6 and
® € C(I). Consider here the following problem (with some “natural” notations):

—div(\Vu)(z) = f(z), x € Q;,i=1,2, (11.9)
A Vu(z) -n(x) = a(u(z) —u), z € T UTs, (11.10)
Vu(z) -n(z) =0, z € Ty, ( )

u(z) = g(x), v €Ty, (11.12)

(A2Vu(z) -np(x)))2 = (M Vu(z) -nr(x)); +0(x), v € 1, ( )
upp(z) —up () = (), z €I, (11.14)

where n denotes the unit normal vector to 99 outward to  and n; = (0,1)? (it is a unit normal vector
ioetI%; be an admissible mesh for the discretization of (11.9)-(11.14) in the sense of Definition 11.1. For the
sake of simplicity, let us assume here that dg , > 0 for all K € T,0 € Ek. Integrating Equation (11.9)

over each control volume K, and approximating the fluxes over each edge o of K yields the following
finite volume scheme:

> Fxo=fx,VK€T, (11.15)
oc€lk
where Fi , is an approximation of fa —\iVu(x) - ng ,dvy(z), with 7 such that K C Q.
Let N7 = card(T), Ng = card(€), N2 = card({o € E;0 ¢ ONUI}), Ni = card({o € &0 C I';}), and
NZ = card({c € &0 C I}) (note that Ne = N2 + 221:1 NE + NE). Introduce the Ny (primary) discrete
unknowns (ug)ke7; note that the number of (auxiliary) unknowns of the type Fg o is 2(N2 + NZ) +
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2?21 N{; let us introduce the discrete unknowns (us)secg, which aim to be approximations of u on o.
In order to take into account the jump condition (11.14), two unknowns of this type are necessary on
the edges 0 C I, namely u,1 and us2. Hence the number of (auxiliary) unknowns of the type u, is
N2+ 321 | Ni+2N[. Therefore, the total number of discrete unknowns is

4
Niot = N7+ 3N@ + 4N} + 2> " NE.
i=1
Hence, it is convenient, in order to obtain a well-posed system, to write Ny, discrete equations. We
already have N7 equations from (11.15). The expression of Fk , with respect to the unknowns ugx and
Uy 1S
U

%W,VKGT;KCSL- (i=1,2),Vo € Ex; (11.16)
K,o

)

which yields 2(N2 + NL) + 32| Ni. (In (11.16), u, stands for ugy; if o C I.)
Let us now take into account the various boundary and interface conditions:

Fr o, =-—m(o)\

e Fourier boundary conditions. Discretizing condition (11.10) yields

Fg o =am(o)(us, —u),YK € T,Vo € Ekx; 0 CT1 UTs, (11.17)
that is N + N2 equations.

e Neumann boundary conditions. Discretizing condition (11.11) yields

Fro=0,VYVK €T, ,Voe€&k;oCly, (11.18)

that is IV 3 equations.

e Dirichlet boundary conditions. Discretizing condition (11.12) yields

Us = 9(Ys), Vo € &0 C Ty, (11.19)

that is N2 equations.

e Conservativity of the flux. Except at interface I, the flux is continuous, and therefore

4
Fro=-FroVoe&og¢ (| JTiUI) and o = KL, (11.20)

i=1
that is IV 50 equations.

e Jump condition on the flux. At interface I, condition (11.13) is discretized into

Fro+Fro= / O(z)ds,Yo € ;0 C I and 0 = K|L; K C o, (11.21)

that is IV 51 equations.

e Jump condition on the unknown. At interface I, condition (11.14) is discretized into

Ug2 = Ug1 + P(Yy), Vo € E50 C T and 0 = K|L. (11.22)

that is another IV, é equations.



84

Hence the total number of equations from (11.15) to (11.22) is N¢ot, so that the numerical scheme can
be expected to be well posed.

The finite volume scheme for the discretization of equations (11.9)-(11.14) is therefore completely defined
by (11.15)-(11.22). Particular cases of this scheme are the schemes (9.20)-(9.23) page 42 (written for
Dirichlet boundary conditions) and (10.7)-(10.8) page 64 (written for Neumann boundary conditions and
no convection term) which were thoroughly studied in the two previous sections.

12 Dual meshes and unknowns located at vertices

One of the principles of the classical finite volume method is to associate the discrete unknowns to the grid
cells. However, it is sometimes useful to associate the discrete unknowns with the vertices of the mesh;
for instance, the finite volume method may be used for the discretization of a hyperbolic equation coupled
with an elliptic equation (see Chapter 7). Suppose that an existing finite element code is implemented
for the elliptic equation and yields the discrete values of the unknown at the vertices of the mesh. One
might then want to implement a finite volume method for the hyperbolic equation with the values of the
unknowns at the vertices of the mesh. Note also that for some physical problems, e.g. the modelling of
two phase flow in porous media, the conservativity principle is easier to respect if the discrete unknowns
have the same location. For these various reasons, we introduce here some finite volume methods where
the discrete unknowns are located at the vertices of an existing mesh.

For the sake of simplicity, the treatment of the boundary conditions will be omitted here. Recall that
the construction of a finite volume method is carried out (in particular) along the following principles:

1. Divide the spatial domain in control volumes,

2. Associate to each control volume and, for time dependent problems, to each discrete time, one
discrete unknown,

3. Obtain the discrete equations (at each discrete time) by integration of the equation over the control
volume and the definition of one exchange term between two (adjacent) control volumes.

Recall, in particular, that the definition of one (and one only) exchange term between two control volumes
is important; this is called the property of conservativity of a finite volume method. The aim here is
to present finite volume methods for which the discrete unknowns are located at the vertices of the
mesh. Hence, to each vertex must correspond a control volume. Note that these control volumes may be
somehow “fictive” (see the next section); the important issue is to respect the principles given above in
the construction of the finite volume scheme. In the three following sections, we shall deal with the two
dimensional case; the generalization to the three-dimensional case is the purpose of section 12.4.

12.1 The piecewise linear finite element method viewed as a finite volume
method

Links between the finite volume method and the finite element method have already been explored
[88, 90, 137]. Here we prove that for the Dirichlet problem, the piecewise linear finite element method
may indeed be viewed as a finite volume method. Let © be a bounded open polygonal subset of IR?, f
and g be some “regular” functions (from © or 92 to IR). Consider the following problem:

—Au(z) = f(x), z€Q,
{ u(z) = g(x), z € 9Q. (12.1)

Let us show that the “piecewise linear” finite element method for the discretization of (12.1) may be
viewed as a kind of finite volume method. Let M be a finite element mesh of €2, consisting of triangles
(see e.g. CIARLET [29] for the conditions on the triangles), and let V C Q be the set of vertices of M.
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For K € V (note that here K denotes a point of Q), let px be the shape function associated to K in the
piecewise linear finite element method for the mesh M. We remark that

Z or(x)=1, Ve eQ,
Kevy

and therefore

> /Qng(:c)d:c =m() (12.2)

Kev

and

Z Ver(x) =0, fora.ex €. (12.3)
Kevy

Using the latter equality, the discrete finite element equation associated to the unknown ug, if K € €,
can therefore be written as

> /Q(UL —ug)Ver(z) - Veg(z)de = /Qf(fﬁ)@K(w)dw-

Levy

Then the finite element method may be written as

Z —TrL(uL —uK) = / f(@)pk(z)dr, if KeVNQ,
Ley Q

ug = g(K), if K € VNoQ,
with

TK|L = — /Q Vor(x) - Vo (x)dz.

Under this form, the finite element method may be viewed as a finite volume method, except that there
are no “real” control volumes associated to the vertices of M. Indeed, thanks to (12.2), the control
volume associated to K may be viewed as the support of px “weighted” by ¢x. This interpretation of
the finite element method as a finite volume method was also used in FORSYTH [67], FORSYTH [68] and
EYMARD and GALLOUET [49] in order to design a numerical scheme for a transport equation for which
the velocity field is the gradient of the pressure, which is itself the solution to an elliptic equation (see
also HERBIN and LABERGERIE [86] for numerical tests). This method is often referred to as the ”control
volume finite element” method.

In this finite volume interpretation of the finite element scheme, the notion of “consistency of the fluxes”
does not appear. This notion of consistency, however, seems to be an interesting tool in the study of the
“classical” finite volume schemes.

Note that the (discrete) maximum principle is satisfied with this scheme if only if the transmissibilities
Tk|r, are nonnegative (for all K,L € V with K € Q) ; this is the case under the classical Delaunay
condition; this condition states that the (interior of the) circumscribed circle (or sphere in the three
dimensional case) of any triangle (tetrahedron in the three dimensional case) of the mesh does not
contain any element of V. This is equivalent, in the case of two dimensional triangular meshes, to the
fact that the sum of two opposite angles facing a common edge is less or equal 7.
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12.2 Classical finite volumes on a dual mesh

Let M be a mesh of Q (M may consist of triangles, but it is not necessary) and V be the set of vertices
of M. In order to associate to each vertex (of M) a control volume (such that the whole spatial domain
is the “disjoint union” of the control volumes), a possibility is to construct a “dual mesh” which will
be denoted by 7. In order for this mesh to be admissible in the sense of Definition 9.1 page 37, a
simple way is to use the Voronoi mesh defined with V (see Example 9.2 page 39). For a description of
the Delaunay-Voronoi discretization and its use for covolume methods, we refer to [118] (and references
therein). In order to write the “classical” finite volume scheme with this mesh (see (9.20)-(9.23) page 42),
a slight modification is necessary at the boundary for some particular M (see Example 9.2); this method
is denoted CFV/DM (classical finite volume on dual mesh); it is conservative, the numerical fluxes are
consistent, and the transmissibilities are nonnegative. Hence, the convergence results and error estimates
which were studied in previous sections hold (see, in particular, theorems 9.1 page 45 and 9.3 page 52).

A case of particular interest is found when the primal mesh (that is M) consists in triangles with acute
angles. One uses, as dual mesh, the Voronoi mesh defined with V. Then, the dual mesh is admissible in
the sense of Definition 9.1 page 37 and is constructed with the orthogonal bisectors of the edges of the
elements of M, parts of these orthogonal bisectors (and parts of 9€2) give the boundaries to the control
volumes of the dual mesh. In this case, the CFV/DM scheme is “close” to the piecewise linear finite
element scheme on the primal mesh. Let us elaborate on this point.

For K € V, let K also denote the control volume (of the dual mesh) associated to K (in the sequel, the
notation “K”, which denotes either the vertex or the control volume will be used in such a context that
it does not yield any confusion) and let ¢x be the shape function associated to the vertex K (in the
piecewise linear finite element associated to M). The term 7|z, (ratio between the length of the edge
K|L and the distance between vertices), which is used in the finite volume scheme, verifies

TK|L = */ Vog(z) - Vor(z)dz.
Q

This wellknown fact may be proven by considering two nodes of the mesh, denoted by K = 1 and L = x
and the two triangles T" and 7" which share the line segment x;x2 as a common edge. Let ¢; and ¢2 be
the two piecewise linear finite element shape functions respectively associated to the vertices x7 and x».
Let us compute
/ Vo1 (x) - Vo (z)dr = / Voi(x) - Voo(r)d.
Q TUT

Now let 07, 02 and 03 be the angles at vertices 1,29 and x3 of T (see Figure 3.4). For i = 1,2, 3, let n;
denote the outward unit normal vector to the side opposite to x;. Since ¢ (resp. ¢2) is a linear function

on T, its gradient is constant, and since ¢;(z;) = d; j, we obtain that V¢, (z) = —%ni for ¢« = 1,2, where

h; is the height of the triangle with respect to the vertex x;. Since ni - ny = — cos®,
1
= [ Vorta) - Vos(wpds = 715 coss,
T h1h2

where 6 is the angle of the triangle at its vertex M = x3. Now the area of the triangle T" is equal to

. hlhg
1 _
|T'| = 5sin0d(L, M)d(M,K) = 5506 Thus,

B 1
© 2tanf’

f/Tngl(x) - Voo (z)dx

Let xp denote the circumcenter of 1. Since the triangles xxrx3, xoxrxs and xoxpay are isoceles, one

gets that the angle between the line segment zix7 is also 6§ and therefore, tanf = Qif;T where mg

denotes the distance between K|L and the circumcenter of T', and dg 1, denotes the distance between K
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Figure 3.4: Triangular finite element mesh and associate Voronoi cells

and L, which is also the length of o.. Therefore,

- / V1 (z) - Vo (a)dz = KL
T

The same computation on T yields that:

f/T:ngSl(x) -Voo(z)dr = Tk.T

dr. 1,

if the angles 6 and 0 are such that 6+6 < 7 (weak Delaunay condition), which, in turn yields the expected
result.
The CFV/DM scheme (finite volume scheme on the dual mesh) reads

- Z TK\L(UL*UK):/ flx)dz, it K eVNQ,
LEN(K) K

ug = g(K), if K € VNoQ,

where K stands for an element of )V or for the control volume (of the dual mesh) associated to this point.
The finite element scheme (on the primal mesh) reads

- Z T (uL —ug) = / f(@)pk(x)de, if K € VNQ,
LEN(K) 2

ug = g(K), if K € VNoK.

Therefore, the only difference between the finite element and the finite volume schemes is in the definition
of the right hand sides. Note that these right hand sides may be quite different. Consider for example a
node K which is the vertex of four identical triangles featuring an angle of 7 at the vertex K, as depicted
in Figure 3.5, and denote by a the area of each of these triangles.
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Figure 3.5: An example of a triangular primal mesh (solid line) and a dual Voronoi control volume
(dashed line)

Then, for f = 1, the right hand side computed for the discrete equation associated to the node K is equal
to a in the case of the finite element (piecewise linear finite element) scheme, and equal to 2a for the
dual mesh finite volume (CFV/DM) scheme. Both schemes may be shown to converge, by using finite
volume techniques for the CFV /DM scheme (see previous sections), and finite element techniques for the
piecewise linear finite element (see e.g.CIARLET [29)]).

Let us now weaken the hypothesis that all angles of the triangles of the primal mesh M are acute to the
so called Delaunay condition and the additional assumption that an angle of an element of M is less or
equal 7/2 if its opposite edge lies on 0N (see e.g. VANSELOW [152]). Under this new assumption the
schemes (piecewise linear finite element finite element and CFV /DM with the Voronol mesh defined with
V) still lead to the same transmissibilities and still differ in the definition of the right hand sides.

Recall that the Delaunay condition states that no neighboring element (of M) is included in the circum-
scribed circle of an arbitrary element of M. This is equivalent to saying that the sum of two opposite
angles to an edge is less or equal m. As shown in Figure 3.6, the dual mesh is still admissible in the sense
of Definition 9.1 page 37 and is still constructed with the orthogonal bisectors of the edges of the elements
of M, parts of these orthogonal bisectors (and parts of 9Q) give the boundaries to the control volumes
of the dual mesh (see Figure (3.6)) is not the case when M does not satisfy the Delaunay condition.

Consider now a primal mesh, M, consisting of triangles, but which does not satisfy the Delaunay condition
and let the dual mesh be the Voronoi mesh defined with V. Then, the two schemes, piecewise linear finite
element and CFV/DM are quite different. If the Delaunay condition does not hold say between the

angles KAL and KBL (the triplets (K, A, L) and (K, B, L) defining two elements of M), the sum of
these two angles is greater than m and the transmissibility 7|, = — [, Vok (2) - Vo (z)dz between the
two control volumes associated respectively to K and L becomes negative with the piecewise linear finite
element scheme; there is no transmissibility between A and B (since A and B do not belong to a common
element of M). Hence the maximum principle is no longer respected for the finite element scheme, while
it remains valid for the CFV/DM finite volume scheme. This is due to the fact that the CFV/DM scheme
allows an exchange term between A and B, with a positive transmissibility (and leads to no exchange
term between K and L), while the finite element scheme does not. Also note also that the common edge
to the control volumes (of the dual mesh) associated to A and B is not a part of an orthogonal bisector
of an edge of an element of M (it is a part of the orthogonal bisector of the segment [A, B]).

To conclude this section, note that an admissible mesh for the classical finite volume is generally not a
dual mesh of a primal triangular mesh consisting of triangles (for instance, the general triangular meshes
which are considered in HERBIN [84] are not dual meshes to triangular meshes).
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Delaunay case Non Delaunay case

Figure 3.6: Construction of the Voronoi dual cells (dashed line) in the case of a triangular primal mesh
(solid line) with and without the Delaunay condition

12.3 “Finite Volume Finite Element” methods

The “finite volume finite element” method for elliptic problems also uses a dual mesh 7 constructed from
a finite element primal mesh, such that each cell of T is associated with a vertex of the primal mesh M.
Let V again denote the set of vertices of M. As in the classical finite volume method, the conservation
law is integrated over each cell of the (dual) mesh. Indeed, this integration is performed only if the cell
is associated to a vertex (of the primal mesh) belonging to €.

Let us consider Problem (12.1). Integrating the conservation law over Kp, where P € VN Q and Kp is
the control volume (of the dual mesh) associated to P yields

—/ Vu(z) -np(x)dy(z) = f(x)dx.

OKp Kp

(Recall that np is the unit normal vector to 0K p outward to Kp.) Now, following the idea of finite
element methods, the function u is approximated by a Galerkin expansion ), .\, usrn, where the
functions pp; are the shape functions of the piecewise linear finite element method. Hence, the discrete
unknowns are {up, P € V} and the scheme reads

_ Z (/m( Vo (z) - np(z)d'y(z))UM =

Mey

f(z)dx, VP €V NQ, (12.4)
Kp
up = g(P), VP € VNo.
Equations (12.4) may also be written under the conservative form

Z Epq = / f(x)dz, VP €VNQ, (12.5)
Qev Kp

up = g(P), VP € VNN, (12.6)

where

D /6 Voot (x) - np(x)dy(2). (12.7)

Mey Kpmé‘KQ
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Note that Eg p = —FEp,g. Unfortunately, the exchange term Ep g between P and @ is not, in general,
a function of the only unknowns up and ug (this property was used, in the previous sections, to obtain
convergence results of finite volume schemes). Another way to write (12.4) is, thanks to (12.3),

_ C;;(/BKP V() -np(x)dv(:c)) (ug —up) = . (z)dz, VP €V NQ.

Hence a new exchange term from P to @ might be Ep g = — (faKp Veg(z) np (m)dv(m)) (ug —up) and

the scheme is therefore conservative if EP,Q = —EQ, p. Unfortunately, this is not the case for a general
dual mesh.

There are several ways of constructing a dual mesh from a primal mesh. A common way (see e.g. FEZOUI,
LANTERI, LARROUTUROU and OLIVIER [64])is to take a primal mesh (M) consisting of triangles and
to construct the dual mesh with the medians (of the triangles of M), joining the centers of gravity of
the triangles to the midpoints of the edges of the primal mesh. The main interest of this way is that the
resulting scheme (called FVFE/M below, Finite Volume Finite Element with Medians) is very close to
the piecewise linear finite element scheme associated to M. Indeed the FVFE/M scheme is defined by
(12.5)-(12.7) while the piecewise linear finite element scheme reads

Z Epg = / f(x)ep(z)dz, VP €V NQ,
Qev @

up = g(P), VP € VNI,

where Ep ¢ is defined by (12.7).
These two schemes only differ by the right hand sides and, in fact, these right hand sides are “close” since

m(Kp) = /Q(,DP(ZE)CZZE, VPeV.

This is due to the fact that [.¢p(z)dz = m(T)/3 and m(Kp NT) = m(T)/3, for all T € M and all
vertex P of T'.

Thus, convergence properties of the FVFE /M scheme can be proved by using the finite element techniques.
Recall however that the piecewise linear finite element scheme (and the FVFE /M scheme) does not satisfy
the (discrete) maximum principle if M does not satisfy the Delaunay condition.

There are other means to construct a dual mesh starting from a primal triangular mesh. One of them is
the Voronoi mesh associated to the vertices of the primal mesh, another possibility is to join the centers
of gravity; in the latter case, the control volume associated to a vertex, say S, of the primal mesh is then
limited by the lines joining the centers of gravity of the neighboring triangles of which S is a vertex (with
some convenient modification for the vertices which are on the boundary of €2). See also BARTH [10] for
descriptions of dual meshes.

Note that the proof of convergence which we designed for finite volume with admissible meshes does not
generalize to any “FVFE” (Finite Volume Finite Element) method for several reasons. In particular,
since the exchange term between P and ) (denoted by Ep ) is not, in general, a function of the only
unknowns up and ug (and even if it is the transmissibilities may become negative) and also since, as in
the case of the finite element method, the concept of consistency of the fluxes is not clear with the FVFE
schemes.

12.4 Generalization to the three dimensional case

The methods described in the three above sections generalize to the three-dimensional case, in particular
when the primal mesh is a tetrahedral mesh. With such a mesh, the Delaunay condition no longer ensures
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the non negativity of the transmissibilities in the case of the piecewise linear finite element method. It
is however possible to construct a dual mesh (the “three-dimensional Voronoi” mesh) to a Delaunay
triangulation such that the FVFE scheme leads to positive transmissibilities, and therefore such that the
maximum principle holds, see CORDES and PuTTI [38].

Note that the theoretical results (convergence and error estimate) which were shown for the classical finite
volume method on an admissible mesh (sections 9.2 page 37 and 10 page 63) still hold for CFV/DM in
three-dimensional, since the dual mesh is admissible.

13 Mesh refinement and singularities

Some problems involve singular source terms. In the case of petroleum engineering for instance, one may
model (in two space dimensions) the well with a Dirac measure. Other problems may require a better
precision of some unknown in certain areas. This section is devoted to the treatment of this kind of
problem, either with an adequate treatment of the singularity or by mesh refinement.

13.1 Singular source terms and finite volumes

It is possible to take into account, in the discretization with the finite volume method, the singularities
of the solution of an elliptic problem. A common example is the study of wells in petroleum engineering.
As a model example we can consider the following problem, which appears, for instance, in the study of
a two phase flow in a porous medium. Let B be the ball of IR? of center 0 and radius rp (B represents a
well of radius 7,). Let Q = (—R, R)? be the whole domain of simulation; 7, is of the order of 10 cm while
R can be of the order of 1 km for instance. An approximation to the solution of the following problem
is sought:

—div(Vu)(z) =0, z€Q\ B,
u(z) = P,, =€ IB, (13.1)
“BC”on 01,

where “BC” stands for some “smooth” boundary conditions on 99 (for instance, Dirichlet or Neumann
condition). This system is a mathematical model (under convenient assumptions...) of the two phase
flow problem, with u representing the pressure of the fluid and P, an imposed pressure at the well. In
order to discretize (13.1) with the finite volume method, a mesh 7 of € is introduced. For the sake of
simplicity, the elements of 7 are assumed to be squares of length h (the method is easily generalized to
other meshes). It is assumed that the well, represented by B, is located in the middle of one cell, denoted
by Ky, so that the origin 0 is the center of K. It is also assumed that the mesh size, h, is large with
respect to the radius of the well, r, (which is the case in real applications, where, for instance, h ranges
between 10 and 100 m). Following the principle of the finite volume method, one discrete unknown ug
per cell K (K € 7) is introduced in order to discretize the following system:

/ Vu(z) -ng(x)dy(x) =0, KeT, K # K,

K (13.2)

j Vu(z) -, (v)dy(x) = | Vu(z) -np(z)dy(z),
0K aB

where np denotes the normal to 0P, outward to P (with P = K, K or B).

Hence, we have to discretize Vu - ng on 0K (and Vu-np on 0B) in terms of {ur, L € T} (and “BC”

and P,).

The problems arise in the discretization of Vu-ng, and Vu-np. Indeed, if ¢ = K|L is the common edge

to K and L (elements of T), with K # Ky and L # K, since the solution of (13.1) is “smooth” enough

with respect to the mesh size, except “near” the well, Vu - nx can be discretized by %(uL —uK) on o.
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In order to discretize Vu near the well, it is assumed that Vu - np is constant on 0B. Let ¢(z) =
—2mrp,Vu - np for x € OB (recall that np is the normal to dB, outward to B). Then ¢ € R is a new
unknown, which satisfies

/ —Vu - npdy(x) = q.
OB

Denoting by | - | the euclidian norm in IR?, and u the solution to (13.1), let v be defined by
v(x) = 2i In(|z]) + u(z), =€ Q\ B, (13.3)
7r

o(x) = % In(rp) + P,, x € B. (13.4)

Thanks to the boundary conditions satisfied by u on 0B, the function v satisfies —div(Vv) = 0 on the
whole domain €2, and therefore v is regular on the whole domain 2. Note that, if we set

u(z) = 7% In(jz]) + v(z), ae z € Q,
then
—div(Vu) = gdp on €,

where J¢ is the Dirac mass at 0. A discretization of Vu - ng, is now obtained in the following way. Let o
be the common edge to K; € T and Ky, since v is smooth, it is possible to approximate Vv - ng, on o
by +(vk, — vk, ), where vk, is some approximation of v in K; (e.g. the value of v at the center of Kj).
Then, by (13.4), it is natural to set

VK, = % In(rp) + Py,

and by (13.3),

VK, = % In(h) + ug, .
By (13.3) and from the fact that the integral over o of V(5L In(|z|)) - nk, is equal to §, we find the
following approximation for fg Vu - ng,dy:

h
f% + % ln(a) +ug, — Pp.
The discretization is now complete, there are as many equations as unknowns. The discrete unknowns
appearing in the discretized problem are {ux, K € T,K # Ky} and ¢. Note that, up to now, the
unknown ug, has not been used. The discrete equations are given by (13.2) where each term of (13.2)
is replaced by its approximation in terms of {ux, K € T,K # Ky} and ¢. In particular, the discrete
equation “associated” to the unknown ¢ is the discretization of the second equation of (13.2), which is

4
q h
— In(— .—P,)=0 13.5
>_(5E ) +u — B =0, (13.5
where {K;,i =1,2,3,4} are the four neighbouring cells to Kj.
It is possible to replace the unknown ¢ by the unknown wug, (as it is done in petroleum engineering) by
setting
a q., . h
==-——In(—)+ P, 13.6
uky = 4~ 5+ Py (13.6)
the interest of which is that it yields the usual formula for the discretization of Vu - ng, on o if o is the

common edge to K; and Ky, namely % (ug, — uK,); the discrete equation associated to the unknown
Uk, is then (from (13.5))
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and (13.6) may be written as:
1

1 1 h\"
-1t 3 In()

q="1p(Py — ug,), with i, =

This last equation defines i, the so called “well-index” in petroleum engineering. With this formula for i,
the discrete unknowns are now {uy, K € T}. The discrete equations associated to {ux, K € T, K # Ko}
are given by the first part of (13.2) where each terms of (13.2) is replaced by its approximation in terms
of {ug, K € T} (using also “BC” on 0f2). The discrete equation associated to the unknown ug, is

4
Z(uKi - uKU) = 7iP(PP - uKo)a
i=1
where {K;,i =1,2,3,4} are the four neighbouring cells to Kj.
Note that the discrete unknown ug, is somewhat artificial, it does not really represent the value of u in

Ko. In fact, if € Ky, the “approximate value” of u(x) is —5- 1n(‘rip‘) + P, and ug, = 4 — & ln(%) + P,.

13.2 Mesh refinement

Mesh refinement consists in using, in certain areas of the domain, control volumes of smaller size than
elsewhere. In the case of triangular grids, a refinement may be performed for instance by dividing each
triangle in the refined area into four subtriangles, and those at the boundary of the refined area in two
triangles. Then, with some additional technique (e.g. change of diagonal), one may obtain an admissible
mesh in the sense of definitions 9.1 page 37, 10.1 page 63 and 11.1 page 79; therefore the error estimates
9.3 page 52, 10.1 page 69 and 11.1 page 81 hold under the same assumptions.

In the case of rectangular grids, the same refining procedure leads to “atypical” nodes and edges, i.e. an
edge o of a given control volume K may be common to two other control volumes, denoted by L and
M. This is also true in the triangular case if the triangles of the boundary of the refined area are left
untouched.

Let us consider for instance the same problem as in section 9.1 page 33, with the same assumptions and
notations, namely the discretization of

—Au(z,y) = f(z,y), (z,y) € 2= (0,1) x (0,1),
u(z,y) =0, (z,y) € 0N

It is easily seen that, in this case, if the approximation of the fluxes is performed using differential
quotients such as in (9.6) page 34, the fluxes on the “atypical” edge o cannot be consistent, since the
lines joining the centers of K and L and the centers of K and M are not orthogonal to 0. However, the
error which results from this lack of consistency can be controlled if the number of atypical edges is not
too large.

In the case of rectangular grids (with a refining procedure), denoting by £ the set of “atypical” edges of a
given mesh T, i.e. edges with separate more than two control volumes, and 7 the set of “atypical” control
volumes, i.e. the control volumes containing an atypical edge in their boundaries; let e denote the error
between u(z ) and uk for each control volume K, and e denote the piecewise constant function defined
by e(z) = ek for any x € K, then one has

lell 2y < C(size(T) + (> m(K))?).

KeTy

The proof is similar to that of Theorem 9.3 page 52. It is detailed in BELMOUHOUB [11].
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14 Compactness results

This section is devoted to some functional analysis results which were used in the previous section. Let )
be a bounded open set of ]Rd, d > 1. Two relative compactness results in L?(Q) for sequences “almost”
bounded in H'(€) which were used in the proof of convergence of the schemes are presented here. Indeed,
they are variations of the Rellich theorem (relative compactness in L?(Q2) of a bounded sequence in H*(£2)
or H}(Q)). The originality of these results is not the fact that the sequences are relatively compact in
L?(Q), which is an immediate consequence of the Kolmogorov theorem (see below), but the fact that the
eventual limit, in L?(2), of the sequence (or of a subsequence) is necessarily in H'(Q) (or in Hg () for
Theorem 14.2), a space which does not contain the elements of the sequence.

We shall make use in this section of the Kolmogorov compactness theorem in L?(£2) which we now recall.
The essential part of the proof of this theorem may be found in BREzIS [16].

Theorem 14.1 (Kolmogorov compactness lemma) Let w be an open bounded set of RY, N > 1,
1<qg<ooand A C LYw). Then, A is relatively compact in L9(w) if and only if there exists {p(u),
u € A}y € LY(RY) such that

1. p(u) =u a.e. onw, for allu € A,

2. {p(u), u € A} is bounded in LI(RN),

3. lp(w)(- + 1) = p(u)|| Lo~y — 0 as n — 0, uniformly with respect to u € A.
Let us now state the compactness results used in this chapter.

Theorem 14.2 (Compactness of a bounded sequence and regularity of the limit) Let Q) be an
open bounded set ofle with a Lipschitz continuous boundary, d > 1, and {u,, n € IN} a bounded sequence
of L2(Q). Forn € IN, one defines i, by i, = u, a.e. on Q and i, =0 a.e. on R\ Q. Assume that
there exist C € R and {h,, n € N} C Ry such that h,, = 0 as n — co and

Hﬁ’n( + 77) - an”%?(md) S C|77|(|77| + hn)avn € ]Na V77 S IRd- (14'1)

Then, {u,, n € IN} is relatively compact in L*(Q). Furthermore, if u, — u in L*(2) as n — oo, then
u € HE(Q).

PROOF of Theorem 14.2

Since {h,, n € IN} is bounded, the fact that {u,, n € IN} is relatively compact in L?(Q) is an immediate
consequence of Theorem 14.1, taking N = d, w = Q, ¢ = 2 and p(u,,) = @,. Then, assuming that w,, — u
in L?(Q2) as n — oo, it is only necessary to prove that u € H}(2). Let us first remark that @, — @ in
L2(IRY), as n — oo, with & = u a.e. on Q and @ = 0 a.e. on R\ Q.

Then, for p € CF (le), one has, for all n € R?, 5 # 0 and n € IN, using the Cauchy-Schwarz inequality
and thanks to (14.1),

. - I
/ (n (2 +n) — tin(2)) (2)dz < Clal(nl + hn)
R ] ]
which gives, letting n — oo, since h,, — 0,

/le (a(x + 7|7;|— U (2o < Vol prmay,

and therefore, with a trivial change of variables in the integration,

||50||L2(1Rd)7

/ (ple =) = (@) &gy < VTl 12y (14.2)
R4 ]
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Let {e;, i=1,...,d} be the canonical basis of R?. For i € {1,...,d} fixed, taking n = he; in (14.2) and
letting h — 0 (with k> 0, for instance) leads to

Op(x) -
- dx <VC 2
| 2o ita)ds < VClel e
for all p € C°(RY).

This proves that D;u (the derivative of @ with respect to x; in the sense of distributions) belongs to
L?*(R%), and therefore that @ € H'(IR?). Since u is the restriction of @& on € and since @ = 0 a.e. on
R%\ Q, therefore u € H{ (). This completes the proof of Theorem 14.2. L]

Remark 14.1 (Direct proof of the regularity of the limit) In fact, the proof that a possible limit
is in Hg can be directly drawn from the boundedness of the sequence of approzimate solutions in the H!
discrete norm. Let us detail this point.

Let Q) be an open bounded set of R? with a Lipschitz continuous boundary, d > 1. Let (Tn)nen be a
sequence of admissible meshes (in fact, the orthogonality condition is not required for this direct proof)
such that size(T,,) tends to 0, and let {u, € X7,, n € IN} be a sequence of functions of L?(£) weakly
converging to u. Let us assume that there exists a real number C' not depending on n such that ||u, |17, <
C. Then u € H}(Q).

Indeed, let p € (C° (IRd))d (note that @ does not vanish on the boundary of Q); as in Step 4 of the proof
of Theorem 14.2, let us define for n € IN, @y, by @, = u, a.e. on Q and @, =0 a.e. on IR? \ Q.

Then

U, divipdr = uK/ @ -ndy
o 2

KeT
< Y mo)ux —uslles| + D m(o)|uk|l¢s|
oc=K|LEEint 0E€Eext
c€€K

where @, is the mean value of ¢ - n over o. By the Cauchy-Schwarz inequality, we obtain

1/2
lip divepda < dol | -
/IRdu wpdr < H“Hl,Tn <Zm(0) ‘Pa)

o€l
Defining by ¢, the mean value of ¢ - n over D,, we get
|0 — po| < size(Tn)|l¢ll1,00

where |||

1,00 @5 @ bound of the first derivatives of ¢. Therefore we get

1/2 1/2
<Zm(0)dasﬁ§> S(Zm(a)da%%) + V/dm(Q)size(Tn) || ¢l|1,00-

oeé oceé

From the above results, we may write
/ , Undivepdz < Va ||ully, 7 llllll 2 (0) + v/ dm(Q)size(Ta) @100
R
Passing to the limit, we then get that

lim indivepdr < C|l|e|||L2(0)-
R4

n—-+o0o

This in turn shows that that Vu € (L*(R®))¢ and u € HL(Q).
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Theorem 14.3 Let Q be an open bounded set of RY, d > 1, and {tn, n € IN} a bounded sequence of
L?(Q). For n € IN, one defines @y, by i, = uy a.e. on Q and @, =0 a.e. on R? \ Q. Assume that there
exist C € R and {h,, n € N} C R4 such that h, — 0 as n — oo and such that

|tn (- +mn) — an”%?(]{{d) < Clnl,vn € IN, Vn € ]Rda (14.3)

and, for all compact w C €2,

[tn (- + 1) = unll72(my < Clnl(In] + hn), ¥ € N, ¥y € RY, [n] < d(@, Q). (14.4)

(The distance between @ and R\ Q is denoted by d(@,Q°).)
Then {u,, n € IN} is relatively compact in L*(Q). Furthermore, if un, — u in L?(Q) as n — oo, then
ue HY(Q).

PROOF of Theorem 14.3

The proof is very similar to that of Theorem 14.2. Using assumption 14.3, Theorem 14.1 yields that {u,,
n € IN} is relatively compact in L?(2). Assuming now that u,, — u in L*(Q), as n — oo, one has to
prove that v € H' ().

Let p € C2°(Q2) and € > 0 such that ¢(z) = 0 if the distance from z to IR\ Q is less than . Assumption
14.4 yields

_ B
[ et )=, VTR
o ] l
for all n € R? such that 0 < || < e.

From this inequality, it may be proved, as in the proof of Theorem 14.2 (letting n — oo and using a
change of variables in the integration),

/ (ole =) = @) |y < Vel
o Ul

||50||L2(Q),

for all n € R? such that 0 < || < e.
Then, taking n = he; and letting h — 0 (with h > 0, for instance) one obtains, for all i € {1,...,d},

dp(x)

Q O

for all ¢ € C°().
This proves that D;u (the derivative of u with respect to x; in the sense of distributions) belongs to
L?(€), and therefore that u € H'(2). This completes the proof of Theorem 14.3. L]



Chapter 4

Parabolic equations

15 Introduction

The aim of this chapter is the study of finite volume schemes applied to a class of linear or nonlinear
parabolic problems. We consider the following transient diffusion-convection equation:

up(z,t) — Ap(u)(z, t) + div(vu)(z, t) + bu(z, t) = f(x,t), € Q, t € (0,T), (15.1)

where () is an open polygonal bounded subset of RY withd=2o0ord=3,T>0,b>0,velR?is,
for the sake of simplicity, a constant velocity field, f is a function defined on 2 x IR which represents a
volumetric source term. The function ¢ is a nondecreasing Lipschitz continuous function, which arises in
the modelling of general diffusion processes. A simplified version of Stefan’s problem may be expressed
with the formulation (15.1) where ¢ is a continuous piecewise linear function, which is constant on an
interval. The porous medium equation is also included in equation (15.1), with ¢(u) = «™, m > 1.
However, the linear case, i.e. p(u) = u, is of full interest and the error estimate of section 17 will be
given in such a case. In section 18 page 104, we study the convergence of the explicit and of the implicit
Euler scheme for the nonlinear case with v =0 and b = 0.

Remark 15.1 One could also consider a nonlinear convection term of the form div(vi(u))(z,t) where
¥ € C1(IR,R). Such a nonlinear convection term will be largely studied in the framework of nonlinear
hyperbolic equations (chapters 5 and 6) and we restrain here to a linear convection term for the sake of
simplicity.

An initial condition is given by

u(z,0) = up(x), z € Q. (15.2)

Let 092 denote the boundary of 2, and let 923 C 9 and 9%, C 02 such that 9y U 9, = 9 and
004 N 0Q,, = 0. A Dirichlet boundary condition is specified on 9Qy C 9. Let g be a real function
defined on 0€24 x R4, the Dirichlet boundary condition states that

u(z,t) = g(x,t), © € 90, t € (0,T). (15.3)

A Neumann boundary condition is given with a function g defined on 99, x IR :

—Vo(u)(z,t) -n(z) = glx,t), x € 0N, t € (0,T), (15.4)

where n is the unit normal vector to 02, outward to €.

97
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Remark 15.2 Note that, formally, Ap(u) = div(¢’(u)Vu). Then, if ¢'(u)(z,t) = 0 for some (z,t) €
Q% (0,T), the diffusion coefficient vanishes, so that Equation (15.1) is a “degenerate” parabolic equation.
In this case of degeneracy, the choice of the boundary conditions is important in order for the problem
to be well-posed. In the case where ¢’ is positive, the problem is always parabolic.

In the next section, a finite volume scheme for the discretization of (15.1)-(15.4) is presented. An error
estimate in the linear case (that is p(u) = u) is given in section 17. Finally, a nonlinear (and degenerate)
case is studied in section 18; a convergence result is given for subsequences of sequences of approximate
solutions, and, when the weak solution is unique, for the whole set of approximate solutions. A uniqueness
result is therefore proved for the case of a smooth boundary.

16 Meshes and schemes

In order to perform a finite volume discretization of system (15.1)-(15.4), admissible meshes are used
in a similar way to the elliptic cases. Let 7 be an admissible mesh of € in the sense of Definition 9.1
page 37 with the additional assumption that any o € Eqyy is included in the closure of 94 or included
in the closure of 0f2,. The time discretization may be performed with a variable time step; in order
to simplify the notations, we shall choose a constant time step k € (0,7). Let N, € IN* such that
N = max{n € IN,nk < T}, and we shall denote ¢, = nk, for n € {0,..., N + 1}. Note that with a
variable time step, error estimates and convergence results similar to that which are given in the next
sections hold.

Denote by {u, K € T, n € {0,...,N; + 1}} the discrete unknowns; the value u’ is an expected
approximation of u(x g, nk).

In order to obtain the numerical scheme, let us integrate formally Equation (15.1) over each control
volume K of T, and time interval (nk, (n + 1)k), for n € {0, ..., Ni}:

(n+1)k

| (e trin) = atastio = [ J/ (2,1) - e () ()t

k

+
(n-l—l)k (n+1)k (n+1)k
/ / v ng(x)u(z, t)dy(z dt+b/ / (z,t)dxdt = / /fxtdzdt
0K

where ng is the unit normal vector to 0K, outward to K.

(16.1)

Recall that, as usual, the stability condition for an explicit discretization of a parabolic equation requires
the time step to be limited by a power two of the space step, which is generally too strong a condition in
terms of computational cost. Hence the choice of an implicit formulation in the left hand side of (16.1)
which yields

§ [ (o)~ ule e = [ Vplu)(otasn) - n()dr()+
K oK Ve (16.2)

(n+1
/ v - ng(2)u(z, tyyr )dy(z) + b/ w(z, tyg1)dadt =— / / f(z,t)dxdt,
oK K k Juk K

There now remains to replace in Equation (16.1) each term by its approximation with respect to the
discrete unknowns (and the data). Before doing so, let us remark that another way to obtain (16.2) is to
integrate (in space) formally Equation (15.1) over each control volume K of T, at time ¢ € (0,7"). This
gives

/ut(z,t)dxf/ u)(z,t) - ng(x)dy(x) (16.3)

/;KV-HK()(xtdv +b/Kuxtdac—/fxt
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An implicit time discretization is then obtained by taking ¢ = ¢,,41 in the left hand side of (16.3), and
replacing us(z, tn1) by (w(z,tn41) — u(z, ty))/k. For the right hand side of (16.3) a mean value of f
between ¢, and ¢,4+1 may be used. This gives (16.2). It is also possible to take f(x,t,11) in the right
hand side of (16.3). This latter choice is simpler for the proof of some error estimates (see Section 17).

Writing the approximation of the various terms in Equation (16.2) with respect to the discrete unknowns
(namely, {ul, K € T,n €{0,..., N+ 1}}) and taking into account the initial and boundary conditions
yields the following implicit finite volume scheme for the discretization of (15.1)-(15.4), using the same
notations and introducing some auxiliary unknowns as in Chapter 3 (see equations (9.20)-(9.23) page
42):

unJrl —ul n n n n
m(K) =g+ DR D ooup o mUObt = m(K) S (16.4)
o€€K 0€EK

VK €T, Vn€{0,..., Ny},

with
dx,oF , = —m(o) (@(ug) - @(U%)) for o € &k, forn € {1,..., Ny + 1}, (16.5)
Fi,=—Fr, forall o € &y such that o = K|L, forn € {1,..., Ny +1}, (16.6)

1 nk
Fig oy = I / /g(z,t)dfy(x)dt for o € £k such that o C 08, forn € {1,..., Ny +1}, (16.7)

(n=1)k Jo

and

ul = g(yo,nk) for o C 9y, forn € {1,..., Ny + 1}, (16.8)

The upstream choice for the convection term is performed as in the elliptic case (see page 41, recall that
VKo =m(0)V.NE 5),

ul, = { Ui Hvenre 20 o all o € & such that o — K|L, (16.9)
’ uf, f v-ng, <0,
n ) Uk, ifv-ng,>0,
Ug = { ul ifv-ng. <0 for all o € £k such that o C 09. (16.10)

Note that, in the same way as in the elliptic case, the unknowns 2! may be eliminated using (16.5)-

(16.8). There remains to define the right hand side, which may be defined by:

1 (n+1)k
= K ... N, 16.11
= T /nk /Kf(x,t)dxdt,v €T, ¥ne{0,... N, (16.11)

or by:

1
Ik = o /K f(@,ty1)de, VK € T, ¥n € {0,..., Ny }. (16.12)

Initial conditions can be taken into account by different ways, depending on the regularity of the data
ug. For example, it is possible to take

1
ul = (i) /Kuo(z)dz, KeT, (16.13)

or

w9 =ug(zg), K €T. (16.14)
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Remark 16.1 It is not obvious to prove that the implicit finite volume scheme (16.4)-(16.10) (with
(16.11) or (16.12) and (16.13) or (16.14)) has a solution. Once the unknowns Fj:'! are eliminated, a
nonlinear system of equations has to be solved. A proof of the existence and uniciueness of a solution
to this system is proved in the next section for the linear case, and is sketched in Remark 18.4 for the
nonlinear case.

Remark 16.2 (Comparison with finite differences) Let us consider the case of the heat equation,
that is the case where v.= 0, b = 0, ¢(s) = s for all s € IR, with Dirichlet condition on the whole
boundary (094 = 99). If the mesh consists in rectangular control volumes with constant space step in
each direction, then the discretization obtained with the finite volume method gives (as in the case of the
Laplace operator), the same scheme than the one obtained with the finite difference method (for which
the discretization points are the centers of the elements of 7) except at the boundary. In the general
nonlinear case, finite difference methods have been used in ATTEY [6], KAMENOMOSTSKAJA, S.L. [92]
and MEYER [111], for example.

Remark 16.3 (Comparison with mass-lumped finite element) Finite element methods are clas-
sically used for elliptic or parabolic problems, see for instance AMIEZ and GREMAUD [2] or CIAVALDINI
[31]. Let M be a finite element mesh of Q, consisting of triangles (see e.g. CIARLET [29] for the condi-
tions on the triangles), with IV internal nodes. A finite element formulation for (15.1), with the implicit
Euler scheme in time, yields

%(/Q(“nﬂ(x) - Un(x))@(w)dw) + /Q Vut(z) - Vo (z)de = /Qf(x,tnﬂ)qﬁi(x)dx,

where ¢; is the shape function of the finite element basis, associated with node 4, for i =1,... N. Let us
approximate u™ by the following Galerkin expansion:

N N
n+1 __ n+1 n __ n .
U = E u; ¢; and u" = E uy by,
Jj=1

j=1

where N is the total number of nodes, and uj is expected to be an approximation of u at time ¢, and
node j, for all j and n; replacing in the above equation, this yields:

1 u n+1 n . . il n+1 . . = P
P X — e+ [ w51Vo,0) - Voiada = [ fatun)no)ds. (16.15)

Hence, the finite element formulation yields, at each time step, a linear system of the form CU"! +
AU™ ! = B (where U™ = (u1,...,uy)?, and A and C are N x N matrices); this scheme, however, is
generally used after a mass-lumping, i.e. by assigning to the diagonal term of C' the sum of the coefficients
of the corresponding line and setting the extra-diagonal terms to 0, thereby transforming C' into a diagonal
matrix; we already saw in section 12.1 that the part AU™*! may be seen as a linear system derived from
a finite volume formulation over the associated Voronoi cells. With the mass lumping technique, the term
C;; corresponding to the i-th node is in fact equal to the integral [ i @i of the i-th shape function ¢;;
since for an element K whose vertices contain the i-th node, one has [, ¢; = %|K|, therefore the integral
f ¢ @i 1s also equal to the area of the so-called Donald dual cell , which is the dual cell around the i-th
node obtained by joining the barycenter of each cell around the node to the middle of its edges. The
term CU™*! may thus be interpreted as a discretization by a finite volume scheme over this Donald dual
cell.

17 Error estimate for the linear case

We consider, in this section, the linear case, p(s) = s for all s € R, and assume 9Q,; = 99, i.e. that
a Dirichlet boundary condition is given on the whole boundary, in which case Problem (15.1)-(15.4)
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becomes
ug(x,t) — Au(z, t) + div(vu)(z, t) + bu(z, t) = f(x,t), v € Q, t € (0,T),

u(z,0) = up(x), z € Q,
ule,t) = g, 1), @ € 09, t € (0,T);

the finite volume scheme (16.4)-(16.10) then becomes, assuming, for the sake of simplicity, that zx € K
forall K € T,

n+l  _ n
m(K)% + 3 Y v eul 4+ m(K)bult = m(K) £,
0€EK o€l
VK € T,Vn€{0,...,N,}, (17.1)
with
Fg = —Trp(uf — uf) for all o € &y such that o = K[L, for n € {1,..., N}, + 1}, (17.2)
Fg o = —75(9(yo, nk) — uf) for all o € Ek such that o C 9Q, for n € {1,..., Ny + 1}, (17.3)
and
no_,n . >
u%’* uff’ .lf V-nge 20, for all o € &t such that o = K|L, (17.4)
uy y =up, if v-ng, <0,
Uy o = U, ifv-ng, >0,
{ Wy = glyornk), I V-onge <O, for all o € Ex such that o C 9. (17.5)

The source term and initial condition f and ug are discretized by (16.12) and (16.14).

A convergence analysis of a one-dimensional vertex-centered scheme was performed in GUO and STYNES
[79] by writing the scheme in a finite element framework. Here we shall use direct finite volume techniques
which also handle the multi-dimensional case.

The following theorem gives an L estimate (on the approximate solution) and an error estimate. Some
easy generalizations are possible (for instance, the same theorem holds with b < 0, the only difference is
that in the L estimate (17.6) the bound ¢ also depends on b).

Theorem 17.1  Let Q be an open polygonal bounded subset of R, T > 0, u € C?’(Q xRy, R),b>0
and v € RY. Let ug € C?(Q,R) be defined by ug = u(-,0), let f € CO(Q x Ry,IR) be defined by
f = u — div(Vu) + div(vu) + bu and g € C°(0Q x Ry, R) defined by g = u on 9Q x Ry. Let T be
an admissible mesh in the sense of Definition 9.1 page 37 and k € (0,T). Then there exists a unique
vector (ug ) ket satisfying (17.1)-(17.5) (or (16.4)-(16.10)) with (16.12) and (16.14). There exists ¢ only
depending on ug, T, f and g such that

sup{|u|, K € T,ne{l,... . Ny +1}} <ec. (17.6)

Furthermore, let €} = u(x g, ty) —ul, for K € T andn € {1,..., N+ 1}, and h = size(T). Then there
exists C € IRy only depending on b, u, v, Q and T such that

(D" (ek)*m(K))% < C(h+k), Vne{l,.... Ny +1}. (17.7)
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PROOF of Theorem 17.1

For simplicity, let us assume that xx € K for all K € T. Generalization without this condition is
straightforward.

(i) Existence, uniqueness, and L™ estimate

For a given n € {0,..., N}, set fr =0 and v = 0in (17.1), and g(y,, (n + 1)k) = 0 for all o € € such
that o C 9. Multiplying (17.1) by u?jl and using the same technique as in the proof of Lemma 9.2
page 42 yields that u7"* = 0 for all K € 7. This yields the uniqueness of the solution {ux"!, K € T} to
(17.1)-(17.5) for given {u%, K € T}, {fi, K € T} and {g(ys, (n+1)k), 0 € £,0 C 9Q4}. The existence
follows immediately, since (17.1)-(17.5) is a finite dimensional linear system with respect to the unknown
{u', K € T} (with as many unknowns as equations).

Let us now prove the estimate (17.6). Let m; = min{f(z,t), z € Q, t € [0,27]} and m, = min{g(z,t),
x €00, te0,2T]}. Let n € {0,..., Ni}. Then, we claim that

min{u!, K € T} > min{min{u}, K € T} + kmy,0,m,}. (17.8)
Indeed, if min{u};', K € T} < min{0,my}, let Ko € T such that u?ggl = min{u};"', K € T}. Let us
write (17.1) with K = Kj. Since u?ggl < 0 and u?ggl < mg, we get that F}é:l

Ne
constant, we have Z VK, = 0, so that
o€l

< 0. Moreover, since v is

1 1 1
> vk oult =) vk, (uit —uptt) <o;
0€EK o€l

therefore
u?ggl > Uy, + kfg, > min{uy, K € T} + kmy,

this proves (17.8), which yields, by induction, that:

min{u}, K € T} > min{min{u%, K € T},0,my} +nkmin{my,0},Vn € {0,..., Ny + 1}.
Similarly,
max{uf, K € T} < max{max{u}, K € T},0, My} + nkmax{M;,0},Vn € {0,..., N, + 1},
with M; = max{f(z,t), x € Q, t € [0,2T]} and M, = max{g(x,t), z € 09, t € [0,27T]}.
This proves (17.6) with ¢ = |luol| L~ (o) + |9l @ax(0.21)) + 2T fllL>(@x (0.21))-

(ii) Error estimate

As in the stationary case (see the proof of Theorem 9.3 page 52), one uses the regularity of the data
and the solution to write an equation for the error e} = u(xg,t,) — ul, defined for K € T and
n € {0,...,Nr+ 1}. Note that % =0 for K € T. Let n € {0,..., N;}. Integrating (in space) Equation
(15.1) over each control volume K of T, at time ¢ = ¢,,41, gives, thanks to the choice of f7 (see (16.12)),

/Kut(x,tnﬂ)dac—/BK(Vu(ac,tn_H)—vu(x,tn+1)) -nK(x)dv(x)—l—b/Ku(ac,th)dac =m(K)fr. (17.9)

Note that, for all z € K and all K € T, a Taylor expansion yields, thanks to the regularity of w:

up(,tni1) = (k) (s, tna) — u(@r, tn)) + sk (@) with [sk ()] < Ci(h+ k)

with some C only depending on uw and 7. Therefore, defining Sj = / sk (x)dz, one has: |S}| <
K
Cim(K)(h+ k).



103

One follows now the lines of the proof of Theorem 9.3 page 52, adding the terms due to the time derivative
ug. Substracting (17.1) to (17.9) yields

n+1 _n
m(K)% + Z (G?jﬂl + W;?) + bm(K)e?(Jrl —
c€€K (1710)
bm(K>p?( - Z m(o—)(R?(,a' + 7’%70) - S?{a VK € Tv
celK

where (with the notations of Definition 9.1 page 37),

G'r;(—‘:—l — _To_(e'Z"l‘l n+1) VK € T Vo € EK mglnta o= KlL
G%Fl _ Tge?jl VK € T,Vo € Ex N Eext,

W}?,Jff =m(0)v - ng o (u(To+,tnt1) — Z-:-l)

where 25+ = xx (resp. zr) if 0 € &y, 0 = K|L and v-ng, > 0 (resp. v-ng, <0) and 2,4+ = zx
(resp. Yp) if 0 = Ex Nex and v -ng » > 0 (resp. v -ng , < 0),

1
no— TSI S tni1)d
PK u(sz ) m(K) /Ku('rv +1) €L,
m(0)R , = 7o (u(zg, ") —u(zp, ") + / Vu(z, ty) ng ody(z) if 0 = K|L € &g,

m(o) Ko = = 7, (u(zKk, ) — 9(Yors ) 4 / Vu(z,t,) ng ody(z) if 0 € Ex N Eing,

and
m(o)r}}a =v-ng,,(mo)u(Te+,tht1) — / (o)u(z, tpi1)dy(z), for any o € E.

As in Theorem 9.3, thanks to the regularity of u, there exists Cs, only depending on u, v and T, such
that |Rf |+ [rk | < Cah and |pg| < Coh, for any K € T and o € Ek.

Multiplying (17.10) by e}‘(“, summing for K € T, and performing the same computations as in the proof
of Theorem 9.3 between (9.56) to (9.60) page 54 yields, with some C3 only depending on u, v, b, 2 and
T

)

= Z i) || Ui+ 5 blle"“l\Lzm) <
= (17.11)
Csh? + Ci(h+ k) Y m(K)[e™ | + ¢ LS m(K)e e,
KeT KeT

where the second term of the right hand side is due to the bound on S} and where 6”73r1 is a piecewise

constant function defined by

et (@) =ept!, forr e K,K € T.
Inequality (17.11) yields
e 122 () < 2kC3h? + 2kCim(Q) (k + h)lle™ || z2() + le7]|72 (-
which gives

5 172 () < NlefllZz(qy + Ca(kh® + k(k + h)[[ef | L2 (), (17.12)

where Cy € IR only depends on u, v, b,  and T'. Remarking that for € > 0, the following inequality
holds:
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Cak(k + W) €5 || 12y < 1€l 1320y + (1/2)CIR2(k + h)?,
taking e = k/(k + 1), (17.12) yields
e 72y < (L4 R)leFlI72(q) + Cakh?(1 4+ k) + (1 + k)*CTk(k + h). (17.13)

Then, if ||e’7’—||2L2(Q) < cu(h + k)?, with ¢, € R, one deduces from (17.13), using h < h+k and k < T,
that

||e77l-+1||2L2(Q) < np1(h+k)? with ¢,p1 = (1 +k)e, + Csk and Cs = Cy(1+T) + C3(1 4+ T)%

(Note that C5 only depends on w, v, b, Q and T').
Choosing ¢g = 0 (since ||€}||r2(q) = 0), the relation between ¢, and ¢, 11 yields (by induction) ¢, <
Cse? . Estimate (17.7) follows with C2? = Cye?. "

Remark 17.1 The error estimate given in Theorem 17.1 may be generalized to the case of discontinuous
coefficients. The admissibility of the mesh is then redefined so that the data and the solution are piecewise
regular on the control volumes as in Definition 11.1 page 79, see also HERBIN [85].

18 Convergence in the nonlinear case

18.1 Solutions to the continuous problem

We consider Problem (15.1)-(15.4) with v = 0, b = 0, 082, = 9Q and § = 0, that is a homogeneous
Neumann condition on the whole boundary, in which case the problem becomes

ug(x,t) — Ap(u)(z,t) = f(x,t), for (z,t) € Qx (0,T), (18.1)
with
Vo(u)(z,t) -n(z) =0, for (x,t) € 90 x (0,T), (18.2)

and the initial condition

u(x,0) = up(x), for all z € Q. (18.3)

We suppose that the following hypotheses are satisfied:
Assumption 18.1

(i) Q is an open bounded polygonal subset of R and T > 0.

(ii) The function ¢ € C(IR,IR) is a nondecreasing locally Lipschitz continuous function.
(tii) The initial data uo satisfies ug € L ().
(iv) The right hand side f satisfies f € L>(Q x IRY).

Equation (18.1) is a degenerate parabolic equation. Formally, Ap(u) = div(¢’(u)Vu), so that, if ¢’ (u) =
0, the diffusion coefficient vanishes. Let us give a definition of a weak solution u to Problem (18.1)-(18.3)
(the proof of the existence of such a solution is given in KAMENOMOSTSKAJA, S.L. [92], LADYZENSKAJA,
SOLONNIKOV and URAL'CEVA [100], MEIRMANOV [110], OLEINIK [122]).
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Definition 18.1 Under Assumption 18.1, a measurable function w is a weak solution of (18.1)-(18.3) if
u ETLOO(Q x (0,7)),
/ /Q (e 0 (1) + ol ) A1) + a0 1)) die it + (18.4)
f;uo(x)dj(x, 0)dx =0, for all p € Ap,

where Ar = {1 € C>1(Q x [0,T]), Vi -n = 0 on 9N x [0,7], and (-, T) = 0}, and C**(Q x [0,77])
denotes the set of functions which are restrictions on ©Q x [0, 7] of functions from IR? x R into IR which
are twice (resp. once) continuously differentiable with respect to the first (resp. second) variable. (Recall
that, as usual, n is the unit normal vector to 9f2, outward to 2.)

Remark 18.1 It is possible to use a solution in a stronger sense, using only one integration by parts for
the space term. It then leads to a larger test function space than Ap.

Remark 18.2 Note that the function u formally satisfies the conservation law

/Qu(x,t)dx:/Quo(x)dx—l—/ot/gf(x,t)dxdt, (18.5)

for all ¢ € [0,T]. This property is also satisfied by the finite volume approximation.

18.2 Definition of the finite volume approximate solutions

As in sections 9.2 page 37 and 10.1 page 63, an admissible mesh of  is defined, with respect to which
a functional space is introduced: this space contains the approximate solutions obtained from the finite
volume discretization over the admissible mesh.

Definition 18.2 Let 2 be an open bounded polygonal subset of R?, T be an admissible mesh in the
sense of Definition 10.1 page 63, T > 0, k € (0,T) and N, = max{n € IN;nk < T}. Let X(T,k) be
the set of functions w from © x (0, (Ny + 1)k) to IR such that there exists a family of real values {ul,
K eT,ne{0,....,Ni}}, with u(x,t) = vl for ae. € K, K € T and for a.e. ¢t € [nk,(n+ 1)k),
n€{0,...,Ng}.

Since we only consider, for the sake of simplicity, a Neumann boundary condition, we can easily eliminate
the unknowns F7; , located at the edges in equation (16.4) using the equations (16.5), (16.6), and (16.7).
An explicit version of the scheme can then be written in the following way:

n+1

(i) PR ()~ eluk)) = m(E) 1 56
VK €T,Vn € {0,...,Nk}.
o _ 1 /
Up = (K Kuo(x)dx, VK €T, (18.7)
1 (n+1)k

m(K|L)

(Recall that 751, =
K|L

, see Definition 10.1 page 63.)
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Remark 18.3 The definition using the mean value in (18.7) is motivated by the lack of regularity
assumed on the data ug.

The scheme (18.6)-(18.8) is then used to build an approximate solution, ur € X (T, k) by

ur k(z,t) = ulk, Vo € K,Vt € [nk,(n+ 1)k),VK € T,¥n € {0,..., Ny} (18.9)
Remark 18.4 The implicit finite volume scheme is defined by
u !t — gk +1 +1
m(K)—*“*——= — T ( ut ) — o(u; ):mK v,
(K) k Z ki eur™) —elug™) (K) [k (18.10)

LEN(K)

VK €T,Vn € {0,...,Nk}.

The proof of the existence of u?jl
point method:

, for any n € {0,..., N}, can be obtained using the following fixed

upt Y = u, forall K e T, (18.11)

and

un n m n m n
2 K Z TK\L(()D(ULJFL ) — ‘P(“K-H’ +1)) =m(K)fg,
LeN(K)
VK €T, Ym € IN.

Equation (18.12) gives a contraction property, which leads first to prove that for all K € T, the sequence
(o(ur"™)) e converges. Then we deduce that (uf""™),en also converges.

We shall see further that all results obtained for the explicit scheme are also true, with convenient
adaptations, for the implicit scheme. The function wr  is then defined by ur p(x,t) = u’}(ﬂ, for all x €

K, for all t € [nk,(n+ 1)k).

(18.12)

The mathematical problem is to study, under Assumption 18.1 and with a mesh in the sense of Definition
10.1, the convergence of ur ) to a weak solution of Problem (18.1)-(18.3), when h = size(7) — 0 and
k — 0. Exactly in the same manner as for the elliptic case, we shall use estimates on the approximate
solutions which are discrete versions of the estimates which hold on the solution of the continous problem
and which ensure the stability of the scheme. We present the proofs in the case of the explicit scheme
and show in several remarks how they can be extended to the case of the implicit scheme (which is
significantly easier to study). The proof of convergence of the scheme uses a weak-x convergence property,
as in CIAVALDINI [31], which is proved in a general setting in section 18.5 page 116. For the sake of
completeness, the proof of uniqueness of the weak solution of Problem (18.1)-(18.3) is given for the case
of a regular boundary; this allows to prove that the whole sequence of approximate solutions converges
to the weak solution of problem (18.1)-(18.3), in which case an admissible mesh for a smooth domain can
easily be defined (see Definition 18.4 page 116).

18.3 Estimates on the approximate solution
Maximum principle
Lemma 18.1 Under Assumption 18.1, let T be an admissible mesh in the sense of Definition 10.1 page

63 and k € (0,T). Let U = |[uol|p=(q) + Tl fllz~@x0,1)), B = sup M Assume that

—U<z<y<U r—y
the condition
) < — mK)

_B Z TK|L’

LeEN(K)

foral K €T, (18.13)
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is satisfied. Then the function ur ) defined by (18.6)-(18.9) verifies

luT k|l oo (@ (0,7)) < U. (18.14)

PROOF of Lemma 18.1

Let n € {0,..., N — 1} and assume u% € [-U,+U] for all K € T.
Let K € T, Equation (18.6) can be written as

witt = (1$ Z TKlL@(Uggisﬁ(U?{))u?{ 4

LEN(K) L~ Uk
(k) Z (TK\L—Jn —_— = )ULJkam
LeN(K) L K

p(u) — p(uf)
uy — uly

Thanks to the condition (18.13) and since ¢ is nondecreasing, the following inequality can be deduced:

with the convention that =0if u} —uj =0.

™| < sup [uf | + k| f ]| Le@x o0.1))-
LeT

Then, since K is arbitrary in 7T,

sup |ulkt| < sup |[uf| + Kl fll Lo x (0,1))- (18.15)
KeT LeT

Using (18.15), an induction on n yields, for n € {0, ..., Ni}, sup ey [ufi| < [[uol oo ) +nk| fl Lo @x0,1))
which leads to Inequality (18.14) since Nyk < T. m

Remark 18.5 Assume that there exist «, 3, v € IR} such that m(K) > ah?, m(0K) < Bh4~1, for all
K €T, and dg |, > 7h, for all K|L € &y (recall that h = size(T)). Then, k < Ch? with C' = (ay)/(Bp)
yields (18.13).

Remark 18.6 Let (7, kn)nemw be a sequence of admissible meshes and time steps, and (w7, k, )JneN
the associated sequence of approximate finite volume solutions; then , thanks to (18.14), there exists
a function v € L*(Q x (0,7")) and a subsequence of (ur, k, )Jnew Which converges to u for the weak-*
topology of L>®(Q2 x (0,T)).

Remark 18.7 Estimate (18.14) is also true, with U = |lug||r~() + 27| fl| L(ax (0,21)), for the im-
plicit scheme, because the fixed point method guarantees (18.15) (with ||f|zec(ax(0,27)) instead of
| fllzo(2x (0,r)) and until n = Ny), without any condition on k.

Space translates of approximate solutions

Let us now define a seminorm, which is the discrete version of the seminorm in the space L(0,T; H(Q)).

Definition 18.3 (Discrete L?(0,7; H'(Q2)) seminorm) Let Q be an open bounded polygonal subset
of R?, T an admissible finite volume mesh in the sense of Definition 10.1 page 63, T > 0, k € (0,T) and
Ni =max{n € N;nk < T}. For u € X(T,k), let the following seminorms be defined by:

lu(- )3, = Z T (U] — uf)?, for ae. t € (0,T) and n = max{n € IN;nk < t}, (18.16)
K‘Legim
and
N
lulf 7 = Zk Z o (uf — ulf)?. (18.17)

n=0 K|LEEint
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Let us now state some preliminary lemmata to the use of Kolmogorov’s theorem (compactness properties
in L?(Q x (0,7))) in the proof of convergence of the approximate solutions.

Lemma 18.2 Let Q be an open bounded polygonal subset of R, T an admissible mesh in the sense
of Definition 10.1 page 63, T > 0, k € (0,T) and u € X(T,k). For all n € RY, let Q, be defined by
O, ={zeQ, [z, +n] CQ}. Then:

lu(-+n,-) —u(, ')||2L2(QT,><(O,T)) < |ul 7 kInl(Inl + 2size(T)), ¥y € R, (18.18)

PROOF of Lemma 18.2

Reproducing the proof of Lemma 9.3 page 44 (see also the proof of (10.31) page 75), we get, for a.e.
te(0,T):

[u(-+m,8) = u( )20,y < [uC O 7Inl(nl + 2size(T)), Vn € R, (18.19)
Integrating (18.19) on t € (0,7 gives (18.18). m

The set €, defined in Lemma 18.2 verifies Q \ Q,) C Usce, . wn,o, With wy o ={y —tn, y € 0, t € [0,1]}.
Then, m(Q2\ Q) < || m(99), since m(w,) < nm(c). Then, an immediate corollary of Lemma 18.2 is
the following;:

Lemma 18.3 Let Q be an open bounded polygonal subset of R, T an admissible mesh in the sense of
Definition 10.1 page 63, T >0, k € (0,T) and u € X(T, k). Let  be defined by i = u a.e. on Qx (0,T),
and @ =0 a.e. on R*\ Qx (0,T). Then:

{ @ +m,) = 4, )M garry < 10l (IuIiT,k(lnl + 2size(T)) + 2m(39)IIUII%w(QX(07T>>), (18.20)
vn e R%.

Remark 18.8 Estimate (18.20) makes use of the L>(Q2x(0,T"))-normof u € X (7, k). A similar estimate
may be proved with the L?(Q x (0,7"))-norm of u (instead of the L>°(Q2 x (0,7))-norm). Indeed, the right
hand side of (18.20) may be replaced by Cn(|ulf 7 + |ull 72« (o.7))); Where C only depends on Q. This
estimate is proved in Theorem 10.3 page 74 where it is used for the convergence of numerical schemes for
the Neumann problem (for which no L estimate on the approximate solutions is available). The key to
its proof is the “trace lemma” 10.5 page 72.

Let us now state the following lemma, which gives an estimate of the discrete L2(0,7; H'(2)) seminorm
of the nonlinearity.

Lemma 18.4 Under Assumption 18.1, let T be an admissible mesh in the sense of Definition 10.1 page
63. Let £ € (0,1) and k € (0,T) such that

m(K)

B Z TK\L,

LEN(K)

E<(1-¢) forall K € T. (18.21)

Let ury € X(T,k) be given by (18.6)-(18.9).
Let U = |Juol| L) + Tl fllLoo(ax0,1)) and B be the Lipschitz constant of ¢ on [=U,U]. Then there
exists Iy > 0, which only depends on Q, T, ¢, ug, [ and & such that

lo(ur )i 7k < Fr- (18.22)
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PROOF of lemma 18.4

Let us first remark that the condition (18.21) is stronger than (18.13). Therefore, the result of lemma
18.1 holds, i.e. |uk| < U, for all K € T, n € {0,..., Ny}. Multiplying equation (18.6) by ku’, and
summing the result over n € {0,..., N} and K € T yields:

Ny,

SN () (it — uful -

n]\?kOKET N (1823)
SEY. Y man(ed) - i) Juk =Y kY m(K)uj Sk

n=0 KeT LeN(K) n=0 Ke&T

In order to obtain a lower bound on the first term on the left hand side of (18.23), let us first remark
that:

— U )uf = E(UK—H)Q - 5(“1{)2 5

Now, applying (18.6), using Young’s inequality, the following inequality is obtained:

(ultt —(utt — w2, (18.24)

(upet! —ug)? <K (1+€) [(ﬁ > mnlel) - i) + (ffw] (18.25)

LeN (K) §

which yields in turn, using the Cauchy-Schwarz inequality:

it = < s 0+0] 3 man][ 3 s (eta) - otu)]

LeN(K) LeEN(K) (18.26)
90 g
¢ .
Taking condition (18.21) into account gives:
k 2 1 k 2
(uitt —u)? < (1 —52)3 (K)[ > TmL(w(u’L‘) ,(P(u?()) } L QO Ji) +"C)§ Tie)” (18.27)
m LeEN(K)

Using (18.24) and (18.27) leads to the following lower bound on the first term of the left hand side of
(18.23):

S S m() i i > 5 S0 m(E) (@) >2)
n=0KeT KeT

Let us now handle the second term on the left hand side of (18.23). Let ¢ € C(IR,IR) be defined by

x

o(x) = xp(x) — / ©(y)dy, where 2y € IR is an arbitrary given real value. Then the following equality
holds: ’

0

o) — oluk) = i) — o) ~ [ (ola) — ol (18.29)

The following technical lemma is used here and several times in the sequel:
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Lemma 18.5 Let g : IR — IR be a monotone Lipschitz continuous function, with a Lipschitz constant
G > 0. Then:

1
|/ c))dx| > —G(g(d) —g(c))?, Ve,d € R. (18.30)
PROOF of Lemma 18.5

In order to prove Lemma 18.5, we assume, for instance, that g is nondecreasing and ¢ < d (the other
cases are similar). Then, one has g(s) > h(s), for all s € [c,d], where h(s) = g(c) for s € [¢,d — ] and
h(s) =g(c)+ (s —d+1)G for s € [d —1,d], with |G = g(d) — g(c), and therefore:

[ (ats) = gtes = [ (h(s) - g(e)ds = 5(6d) ~ 9(e)) = 55 (9(d) - g1c)*

this completes the proof of Lemma 18.5.
It is interesting to notice that, for this proof, the fact that g is Lipschitz continuous is not necessary. We
only use the fact that g(s) > g(c) and g(d) — g(s) < G(d — s) for all s € [¢,d] (indeed we use g(s) > g(c)

for s € [e,d —1]) and g(d) — g(s) < G(d — s) for s € [d — 1, d]). m
Using Lemma 18.5, (18.29) and the equality » > 7xp(¢(uf) — ¢(uf)) = 0 yields:
KeT LeN(K)
Ny,
—Zk/’ Z Z TK|L(90(U7£) — p(ufk ) = QBZk Z Z TK|L(P (UK))2- (18.31)
n=0 KeT LEN(K) n=0 Ke&T LeEN(K)

Since k < T we deduce from (18.14) that the right hand side of equation (18.23) satisfies

Ny,
S k> m(K)ul fi] < 2Tm( @)U ]l z(@x0.2m))- (18.32)
n=0 KeT

Relations k < T, (18.23), (18.28), (18.31) and (18.32) lead to

Y > mrpnle(uy) — e(uf)? <

B KeT LeN(K) (18.33)
1+¢ 1
2Tm(Q)[| £l o= (x (0,27)) (U + ?”f”LW(QX(O,QT))T) + §m(Q)Hu0||%oo(Q)

52 al

which concludes the proof of the lemma. [

Remark 18.9 Estimate (18.22) also holds for the implicit scheme , without any condition on k. One
multiplies (18.10) by u”“. the last term on the right hand side of (18.24) appears with the opposite
sign, which cons1derab1y simplifies the previous proof.

Time translates of approximate solutions

In order to fulfill the hypotheses of Kolmogorov’s theorem, the study of time translates must now be
performed. The following estimate holds:

Lemma 18.6 Under Assumption 18.1 page 104, let T be an admissible mesh in the sense of Definition
10.1 page 63 and k € (0,T). Let urp € X(T,k) be given by (18.6)-(18.9). Let U = ||ur k|| Lo (x(0,1))
and B be the Lipschitz constant of ¢ on [-U,U]. Then:

{ leCuri(, + 7)) = e(ur k(s D 2@xor—ry < (18.34)

2B (| (ur )8 7o + BTm(QU |l (00,70 ) ¥7 € (0,T).



111

PROOF of Lemma 18.6

Let 7 € (0,7T). Since B is the Lipschitz constant of ¢ on [~U,U], U = |[u7 k| 1=@x(0,1)) and ¢ is
nondecreasing, the following inequality holds:

/ (lur ae.t + 7)) — olur s(a.0))) dodt < B / T A, (18.35)
Qx(0,T—7) 0

where, for almost every t € (0,7 — 7),

At) = /Q ((p(ufnk(x, t+7)) —o(ur iz, t))) (uT7k(x, t+7) —uri(z, t))dw.

Let t € (0,7 — 7). Using the definition of wr j (18.9), this may also be written:

A = Y- m(E) (wlug ) = pupe™)) (up @ —upe®), (18.36)

KeT

with no(t), ni(t) € {0,..., Ni} such that no(t)k <t < (no(t) + 1)k and ni(t)k <t +7 < (n1(t) + 1)k.
Equality (18.36) may be written as

nl(t)

Al = 7 (i ®) = o)) ( m(K) (ufe — wi ),
KeT n=ng(t)+1
which also reads
Alt) = D7 (put ™) — p(upe™) (Z ot 4+ 7)) (ufe — ), (18.37)
KeT

with xp(t,t+7) =1if nk € (t,t + 7] and x,(t,t +7) =0if nk & (¢, t + 7).
n (18.37), the order of summation between n and K is changed and the scheme (18.6) is used. Hence,

- kZXn (t,t+ 1) [Z (o(u "1(’5)) SD(U?(O(”))

KeT

Z TK|L(<P(UL Y = (i) + m(K) ?1)}'

LeN (K)

Gathering by edges, this yields:

A0 =k3[ T malelalz®) - o) - o) + o)

n=1 K|LEEnt

((up™) = (uf ™)) + 7 (™) — o)) m(K) frt xn(t,t + 7).
KeT

Using the inequality 2ab < a? + b2, this yields:
1 1
At) < 540(8) + 5 A1) + A2 (1) + As(8), (18.38)

with

D=kY xaltt+7)( Y Trinleur’™) —plu™))?),

K|L€E&ins
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Ny,
D =kd xalt,t+7)( Y Triple(ur™) - o)),

K|L€eEins

As(t) = kY xaltst +7)( Y mrpn(p(ui™) = plui1)?),

n=1 K|L€5int

and

szxnttw > (i) = o )m(K) fr ).

KeT

Note that, since t € (0,7 — 7), no(t) € {0,..., N}, and, for m € {0,..., Ny}, no(t) = m if and only if
t € [mk, (m + 1)k). Therefore,

T—71 N, (m+1)k N
/0 A<y [ TR bt (Y manled) - o))t

m=0 " mk n=1 K|LEEy:

which also reads

/OT ' dt<z /(m+1)k(ji1 n(t,t+7))dt S rrinle(ul) — o(u))?. (18.39)

K|L€e&ins

The change of variable t = s + (n — m)k yields

(m+1)k 2mk—nk+k 2mk—nk+k
/ Xn(t, t+7)dt = / Xn(s+(mn—m)k, s+ (n—m)k+7)ds = / Xm (8, 8+ T7)ds,
2 2

mk mk—nk mk—nk

then, for all m € {0,..., N},

(m+1)k , N

/ (an(t,t+7))dt§/ Xm(s,s+7)ds =T,
mk n=1 R

since X (s,s + 7) = 1 if and only if mk € (s, s + 7] which is equivalent to s € [mk — 7, mk).

Therefore (18.39) yields

T—1
/ Ao(t)dt < 7lp(ur k)3 7 k- (18.40)
0
Similarly:
T—1
/ Ay(t)dt < 7le(ur p)I3 7 - (18.41)
0

Let us now study the term fOT_T Ao (t)dt:

T—7 Ni T—r
/0 Ap(t)dt <>k Y TKL(cp(uz_l)ga(u?(_l))Q/o Xn(t,t 4 7)dt. (18.42)

n=1 K|LEEu

Since fo Xn(t,t +7) < 7 (recall that x,(t,t +7) = 1 if and only if ¢t € [nk — 7,nk)), the following
inequality holds:



113

/OT ' Ag(t)dt < 7lp(ur i) [7 7 k- (18.43)
In the same way:
-, T—7
Jo " As( < Zk KZT K)2BU| f|lL=(0x(0,1))) / Xn(t,t + 7)dt (18.44)
ST%m( )EQBUHfHLw(Qx(o,T)y
Using inequalities (18.35), (18.38) and (18.40)-(18.44), (18.34) is proved. ]

Remark 18.10 Estimate (18.34) is again true for the implicit scheme , with || f||ze(x (0,27)) instead of
£z x0,7)-

An immediate corollary of Lemma 18.6 is the following.

Lemma 18.7 Under Assumption 18.1 page 104, let T be an admissible mesh in the sense of Definition
10.1 page 63 and k € (0,T). Let ury € X(T,k) be given by (18.6)-(18.9). Let U = ||ur k||L(ax(0,1)
and B be the Lipschitz constant of ¢ on [-U,U|. One defines i by & = ury a.e. on 2 x (0,T), and
@=0 a.e. on R\ Qx (0,T). Then:

(@l + 7)) —e(a(, '))Hiz(de) < 2|T|B( lp(ur k) 7 5t
BTm(Q)U || fl L= @x(0.1)) + Bm(Q)UQ),
vr € R.

18.4 Convergence

Theorem 18.1 Under Assumption 18.1 page 104, let U = |lug|| L) + Tl fllz>x0,m) and

B= sup 2B
—U<z<y<U r—y

Let € € (0,1) be a given real value. For m € IN, let T, be an admissible mesh in the sense of Definition
10.1 page 68 and ky, € (0,T) satisfying the condition (18.21) with T = Ty, and k = ky,. Let ur,, k., be
given by (18.6)-(18.9) with T = T, and k = ky,. Assume that size(Tp,) — 0 as m — oo.

Then, there exists a subsequence of the sequence of approximate solutions, still denoted by (uT,, k., )meN
which converges to a weak solution u of Problem (18.1)-(18.3), as m — oo, in the following sense:

(i) wr,, K, converges to u in L>(2 x (0,T)), for the weak- topology as m tends to o0,

(ii) (p(ur,, k,.)) converges to @(u) in L*(Q x (0,T)) as m tends to +oo,

where ut, k. and p(uT, i, ) also denote the restrictions of these functions to £ x (0,T).

PROOF of Theorem 18.1

Let us set u,, = w7, k, and assume, without loss of generality, that ¢(0) = 0. First remark that, by
(18.21), ky, — 0 as m — 0. Thanks to Lemma 18.1 page 106, the sequence (t;,)men is bounded in
L>°(Q2 x (0,T). Then, there exists a subsequence, still denoted by (um,)men, such that u,, converges, as
m — 00, to u in L>(Q x (0,7)), for the weak-+ topology.

For the study of the sequence (¢(um))men, we shall apply Theorem 14.1 page 94 with N =d+1, g = 2,
w=Qx(0,T) and p(v) = & with ¢ defined, as usual, by & = v on Qx (0, T) and o = 0 on R4\ Qx (0, 7).
The first and second items of Theorem 14.1 are clearly satisfied; let us prove hereafter that the third is
also satisfied. By Lemma 18.4, the sequence (|¢(tm)|1.7, k., )men is bounded. Let n € R® and 7 € IR,
since
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[o(@m(-+n, -+ 7)) = @(tm (-, )l L2 ra+ry <

[ (@m (- +n,)) = @(tm (-, )l L2rasry + [@(@m -+ 7)) = @(lm (5 )l L2 @ra+r),
lemmata 18.3 and 18.7 give the third item of Theorem 14.1 and this yields the compactness of the sequence
(@(tm))men in L2(Q x (0,T)).
Therefore, there exists a subsequence, still denoted by (¢ (s, ))men, and there exists y € L2(2 x (0, 7))
such that ¢(ur,, k, ) converges, as m — oo, to x in L?(Q x (0,7)). Indeed, since (¢(tum))men is bounded
in L*>(Q x (0,T)), this convergence holds in L(£2 x (0,7)) for all 1 < ¢ < co. Furthermore, since ¢ is
nondecreasing, Theorem 18.2 page 116 gives that x = ¢(u).

Up to now, the following properties have been shown to be satisfied by a convenient subsequence:

(1) (Wm)men converges to u, as m — oo, in L>(2 x (0,T")) for the weak-x topology,
(ii) (p(um))men converges to ¢(u) in L1(Q x (0,T)) (and even in LP(2 x (0,7)) for all p € [1,00)).

There remains to show that u is a weak solution of Problem (18.1)-(18.3), which concludes the proof of
Theorem 18.1.

Let m € IN. For the sake of simplicity, we shall use the notations T = Ty, h = size(T) and k = k,,,. Let
¥ € Ap. We multiply (18.6) page 105 by ki (zk,nk), and sum the result on n € {0,..., Ny} and K € T.
We obtain

Tlm + T2m = T3m7 (1845)
with
N
Tim =3 > m(K) (it = ug)p(wic, nk),
n=0KeT
Ny,
Tom==3 kY 3 miis(e(uf) — o(ufe) Julax. nb)
n=0 KT LeEN(K)
and

Ny,
Tym =y kY lex,nk)m(K)ff.

n=0 KeT

We first consider T,,.

Ny,

T = Y Y m(K)ug (Ve (0= k) = dlax,nk)) +

n=1KeT

Z m(K) (U%Hl?/)(zl(, kNg) — ugt(zk, 0))-

KeT
Performing one more step of the induction in Lemma 18.1, it is clear that |uI]\(f’“+1| < UH2T || fllLo=(0x(0,27))5

forall K € T.
Since 0 < T' — Nk < k, there exists C  which only depends on ¢, T and , such that |[¢(xx, Npk)| <
kC . Hence,

Z m (K )uh* ) (x e, kNg) — 0 as m — oo.
KeT

Since
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| Z ugl i —uol| 1) = 0, as m — oo,
KeT

(where 1x(z) = 1 if x € K, 0 otherwise), one has

Z m(K)ulp(zr,0) — /Quo(x)z/}(x, 0)dx as m — 0.

KeT

Since (tm)memnN converges, as m — +o0o, to u in L>®(Q x (0,7T)), for the weak-* topology, and since
|u?£’“| < U 4T fllL(ax(0,1)), for all K € T, the following property also holds:

i Z m(K)u'y (1/1(:01(, (n—1)k)— w(zK,nk)) - — /OT /Q u(x, ) (x, t)dadt as m — oo.

n=1KeT

Therefore,

T
Tim — 7/0 /Qu(z, ) (x, t)dxdt — /Quo(z)w(z, 0)dz, as m — .

We now study T%,,. This term can be rewritten as

= —Zk Y mKIL)(e(uf) = p(ul))

n=0 K|L€gmt

V(x g, nk) —(xr, nk)
dr|r .

It is useful to introduce the following expression:
(n+1)k
/ / (1 (2, £) A, )t

kaZga u' /A1/1:cnk)

nOKET

:Zk; > (eufe) =) [ Vip(x,nk) - n Ldy(z).

n=0 K|LEEint K|L

The sequence (p(tm))men converges to ¢(u) in L1(Q x (0,7)); furthermore, it is bounded in L™ so that
the integral between T and (Nj + 1)k tends to 0. Therefore:

- %/ / (x,t)) A (z, t)dxdt, as m — oo.
Q

The term T5,, + T4, can be written as

T+ Tp =3k " m(EIL o) — () iy

n=0 K|LEE
with

1 Y(zp,nk) — (K, nk)
m K\va(x’nk) “n dy(z) — .

Thanks to the regularity properties of i there exists C'y,, which only depends on %, such that |R”K <
Cyh. Then, using the estimate (18.22), we conclude that Ts,, + T3, — 0 as m — co. Therefore,

n —
RK,L - d
K|L
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T
Tom — —/ / o(u(z, t))A(x, t)dedt, as m — oo.
o Ja

Let us now study T3,,.
Define fr € X(T,k) by fre(x,t) = f* if (z,t) € K x (nk,nk + k). Since frp — fin L'(Q x (0,7)
and since f € L>(Q x (0,27),

T
Tam — /Q/O f(z, t)(x, t)dtdz, as m — .

Passing to the limit in Equation (18.45) gives that u is a weak solution of Problem (18.1)-(18.3). This
concludes the proof of Theorem 18.1. [

Remark 18.11 This convergence proof is quite similar in the case of the implicit scheme, with the
additional condition that (K., )menN converges to zero, since condition (18.21) does not have to be satisfied.

Remark 18.12 The above convergence result was shown for a subsequence only. A convergence theorem
is obtained for the full set of approximate solutions, if a uniqueness result is valid. Such a result can be
easily obtained in the case of a smooth boundary and is given in section 18.6 below. For this case, an
extension to the definition 10.1 page 63 of admissible meshes is given hereafter.

Definition 18.4 (Admissible meshes for regular domains) Let © be an open bounded connected
subset of R?, d = 2 or 3 with a C? boundary 2. An admissible finite volume mesh of € is given by an
open bounded polygonal set Q' containing §2, and an admissible mesh 7' of Q" in the sense of Definition
10.1 page 63. The set of control volumes of the mesh of  are { K'NQ, K’ € T’ such that mq(K'NQ) > 0}
and the set of edges of the mesh is £ = {o N, o € & such that my_1(c NQ) > 0}, where £ denotes the
set of edges of 77 and my denotes the N-dimensional Lebesgue measure.

Remark 18.13 For smooth domains €2, the set of edges £ of an admissible mesh of €2 does not contain
the parts of the boundaries of the control volumes which are included in the boundary 92 of €.

18.5 Weak convergence and nonlinearities

We show here a property which was used in the proof of Theorem 18.1.

Theorem 18.2 Let U > 0 and ¢ € C([-U,U]) be a nondecreasing function. Let w be an open bounded
subset of R, N > 1. Let (un)nen C L®(w) such that

(i) —U <u, <U a.e. inw, for alln € IN;

(i) there exists u € L™ (w) such that (up)new converges to u in L (w) for the weak-x topology;

(iii) there exists a function x € L*(w) such that (¢(un))new converges to x in L'(w).

Then x(x) = ¢(u(x)), for a.e. x € w.

PROOF of Theorem 18.2

First we extend the definition of ¢ by p(v) = p(=U) +v + U for all v < —=U and ¢(v) = o(U) +v —U
for all v > U, and denote again by ¢ this extension of ¢ which now maps IR into IR, is continuous and
nondecreasing. Let us define a4 from IR to IR by a_(t) = inf{v € R, ¢p(v) = t} and o (t) = sup{v €
R, p(v) =t}, for all t € IR.

Note that the functions a4 are increasing and that

(1) a— is left continuous and therefore lower semi-continuous, that is

t= lim ¢, = a_(t) < liminf a_(t,),

n—oo n—roo
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(ii) a4 is right continuous and therefore upper semi-continuous, that is

t= lim t, = ay(t) > limsup a (t,).

n—00 n—00

Thus, since we may assume, up to a subsequence, that ¢(u,) — x a.e. in w,

a—(x(z)) < liminf a_ (ga(un(:c))) < limsup ay (cp(un(:c))) < ay(x(x)), (18.46)

n—00 n—00

for a.e. x € w.

A direct application of the definition of the functions ar— and a4 gives

o (plun(@))) < un(@) < oy (plun(2))). (18.47)
Let LY = {¢) € L'(w), ¥ > 0 a.e.}. Let ¢ € LY. We multiply (18.47) by ¢ (x) and integrate over w, it

yields
/w a- (@) (@it < [ wnle)vie)ds < [ o (plun(a))ola)da (18.48)

w w

Applying Fatou’s lemma to the sequences of L' positive functions a_(p(u,)) — a—(o(=U))y and
o (U — s ()b ields, with (18.46),

n—r oo

[ o=@t <timint [ a (ot (@) (o)

and

iimsup [ o (pua(@))d@ds < [ av(@)ta)da,

n— 00 w

Then, passing to the lim inf and lim sup in (18.48) and using the convergence of (uy)new to v in L (w)
for the weak-x topology gives

/ o (x(@))p(z)dz < / w(@)p(a)dz < / oy (x(@) () d.

w

Thus, since ¥ is arbitrary in L}H the following inequality holds for a.e. x € w:

a—(x(z)) < u(z) < ay(x()),

which implies in turn that x(z) = ¢(u(z)) for a.e. € w. This completes the proof of Theorem 18.2.
"

Remark 18.14 Another proof of Theorem 18.2 is possible by passing to the limit in the inequality

0< /(@(un)(x) — p(v(2)))(un(z) — v(2))dz, Vv € L= (w),
which leads to
0< /(x(z) — p(v(2)))(u(z) — v(z))dr, Vv € L™ ().

From this inequality, one deduces that y = ¢(u) a.e. on w.

A third proof is possible by using the concept of nonlinear weak-x convergence, see Definition 32.1 page
201.
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18.6 A uniqueness result for nonlinear diffusion equations

The uniqueness of the weak solution to variations of Problem (18.1)-(18.3) has been proved by several
authors. For precise references we refer to MEIRMANOV [110]. Also rather similar proofs have been given
in BERTSCH, KERSNER and PELETIER [13] and GUEDDA, HILHORST and PELETIER [78]. Recall that
this uniqueness result allows to obtain a convergence result on the whole set of finite volume approximate
solutions to Problem (15.1)-(15.4) (see Remark 18.12).

The uniqueness of the weak solution to Problem (18.1)-(18.3) immediately results from the following
property.

Theorem 18.3 Let Q be an open bounded subset of R? with a C? boundary, and suppose that items (ii),
(i) and (iv) of Assumption 18.1 are satisfied. Let uy and ugz be two solutions of Problem (18.1)-(18.3)
in the sense of Definition 18.1 page 105, with initial conditions ug,1 and wp2 and source terms vy and
vo respectively, that is, for uy (resp. ua), ugp = up1 (resp. uo = upz2) in (18.8) and f = w1 (resp. va) in
(18.1).

Then for all T > 0,

T T
/ |ug (2, t) — uo(x, t)|dadt < T/ |uo.1 () — uo2(z)|de Jr/ /(T —t) |vi(x,t) — va(x, t)|dxdt.
0 Q Q 0 Q

Before proving Theorem 18.3, let us first show the following auxiliary result.

The existence of regular solutions to the adjoint problem

Lemma 18.8 Let ) be an open bounded subset of R¢ with a C? boundary, and suppose that ¢ is a
nondecreasing locally Lipschitz-continuous function. Let T >0, w € C2(Q x (0,T')) such that |w| <1,
and g € C*(Q x [0,T]) such that there exists r € R with 0 < r < g(z,t), for all (z,t) € Q x (0,T).

Then there exists a unique function 1) € C*1(Q x [0,T]) such that

be(a,t) + g(a, ) AG(x,t) = w(z,t),  for all (z,t) € Q x (0,T), (18.49)
Vi n(z,t) =0, for all (z,t) € 99 x (0,T), (18.50)
(@, T) =0, forallze Q. (18.51)

Moreover the function o satisfies
[(x,t)| < T —t, forall (z,t) € Qx (0,T), (18.52)

and
T , T i

/0 /Qg(x,t) (Aq/;(x,t)) dwdt < 4T/O /Q|Vw(x,t)| dadt. (18.53)

PROOF of Lemma 18.8

It will be useful in the following to point out that the right hand side of (18.53) does not depend on
g. Since the function g is bounded away from zero, equations (18.49)-(18.51) define a boundary value
problem for a usual heat equation with an initial condition, in which the time variable is reversed. Since
Q, g and w are sufficiently smooth, this problem has a unique solution ¢ € Ar, see LADYZENSKAJA,
SoLONNIKOV and URAL’CEVA [100]. Since |w| < 1, the functions T'—t and —(T'—t) are respectively upper
and lower solutions of Problem (18.49)-(18.50). Hence we get (18.52) (see LADYZENSKAJA, SOLONNIKOV
and URAL'CEVA [100]).

In order to show (18.53), multiply (18.49) by Aw(x,t), integrate by parts on Q x (0,7), for 7 € (0,T].
This gives
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%/%va(x,o)l% — %/§2|V¢(I,T)|2dz + /OT/Qg(x,t)<A1/1(x,t))2dzdt

(18.54)
- / Vw(x,t) - Vip(ax, t)dxdt.
0o Ja
Since Vi(-,T) = 0, letting 7 = T in (18.54) leads to
/|V1/Jx0|2d$+/ / xt wat)) dxdt =
(18.55)

/ / Vw(z,t) - Vip(z, t)dxdt.

Integrating (18.54) with respect to 7 € (0,7) leads to

//|Vz/1x7’|dacdr< —/|V1/Jx0|2dx +

/ / 2, t Aw x t)) dedt  + (18.56)
/ /Q [Vw(z,t) - Vip(x, t)|dxdt.

Using (18.55) and (18.56), we get

17 ) T
5/0 /Q|Vw(x,7)| dzdr < ZT/O /Q|Vw(x,t)-V1/J(x,t)|dxdt. (18.57)

Thanks to the Cauchy-Schwarz inequality, the right hand side of (18.57) may be estimated as follows:

[/OT/QWw(x,t)-V¢(x,t)|dxdtr < / /Iw o, 0)Pdudt
/ /|Vw x,t)|?dadt.

{/OT/Q |[Vw(z,t) - Vz/1(30,1f)|dacdtf}2 < 4T/7QT/Q \Vw(z, t) - Vip(, t)|dedt

></ / (e, £) 2dedt.
0 Q

/ [Vw(z,t) - Vip(x, t)|dedt < 4T/ |Vw(x,t)|*dzdt,
Q

With (18.57), this implies

Therefore,

which, together with (18.55), yields (18.53). L]

Proof of the uniqueness theorem

Let u; and ug be two solutions of Problem (18.4), with initial conditions ug 1 and ug 2 and source terms

v1 and vs respectively. We set ug = w1 —ua, v4 = v1 —v2 and ug,q = uo,1 — uo,2. Let us also define, for all
t)) — t

(z,t) € Qx RY, q(z,t) = w(u;f(xg’c’i; — 52(?;’%’ ) if uy(z,t) # ua(x,t), else g(x,t) = 0. For all T € R},

and for all ¢ € Ag, we deduce from (18.4) that
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/T/ {ud(x,t)(z/}t(x,t) +q($,t)Aw(ac,t)) +vg(x, )P(x, t)|dedt  +

Q

/uo,d(ac)w(ac, 0)dx = 0.

Q

(18.58)

Let w € C°(Q x (0,T)), such that |w| < 1. Since ¢ is locally Lipschitz continuous, we can define its
Lipschitz constant, say Bys, on [-M, M], where M = max{|lu1| zx0,1)), U2l @x©01))} so that
0<q< By ae onQx(0,T).

Using mollifiers, functions g1, € C2°(€2 x (0, 7)) may be constructed such that [|q1,n — qllL2(0x(0,1)) < =
and 0 < q1,, < By, for n € IN*. Let g, = 1.0 + % Then

1
< gn(z,t) < By + =, for all (z,t) € Q x (0,7),
n

S|

and

/OT/Q o) 0007 1 o / [loednamOf

qn (T, z,t)

/O /Q Q1. qn(x,t)( ’t))Qd:cdt),

[ [t o (To@ | Ly
0 Q

which shows that

qn(xat) n2 TL2
It leads to
qn — 4
| i llL2ox 1) — 0 as n — oo. (18.59)

Let 1, € Ar be given by lemma 18.8, with g = ¢,,. Substituting ¥ by 1, in (18.58), using (with g = ¢,
and 1) = 1,) (18.49) and (18.52) give

|/ /Qudzt :ct)Jr(q(z,t)—qn(:c,t))Awn(x,t))dzdﬂ <

(18.60)
/ /|vd z, (T — t)d:Cdt+T/ |ug,a(z)|d.
The Cauchy-Schwarz inequality yields
/ /|ud £ Oll(a(.1) — u. ) A (2, 1) dadt] < 4012
(18.61)

// q(z,t) qn;ct ddt/ /qnﬂct Awn(xt))dxdt.

We deduce from (18.53) and (18.59) that the right hand side of (18.61) tends to zero as n — co. Hence
the left hand side of (18.61) also tends to zero as n — co. Therefore letting n — oo in (18.60) gives

|/O /Qud(:c,t)w(x,t)dacdﬂ < /0 /Q|Ud($at)|(T_t)d$dt + (18.62)

T/ |uo,a(z)|d.
Q

Inequality (18.62) holds for any function w € C°(€2 x (0,T)), with |w| < 1. Let us take as functions w
the elements of a sequence (wy,)men such that w,, € C*(2 x (0,7T)) and |w,,| < 1 for all m € IN, and
the sequence (w,)men converges to sign(ug(-,-)) in L*(Q x (0,7)). Letting m — oo yields
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T T
/ /|ud(x,t)|dacdt g/ |vd(ac,t)|(T—t)d:cdt+T/|u07d(x)|dac,
0 Q 0 Q Q

which concludes the proof of Theorem 18.3. [



Chapter 5

Hyperbolic equations in the one
dimensional case

This chapter is devoted to the numerical schemes for one-dimensional hyperbolic conservation laws. Some
basics on the solution to linear or nonlinear hyperbolic equations with initial data and without boundary
conditions are first recalled. We refer to GODLEWSKI and RAVIART [75], GODLEWSKI and RAVIART [76],
KRONER [94], LEVEQUE [103] and SERRE [138] for extensive studies of theoreticaland/or numerical
aspects; we shall highlight here the finite volume point of view for several well known schemes, comparing
them with finite difference schemes, either for the linear and the nonlinear case. Convergence results for
numerical schemes are presented, using a “weak BV inequality” which is not really necessary in the 1D
case (at least for BV initial data), but is crucial in the multidimensional case. We also recall the classical
proof of convergence, which uses a “strong BV estimate” and the Lax-Wendroff theorem, and does not
seem to extend to the mutidimentional case. Error estimates which also hold are not adressed in this
chapter: they are given in the chapter in the multidimensional case (Chapter 6).

Throughout this chapter, we shall focus on explicit schemes. However, all the results which are presented
here can be extended to implicit schemes; this requires a bit of work and is detailed in the multidimensional
case (see (25.6) page 158 for the scheme).

19 The continuous problem

Consider the nonlinear hyperbolic equation with initial data:

{ ue(w,t) + (f(u)z(z,t) =0 z€R, teRy, (19.1)

u(z,0) =up(z), =€,

where f is a given function from IR to IR, of class C1, ug € L>°(IR) and where the partial derivatives of
u with respect to time and space are denoted by u; and ..

Example 19.1 (Biirgers equation) A simple flow model was introduced by Biirgers and yields the
following equation:
ug(x,t) +u(z, t)ug(z,t) — eugy(x,t) =0 (19.2)

Biirgers studied the limit case which is obtained when € tends to 0; the resulting equation is (19.1) with
2

F(s) = % ie.

ug(x, t) + %(u2)z(:p, t)=0

122
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Definition 19.1 (Classical solution) Let f € C'(IR,IR) and up € C*(IR,R); a classical solution to
Problem (19.1) is a function v € C*(IR x R4, R) such that

ug(x,t) + f'(u(x, t)u(x,t) =0, VeelR,VteRy,
u(z,0) =wuo(z), Vzel.

Recall that in the linear case, i.e. f(s) = csforall s € R, for some ¢ € IR, there exists (for ug € C'(IR,IR))
a unique classical solution. It is u(x,t) = ug(x — ct), for all z € IR and for all ¢ € IR;. In the nonlinear
case, the existence of such a solution depends on the initial data ug; in fact, the following result holds:

Proposition 19.1 Let f € C*(IR,IR) be a nonlinear function, i.e. such that there exist s1, s2 € IR with
f(s1) # f'(s2); then there exists ug € C°(IR,IR) such that Problem (19.1) has no classical solution.

Proposition 19.1 is an easy consequence of the following remark.

Remark 19.1 If u is a classical solution to (19.1), then u is constant along the characteristic lines which
are defined by
z(t) = f'(uo(x0))t + zo, t € Ry,

where xp € IR is the origin of the characteristic. This is the equation of a straight line issued from the
point (20,0) (in the (z,t) coordinates). Note that if f depends on x and u (rather than only on w), the
characteristics are no longer straight lines.

The concept of weak solution is introduced in order to define solutions of (19.1) when classical solutions
do not exist.

Definition 19.2 (Weak solution) Let f € C*(IR,IR) and uy € L*(IR); a weak solution to Problem
(19.1) is a function w such that

ue L®(R x RY),
/ / u(z, t)i(z, t)dtdz +/ flu(z,t)) g (x, t)dtde +/ uo(z)p(x,0)dr =0, (19.3)
R JR, R JR, R
Vo€ CHR x R, R).

Remark 19.2

L Ifue CY(R xR;,IR)NL>(IR x IR ) then u is a weak solution if and only if u is a classical solution.
2. Note that in the above definition, we require the test function ¢ to belong to C} (IR x IR, IR), so that
(¢ may be non zero at time ¢t = 0.

One may show that there exists at least one weak solution to (19.1). In the linear case, i.e. f(s) = cs,
for all s € IR, for some ¢ € IR, this solution is unique (it is u(xz,t) = ug(z — ct) for a.e. (z,t) € R x Ry).
However, the uniqueness of this weak solution in the general nonlinear case is no longer true. Hence the
concept of entropy weak solution, for which an existence and uniqueness result is known.

Definition 19.3 (Entropy weak solution) Let f € C1(IR,IR) and uy € L*(IR); the entropy weak
solution to Problem (19.1) is a function u such that

u e L®(R x RY),

/ / (x,t))pe (2, ) dtder/ / (x,1)pa(x, t)dtd:c+/ n(uo(x))e(x,0)dx > 0,
]R+ R (19.4)
Vo € Co(R x Ry, R4),

for all convex function n € C*(IR,IR) and ® € C*(IR,R) such that &' = n'f’.
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Remark 19.3 The solutions of (19.4) are necessarily solutions of (19.3). This can be shown by taking
n (19.4) n(s) = s for all s € R, n(s) = —s, for all s € IR, and regularizations of the positive and negative
parts of the test functions of the weak formulation.

Theorem 19.1 Let f € C*(IR,IR), up € L>=(IR), then there exists a unique entropy weak solution to
Problem (19.1).

The proof of this result was first given by Vol’pert in VOL’PERT [159], introducing the space BV (IR) which
is defined hereafter and assuming ug € BV (IR), see also OLEINIK [123] for the convex case. In KRUSHKOV
[97], Krushkov proved the theorem of existence and uniqueness in the general case ug € L>°(IR), using
a regularization of ug in BV (IR), under the slightly stronger assumption f € C3(IR,IR). Krushkov also
proved that the solution is in the space C(R4, L}, .(R)). Krushkov’s proof uses particular entropies,
namely the functions |- —x| for all k € IR, which are generally referred to as “Krushkov’s entropies”.
The “entropy flux” associated to |- —k| may be taken as f(-Tk) — f(-Lk), where aTb denotes the
maximum of a¢ and b and alb denotes the minimum of a and b, for all real values a,b (recall that

f(aTb) — f(alb) = sign(a —b)(f(a) — f(b))).
Definition 19.4 (BV(IR)) A function v € L}, (IR) is of bounded variation, that is v € BV (IR), if

[vlBy (R) = sup{/ x)dz,p € CHIR,R), |p(z)] <1Vz € R} < +oo. (19.5)

Remark 19.4

1. If v : R — TR is piecewise constant, that is if there exists an increasing sequence (z;);cz with IR =
Uiez [%i, i11] and a sequence (v;)ie z such that v, ..,y = v, then [v|py(r) = D ez [Vie1 —vil.

2. If v € CY(R,R) then |[v|py(r) = |[va]l L1
3. The space BV (IR) is included in the space L°°(IR); furthermore, if v € BV(IR) N L'(IR) then
lull L) < lulpvr)-

4. Let u € BV(IR) and let (x;11/2)iczz be an increasing sequence of real values such that IR =
Uiez [Ti—1/2, Tip1/2). Fori € Z, let K; = (1,_1/2,2i11/2) and u; be the mean value of u over K.
Then, choosing conveniently ¢ in the definition of |u|gy (), it is easy to show that

> fuipr — wil < Julpv ) (19.6)
sy/4

Inequality (19.6) is used for the classical proof of “BV estimates” for the approximate solutions
given by finite volume schemes (see Lemma 21.5 page 142 and Corollary 21.1 page 142).

Note that (19.6) is also true when w; is the mean value of u over a subinterval of K; instead of the
mean value of u over K.
Krushkov used a characterization of entropy weak solutions which is given in the following proposition.

Proposition 19.2 (Entropy weak solution using “Krushkov’s entropies”) Let f € C'(IR,IR)
and ug € L (IR), u is the unique entropy weak solution to Problem (19.1) if and only if u is such that

u € L¥(R x RY ),
/ / u(z,t) — klot(x, t)dtda+
IR+

/ / u(z, t)TK) — f(u(ac,t)Lm))goz(x,t)dtdx —|—/ |uo(z) — Kle(z, 0)dx >0,
R R
' Vo € CL(R x Ry, R4 ), ¥k € TR.

(19.7)
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The result of existence of an entropy weak solution defined by (19.4) was already proved by passing to
the limit on the solutions of an appropriate numerical scheme, see e.g. OLEINIK [123], and may also be
obtained by passing to the limit on finite volume approximations of the solution (see Theorem 21.1 page
139 in the one-dimensional case and Theorem 29.2 page 188 in the multidimensional case).

Remark 19.5 An entropy weak solution is sometimes defined as a function u satisfying:

/ / (z,t)pe(z,t) dtdx+/ flu(z, t)es(x, t)dtder/ uo(x)p(x,0)dx = 0,
R, R
Vo € CH(R x R4, R).

N
/ / u(z,t))pt(x, t)dtdr —|—/ / u(x,t)) s (2, t)dtde > 0, (19.8)
IR+ Ry

Vo € CHIR x R%,Ry),
for all convex function n € C*(IR,IR) and ® € C*(IR,IR) such that ® =’ f’.

The uniqueness of an entropy weak solution thus defined depends on the functional space to which u is
chosen to belong. Indeed, the uniqueness result given in Theorem 19.1 is no longer true with « defined
by (19.8) such that

u, f(u) € Li,o(R x Ry), u € L(R x (g,00)), Ve € R (19.9)

Under Assumption (19.9), every term in (19.8) makes sense. Note that (19.9)-(19.8) is weaker than (19.4).
An easy counterexample to a uniqueness result of the solution to (19.8)-(19.9) is obtained with f(s) = s2
for all s € IR and up(x) = 0 for a.e. 2 € IR. In this case, a first solution to (19.8)-(19.9) is u(z,t) = 0 for
a.e. (z,t) € R x R4 (it is the entropy weak solution). A second solution to (19.8)-(19.9) is defined for
a.e. (x,t) € R x R4 by

u(z,t) =0, if £ < =/t or & > V1,

u(z,t) = £, if —Vt<z <Vt
This second solution is not an entropy weak solution: it does not satisfy (19.4). Also note that this second
solution is not in the space C(IR 4, L}, (IR)) nor in the space L= (IR xIR) (it belongs to L= (R4, L*(IR))).
Indeed, under the assumption u € L*°(IR x R1) N C(IR4, L}, .(IR)), the solution of (19.8) is unique.

The entropy weak solution to (19.1) satisfies the following L> and BV stability properties:

Proposition 19.3 Let f € CY(R,IR) and up € L>°(IR). Let u be the entropy weak solution to (19.1).
Then, u € C(Ry, Li, (R)); furthermore, the following estimates hold:

Lo lu( D) pery < [luollzee(w), for all t € Ry
2. Ifup € BV(IR), then |u(-,t)|pvr) < [uolv(wr), for all t € R4

20 Numerical schemes in the linear case

We shall first introduce the numerical schemes in the linear case f(u) = w in (19.1). The problem
considered in this section is therefore

{ut(x,t)—l—um(x,t) =0 ze€IR, teRy,

u(@,0) =uo(z), zeRR. (20.1)

Assume that up € C'(IR, IR ); Problem (20.1) has a unique classical solution, as defined in Definition 19.1,
which is u(z,t) = ug(x — t) for all (z,t) € R x R4. If ug € L°(IR), then Problem (20.1) has a unique
weak solution, as defined in Definition 19.2, which is again u(x,t) = uo(z — t) for a.e. (z,t) € R x Ry.
Therefore, if ug > 0, the solution u is also nonnegative. Hence, it is advisable for many problems that
the solution given by the numerical scheme should preserve the nonnegativity of the solution.
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20.1 The centered finite difference scheme

Assume ug € C(IR,IR). Let h € R’ and x; = ih for all i € ZZ. Let k € R} be the time step. With
the explicit Euler scheme for the time discretization (the implicit Euler scheme could also be used), the
centered finite difference scheme associated to points x; and k is

nt+l u;”

i LU UL o e N, Viez
k 2h ’ ’ ’ (20.2)
u)  =wug(x;), Vie Z.

3

u

The discrete unknown u}' is expected to be an approximation of u(x;,nk) where u is the solution to
(20.1).
It is well known that this scheme should be avoided. In particular, for the following reasons:

1. it does not preserve positivity, i.e. uY >0 for all i € ZZ does not imply u} > 0 for all i € Z ; take
for instance u? = 0 for i <0 and u{ =1 for i > 0, then uy = —k/(2h) < 0;

2. it is not “L°°-diminishing”, i.e. max{|u}|, i € Z} = 1 does not imply that max{|u}|, i € Z} <1,
take for instance u? =1 for i <0 and u? = 0 for i > 0, then max{|u}|, i € Z} = 1 and max{|u}|,
i€ Z}=1+k/(2h);

3. it is not “L2-diminishing”, i.e. >, (uf)? = 1 does not imply that >._, (uf)* < 1; take for
instance uY = 0 for i # 0 and uY = 1 for i = 0, then u} = 1,uf = k/(2h),ul; = —k/(2h), so that
ez () =14K2/(2h%) > 1;

4. it is unstable in the von Neumann sense: if the initial condition is taken under the form wg(z) =
exp(ipx), where p is given in ZZ, then u(z,t) = exp(—ipt) exp(ipz) (i is, here, the usual complex
number, ug and u take values in €). Hence exp(—ipt) can be seen as an amplification factor, and
its modulus is 1. The numerical scheme is stable in the von Neumann sense if the amplification

1 _

factor for the discrete solution is less than or equal to 1. For the scheme (20.2), we have u; =

ug — (UJQ+1 — ug_l)k/(Qh) = exp(ipjh)&p n i, With €, x = 1 — (exp(iph) — exp(—iph))k/(2h). Hence

|€pnk]? = 14 (k2/h2)sin® ph > 1 if ph # g for any q in Z .

In fact, one can also show that there exists ug € C!(IR,IR) such that the solution given by the numerical
scheme does not tend to the solution of the continuous problem when h and & tend to 0 (whatever the
relation between h and k).

Remark 20.1 The scheme (20.2) is also a finite volume scheme with the (spatial) mesh T given by
Tiy172 = (i + 1/2)h in Definition 20.1 below and with a centered choice for the approximation of
u(r;q1/2,nk): the value of u(x;1q/9,nk) is approximated by (uj + uf,,)/2, see (20.6) where an up-
stream choice for u(x; 11/, nk) is performed. In fact, the choice of uj is different in (20.6) and in (20.2)
but this does not change the unstability of the centered scheme.

20.2 The upstream finite difference scheme

Consider now a nonuniform distribution of points x;, i.e. an increasing sequence of real values (z;);cz
such that lim; 4o z; = oo, For all i € ZZ, we set h;_y/2 = x; — x;—1. The time discretization is
performed with the explicit Euler scheme with time step & > 0. Still assuming ug € C(IR,IR), consider
the upwind (or upstream) finite difference scheme defined by

u—u u? —
i L % T ) ypeNN, VieZ
E T h . y WREN, Mied, (20.3)

ud  =wug(x;), Vie Z.
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Rewriting the scheme as
k k

+1 _
u’zn - (]‘7 h17l)u7+ hi,lu;l_l,
2 2
it appears that if inf;e zz h;_1/2 > 0 and if k is such that
k < inf h;_ 20.4
= ileﬂz i—1/2 ( )
then u™! is a convex combination of u}* and u? ;. By induction, this proves that the scheme (20.3) is

stable, in the sense that if ug is such that U,, < ug(z) < Uy for a.e. x € R, where U,,, Uy € IR, then
Unp <ul! <Up forany i € ZZ and n € IN.

Moreover, if uy € C?*(IR,IR)NL*(IR) and u{, and u{ belong to L>(IR), it is easily shown that the scheme
is consistent in the finite difference sense; indeed, the consistency error defined by

n uw(zi, (n+ Dk) —u(x;,nk)  u(x;,nk) —u(z,—1,nk)
1

=3

(20.5)

is such that, if the CFL condition (20.4) holds, |R}'| < Ch, where h = sup;c; h; and C' > 0 only depends
on ug (recall that u is the solution to problem (20.1)). Hence the following error estimate holds.

Proposition 20.1 (Error estimate for the upwind finite difference scheme)
Letup € C*(R,IR)NL>®(IR), such that ul, anduf € L=(IR). Let (x;)icz be an increasing sequence of real
values such that lim; 4 x; = F00. Let h = sup,;c hz;;; and assume that h < oo and inf;c 7 hi—1/2 >

0. Let k > 0 such that k < inficz hi_1/2. Let u denote the unique solution to (20.1) and {uj, i € Z ,
n € IN} be given by (20.3); let e = u(x;,nk) —ul, for anyn € N and i € Z , and let T €]0, +o00[ (note
that u(xz;, nk) is well defined since u € C*(IR x Ry, R)).

Then there exists C € Ry, only depending on ug, such that |e'| < ChT, for anyn € IN such that nk < T,

and for any i € Z .

PROOF of Proposition 20.1
Let i € Z and n € IN. By definition of the consistency error R in (20.5), the error el" satisfies

A Rt SR
k hi— 1 v
Hence % .
e = (1 = ) el o R

i—3 i—3

Using |R}'| < Ch (for some C only depending on ug) and the assumption & < inf;ez h;_1 /2, this yields
lel Tt < sup le'| + Ckh.
JEZ
Since e = 0 for any i € Z, an induction yields
sup |el'| < Cnkh
ieZ
and the result follows. n

Note that in the above proof, the linearity of the equation and the regularity of uy are used. The next
questions to arise are what to do in the case of a nonlinear equation and in the case ug € L>(IR).
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20.3 The upwind finite volume scheme

Let us first give a definition of the admissible meshes for the finite volume schemes.

Definition 20.1 (One-dimensional admissible mesh) An admissible mesh 7 of IR is given by an
increasing sequence of real values (7;11/2)iez, such that R = Ujez [2;_1/2, Ti41/2]. The mesh T is the
set T = {K;, i € Z } of subsets of IR defined by K; = (2;_1/2,2;41/2) for all i € ZZ. The length of K
is denoted by h;, so that h; = x; 410 — x;_1/2 for all i € ZZ. Tt is assumed that h = size(T) = sup{hi,
i € Z } < +oo and that, for some o € R, ah < inf{h,, i € Z }.

Consider an admissible mesh in the sense of Definition 20.1. Let k& € IR” be the time step. Assume
ug € L°(IR) (this is a natural hypothesis for the finite volume framework). Integrating (20.1) on each
control volume of the mesh, approximating the time derivatives by differential quotients and using an
upwind choice for u(z;, 1, nk) yields the following (time explicit) scheme:

uttl —

hlZTZ_i_u?_u?il :0, vne]N, V'LEZ7

) (20.6)
u) = —/ uo(z)dz, Vie Z.
hi Jg,

The value u!" is expected to be an approximation of u (solution to (20.1)) in K; at time nk. It is
easily shown that this scheme is not consistent in the finite difference sense if u]' is considered to be
an approximation of u(z;,nk) with, for instance, z; = (z;_1/2 + %;41/2)/2 for all i € Z. Even if
ug € C (IR, IR), the quantity R} defined by (20.5) does not satisfy (except in particular cases) |R}| < Ch,
with some C' only depending on wuy.

It is however possible to interpret this scheme as another expression of the upwind finite difference
scheme (20.3) (except for the minor modification of v, i € Z). One simply needs to consider u? as
an approximation of u(z;41/2,nk) which leads to a consistency property in the finite difference sense.
Indeed, taking x; = ;41,2 (for j =i and i — 1) in the definition (20.5) of R} yields |R}| < Ch, where C
only depends on ug. Therefore, a convergence result for this scheme is given by the proposition 20.1. This
analogy cannot be extended to the general case of “monotone flux schemes” (see Definition 21.1 page 134
below) for a nonlinear equation for which there may be no value of z; (independent of ) leading to such
a consistency property, see Remark 21.1 page 134 for a counterexample (the analogy holds however for
the scheme (21.8), convenient for a nondecreasing function f, see Remark 21.3).

The approximate finite volume solution w7 ; may be defined on IR x R4 from the discrete unknowns u}',
1 € Z ,n € IN which are computed in (20.6):

urk(z,t) = ul for x € K; and t € [nk, (n + 1)k). (20.7)
The following L estimate holds:

Lemma 20.1 (L™ estimate in the linear case) Let ug € L*°(IR) and Uy, Uy € R such that U, <
uop(x) < Uy for a.e. x € R. Let T be an admissible mesh in the sense of Definition 20.1 and let k € IR”,
satisfying the Courant-Friedrichs-Levy (CFL) condition

k < inf h;.
EZ
(note that taking k < ah implies the above condition). Let ur i be the finite volume approximate solution

defined by (20.6) and (20.7).
Then,

Un <uri(z,t) <Unm for ae z€R and a.e. t € Ry.
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PROOF of Lemma 20.1

The proof that U,, < u} < Uy, for all ¢ € ZZ and n € IN, as in the case of the upwind finite difference
scheme (see (20.3) page 126), consists in remarking that equation (20.6) gives, under the CFL condition,
an expression of u"+ as a linear convex combination of u and u} ,, for all ¢ € ZZ and n € IN. (]

The following inequality will be crucial for the proof of convergence.

Lemma 20.2 (Weak BV estimate, linear case) Let T be an admissible mesh in the sense of Defi-
nition 20.1 page 128 and let k € R, satisfying the CFL condition

<(1—=¢) inf h; .
E<(1-€) inf b, (20.8)

for some € € (0,1) (taking k < (1 — &)ah implies this condition).

Let {u}, i € Z , n € IN} be given by the finite volume scheme (20.6). Let R € R} and T € R and

assume h = sme(’T) <R, k<T. Letio € Z, i1 € Z and N € N be such that —R € K;,, R € K;, and
€ (Nk, (N + 1)k] (note that iy < i1 ).

Then there exists C € R’ , only depending on R, T', ug, o and &, such that

11 N
DD kup —upy| < ChTV2, (20.9)

i=1g n=0

PROOF of Lemma 20.2

Multiplying the first equation of (20.6) by kul and summing on ¢ = ig,...,i; and n = 0,... N yields
A+ B =0 with

i N
A= Z Z hi(uft — ulyul

i:ig n=0

and

B:ZIZk:(u

i=1g n=0

Noting that

ihn N
A= 7% Z Z hi(uf Tt —ui)? Z ha(ul )2 — (ud)?]

i=1i9 n=0 =10

and using the scheme (20.6) gives

therefore, using the CFL condition (20.8),

A> ZZk f—Zh

zzonO i=1g

We now study the term B, which may be rewritten as

IS b — w4 2 3D R — ()

1=1ip n=0 n=0
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Thanks to the L™ estimate of Lemma 20.1 page 128, this last equality implies that

B> = ZZk — T max{—Upn, Ur}>.

zzgnO

Therefore, since A+ B =0 and Z , hi < 4R, the following inequality holds:

0>¢ Z Z — (4R +2T) max{—U,,, Un }?,

1=19 n=0

which, in turn, gives the existence of C; € IR’ , only depending on R, T', ug and £ such that

Z Z k(u 2 <0y, (20.10)

1=19 n=0

Finally, using

4R
Zl<zah__h

=10 =10

the Cauchy-Schwarz inequality leads to

ZZk|u —ui <012T%

1=19 n=0

which concludes the proof of the lemma. [

Contrary to the discrete H} estimates which were obtained on the approximate finite volume solutions of
elliptic equations, see e.g. (9.24), the weak BV estimate (20.9) is not related to an a priori estimate on
the solution to the continuous problem (20.1). It does not give any compactness property in the space
Llloc(lR) (there are some counterexamples); such a compactness property is obtained thanks to a “strong
BV estimate” (with, for instance, an L estimate) as it is recalled below (see Lemma 21.4). In the
one-dimensional case which is studied here such a “strong BV estimate” can be obtained if ug € BV (IR),
see Corollary 21.1; this is no longer true in the multidimensional case with general meshes, for which only

the above weak BV estimate is available.

Remark 20.2 The weak BV estimate is a crucial point for the proof of convergence. Indeed, the
property which is used in the proof of convergence (see Proposition 20.2 below) is, with the notations of
Lemma 20.2,

i N
hZZkﬂu?—u?ﬁﬂ — 0, ash — 0, (20.11)

i=ip n=0
for R, T, ugp, o and & fixed.

If a piecewise constant function wr y, such as given by (20.7) (with some u} in IR, not necessarily given
by (20.6)), is bounded in (for instance) L>°(IR x IR ) and converges in L},.(IR x R4) as h — 0 and
k — 0 (with a possible relation between & and h) then (20.11) holds. This proves that the hypothesis
(20.11) is included in the hypotheses of the classical Lax-Wendroff theorem of convergence (see Theorem
21.2 page 143); note that (20.11) is implied by (20.9) and that it is weaker than (20.9)).

“

We show in the following remark how the “ weak” and “ strong” BV estimates may “formally” be
obtained on the “continuous equation”; this gives a hint of the reason why this estimate may be obtained
even if the exact solution does not belong to the space BV (IR x IRy). A similar remark also holds in the
nonlinear case (i.e. for Problem (19.1)).



131

Remark 20.3 (Formal derivations of the strong and weak BV estimates) When approximat-
ing the solution to (20.1) by the finite volume scheme (20.6) (with h; = h for all 4, for the sake of
simplicity), the equation to which an approximation of a solution is sought is “close” to the equation

Ut + Uy — EULe = 0 (20.12)

where ¢ = % is positive under the CFL condition (20.8), which ensures that the scheme is diffusive.

We assume that u is regular enough, with null limits for u(x,t) and its derivatives as x — Fo0.

(i) “Strong” BV estimate.
Derivating the equation (20.12) with respect to the variable =, multiplying by sign, (uz(z,t)), where sign,.
denotes a nondecreasing regularization of the function sign, and integrating over IR yields

(/]R d)r(um(z,t))dx)t + /IRum(z,t)signr(um(x,t))dz = 75/ sign’. (g (2, ) (Uga (2, 1)) dz < 0,

R
where ¢). = sign,. and ¢,(0) = 0. Since

/ e (2, )sign, (s (2, 1)) = / (6 (1 (2, 1)) ol = 0,
R

R

this yields, passing to the limit on the regularization, that [u.(-,t)|/z1(r) is nonincreasing with respect to
t. Copying this formal proof on the numerical scheme yields a strong BV estimate, which is an a priori
estimate giving compactness properties in L}, (IR x IR, ), see Lemma 21.5, Corollary 21.1 and Lemma
21.4 page 142.

(i) “Weak” BV estimate
Multiplying (20.12) by w and summing over IR x (0,7 yields

1 1 T
—/ u?(z, T)dx — = / u?(z,0)dx —|—/ / euZ(x, t)dedt = 0,
2 Jr 2 Jr o JR

which yields in turn

T
1
5/ / u?(x, t)dxdt < §HU0||2L2(IR)-
0 JRr

This is the continuous analogous of (20.10). Hence if h — k = ¢ > &h (this is Condition (20.8), note
that this condition is more restrictive than the usual CFL condition required for the L stability), the
discrete equivalent of this formal proof yields (20.10) (and then (20.9)).

In the first case, we derivate the equation and we use some regularity on ug (namely uy € BV(IR)). In
the second case, it is sufficient to have ug € L°°(IR) but we need the diffusion term to be large enough
in order to obtain the estimate which, by the way, does not yield any estimate on the solution of (20.12)
with € = 0. This formal derivation may be carried out similarly in the nonlinear case.

Let us now give a convergence result for the scheme (20.6) in L>(IR x R7) for the weak-+ topology.

Recall that a sequence (vn)new C L™ (IR X IR7) converges to v € L¥(IR x IRY) in L>(IR x IRY ) for the
weak-x topology if

/ / (vn(2,t) — v(,t))p(x, t)drdt — 0 as n — oo, Ve € L' (IR x IRY).
R, /R

A stronger convergence result is available, and comes from the nonlinear study given in Section 21.
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Proposition 20.2 (Convergence in the linear case) Let ug € L™(IR) and u be the unique weak
solution to Problem (20.1) page 125 in the sense of Definition 19.2 page 123, with f(s) = s for all s € RR.
Let £ € (0,1) and o > 0 be given. Let T be an admissible mesh in the sense of Definition 20.1 page
128 and let k € IR satisfying the CFL condition (20.8) page 129 (taking k < (1 — &§)ah implies this
condition, note that & and « do not depend on T ).

Let ur ), be the finite volume approzimate solution defined by (20.6) and (20.7). Then uryj — u in
L>®(IR x IR%) for the weak-x topology as h = size(T) — 0.

PROOF of Proposition 20.2

Let (Tm, km)men be a sequence of meshes and time steps satisfying the hypotheses of Proposition 20.2
and such that size(7,,) — 0 as m — oo.

Lemma 20.1 gives the existence of a subsequence, still denoted by (Tm,km)men, and of a function
u € L¥(IR x IRY ) such that wr,, x,, — w in L>(IR x IRY) for the weak-x topology, as m — +oco. There
remains to show that u is the solution of (19.3) (with f(s) = s for all s € IR). The uniqueness of the
weak solution to Problem (20.1) will then imply that the full sequence converges to w.

Let ¢ € C}(R x R4,IR). Let m € N and 7 = Ty, k = ky,, and h = size(T). Let us multiply the first
equation of (20.6) by (k/h;)p(x,nk), integrate over x € K; and sum for all ¢ € ZZ and n € IN. This
yields

A, + B, =0
with
Ay = Z Z (u Tt — uf)/ o(x,nk)dx
i€Z neN K
and

B, = Z Zkz(u? _u?_l)hii/ o(x,nk)dz.

i€Z nEN Ki

Let us remark that A,, = Ay, — A}, with

Ay = f/ / ur p(x, t)oi(z, t — k)dxdt — / uo(x)p(x,0)dx
k R

R
and

Al = Z ud /K o(z,0)dr — /muo(x)go(x,O)dac.

I€EZ

Using the fact that Y., uf1x, — ug in L}, (IR) as m — oo, we get that A}, — 0 as m — oo. (Recall
that 1g,(x) =1ifx € K; and 1g,(z) =0if = ¢ K;.)
Therefore, since ur ;, — u in L>(IR xIR} ) for the weak-x topology as m — 00, and @y (-, - —k) 1 x (k,00) —

¢ in L*(IR x RY) (note that k& — 0 thanks to (20.8)),

lim A, = lim Al,m:*/ /u(x,t)cpt(:c,t)dzdt—/ uo(x)p(x, 0)dx.
R, JR R

m——+o0 m——+oo

Let us now turn to the study of B,,. We compare B,, with

BLm:—Z/n

nelN k

(n+1)k
/ ur (2, t) s (z, nk)dadt,
R

which tends to — f1R+ S w(z,t) o, (z,t)drdt as m — co. The term By ,, can be rewritten as
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Bim =Y > k(u} —uly)p(z;_y,nk).
1€Z nelN
Let R > 0 and T' > 0 be such that p(z,t) = 0 if [z| > R or t > T. Then, there exists C' € IR, only
depending on ¢, such that, if h < R and k < T (which is true for h small enough, thanks to (20.8)),

i N
B = Bim| < Ch Y klul —ul ], (20.13)
i:ig n=0
where io € Z , iy € Z and N € IN are such that —R € K;,, R€ K;, and T € (Nk, (N + 1)k].
Using (20.13) and Lemma 20.2, we get that By, — By, — 0 and then

By — _/ / u(x, t)pr (z, t)dxdt as m — oo,
R; JR

which completes the proof that u is the weak solution to Problem (20.1) page 125 (note that here the
useful consequence of lemma 20.2 is (20.11)). L]

Remark 20.4 In Proposition 20.2, a simpler proof of convergence could be achieved, with £ = 0, using
a multiplication of the first equation of (20.6) by (k/h;)¢(x;_1/2,nk). However, this proof does not
generalize to the general case of nonlinear hyperbolic problems.

Remark 20.5 Proving the convergence of the finite difference method (with the scheme (20.3)) with
ug € L*°(IR) can be done using the same technique as the proof of the finite volume method (that is
considering the finite difference scheme as a finite volume scheme on a convenient mesh).

21 The nonlinear case

In this section, finite volume schemes for the discretization of Problem (19.1) are presented and a theorem
of convergence is given (Theorem 21.1) which will be generalized to the multidimensional case in the next
chapter. We also recall the classical proof of convergence which uses a “strong BV estimate” and the
Lax-Wendroff theorem. This proof, however, does not seem to extend to the multidimensional case for
general meshes. The following properties are assumed to be satisfied by the data of problem (19.1).

Assumption 21.1 The fluz function f belongs to C*(IR,IR), the initial data ug belongs to L= (IR) and
Un, Up € R are such that Uy, < ug < Upr a.e. on IR.

21.1 Meshes and schemes

Let 7 be an admissible mesh in the sense of Definition 20.1 page 128 and & € IR”. be the time step. In
the general nonlinear case, the finite volume scheme for the discretization of Problem (19.1) page 122
reads

hi :
Z(u;’“ —ul)+ flip = fila, =0, VneN, Vie Z,
1 Tit1/2 (211)
ud = " uo(z)dx, Yie Z,
i LTi—1/2

where u;' is expected to be an approximation of u at time ¢, = nk in cell K;. The quantity f7 /2 is
often called the numerical flux at point ;1 /o and time #,, (it is expected to be an approximation of f(u)

at point x; 1/, and time t,). Note that a common expression of f is used for both equations i and

i+1/2
i+ 11in (21.1); therefore the scheme (21.1) satisfies the property of conservativity, common to all finite
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volume schemes. In the case of a so-called 2p + 1 point scheme with (p € IN*), the numerical flux may
be written

fﬁrl/z :g?.f%(u?*erl""’u?er)’ (21.2)
where g ; is the numerical flux function at point x; +1 and time ¢,, which determines the scheme. Note
2

that the numerical flux may thus depend on the interface and the time. This is important in applications,
for instance in the case of boundary faces (see section 19) or interfaces coupling different domains. For
p =1, the flux reads

fz'n+1/2 :g?Jr%(u?v'-'vu?-l-l)v (213)

and yields a 3-point scheme.
As in the linear case (20.7) page 128, the approximate finite volume solution is defined by

urk(z,t) = uf for x € K; and t € [nk, (n + 1)k). (21.4)

The property of consistency for the finite volume scheme (21.1), (21.2) with 2p + 1 points, is ensured by
writing the following condition:

g(s,...,s) = f(s), VseR. (21.5)

This condition is equivalent to writing the consistency of the approximation of the flux (as in the elliptic
and parabolic cases, which were described in the previous chapters, see e.g. Section 5).

Remark 21.1 (Finite volumes and finite differences) We can remark that, as in the elliptic case,
the condition (21.5) does not generally give the consistency of the scheme (21.1) when it is considered as
a finite difference scheme. For instance, assume f(s) = s? for all s € R, p = 1 and g(a,b) = fi(a)+ f2(b)
for all a, b € R with f1(s) = max{s,0}?, f2(s) = min{s,0}? (which is shown below to be a good choice,
see Example 21.1). Assume also hy; = h and hg;y1 = h/2 for all ¢ € Z. In this case, there is no
choice of points x; € IR such that the quantity (f , 2= fit /2) /h; is an approximation of order 1 of
(f(w))g (x4, nk), for any regular function u, when u}" = u(x;,nk) for all i € ZZ. Indeed, up to second order
terms, this property of consistency is achieved if and only if f4(a)|xi+1 — x| + fi(a)|zi—1 — x| = f'(a)h;
for all i € Z and for all @ € IR. Choosing a > 0 and a < 0, this condition leads to |z;+1 — x;| = h; and
|xiv1 — x;| = hipq for all ¢ € ZZ, which is impossible.

Examples of convenient choices for the function g will now be given. An interesting class of schemes is
the class of 3-points schemes with a monotone flux, which we now define.

Definition 21.1 (Monotone flux schemes) Let p = 1. Under Assumption 21.1, the finite volume
scheme (21.1)-(21.3) is said to be a “monotone flux scheme” if the function g, only depending on f, U,,
and Uy, satisfies the following assumptions:

e g is locally Lipschitz continuous from IR? to IR,
e g(s,s) = f(s), for all s € [Upn,, Up],

e (a,b) = g(a,b), from [U,,,Un]? to IR, is nondecreasing with respect to a and nonincreasing with
respect to b.

The monotone flux property seems to be remarkable; indeed, monotone flux schemes are consistent in
the finite volume sense, they are L*°-stable under a condition (the so called Courant-Friedrichs-Levy
condition) of the type k < C1h, where C; only depends on g and wug (see Section 21.2 page 136 below),
and they are “consistent with the entropy inequalities” also under a condition of the type k < Cyh, where
C5 only depends on g and ug (but Co may be different of C1, see Section 21.3 page 136).
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Remark 21.2 A monotone flux scheme is a monotone scheme, under a Courant-Friedrichs-Levy condi-
tion, which means that the scheme can be written under the form

n+1 __ n n n
ul™ = H(uiq,ui, uilg),

with H nondecreasing with respect to its three arguments.

Example 21.1 (Examples of monotone flux schemes) (see also GODLEWSKI and RAVIART [76],
LEVEQUE [103] and references therein). Under Assumption 21.1, here are some numerical flux functions
g for which the finite volume scheme (21.1)-(21.2) is a monotone flux scheme (in the sense of Definition
21.1):

e the flux splitting scheme: assume f = f; + fa, with f1, fo € C*(IR,IR), fi(s) > 0 and fi(s) <0
for all s € [Up,, Ups] (such a decomposition for f is always possible, see the modified Lax-Friedrichs
scheme below), and take

9(a,b) = fi(a) + f2(b).

Note that if f/ > 0, taking fi = f and fo = 0, the flux splitting scheme boils down to the upwind
scheme, i.e. g(a,b) = f(a).

e the Godunov scheme: the Godunov scheme, which was introduced in GopuNov [77], may be
summarized by the following expression.

_J min{f(§),§ € [a,b]} if a <D,
gla,b) = { max{(€),& € [bal} if b < a. (21.6)
e the modified Lax-Friedrichs scheme : take
g(a,b) = M + D(a —b), (21.7)

with D € IR such that 2D > max{|f’(s)|,s € [Um,Unm|}. Note that in this modified version of
the Lax-Friedrichs scheme, the coefficient D only depends on f, U,, and U,;, while the original
Lax-Friedrichs scheme consists in taking D = h/(2k), in the case h; = h for all i € IN, and therefore
satisfies the three items of Definition 21.1 under the condition h/k > max{|f’(s)|,s € [Um, Unm]}-
However, an inverse CFL condition appears to be necessary for the convergence of the original Lax-
Friedrichs scheme (see remark 30.1 page 190); such a condition is not necessary for the modified
version.

Note also that the modified Lax-Friedrichs scheme consists in a particular flux splitting scheme
with f1(s) = (1/2)f(s) + Ds and f2(s) = (1/2)f(s) — Ds for s € [Up,, Uns).

Remark 21.3 In the case of a nondecreasing (resp. nonincreasing) function f, the Godunov monotone
flux scheme (21.6) reduces to g(a,b) = f(a) (resp. f(b)). Then, in the case of a nondecreasing function
f, the scheme (21.1), (21.2) reduces to

uTH_l —um
hi=t— e o () = f(ul ) = 0, (21.8)
i.e. the upstream (or upwind) finite volume scheme. The scheme (21.8) is sometimes called “upstream
finite difference” scheme. In that particular case (f monotone and 1D) it is possible to find points x; in
order to obtain a consistent scheme in the finite difference sense (if f is nondecreasing, take x; = ;11 /2
as for the scheme (20.6) page 128).
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21.2 L*°-stability for monotone flux schemes

Lemma 21.1 (L*° estimate in the nonlinear case) Under Assumption 21.1, let T be an admissible
mesh in the sense of definition 20.1 page 128 and let k € IR, be the time step.

Let ur i, be the finite volume approzimate solution defined by (21.1)-(21.4) and assume that the scheme is
a monotone flur scheme in the sense of definition 21.1 page 134. Let g1 and go be the Lipschitz constants
of g on [Up, Up]? with respect to its two arguments.

Under the Courant-Friedrichs-Levy (CFL) condition

inf,cz h;
< Wiez i (21.9)
g1+ g2
(note that taking k < ah/(g1 + g2) implies (21.9)),
the approzimate solution ur i, satisfies
Un <uri(z,t) <Unm for ae z€R and a.e. t € Ry.

PROOF of Lemma 21.1
Let us prove that

Un <ul <Up, Vie Z,¥n €N, (21.10)

by induction on n, which proves the lemma. Assertion (21.10) holds for n = 0 thanks to the definition of
u? in (21.1) page 133. Suppose that it holds for n € IN.
For all i € Z, scheme (21.1), (21.2) (with p = 1) gives

uftt = (1= 0y — @i )i + b iy +a yull s, (21.11)
with
bn L= h wt — 7 +1»
z+2 1' 7 1+1
0if ul! = ujyy,
and

kgl u) — fuf)
a! 1 =4 h; ull | —ul
0if u} =ul 4.

3 n n
if wi' # ug g,

Since f(ul') = g(ul',ul) and thanks to the monotonicity of g, 0 < b7, s S g2k/hi and 0 < al \ < gik/h;,

1 K2
for all ¢ € Z. Therefore, under condition (21.9), the value u"+1 may be written as a convex linear
combination of the values u and u}* ;. Assertion (21.10) is thus proved for n + 1, which concludes the
proof of the lemma. m

21.3 Discrete entropy inequalities

Lemma 21.2 (Discrete entropy inequalities) Under Assumption 21.1, let T be an admissible mesh
in the sense of definition 20.1 page 128 and let k € R, be the time step.

Let ur i, be the finite volume approzimate solution defined by (21.1)-(21.4) and assume that the scheme is
a monotone flur scheme in the sense of definition 21.1 page 134. Let g1 and go be the Lipschitz constants
of g on [Upn,Up)? with respect to its two arguments. Under the CFL condition (21.9), the following
inequation holds:

P (=l = g — )+

(u Tr,ui 1 Te) — g(ui Le,ui  Le) — g(ui Tryuid Tr) + g(ui' Lk, ui Lk) <0, (21.12)
VnelN,Vie Z, VrelR.
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Recall that aTb (resp. alb) denotes the mazimum (resp. the minimum) of the two real numbers a and b.

PROOF of Lemma 21.2
Thanks to the monotonicity properties of g and to the condition (21.9) (see remark 21.2),

= H(ul ,ululy), Vi€ Z, Vn € N,

K2

where H is a function from IR? to IR which is nondecreasing with respect to all its arguments and such
that K = H(k, K, k) for all kK € R.
Hence, for all k € IR,

n+1
up T < H(ug  Thul TRyl TR),

and

k< H(ui  Tryug Tryug o Tk),

which yields

M Tr < Hu?  Tr,ul Tr,uly TK).

In the same manner, we get

n+1
up " Lk > H(up Lk, ui Le,uj LK),

and therefore, by substracting the last two equations,

|u?+1 - H| S H(U?AT’% U?T’iv U?Jrl—l—’i) - H(U?AJ—“, U?J-Ha U?JrlJ-K’)a
that is (21.12). .

In the two next sections, we study the convergence of the schemes defined by (21.1), (21.2) with p =1
(see the remarks 21.4 and 21.6 and Section 22 for the schemes with 2p + 1 points).

We first develop a proof of convergence for the monotone flux schemes; this proof is based on a weak
BV estimate similar to (20.9) like the proof of proposition 20.2 page 132 in the linear case. It will
be generalized in the multidimensional case studied in Chapter 6. We then briefly describe the BV
framework which gave the first convergence results; its generalization to the multidimensional case is not
S0 easy, except in the case of Cartesian meshes.

21.4 Convergence of the upstream scheme in the general case

A proof of convergence similar to the proof of convergence given in the linear case can be developed. For
the sake of simplicity, we shall consider only the case of a nondecreasing function f and of the classical
upstream scheme (the general case for f and for the monotone flux schemes being handled in Chapter
6). We shall first prove a “weak BV estimate.

Lemma 21.3 (Weak BV estimate for the nonlinear case) Under Assumption 21.1, assume that f
is nondecreasing. Let £ € (0,1) be a given value. Let T be an admissible mesh in the sense of definition
20.1 page 128, let M be the Lipschitz constant of f in [Uy,,Un] and let k € RY satisfying the CFL
condition

inficz hi
k< (1-g—2

(The condition k < (1 — {)ah/M implies the above condition.) Let {ul', i € ZZ, n € IN} be given by

1

the finite volume scheme (21.1), (21.2) with p = 1 and g(a,b) = f(a). Let R € R} and T € R and

(21.13)
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assume h < R and k < T. Letig € Z, iy € Z and N € IN be such that —R € K;,, R € K;, ,and
T € (Nk,(N + 1)k]. Then there exists C € R, only depending on R, T, ug, o, f and &, such that

ZZW Dl <oni2, (21.14)

=19 n=0

PROOF of Lemma 21.3

We multiply the first equation of (21.1) by kul’, and we sum on i = ig,...,i; and n=0,..., N. We get
A+ B =0, with

i1 N
A= Z Z hi(uf ™t —uf)ud,

i=ig n=0
and
ih N
B =33 k(fu) = fluiy) )up.
i=1i9 n=0
We have

i1 N
A= LSS b — 1S Rl - )

i=1i9 n=0 1=10

Using the scheme (21.1), we get

A= 533 e s) s g SR - )

zzgnO zzo

and therefore, using the CFL condition (21.13),

Az —s(1-¢ ZZk( ?_1))2—%Zhi(u?)2. (21.15)

1=19 n=0 1=10

We now study the term B.
Denoting by @ the function ®(a) = [;; sf’(s)ds, for all a € IR, an integration by parts yields, for all

(a,b) € R?,

Using the technical lemma 18.5 page 110 which states f:(f(s) — f(a))dz > 537 (f(b) — f(a))?, we obtain

1 2
b(f(b) = f(a)) 2 537 (f(b) = f(a))” + 2(b) — ®(a).

The above inequality with @ = «]* ; and b = u} yields

MZZ ()~ Fuin) +Zk )l

i=i9 n=0

Thanks to the L* estimate of Lemma 20.1 page 128, there exists C; > 0, only depending on uy and f
such that
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B> Z S k() - s’ - 70

i=1i9 n=0

Therefore, since A+ B =0 and Zz;m h; < 4R, the following inequality holds:

i N
0>¢ Z Z k’(f(u?) — f(u?_l))2 — 4RM max{—U,,, Uy }*> —2MTCy,

i=1i9 n=0

which gives the existence of C; € IR’ , only depending on R, T, ug, f and & such that

S k(s - far ) <6

i:ig n=0

The Cauchy-Schwarz inequality yields

iir N
> S wr) - )] < coordl,

’L:io n=0

which concludes the proof of the lemma. [
We can now state the convergence theorem.

Theorem 21.1 (Convergence in the nonlinear case) Assume Assumption 21.1 and f nondecreas-
ing. Let & € (0,1) and a > 0 be given. Let M be the Lipschitz constant of f in [Upm,Upr]. For an
admissible mesh T in the sense of Definition 20.1 page 128 and for a time step k € R satisfying the
CFL condition (21.13) (taking k < (1 — &§)ah/M is a sufficient condition, note that & and « do not
depend of T ), let ur i be the finite volume approzimate solution defined by (21.1)-(21.4) with p =1 and
9(a,b) = (o).

Then the function ur . converges to the unique entropy weak solution u of (19.1) page 122 in L}, (IR xIR 1)
as size(T) tends to 0.

PROOF

Let Y be the set of approximate solutions, that is the set of wr j, defined by (21.1)-(21.4) with p =1
and g(a,b) = f(a), for all (T,k) where T is an admissible mesh in the sense of Definition 20.1 page
128 and k € IR’} satisfies the CFL condition (21.13). Thanks to Lemma 21.1, the set Y is bounded in
L (IR X IR+)

The proof of Theorem 21.1 is performed in three steps. In the first step, a compactness result is given for
Y, only using the boundeness of Y in L>°(IR x IR). In the second step, it is proved that the eventual
limit (in a convenient sense) of a sequence of approximate solutions is a solution (in a convenient sense)
of problem (19.1). In the third step a uniqueness result yields the conclusion. For steps 1 and 3, we refer
to chapter 6 for a complete proof.

Step 1 (compactness result)

Let us first use a compactness result in L°(IR x IR) which is stated in Proposition 32.1 page 202.
Since Y is bounded in L*°(IR x Ry ), for any sequence (u,)men of Y there exists a subsequence, still
denoted by (um)men, and there exists p € L°(IR x IRy x (0,1)) such that (um,)men converges to p in
the “nonlinear weak-+ sense”, that is

/IR - O(um(z,t))p(x, t)dtde — /IR /IR+ /O1 O(u(z, t, a))p(z, t)dadtdr, as m — oo,

for all p € L' (IR x R4) and all @ € C(IR,R). In other words, for any 6 € C(IR,IR),
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O(tm) — pe in L(IR x R ;) for the weak-+ topology as m — oo, (21.16)
where pp is defined by

1
po(x,t) = / O(p(z,t, ))da, for a.e. (z,t) € R x Ry.
0

Step 2 (passage to the limit)

Let (um)men be a sequence of Y. Assume that (u,,)men converges to p in the nonlinear weak-x sense
and that w,, = ur, r, (for all m € IN) with size(7,,) — 0 as m — oo (note that k,, — 0 as m — oo,
thanks to (21.13)).

Let us prove that p is a “solution” to problem (19.1) in the following sense (we shall say that u is “an
entropy process solution” to problem (19.1)):

ueLOORxR+x(O 1))
/[ + / 01,2) — wlpu(art)+ (7)) ~ Sl 0) L)) dadide gy 1

+/ lug(x) — K|p(z,0)dr >0, Vo € CHIR x R4, Ry),Vk € R.
R

Let k € IR. Setting
1
v(z,t) = / |u(z,t, ) — k|da, for a.e. (z,t) € R x R4
0

and

w(z,t) = /o (f(u(z,t,a)—l—n) - f(u(x,t,oz)J_fi))da, for a.e. (z,t) € R x Ry,

the inequality in (21.17) reads

/ / [v(z, t)pe(x,t) + w(x, t) s (x, t)]dtdz —|—/ |ug(x) — klp(z,0)dz > 0,
R R
Vp € CHIR x Ry, R4).

Let us prove that (21.18) holds; for m € IN we shall denote by 7 = T, and k = k,,,. We use the result
of Lemma 21.2, which reads in the present particular case f’ > 0,

(21.18)

'U’.’H_l —

hiZTZ +w! —w <0,Vie Z,Vn e NN,
where vl = |u — k| and w = f(ulTk) — f(ul Lk) = |f(ul) — f(K)].
The functions vr,, r,, and wr,, i, are defined in the same way as the function wr,, 1., i. e. with constant
values v and w} in each control volume K; during each time step (nk, (n + 1)k). Choosing 6 equal to
the continuous functions |- —«| and |f(-) — f(x)| in (21.16) yields that the sequences (v7,, k., )menN and
(W, &y Jmen converge to v and w in L*(IR x IR7 ) for the weak- topology.
Applying the method which was used in the proof of Proposition 20.2 page 132, taking v! instead of u!
in the definition of A,, (for [ = n and n+ 1) and w} instead of u7 in the definition of B,, (for j =i and
i — 1), we conclude that (21.18) holds.
Indeed, a weak BV inequality holds on the values w? (that is (20.9) page 129 holds with wj instead of
uj for j =i and i — 1), thanks to Lemma 21.3 page 137 and the relation

1f (i) = &l = | f(uiy) = &l < 1f(uf) = f(uiy)], Vie Z, Vn € N.
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(Note that here, as in the linear case, the useful consequence of the weak BV inequality, is (20.11) page
130 with w? instead of u for j =i and i — 1.)

This concludes Step 2.

Step 3 (uniqueness result for (21.17) and conclusion)

Theorem 29.1 page 183 states that there exists at most one solution to (21.17) and that there exists u €
L (IR xR ) such that p solution to (21.17) implies u(x, t, @) = u(z,t) for a.e. (x,t, @) € R xRy x(0,1).
Then, u is necessarily the entropy weak solution to (19.1).

Furthermore, if (4, )men converges to u in the nonlinear weak-+ sense, an easy argument shows that
(Um)men converges to u in L}, (IR x Ry) (and even in L? (IR x IR4) for all 1 < p < 00), see Remark
(32.2) page 204.

Then, the conclusion of Theorem 21.1 follows easily from Step 2 and Step 1 by way of contradiction (in
order to prove the convergence of a sequence ur, x, C Y to u, if size(7,,) — 0 as m — oo, without any
extraction of a “subsequence”). u

Remark 21.4 In Theorem 21.1, we only consider the case f’ > 0 and the so called “upstream scheme”.
It is quite easy to generalize the result for any f € C'(IR,IR) and any monotone flux scheme (see the
following chapter). It is also possible to consider other schemes (for instance, some 5-points schemes, as
in Section 22). For a given scheme, the proof of convergence of the approximate solution towards the
entropy weak solution contains 2 steps:

1. prove an L estimate on the approximate solutions, which allows to use the compactness result of
Step 1 of the proof of Theorem 21.1,

2. prove a “weak BV?” estimate and some “discrete entropy inequality” in order to have the following
property:
If (um)men is a sequence of approximate solutions which converges in the nonlinear weak-+ sense,
then

m—IN

lim /]R/m(mm(x,t)n|<pt(z,t)+(f(um(x,t)m)f(um(:c,t)M))%(x,t))dtdx

Jr/ luo(x) — K|p(z,0)dr >0, Vo € CH(R x R4, R4), Yk € IR.
R

Remark 21.5 An interesting consequence of the proof of the uniqueness theorem (Theorem 29.1 page
183) is the principle of “finite speed of propagation” for the entropy weak solution of (19.1) page 122 and
the “continuity in time” of this entropy weak solution, see Proposition 29.3 and remark 29.4.

21.5 Convergence proof using BV

We now give the details of the classical proof of convergence (considering only 3 points schemes), which
requires regularizations of ug in BV (IR). Tt consists in using Helly’s compactness theorem (which may
also be used in the linear case to obtain a strong convergence of ury to w in L} (IR x IR)). This
theorem is a direct consequence of Kolmogorov’s theorem (theorem 14.1 page 94). We give below the
definition of BV (€2) where € is an open subset of RP(2), p > 1 (already given in Definition 19.5 page
124 for @ = R) and we give a straightforward consequence of Helly’s theorem for the case of interest
here.

Definition 21.2 (BV(Q)) Let p € IN* and let  be an open subset of IRP. A function v € L], () has
a bounded variation, that is v € BV (Q2), if |v| gy (o) < 0o where

olvie =sup | vla)dive(e)de,p € CHOLIR?), fo(w)] < 1, Vo € ). (21.19)
Q
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Lemma 21.4 (Consequence of Helly’s theorem) Let A C L=(IR?). Assume that there exists C €
R4 and, for all T > 0, there exists Cr € R4 such that

H’U”LDO(IRZ) S C, Yv € A,

and
vy (R x(-T,7)) < O, Vv € A, VT > 0.

Then for any sequence (vp)new of elements of A, there exists a subsequence, still denoted by (Vn)nenN,
and there exists v € L™(IR?), with V]| Lo (mr2y < C and |[v|py@wx(-1,7)) < Cr for all T > 0, such that

v, — v in L}, (R?) as n — oo, that is [ v, () — v(z)|dx — 0, as n — oo for any compact set & of R”.

loc

In order to use Lemma 21.4, one first shows the following BV stability estimate for the approximate
solution:

Lemma 21.5 (Discrete space BV estimate) Under Assumption 21.1, assume that ug € BV (IR); let
T be an admissible mesh in the sense of Definition 20.1 page 128 and let k € R’ be the time step. Let
{u', i€ Z,n e IN} be given by (21.1), (21.2) and assume that the scheme is a monotone flux scheme;j
in the sense of Definition 21.1 page 134. Let g1 and g2 be the Lipschitz constants of g on [Up,, Unr]? with
respect to its two arguments. Then, under the CFL condition (21.9), the following inequality holds:

Souit =t < ey —upl, Ve N (21.20)
€Z e Z
PROOF of Lemma 21.5

First remark that, for n =0, .., |ud,; — u?| < |uo|pv(r) (see Remark 19.4 page 124).
For all i € Z , the scheme (21.1), (21.2) (with p = 1) leads to

n+l _  n n n n n n n
up =y bi+%(ui+1 —ui) + aifé(ui—l —ui'),
and

n+1 __

n n n n n n n
Uiy = Uiyt bi+%(ui+2 —uiyy) + @iyl (ui" — uiq),

where a; /5 and b;1 1/, are defined (for all i € ZZ') in Lemma 21.1 page 136. Substracting one equation
to the other leads to

wp = = (ufy —u)(1 - b1 —aiy 1) + b s (uile — uilyr) + iy (uf —uily).

Under the condition (21.9), we get

|u?f11 —u < upyy — (1 - bﬁr% - aﬁr%) + b?+%|u?+2 —uiy| + al% lui' — uiy |-

Summing the previous equation over i € ZZ gives (21.20). m

Corollary 21.1 (Discrete BV estimate) Under assumption 21.1, let ug € BV(IR); let T be an ad-
missible mesh in the sense of Definition 20.1 page 128 and let k € IR’ be the time step. Let ut  be the
finite volume approzimate solution defined by (21.1)-(21.4) and assume that the scheme is a monotone
flux scheme in the sense of Definition 21.1 page 134. Let g1 and go be the Lipschitz constants of g on
[Upm, Un)? with respect to its two arguments and assume that k satisfies the CFL condition (21.9). Let
ur iz, t) = ul for a.e. (x,t) € K; x R_, for alli € Z (hence ury is defined a.e. on R?). Then, for

*

any T > 0, there exists C' € R, only depending on ug, g and T such that:

luT k| BV mRx(~1.1)) < C. (21.21)
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PRrROOF of Corollary 21.1
As in Lemma 21.5, remark that Y, [uf,; —u?| < |uo| gy (m)-
Let us first assume that 7" < k. Then, the BV semi-norm of ur , satisfies

lut k| BV (Rx(-T,1)) < 2T Z |ugyq —ugl.
i€
Hence the estimate (21.21) is true for C' = 2T |ug| gy (r)-

Let us now assume that & < T. Let N € IN* such that Nk < T < (N 4 1)k. The definition of
|- |BV(Rx(—1,1)) Yields

[ur k|l By mx(-1.1)) ST Y sz gy — ud |+

N-1 N-1 (21.22)
SN Ry —ul [+ (T = NE) Y July —ulN YT hafu =, '
n=0 i€ Z A<y /4 n=0 i€ Z

Lemma 21.5 gives > ., |ui' 1 — u| < |uo|py(wr) for all n € IN, and therefore,

N—-1
SO Eluy —ul[+ (T = NE) D July — ul| < Tluo| gy (m)- (21.23)
n=0ieZ EZ

In order to bound the last term of (21.22), using the scheme (21.1) yields, for all i € Z and all n € IN,
up ™ =] < h_igl|“i —ui |+ h_ig2|ui — Uiyl
Therefore,
Z hiluf ™ —ul| < k(g1 + go) Z |uif —uiy |, for all n € IN,
i€z i€z
which yields, since Nk < T,

N-1
SO hilul ™ —w| < T(g1 + ga)luol By (r)- (21.24)
n=0 i€ Z
Therefore Inequality (21.21) follows from (21.22), (21.23) and (21.24) with C' = T'(2 4 g1 + g2)|[uo| Bv (R)-

Consider a sequence of admissible meshes and time steps verifying the CFL condition, and the associated
sequence of approximate solutions (prolonged on IR x IR_ as in Corollary 21.1). By Lemma 21.1 page
136 and Corollary 21.1, the sequence of approximate solutions satisfies the hypotheses of Lemma 21.4
page 142. Tt is therefore possible to extract a subsequence which converges in L} (IR x IR ) to a function
uw € L>®(IR x IR%). It must still be shown that the function w is the unique weak entropy solution of
Problem (19.1). This may be proven by using the discrete entropy inequalities (21.12) and the strong
BV estimate (21.20) or the classical Lax-Wendroff theorem recalled below.

Theorem 21.2 (Lax-Wendroff) Under Assumption 21.1, let a« > 0 be given and let (Tm)men be a
sequence of admissible meshes in the sense of Definition 20.1 page 128 (note that, for all m € IN, the
mesh T, satisfies the hypotheses of Definition 20.1 where T = T, and « is independent of m). Let
(km)men be a sequence of (positive) time steps. Assume that size(Tpm) — 0 and kyp, — 0 as m — oo.
For m € IN, setting T = T and k = ky,, let up, = ury be the solution of (21.1)-(21.4) with p = 1
and some g from R? to IR, only depending on f and g, locally Lipschitz continuous and such that
g(s,8) = f(s) for all s € R.



144

Assume that (Um)men is bounded in L>®°(IR x Ry) and that uy — u a.e. on IR x Ry. Then, u is a
weak solution to problem (19.1) (that is u satisfies (19.3)).

Furthermore, assume that for any k € IR there exists some locally Lipschitz continuous function G, from
R? to R, only depending on f, ug and r, such that G(s,s) = f(sTk) — f(sLk) for all s € R and such
that for all m € IN

1 1
Eq¢”1fmfhﬁfnn+ﬁﬂ04@z@g)f0(z]j ") <0,Vi€ Z,Vn €N, (21.25)

where {ul, i € Z, n € IN} is the solution to (21.1)-(21.2) for T = Tm and k = ky,. Then, u is the
entropy weak solution to Problem (19.1) (that is u is the unique solution of (19.4)).

PROOF of Theorem 21.2

Since (tm)men is bounded in L*(R x R4) and u,, — u a.e. on IR x IRy, the sequence (tm)menN
converges to u in Li, (IR x IR4). This implies in particular (from Kolmogorov’s theorem, see Theorem
14.1) that, for all R > 0 and all T' > 0,

27
sup / / [t (2, 1) — U (@ — m, t)|dadt — 0 as n — 0.
melN

Then, taking n = asize(T,,) (for m € IN) and letting m — oo yields, in particular,

2T
/ / [t (2, 1) — U (x — asize(Ty,), t)|dzdt — 0 as m — oo. (21.26)

For m € IN, let {ul", i € ZZ, n € IN} be the solution to (21.1)-(21.2) for T = 7,, and k = ky, (note that
ul’ depends on m, even though this dependency is not so clear in the notation). We also set k,, = k and
size(T,,) = h, so that k and h depend on m (but recall that o does not depend on m).

Let R > 0and T > 0. Let ip € Z, i1 € Z and N € IN be such that —REKm,ReKz1 and
€ (Nk,(N + 1)k]. Then, for h < R and k < T (which is true for m large enough),

i N 2T 2R
ah Z Z Elul —ul 4] < / / . [t (2, ) — U (x — ah, t)|dadt.
0o J-2

’L:io n=0

Therefore, Inequality (21.26) leads to (20.11), that is

i1
hZZk|u?—u?_1|—>Oa5m—>oo. (21.27)

i=ip n=0
Using (21.27), the remainder of the proof of Theorem 21.2 is very similar to the proof of Proposition 20.2
page 132 and to Step 2 in the proof of Theorem 21.1 page 139 (Inequality (21.27) replaces the weak BV
inequality).
In order to prove that w is solution to (19.3), let us multiply the first equation of (21.1) by (k/h;)p(x, nk),
integrate over x € K; and sum for all : € ZZ and n € IN. This yields

Ay 4+ B =0

with

ZZ ol u?/ o(x, nk)dx
€7 neN Ki

and
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1
= > Y k(g ) — gy, ) /K (i, nk)dz.

i€ Z nelN

As in the proof of Proposition 20.2, one has

lim Am:—/ / u(m,t)got(x,t)dxdt—/ uo(z)p(z,0)dx.
m——+0o0 R, JR R

Let us now turn to the study of B,,. We compare B,, with

(n+1)k
/ /IR flur k(x, 1)) (x, nk)dxdt,

nelN

which tends to — fIR S flu(z, 1)), (2, t)dedt as m — oo since f(ur ) — f(u) in Lj,,
m — oo.
The term By, can be rewritten as

(R xIRy) as

Z Zk 1—1))410(951'—1/2,”/?),

i€Z nelN

which yields, introducing g(ul"_,,u?),

Bim = Z Z E(f(ui') — g(uiq,ui)) (@12, k)

i€ Z neIN

+ Z Zk uiy, i) = f(ui_q))e(@i1y2, k).

1€Z nelN

Similarly, introducing f(ul') in B,,,

= 3 SR gty [ ot nkyds

i€ Z nelN

oy L

+ 30 S kgl aln) - @) [ el
1€Z neN t JK;

In order to compare By, and By ,,, let R > 0 and T' > 0 be such that ¢(z,t) =01if || > Ror ¢t > T. Let

A > 0 be such that ||um| r~mxr, ) < A for all m € IN. Then there exists C' > 0, only depending on ¢

and the Lipschitz constants on g on [—A, A]?, such that, if h < R and k < T (which is true for m large

enough),

i1 N
B = Brm| < Ch Y klul —ul ], (21.28)

i:ig n=0

where ig € Z, i1 € Z and N € IN are such that —R € K;,, R € K;, and T € (Nk, (N + 1)k].

00

Using (21.28) and (21.27), we get |B,, — B1,m| — 0 and then

B,, — —/ flu(z, ) (x, t)dtdr as m — oo,
R

which completes the proof that u is a solution to problem (19.3).

Under the additional assumption that w,, satisfies (21.25), one proves that u satisfies (19.7) page 124
(and therefore that u satisfies (19.4)) and is the entropy weak solution to Problem (19.1) by a similar
method.

Indeed, let x € IR. One replaces ul by |ul — x| in A,, (for [ = n and n + 1) and one replaces g by G, in
By,. Then, passing to the limit in A, + By, < 0 (which is a consequence of the inequation (21.25)) leads
the desired result.
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This concludes the proof of Theorem 21.2 [

Remark 21.6 Theorem 21.2 still holds with (2p + 1)-points schemes (p > 1). The generalization of the
first part of Theorem 21.2 (the proof that u is a solution to (19.3)) is quite easy. For the second part
of Theorem 21.2 (entropy inequalities) the discrete entropy inequalities may be replaced by some weaker
ones (in order to handle interesting schemes such as those which are described in the following section).
However, the use of Theorem 21.2 needs a compactness property of sequences of approximate solutions
in the space L}, (R x IR4). Such a compactness property is generally achieved with a “strong BV
estimate” (similar to (21.20)). Hence an extensive literature on “I'VD schemes” (see HARTEN [80]),
“ENO schemes”. .. (see GODLEWSKI and RAVIART [75], GODLEWSKI and RAVIART [76] and references
therein). The generalization of this method in the multidimensional case (studied in the following chapter)
does not seem so clear except in the case of Cartesian meshes.

22 Higher order schemes

Consider a monotone flux scheme in the sense of Definition 21.1 page 134. By definition, the considered
scheme is a 3 points scheme; recall that the numerical flux function is denoted by g. The approximate
solution obtained with this scheme converges to the entropy weak solution of Problem (19.1) page 122
as the mesh size tends to 0 and under a so called CFL condition (it is proved in Theorem 21.1 for a
particular case and in the next chapter for the general case). However, 3-points schemes are known to
be diffusive, so that the approximate solution is not very precise near the discontinuities. An idea to
reduce the diffusion is to go to a 5-points scheme by introducing “slopes” on each discretization cell and
limiting the slopes in order for the scheme to remain stable. A classical way to do this is the “MUSCL”
(Monotonic Upwind Scheme for Conservation Laws, see VAN LEER [151]) technique .

Reconstructing a slope on each cell enables to compute interface values on each side of an interface x; i
These values are then used in the computation of the fluxes

We briefly describe, with the notations of Section 21.1, an example of such a scheme, see e.g. GODLEWSKI
and RAVIART [75] and GODLEWSKI and RAVIART [76] for further details. Let n € IN.

e Computation of the slopes

n n
Uiypr — Uj_q

hi + b

—1
2

= ieZ.

hiy1”’
+ b

e Limitation of the slopes
pl' = alpyl, i € Z , where o is the largest number in [0, 1] such that

hi . hi -
a4 gl € [l Lufy, u Tuly,] and wf — Zalpl € [uf Ll wf Tull,].

In practice, other formulas giving smaller values of o' are sometimes needed for stability reasons.

e Computation of u?*! for i € ZZ One replaces g(ui,ujy ;) in (21.2) by :

i

I
noon i+1 p
PiUiy1 — N pi+1)'

_ hi
g(u?—la u?a u?—i—la u?+2) = g(u:l + 51
The scheme thus constructed is less diffusive than the original one and it remains stable thanks to the
limitation of the slope. Indeed, if the limitation of the slopes is not active (that is o = 1), the space
diffusion term disappears from this new scheme, while the time “antidiffusion” term remains. Hence it
seems appropriate to use a higher order scheme for the time discretization. This may be done by using,
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for instance, an RK2 (Runge Kutta order 2, or Heun) method for the discretization of the time derivative.
The MUSCL scheme may be written as

Un+1 —_yn
k

where U™ = (u});ez ; hence it may be seen as the explicit Euler discretization of

=H(U"™) for n € N,

U = H(U);
therefore, the RK2 time discretization yields to the following scheme:

Uttt 1 e
———— =AU+ §(H(U +KH(U™))) for n € N.

Going to a second order discretization in time allows larger time steps, without loss of stability.

Results of convergence are possible with these new schemes (with eventually some adaptation of the slope
limitations to obtain convenient discrete entropy inequalities, see VILA [157]. Tt is also possible to obtain
error estimates in the spirit of those given in the following chapter, in the multidimensional case, see e.g.
CHAINAIS-HILLAIRET [22], NOELLE [120], KRONER, NOELLE and ROKYTA [96]. However these error
estimates are somewhat unsatisfactory since they are of a similar order to that of the original 3-points
scheme (although these schemes are numerically more precise that the original 3-points schemes).

The higher order schemes are nonlinear even if Problem (19.1) page 122 is linear, because of the limitation
of the slopes.

Implicit versions of these higher order schemes are more or less straightforward. However, the numerical
implementation of these implicit versions requires the solution of nonlinear systems. In many cases, the
solutions to these nonlinear systems seem impossible to reach for large k; in fact, the existence of the
solutions is not so clear, see PFERTZEL [128]. Since the advantage of implicit schemes is essentially the
possibility to use large values of k, the above flaw considerably reduces the opportunity of their use.
Therefore, although implicit 3-points schemes are very diffusive, they remain the basic schemes in several
industrial environments. See also Section 35.3 page 214 for some clues on implicit schemes applied to
complex industrial applications.

23 Boundary conditions

A general convergence result is presented here in the case of a scalar equation. Then, this result will be
applied to understand the sense of the boundary condition, described at x = 1 in the previous section,
in a simplified scalar case.

23.1 A general convergence result

The unknown is now a function u : (0,1) x R+ — R. The flux is a function f € C'(R,R) (or
f + R — R Lipschitz continuous) and the initial datum is ug € L>°((0,1)). Let A, B € R be such that
A < wug < B a.e.. The problem to solve is:

Uy + (f(u))z = Oa S (07 1)5 t e RJrv (231)
with the initial condition :
u(z,0) = up(x), x € (0,1), (23.2)

and some boundary conditions which will be prescribed later.
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As in the previous section, let h = % (with N € N*) be the mesh size and & > 0 be the time step

N
(assumed to be constant, for the sake of simplicity). The discrete unknowns are now the values v € R
fori e {1,...,N} and n € N. In order to define the approximate solution a.e. in (0,1) x R, one sets

upk(x,t) = ul for z € ((i — 1)h,ih), t € (nk,(n+1)k),i € {1,....N}, neN.

The discretization of the initial condition leads to

1 rih
uf = —/ uo(z)dz, i€ {1,...,N}. (23.3)
b Ji—1yn
For the computation of «}* for n > 0, one uses, as before, an explicit, 3-points scheme:
h n+l n .
E(ui ul) + Z+1—fi7%:0,zG{l,...,N},nGN. (23.4)
Foriel,...,N —1, one takes
ﬁ_% :g(u?’uz‘,—l)’ (23'5)
where g is the numerical flux. Sufficient conditions on g : [A, B]?> — R, in order to have a convergent

scheme if 2 € R instead of (0,1), are:

C1: g is non decreasing with respect to its first argument and nonincreasing with respect to its second
argument,

C2: g(s,s) = f(s), for all s € [A, B],
C3: ¢ is Lipschitz continuous.

Let L be a Lipschitz constant for g (on [A, B]?) and ¢ > 0. If (0,1) is replaced by R, It is well known
(see e.g. [53]) that, if & < (1— ()£, the approximate solution uy, k, that is the solution defined by (23.3)-
(23.5) (with ¢ € Z), takes its values in [A, B] and converges towards the unique entropy weak solution of
(23.1)-(23.2) in L2 (R x R.) as h — 0.

loc
In the case = € (0,1) instead of z € R, one assumes the same conditions on g, namely (C1)-(C3). In
order to complete the scheme, one has to define fI and [} 41
2 2

Let w,u € L>(R4) be such that A < w,u < B, a.e. on Ry, let go,g1 : [A, B]> — R, satisfying
(C1)-(C3), and define:

_ _ Dk —
fg _ go(u”,u’f)' T = %I(TH ) ( )dt
= Jrl
Ty = (@) T= 4 [0
Then, a convergence theorem can be proven as in the case x € R, see [160]:

Theorem 23.1 Let f € CY(R,R) (or f : R — R Lipschitz continuous). Let uy € L>((0,1)),

u,u € L*(Ry) and A, B € R be such that A < up < B a.e. on (0,1), A <u,u < B a.e. on Ry. Let

90,91 : [A,B]*> — R, satisfying (C1)-(C3). Let L be a common Lipschitz constant for g, go and g

(on [A,B]?) and let ¢ > 0. Then, if k < (1 — ()%, the equations (23.3)-(25.6) define an approzimate

solution up,j which takes its values in [A, B] and converges towards the unique solution of (23.7) in
LY ([0,1] XR+)f0rany1<p<oo as h — 0:

(23.6)

u € L*((0,1) x (0,00)),
/ / w— Ky + signy (u— k) (F(u) — F(x))a)dodt

() — k)0 (0, )t + M / )t )t (23.7)

+/ (uo — k)T p(z,0)dz > 0,
Vi € [A, B, Yoo € C2([0,1] x [0,00), Ry).
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In (23.7), M is any bound for |f'| on [A, B] (and the solution of (23.7) does not depends on the choice
of M). The definition of sign,. is: sign,(s) =1 if s > 0, sign, (s) =0 if s <0, sign_(s) =0 if s > 0,
sign_(s) = =1 if s < 0.

Remark 23.1

1. It is interesting to remark that this convergence result is also true if the function g depends on i
and n, provided that L is a common Lipschitz constant for all these functions.

2. The definition (25.7) of solution of (23.1)-(25.2) with the “weak” boundary conditions @ and U at
x =0 and x =1 is essentially due to F. Otto, see [125].

3. It is interesting also to remark that if one replaces, in (23.7), the two entropies (u— k)™ by the sole
entropy |u — k|, one has an existence result (since lu— k| = (u—r)T + (u— k)~ ) but no uniqueness
result, see [160] for a counter-example to uniqueness.

4. This convergence result can be generalized to the multidimensional case, see Sect. 31 and [160].

If u, solution of (23.7), is regular enough (say u € C1([0,1] x R), for instance), u satisfies u(0,t) = u(t)
and u(1,t) = u(t) in the weak sense given in [9]. This condition is very simple if f is monotone:

If f/ >0, then u(0,-) =7 and u does not depend on .

If f/ <0, then u(1,-) =7 and u does not depend on 7.

23.2 A very simple example

One considers here Equation (23.1), with initial condition (23.2) and weak boundary condition 7 and &
at © = 0 and = = 1, that is in the sense of (23.7), in the particular case f' > 0. In this case, the main
example of numerical flux is g = go = g1, g(a,b) = f(a), which leads to the well known upstream scheme.
With this choice of go and g;, using the notations of Sect. 23.1, the boundary conditions are taken into
account in the form:

fg = f(an)a f]’r\L[JrE = f(u’r]i])’ (238)

with u" = % fézﬂ)k u(t)dt. One may apply the general convergence theorem. The approximate solutions
converge (as h — 0) towards the solution of (23.7). In this case, the approximate solutions, as well as
the solution of (23.7), do not depends on 7.

In the case f/ < 0 the main example is g = go = ¢1, g(a,b) = f(b), which also leads to the upstream
scheme. The boundary conditions are taken into account in the following way:

Fi= ), fags = 1@, (23.9)
with @ = £ [0 G()dr.

These simple cases suggest the following scheme for any f, which is the scalar version of the scheme
described in Sect. 38.1 (note that f’(u) is the Jacobian matrix at point v € R):

e Boundary condition at = = 0:

fE=f@n), i fg) >0,
{ Fi=rlp), i) <o (23:10)
e Boundary condition at xz = 1:
Ney = T@, i fiuy) <0,
{ no = )., i PR >0 =
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This solution is not always satisfactory as can be shown on the following simple example with the Biirgers
equation:

Let f(s) = s, up = 1 a.e. on (0,1), w =1 a.e. on Ry and & = —2 a.e. on R;. The exact solution
which has to be approached by the numerical scheme is the unique solution of (23.7) with these values of
f, uo, w and u. Computing the approximate solution with (23.3)-(23.5), the function g satisfying (C2),
and with (23.10)-(23.11), leads to an approximate solution which is constant and equal to 1 for any h
and k. Then, it does not converge (as h and k go to 0) towards the exact solution which is not constant
and equal to 1 since, for the exact solution, a shock wave with a negative speed starts from the point
x =1 at time ¢t = 0. Indeed, one can also remark that this approximate solution is the exact solution of
(23.7) with the same values of f, ug, u and with any U satisfying 7 > —1 a.e. on R4. In order to obtain
a convergent approximation of the exact solution corresponding to @ = —2, a good choice is, instead of
(23.11), f]’\’”r% = g1(uly, —2) with g; satistying (C1)-(C3).

23.3 A simplifed model for two phase flows in pipelines

It is now possible to understand the treatment of the boundary described in Sect. 38.1 on a simplified
model. This simplifed model for two phase flows in pipelines is given in [127]. For this model, the densities
are constant so that there are no longer pressure waves but only the void fraction wave, corresponding
to the second eigenvalue of the original system (38.1). It is also easy to see that for this model, the total
flux (that is the sum of the fluxes of the two phases) is constant in space. One also assumes that this
total flux is constant in time (and positive). System (38.1) is then reduced to a scalar equation, Equation
(23.1), where the unknown, u : (0,1) x R — R, is the gas fraction which takes its values between 0 and
1.

The function f can be taken as f(s) = as — bs?, where a,b € R are given and such that 0 < b < a < 20b.
In (23.1), the quantity f(u) is the flux of gas. Then, f(1) — f(u) is the flux of liquid. The function
f is increasing between 0 and up; = a/(2b) and decreasing between wup; and 1. An important value is
U € [0,ups] such that f(uy,) = f(1).

One takes ug = 0 a.e. on [0,1] as an initial condition. At z = 0, the gas flux is given (as in the complete
model, see Sect. 38.1), one takes f(u(0,-)) = f with f(t) = ¢ for t <T and f(t) = 0 for t > T, where c
and T are given with ¢ > f(1) and T large enough so that f’ changes sign at = 1 during the simulation.
Indeed, in this simplified model, it is also necessary to take 7" not too large in order to avoid a problem
at = 0 (for T too large, f’ will also changes sign at © = 0). The boundary condition at = 1 will be
described on the discrete problem below.

The discretization of the problem is performed as before with (23.3)-(23.5), with g satisfying (C1)-(C3).

For the discretization of the boundary condition at x = 0, the method described in Sect. 38.1 leads here
to

T = f(nk), (23.12)

which is indeed in accordance with the fact that f/(u}) > 0 for all n, at least if T is not too large.

For the discretization of the boundary condition at x = 1, the first method described in Sect. 38.1 and
given in (23.11), using the sign of f’(ul;) leads to

(23.13)

Fioey = Fd), i uly <ur,
Fagy =FQ), i uf >,

and does not lead to the desired results. Note also that fy 1 given by (23.13), is a discontinuous
2
function of u%;.

The second method, described in Sect. 38.1, uses the fact that the liquid flux cannot be negative at
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z = 1. Since the liquid flux at 2 = 1is f(1) — fy41 and since f(um) = f(1), this method leads to

{ f]T\I[Jr% = f(u%), it uy < um,
)

n . n 23.14
fNJr% = flum), if Uy > um, ( )

Note that fy 41 given by (23.14), is a continuous function of u%,. We shall apply the convergence theorem,
2

Theorem 23.1 given in Sect. 23.1, for the boundary conditions (23.12) and (23.14), and understand the

boundary conditions satisfied by the limit of the approximate solutions. In order to do so, we need to

find gg and gy, satisfying (C1)-(C3), and w,u € L (R ) such that ¥ and [ 41, respectively defined by
2 2

(23.12) and (23.14), satisfy (23.6). Indeed, it is shown in [56] that both boundary fluxes fT and fy .

may be expressed with the Godunov flux in the following way:

e Boundary flux at # = 1. One takes & = 1 a.e. on R, and gy equal to the Godunov flux, that is
go = gg with
~f min{f(s), s€[a,8]} if a<§p,
setod) ={ adio), S o >
The formula (23.14) reads

no "  f@) i uly < g,
Py =act ) ={ &)k S 23.15)
e Boundary flux at @ = 0. One assumes (for simplicity) that % € N. let a, 8 € (0,1) such that « < 8

and f(a) = f(8) = ¢. One takes

m o if t<T,
o _{ 0 if t>T, (23.16)
so that, recalling that u"™ = f (n+1)k
—n\ __ C if nk< T,
i@ ){ ¢ i k<l
Then, if uf < f, the formula (23.12) reads
I = 9oluid; (23.17)

since, in this case, gg(@", uf) = f(@"). The fact that u} < j is true for all n if T is not too large.
If T is too large, the convergence result can be applied with (23.17) instead of (23.12).

It is now possible to apply Theorem 23.1. Let L be a common Lipschitz constant for g and gg (on [0, 1]?)
andlet ¢ > 0. If k < (1 —C)%, the approximate solution uy, i, that is the solution defined by (23.3)-(23.5),
with the boundary fluxes (23.15)-(23.17) (and ug = 0, w = 1 and u given by (23.16)), takes its values in
[0,1] and converges towards the unique solution of (23.18) in L} .([0,1] x Ry) for any 1 < p < oo, as
h — 0:

u € L>®((0,1) x (0,00)),
/ / u— K)E g+ signy (u— £)(F(u) — F(5))ps]dudt

U(t) — k)Ep(0,t)dt + M/Oo(1 — k)1, t)dt (23.18)
0

+/ (0 — k) p(z,0)dz > 0,
Vi € [0,1], Yo € CL([0, 1] x [0,00), Ro).
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If u, solution of (23.18), is regular enough on [0, 1] x (0,T), then, it is possible to prove that u satisfies
the boundary conditions, for 0 < ¢ < T, in the following sense (see [160] and [56]):

e Boundary condition at z = 0 (recall that @ is given by (23.16)): u(0,¢) = « or u(0,t) > 5. In fact,
if T is not too large, one has u(0,t) = a.

e Boundary condition at = 1: w(1,t) < u,, or u(l,t) =1,

Thanks to Theorem 23.1, it is possible to give other choices for f 41 for which the approximate solutions
2
obtained with this new choice of f}, L1 converge towards the same function u, which is the unique solution
2

of (23.18). Indeed, let » : [0,1] — R be a nondecreasing function such that h < f and h(1) = f(1) and
take:

Fooy = hlud). (23.19)

One may construct a function gy satisfying (C1)-(C3) such that h(s) = g1(s, 1), for all s € [0, 1], and then
use Theorem 23.1. Let L be a common Lipschitz constant for g and gg and g1 (on [0,1]?) and let ¢ > 0.
Itk <(1- C)%, the approximate solution uy, j, that is the solution defined by (23.3)-(23.5), with the
boundary fluxes (23.19) and (23.17) (and up = 0, 7 = 1 and @ given by (23.16)), takes its values in [0, 1]
and converges towards the unique solution of (23.18) in L? ([0,1] x R4) for any 1 < p < oo, as h — 0.

loc

Turning back to the complete system described in Sect. 38.1, the analysis of this simplified model for
two phase flows in pipelines may also suggest another way to take into account the boundary condition
at = 1 (with a given numerical flux ¢1):

1. Compute DF (w?%), its eigenvalues {\1, A2, A3} and a basis of R3, {1, 2, 03}, such that DF (w%)p; =
)\igoia 1= 152335
2. write w}; on the basis {¢1, p2, @3}, namely wi = a1 + azps + azes,

3. Since A3 < 0 and since one wants @ > 0, compute wi; = B1o1 + S22 + B3z and FJT\ler% =

g1(wiy, wyy ) with the following 3 conditions on the components of wj; ;: usual condition on the
pressure, 3 = a3 and Ry, ; = 1 where Ry, is the gas fraction computed with wy ;.



Chapter 6

Multidimensional nonlinear
hyperbolic equations

The aim of this chapter is to define and study finite volume schemes for the approximation of the
solution to a nonlinear scalar hyperbolic problem in several space dimensions. Explicit and implicit
time discretizations are considered. We prove the convergence of the approximate solution towards the
entropy weak solution of the problem and give an error estimate between the approximate solution and
the entropy weak solution with respect to the discretization mesh size.

24 The continuous problem

We consider here the following nonlinear hyperbolic equation in d space dimensions (d > 1), with initial
condition

uy(z,t) + div(vf(u))(z,t) =0, z € R* t € Ry, (24.1)
u(z,0) = up(z), x € RY, (24.2)

where u; denotes the time derivative of u (¢t € IR4), and div the divergence operator with respect to the
space variable (which belongs to RY). Recall that || denotes the euclidean norm of z in R, and z -y
the usual scalar product of  and y in IRY.

The following hypotheses are made on the data:
Assumption 24.1

(i) up € L®(RY), Uy, Upr € R, Uy, < ug < Ups ace.,
(ii) v € CY(R% x Ry, RY),

(#44) divv(z,t) = 0, ¥(z,t) € R x R,

(iv) 3V < oo such that [v(z,t)| <V, VY(z,t) € R? x Ry,
(v) f € CHIR,R).

Remark 24.1 Note that part (iv) of Assumption 24.1 is crucial. It ensures the property of “propagation
in finite time” which is needed for the uniqueness of the solution of (24.4) and for the stability (under a
“Courant-Friedrichs-Levy” (CFL) condition) of the time explicit numerical scheme. Part (iii) of Assump-
tion 24.1, on the other hand, is only considered for the sake of simplicity; the results of existence and
uniqueness of the entropy weak solution and convergence (including error estimates as in the theorems
30.1 page 189 and 30.2 page 190) of the numerical schemes presented below may be extended to the case
divv # 0. However, part (iii) of Assumption 24.1 is natural in many “applications” and avoids several
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technical complications. Note, in particular, that, for instance, if divv # 0, the L*°-bound on the solution
of (24.4) and the L* estimate (in Lemma 26.1 and Proposition 27.1) on the approximate solution depend
on v and T. The case F(xz,t,u) instead of v(z,t)f(u) is also feasible, but somewhat more technical, see
CHAINAIS-HILLAIRET [22] and CHAINAIS-HILLAIRET [23].

Problem (24.1)-(24.2) has a unique entropy weak solution, which is the solution to the following equation
(which is the multidimensional extension of the one-dimensional definition 19.3 page 123).

u € L®°(R% x RY),
/ / w(z,t) + P(u(z, t))v(z,t) - Vo(z,t)|dedt +
Ry JR?

n(uo(x))p(x,0)dz > 0, Yo € C°(R* x Ry, Ry ),
I[{d
vn € C*(IR,R), convex function, and ® € C(IR,R) such that ® = f'n/

(24.3)

where V¢ denotes the gradient of the function ¢ with respect to the space variable (which belongs to
R%). Recall that C'(E, F) denotes the set of functions C™ from E to F, with compact support in E.
The characterization of the entropy weak solution by the Krushkov entropies (proposition 19.2 page 124)
still holds in the multidimensional case. Let us define again, for all k € IR, the Krushkov entropies (|- —x|)
for which the entropy flux is f(-Tk) — f(-Lk) (for any pair of real values a,b, we denote again by aTb
the maximum of a and b, and by alb the minimum of a and b). The unique entropy weak solution is
also the unique solution to the following problem:

ue L®(R* x RY),
/IR+ /le lu(z, t) — k|2, t) + ( (u(z,t)TkK) — f(u(x,t)LFa))v(ac,t) -V(z,t)| dedt + (24.4)

d|u0(x) — k|p(x,0)dz > 0, ¥k € R, Yo € OF(RY x Ry, R).
R

As in the one-dimensional case (Theorem 19.1 page 124), existence and uniqueness results are also known
for the entropy weak solution to Problem (24.1)-(24.2) under assumptions which differ slightly from
assumption 24.1 (see e.g. KRUSHKOV [97], VOL’PERT [159]). In particular, these results are obtained
with a nonlinearity F' (in our case F' = vf) of class C®. We recall that the methods which were used
in KRUSHKOV [97] require a regularization in BV(]Rd) of the function ug, in order to take advantage,
for any 7" > 0, of compactness properties which are similar to those given in Lemma 21.4 page 142 for
the case d = 1. Recall that the space BV () where 2 is an open subset of R?, p > 1, was defined in
Definition 21.2 page 141; it will be used later with Q = R? or Q = R? x (=7, 7).

The existence of solutions to similar problems to (24.1)-(24.2) was already proved by passing to the limit
on solutions of an appropriate numerical scheme, see CONWAY and SMOLLER [36]. The work of CONwAY
and SMOLLER. [36] uses a finite difference scheme on a uniform rectangular grid, in two space dimensions,
and requires that the initial condition ug belongs to BV (IR?) (and thus, the solution to Problem (24.1)-
(24.2) also has a locally bounded variation). These assumptions (on meshes and on wg) yield, as in Lemma
21.4 page 142, a (strong) compactness property in LZOC(IRd x IR ) on a family of approximate solutions.
In the following, however, we shall only require that ug € L™ (]Rd) and we shall be able to deal with more
general meshes. We may use, for instance, a triangular mesh in the case of two space dimensions. For
each of these reasons, the BV framework may not be used and a (strong) compactness property in Lj,,
on a family of approximate solutions is not easy to obtain (although this compactness property does hold
and results from this chapter). In order to prove the existence of a solution to (24.1)-(24.2) by passing
to the limit on the approximate solutions given by finite volume schemes on general meshes (in the sense
used below) in two or three space dimensions, we shall work with some “weak” compactness result in L,
namely Proposition 32.1, which yields the “nonlinear weak-x convergence” (see Definition 32.1 page 201)
of a family of approximate solutions. When doing so, passing to the limit with the approximate solutions
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will give the existence of an “entropy process solution” to Problem (24.1)-(24.2), see Definition 29.1 page
181. A uniqueness result for the entropy process solution to Problem (24.1)-(24.2) is then proven. This
uniqueness result proves that the entropy process solution is indeed the entropy weak solution, hence the
existence and uniqueness of the entropy weak solution. This uniqueness result also allows us to conclude
to the convergence of the approximate solution given by the numerical scheme (that is (25.4), (25.2))
towards the entropy weak solution to (24.1)-(24.2) (this convergence holds in L? (R* x Ry) for any
1<p<o0).

Note that uniqueness results for “generalized” solutions (namely measure valued solutions) to (24.1)-
(24.2) have recently been proved (see DIPERNA [46], SZEPESSY [143], GALLOUET and HERBIN [71]).
The proofs of these results rely on the one hand on the concept of measure valued solutions and on the
other hand on the existence of an entropy weak solution. The direct proof of the uniqueness of a measure
valued solution (i.e. without assuming any existence result of entropy weak solutions) leads to a difficult
problem involving the application of the theorem of continuity in mean. This difficulty is easier to deal
within the framework of entropy process solutions (but in fact, measure valued solutions and entropy
process solutions are two presentations of the same concept).

Developing the above analysis gives a (strong) convergence result of approximate solutions towards the
entropy weak solution. But moreover, we also derive some error estimates depending on the regularity of
uQ.

In the case of a Cartesian grid, the convergence and error analysis reduces essentially to a one-dimensional
discretization problem for which results were proved some time ago, see e.g. KUzNETSOV [99], CRANDALL
and MAJDA [43], SANDERS [136]. In the case of general meshes, the numerical schemes are not generally
“TVD” (Total Variation Diminushing) and therefore the classical framework of the 1D case (see Section
21.5 page 141) may not be used. More recent works deal with several convergence results and error
estimates for time explicit finite volume schemes, see e.g. COCKBURN, COQUEL and LEFLOCH [32],
CHAMPIER, GALLOUET and HERBIN [25], VILA [158], KRONER and ROKYTA [95], KRONER, NOELLE
and ROKYTA [96], KRONER [94]: following Szepessy’s work on the convergence of the streamline diffusion
method (see SZEPESSY [143]), most of these works use DiPerna’s uniqueness theorem, see DIPERNA [46]
(or an adaptation of it, see GALLOUET and HERBIN [71] and EYMARD, GALLOUET and HERBIN [54]), and
the error estimates generalize the work by KuzNETSOV [99]. Here we use the framework of CHAMPIER,
GALLOUET and HERBIN [25], EYMARD, GALLOUET, GHILANI and HERBIN [52]; we prove directly that
any monotone flux scheme (defined below) satisfies a “weak BV” estimate (see lemmata 26.2 page 161
and 27.1 page 167). This inequality appears to be a key for the proof of convergence and for the error
estimate. Some convergence results and error estimates are also possible with some so called “higher
order schemes” which are not monotone flux schemes (briefly presented for the 1D case in section 22 page
146). These results are not presented here, see NOELLE [120] and CHAINAIS-HILLAIRET [22] for some
of them.

Note that the nonlinearity considered here is of the form v(z,t) f(u). This kind of flux is often encountered
in porous medium modelling, where the hyperbolic equation may then be coupled with an elliptic or
parabolic equation (see e.g. EYMARD and GALLOUET [49], VIGNAL [154], VIGNAL [155], HERBIN and
LABERGERIE [86]). Tt adds an extra difficulty to the case F'(u) because of the dependency on z and
t. Note again (see Remark 24.1) that the method which we present here for a nonlinearity of the form
v(z,t)f(u) also yields the same results in the case of a nonlinearity of the form F(z,t¢,u), see the recent
work of CHAINAIS-HILLAIRET [23].

The time implicit discretization adds the extra difficulties of proving the existence of the approximate
solution (see Lemma 27.1 page 165) and proving a so called “strong time BV estimate” (see Lemma 27.3
page 170) in order to show that the error estimate for the implicit scheme may still be of order h'/* even
if the time step k is of order v/h, at least in particular cases.

We first describe in section 25 finite volume schemes using a “general” mesh for the discretization of
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(24.1)-(24.2). In sections 26 and 27 some estimates on the approximate solution given by the numerical
schemes are shown and in Section 28 some entropy inequalities are proven. We then prove in section 29
the convergence of convenient subsequences of sequences of approximate solutions towards an entropy
process solution, by passing to the limit when the mesh size and the time step go to 0. A byproduct of
this result is the existence of an entropy process solution to (24.1)-(24.2) (see Definition 29.1 page 181).
The uniqueness of the entropy process solution to problem (24.1)-(24.2) is then proved; we can therefore
conclude to the existence and uniqueness of the entropy weak solution and also to the L = convergence
for any finite p of the approximate solution towards the entropy weak solution (Section 29). Using the
existence of the entropy weak solution, an error estimate result is given in Section 30 (which also yields
the convergence result). Therefore the main interest of this convergence result is precisely to prove the
existence of the entropy weak solution to (24.1)-(24.2) without any regularity assumption on the initial
data. Section 32 describes the notion of nonlinear weak-x convergence, which is widely used in the proof
of convergence of section 29.

Section 33 is not related to the previous sections. It describes a finite volume approach which may be
used to stabilize finite element schemes for the discretization of a hyperbolic equation (or system).

25 Meshes and schemes

Let us first define an admissible mesh of IR¢ as a generalization of the notion of admissible mesh of IR as
defined in definition 20.1 page 128.

Definition 25.1 (Admissible meshes) An admissible finite volume mesh of IRY, with d = 1,2 or 3
(for the discretization of Problem (24.1)-(24.2)), denoted by T, is given by a family of disjoint polygonal
connected subsets of IR? such that IR? is the union of the closure of the elements of 7 (which are called
control volumes in the following) and such that the common “interface” of any two control volumes is
included in a hyperplane of IR? (this is not necessary but is introduced to simplify the formulation).
Denoting by h = size(7T) = sup{diam(K), K € T}, it is assumed that h < +o00 and that, for some o > 0,

ah? <m(K),

m(9K) < Lhi-' VK € T, (25.1)

where m(K) denotes the d-dimensional Lebesgue measure of K, m(0K) denotes the (d — 1)-dimensional
Lebesgue measure of K (0K is the boundary of K) and N (K) denotes the set of neighbours of the
control volume K; for L € N(K), we denote by K|L the common interface between K and L, and by
nk, 1 the unit normal vector to K|L oriented from K to L. The set of all the interfaces is denoted by £.

Note that, in this definition, the terminology is “mixed”. For d = 3, “polygonal” stands for “polyhedral”
and, for d = 2, “interface” stands for “edge”. For d = 1 definition 25.1 is equivalent to definition 20.1
page 128.

In order to define the numerical flux, we consider functions g € C(IRQ,IR) satisfying the following
assumptions:

Assumption 25.1 Under Assumption 2.1 the function g, only depending on f, v, Uy, and Uy, satisfies

e g is locally Lipschitz continuous from IR? to IR,
e g(s,s8) = f(s), for all s € [Up, Un],

o (a,b) — g(a,b), from [U,,Un]? to R, is nondecreasing with respect to a and nonincreasing with
respect to b.
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Let us denote by g1 and go the Lipschitz constants of g on (U, Un)? with respect to its two arguments.

The hypotheses on g are the same as those presented for monotone flux schemes in the one-dimensional
case (see definition 21.1 page 134); the function g allows the construction of a numerical flux, see Remark
25.2 below.

Remark 25.1 In Assumption 25.1, the third item will ensure some stability properties of the schemes
defined below. In particular, in the case of the “explicit scheme” (see (25.4)), it yields the monotonicity
of the scheme under a CFL condition (namely, condition (25.3) with £ = 0). The second item is essential
since it ensures the consistency of the fluxes. All the examples of functions g given in Examples 21.1 page
135 satisfy these assumptions. We again give the important example of the “generalized 1D Godunov
scheme” obtained with a one-dimensional Godunov scheme for each interface (see e.g., for the explicit
scheme, see COCKBURN, COQUEL and LEFLOCH [32], VILA [158]),

b — max{f(s),b<s<a}ifb<a
9(a, ){ min{f(s), a <s <b}if a <9,

and also the framework of some “flux splitting” schemes:

g(a,b) = fi(a) + fa(b),
with f1, f2 € CY(R,IR), f = f1 + fa, f1 nondecreasing and f» nonincreasing (this framework is consider-

ably more simple that the general framework, because it reduces the study to the particular case of two
monotone nonlinearities).

Besides, it is possible to replace Assumption 25.1 on g by some slightly more general assumption, in order
to handle, in particular, the case of some “Lax-Friedrichs type” schemes (see Remark 30.1 below).

In order to describe the numerical schemes considered here, let 7 be an admissible mesh in the sense of
Definition 25.1 and & > 0 be the time step. The discrete unknowns are u%, n € IN*, K € 7. The set
{uY%, K € T} is given by the initial condition,

ul. = ﬁ /Kuo(:c)dx,VK €T, (25.2)

The equations satisfied by the discrete unknowns, u%, n € IN*, K € T, are obtained by discretizing
equation (24.1). We now describe the explicit and implicit schemes.

25.1 Explicit schemes

We present here the “explicit scheme” associated to a function g satisfying Assumption 25.1. In this case,
for stability reasons (see lemmata 26.1 and 26.2), the time step k € IR”. is chosen such that

o?h
V(g1 + g2)’

where £ € (0,1) is a given real value; recall that ¢g; and go are the Lipschitz constants of g with respect
to the first and second variables on [U,,, Up]? and that U, < ug < Uy a.e. and |v(z,t)] <V < 400,
for all (x,t) € IR? x IR,. Consider the following explicit numerical scheme:

E<(1-¢) (25.3)

n+l
ISR — > (ks gluhoh) = v 90 0) =0.VK €T Y€, (254)
LeN(K

where

(n+1)k
Vi = —/ / (v(z,t) -mg ) dy(z)dt
' k Jok K|L ’
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and
1 (’nJrl)k
vp g = E/ / (v(z,t) - np x)Tdy(z)dt
nk K|L
1 (’nJrl)k
= E/ / (v(z,t) - ng )" dy(z)dt.
nk K|L
Recall that a™ = aT0 and a~ = —(a_L0) for all @ € IR and that dv is the integration symbol for the

(d — 1)-dimensional Lebesgue measure on the considered hyperplane.

Remark 25.2 (Numerical fluxes) The numerical flux at the interface between the control volume K
and the control volume L € N(K) is then equal to vi ; g(uk,u}) — v} g g(uf,ul); this expression
yields a monotone flux such as defined in definition 21.1 page 134, given in the one-dimensional case.
However, in the multidimensional case, the expression of the numerical flux depends on the considered
interface; this was not so in the one-dimensional case for which the numerical flux is completely defined
by the function g.

The approximate solution, denoted by wr k, is defined a.e. from R? x R+ to IR by

urp(z,t) =ul, fe e K,t€ nk,(n+1)k), K€ T,necIN. (25.5)

25.2 Implicit schemes

The use of implicit schemes is steadily increasing in industrial codes for reasons such as robustness and
computational cost. Hence we consider in our analysis the following implicit numerical scheme (for which
condition (25.3) is no longer needed) associated to a function ¢ satisfying Assumption 25.1:

unJrl — u'y n n n n
m(K)KTK + Z (”%,L g(uKJrla ULH) — VI K g(uLHa UKH)) =0,VKeT,¥necIN. (25.6)
LeEN(K)

where {u%, K € T} is still determined by (25.2). The implicit approximate solution ur , is defined now
a.e. from R? x IR, to R by

ur(z,t) =uitt ifz € K, t € (nk,(n+1)k], K € T,n € IN. (25.7)

25.3 Passing to the limit

We show in section 29 page 181 the convergence of the approximate solutions w7 j (given by the numerical
schemes above described) towards the unique entropy weak solution u to (24.1)-(24.2) in an adequate
sense, when size(7T) — 0 and k — 0 (with, possibly, a stability condition). In order to describe the
general line of thought leading to this convergence result, we shall simply consider the explicit scheme
(that is (25.2), (25.4) and (25.5)) (the implicit scheme will also be fully investigated later).

First, in section 26, by writing u}’(ﬂ as a convex combination of uf and (u})ren (k). the L stabil-
ity is easily shown under the CFL condition (25.3) (u7 is proved to be bounded in L>(IR? x RY),
independently of size(T) and k).

Let T be an admissible mesh in the sense of Definition 25.1 page 156 and let & satisfy (25.3)); by a classical
argument, if any possible limit of a family of approximate solutions w7 j is the entropy weak solution to
problem (24.1)-(24.2) then u7j converges (in L(IR* x IR%.) for the weak-x topology, for instance), as
h = size(T) — 0 (and k satisfies (25.3)), towards the unique entropy weak solution to problem (24.1)-
(24.2). Unfortunately, the L estimate of section 26 does not yield that any possible limit of a family
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of approximate solutions is solution to problem (24.1)-(24.2), even in the linear case (f(u) = u) (see the
proofs of convergence of Chapter 5). The “BV stability” can be used (combined with the L stability)
to show the convergence in the case of one space dimension (see section 21.5 page 141) and in the case of
Cartesian meshes in two or three space dimensions. Indeed, in the case of Cartesian meshes, assuming
uo € BV(IR?) and assuming (for simplicity) v to be constant (a generalization is possiblefor v regular
enough), the following estimate holds, for all T' > k:

Nt

£ S mKIL)uf -} < Thioly e,
n=0 K|Le&

where N € IN is such that (Np g + 1)k <T < (N + 2)k, and the values u’ are given by (25.2) and
(25.4). Such an estimate is wrong in the general case of admissible meshes in the sense of Definition 25.1
page 156, as it can be shown with easy counterexamples. It is, however, not necessary for the proof of
convergence. A weaker inequality, which is called “weak BV” as in the one-dimensional case (see lemma
21.3 page 137) will be shown in the multidimensional case for both explicit and implicit schemes (see
lemmata 26.2 page 161 and 27.1 page 167); the weak BV estimate yields the convergence of the scheme in
the general case. As an illustration, consider the case f' > 0; using an upwind scheme, i.e. g(a,b) = f(a),
the weak BV inequality (26.4) page 161, which is very close to that of the 1D case (lemma 21.3 page
137), reads

Nt

k n n ny ny| <
7;0 (K7LZ)65§(’UK7L +or k)| f(ug) — flul)] < Jh

= (25.8)

where £ = {(K,L) € T?,L € N(K),K|L C B(0,R) and u% > u7}} and C only depends on v, g, ug, @,
&, R and T (see Lemma 26.2).
We say that Inequality (25.8) is “weak”, but it is in fact “three times weak” for the following reasons:

1. the inequality is of order ﬁ, and not of order 1.

2. In the left hand side of (25.8), the quantity which is associated to the K|L € £} interface is zero
if f is constant on the interval to which the values v} and u} belong; variations of the discrete
unknowns in this interval are therefore not taken into account.

3. The left hand side of (25.8) involves terms (v j + v} ;) which are not uniformly bounded from
below by C' m(K|L) with some C' > 0 only depending on the data (that is v, ug and g) and not on
T (note that, for instance, vy ; = v} x = 0if v -ng 1 = 0).

For the convergence result (namely Theorem 29.2 page 188) the useful consequence of (25.8) is

Nt

hY kY (W + ool f(uk) = f(ul)] — 0as h— 0,
n=0 (K,L)EEY

as in the 1D case, see Theorem 21.1 page 139. For the error estimate in Theorem 30.1 page 189, the
bound C/+/h in (25.8) is crucial. Note that a “twice weak BV” inequality in the sense (ii) and (iii), but
of order 1 (that is C instead of C/ v/l in the right hand side of (25.8)), would yield a sharp error estimate,
i.e. Coh'/? instead of C.hY* in (30.1) page 189.

Note that, in order to obtain (25.8), £ > 0 is crucial in the CFL condition (25.3).

Recall also that (25.8) together with the L= (IR x IR*.) bound does not yield any (strong) compactness

1

I (R xR, ) on a family of approximated solutions.

property in L

In the linear case (that is f(s) = es for all s € IR, for some ¢ in IR), the inequality (25.8) is used in
the same manner as in the previous chapter; one proves that the approximate solution satisfies the weak
formulation to (24.1)-(24.2) (which is equivalent to (24.4)) with an error which goes to 0 as h — 0, under
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condition (25.3). We deduce from this the convergence of ur  (as h — 0 and under condition (25.3))
towards the unique weak solution of (24.1)-(24.2) in L> (IR x IR?) for the weak-% topology. In fact, the
convergence holds in Lfoc(le x IRy) (strongly) for any 1 < p < oo, thanks to the argument developped
for the study of the nonlinear case.

The nonlinear case adds an extra difficulty, as in the 1D case; it will be handled in detail in the present
chapter. This difficulty arises from the fact that, if ur ; converges to u (as h — 0, under condition (25.3))
and f(ur k) to pg, in L™ (R x IR?) for the weak-x topology, there remains to show that py = f(u) and
that w is the entropy weak solution to problem (24.1)-(24.2). The weak BV inequality (25.8) is used to
show that, for any “entropy” function 7, i.e. convex function of class C! from IR to IR, with associated
entropy flux ¢, i.e. ¢ such that ¢’ = f'r/, the following entropy inequality is satisfied:

/IR+ /}Rd (un(x,t)got(x,t) + pg(x, t)v(z,t) - V(p(x,t))dxdt + /Rd n(uo(x))e(x,0)dx > 0, (25.9)
Vi € CX(RTx Ry, Ry),

where j,, (tesp. jg) is the limit of n(ur ) (resp. @(urx)) in L=(IRY x IR?) for the weak-+ topology
(the existence of these limits can indeed be assumed). From (25.9), it is shown that ur j converges to u
in L), (R* x Ry) (as h — 0, k satisfying (25.3)), and that u is the entropy weak solution to problem
(24.1)-(24.2). This last result uses a generalization of a result on measure valued solutions of DiPerna

(see DIPERNA [46], GALLOUET and HERBIN [71]), and is developped in section 29 page 181.

26 Stability results for the explicit scheme

26.1 L stability

Lemma 26.1 Under Assumption 24.1, let T be an admissible mesh in the sense of Definition 25.1 and
k>0, let g € C(IR?,IR) satisfy Assumption 25.1 and assume that (25.8) holds; let urx be given by
(25.5), (25.4), (25.2); then,

Unp <up <Upy,VneIN,VK €T, (26.1)

and

lur kll Lo raxmey) < luoll oo (ra)- (26.2)

PROOF of Lemma 26.1

Note that (26.2) is a straightforward consequence of (26.1), which will be proved by induction. For n = 0,

since U, < ug < Uy a.e., (26.1) follows from (25.2).

Let n € IN, assume that U,, < u} < Uy for all K € 7. Using the fact that divv = 0, which yields
Z (Vi — Vi k) =0, we can rewrite (25.4) as

LeN(K)
n+1

m(K) S S (gl u) — FO)) — oF ol k) — FR)) =0, (263)
LeN(K)

Set, for u'y # u},

n 9ug,up) — flug) 0 glup, uf) — fluk)
VK, L n n — VLK n n
Up — Uy, U —Up,

TI@,L = ’
and T ;= 0 1if uy = uf.

Assumption 25.1 on g and Assumption 24.1 yields 0 < 7 ; < Vm(K|[L)(g1 + g2). Using (26.3), we can
write
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n k n
UK+1 = (1 - M Z TK,L) Z TR, LUL,

LeN (K) LEJ\/(K)
which gives, under condition (25.3), 1nf uL < u”Jr1 < sup uf, for all K € T. This concludes the proof
LeT
of (26.1), which, in turn, yields (26.2).

Remark 26.1 Note that the stability result (26.2) holds even if £ = 0 in (25.3). However, we shall need
& > 0 for the following “weak BV” inequality.

26.2 A “weak BV?” estimate

In the following lemma, B(0, R) denotes the ball of IR? of center 0 and radius R (IR® is always endowed
with its usual scalar product).

Lemma 26.2 Under Assumption 24.1, let T be an admissible mesh in the sense of Definition 25.1 and
k> 0. Let g € C(IR* TR) satisfy Assumption 25.1 and assume that (25.3) holds. Let ur ) be given by
(25.5), (25.4), (25.2).

LetT >0, R >0, Nrj = max{n € N,n < T/k}, Tp = {K € T,K C B(0,R)} and £} = {(K,L) €
T2, L e N(K),K|L C B(0,R) and u% > u?}}.

Then there exists C' € IR, only depending on v, g, ug, o, &, R, T such that, for h < R and k < T,

Nt

Sk > [k, max  (olep) ~ f@)+  max  (s(a.p) ~ F0)+
n=0 (K,L)e€} B <psa<ui w IEX
vi.x (uz nex (@) —9pa)+ | max . (F(p) = 9(p.9) ] (26.4)
< ©
SN
and
N 1
i - ] < 26.5
T;JK;R uitl < Vh (26.5)

PROOF of Lemma 26.2

In this proof, we shall denote by C; (i € IN) various quantities only depending on v, g, ug, o, &, R, T.
Multiplying (26.3) by ku’ and summing the result over K € Tg, n € {0,..., Ny} yields

B1+ By =0, (26.6)
with
Ntk
B, = Z Z m(K)uf (uitt —uly),
n=0KeTr
and

N i

Zk’z Z (’UKL uK’UZ)_f(“TIl())“?(_UZ,K(!](UZ,UT}()—f(u’;{))u}‘()_

n=0 Ke&Tr LEN(K

Gathering the last two summations by edges in By leads to the definition of Bj:
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Nt

Bo=>"k 3 | vpn(uhgluk,up) - f(uk)) - up (g, up) - F(u}))) -

n=0 (K,L)e€n
of e (e (o we) = FQui)) = whg(ufui) — F(up)) ) |

The expression | B3 — Bs| can be reduced to a sum of terms each of which corresponds to the boundary of a
control volume which is included in B(0, R+h)\ B(0, R—h); since the measure of B(0, R+h)\ B(0, R—h)
is less than Cyh, the number of such terms is, for n fixed, lower than (Cyh)/(ah?) = C3h'~?. Thanks to
(26.2), using the fact that m(0K) < (1/a)h?~t, that |v(x,t)| <V, that g is bounded on [U,,, Up]?, and
that g(s,s) = f(s), one may show that each of the non zero term in |Bs — Bs| is bounded by C;h?~1.
Furthermore, since (N + 1)k < 2k, we deduce that

|Bs — By| < Cy. (26.7)

Denoting by ® a primitive of the function () f’(-), an integration by parts yields, for all (a,b) € R?,

b b
®(b) — ®(a) = / sf'(s)ds = b(f(b) — g(a,b)) — a(f(a) — g(a,b)) — / (f(s) —g(a,b))ds.  (26.8)

Using (26.8), the term Bs may be decomposed as

B3 = B4 — Bs,
where
Ntk uy Up
Bi=Sk 3 <K [ 006) = atuiecupas + i [ (f(s)—g(uz,u}?))ds>
n=0 (K,L)e&n Uk uf
and

Bs ="k Y (ks —vie)(®wk) - @)

n=0 (K,L)EE}

The term By is again reduced to a sum of terms corresponding to control volumes included in B(0, R +
h)\ B(0, R — h), thanks to divv = 0; therefore, as for (26.7), there exists C5 € IR such that

B5 < 05.

Let us now turn to an estimate of By. To this purpose, let a, b € IR, define C(a,b) = {(p, q) € [aLb,aTb]%
(¢ —p)(b—a) > 0}. Thanks to the monotonicity properties of ¢ (and using the fact that g(s, s) = f(s)),
the following inequality holds, for any (p,q) € C(a,b):

b d q
/ (f(s) — g(a,b))ds > / (f(s) = g(a,b))ds = / (f(s) = g(p,q))ds = 0. (26.9)
a c p
The technical lemma 18.5 page 110 can then be applied. It states that
| [ 06) ~ 0)is| = 500~ 0017, Vg€ R
» — 2G ) ) )

for all monotone, Lipschitz continuous function 6 : IR — IR, with a Lipschitz constant G > 0.
From Lemma 18.5, we can notice that

/q(f(S) —9(p,q))ds > /q(g(p, 5) —g(p,q))ds > QLQQ(f(p) —9(p,q))?, (26.10)
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and

[ 66 - swands = [ (6060 - 9tp0)ds = 5 (@) - 9(p.0)> (26.11)

Multiplying (26.10) (resp. (26.11)) by g2/(g1 + g2) (resp. ¢g1/(g1 + ¢2)), taking the maximum for (p,q) €
C(a,b), and adding the two equations yields, with (26.9),

1 ) 2
2(g1 + 92) (@,q?é%)fa,b)(f(p) —9pa)"+ | max | (f(a) -~ 9(p,q)) ) (26.12)

b
[ ) - glabyis >
We can then deduce, from (26.12):
Nt

1
Ba= 2(91+g2)zk Z

n=0 (K,L)e€n

v max ,P) — + max ,P) — )+
ter (o (o(0.p) = F@)P + |, max | (o(a.p) — T()
2 2
s max — , + max — , )} .
Bac(y max (@) = o(p.0)* + | max (/) = 9(p. )
This gives a bound on Bs, since (with Cg = Cy + Cj):
By > By — Cg. (26.14)
Let us now turn to By. We have
Ry 1 1 2
n n Nt +1
Bi=—3% Y mE) i —ui)’ +5 Y m(K) (uK” ) -5 m(K)(u(}() . (26.15)
n=0K€eTr KeTr KeTr

Using (26.3) and the Cauchy-Schwarz inequality yields the following inequality:

> ot vka) Y (v (k) — FR)) o (oud i) — Fg)) .

2
m(K) LEN(K) LEN(K)
Then, using the CFL condition (25.3), Definition 25.1 and part (iv) of Assumption 24.1 gives

m(K)(uf" —uf)® <

1- 6 n n n n 2 n n ,n n 2
k T Z {UK,L (g(uKa up) — f(UK)) t UL K (g(uLa ufc) — f(UK)) } (26.16)
g1+ g2 LEN(K)

Summing equation (26.16) over K € Tg and over n = 0,..., Ny, and reordering the summation leads
to

NT k N i

n+1 n 2
5 > u —uk) S gy 2k D
2 KT 291 + 92) 1= (K,L)eEn

(26.17)
v;z,L(w(u;z, Wp) = Fu5))? + (gl wp) — F(uf))? )+

of e ((F) = g, wi) + (F () — g, wi)?) | + o,

where C7 accounts for the interfaces K|L C B(0, R) such that K ¢ Tg and/or L ¢ Tr (these control
volumes are included in B(0, R+ h) \ B(0, R — h)).
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Note that the right hand side of (26.17) is bounded by (1 — &)Bs + C7 (from (26.13)). Using (26.6),
(26.14) and (26.15) gives

Ntk
k { vR ( max_ (g(¢,p) — f(q))* +  max gq,p*fp2)+
eSS T o 2 i | (2, 000 1 e o) = )
(00 g 01007
Bac (y max  (F@) = 9(p0)* & max | (7(7) ~ 9(p. )
1 0\?2
5 > m(K) (uK) +Cs + Cr = Cs.
KeTr
(26.18)
Applying the Cauchy-Schwarz inequality to the left hand side of (26.4) and using (26.18) yields
Nt
k { Uk ( max  (g(q,p) — f(q)) + | max (g(q,p) — f )+
Sk 3 [ ke, ben =10 s 6= 50
v} a - , + a — , )} .
Bac(, msnc | (F(0) —0p.0) + |, s () — g(og (26.19)
NTk 1
n 2
< cg(Zk > ko)
n=0 (K,L)e&p
Noting that
0,R+h)) Cio
K < hd 1m( ( ) _ 10
Z (Vi +vi k) < Z Vm(90K) V — A
(K,L)EE" KeTryn
and (N7 + 1)k < 2T, one obtains (26.4) from (26.19).
Finally, since (26.3) yields
m(K) i — il <k Y0 (ikclo(uiul) = F@il +of glg(ug,ufe) = Fi)l)
LEN(K)
Inequality (26.5) immediately follows from (26.4). This completes the proof of Lemma 26.2. m

27 Existence of the solution and stability results for the implicit
scheme

This section is devoted to the time implicit scheme (given by (25.6) and (25.2)). We first prove the
existence and uniqueness of the solution {u},n € IN,K € T} of (25.2), (25.6) and such that u}, €
[Upm, U] for all K € T and all n € IN. Then, one gives a “weak space BV” inequality (this is equivalent
to the inequality (26.4) for the explicit scheme) and a “(strong) time BV” estimate (Estimate (27.14)
below). This last estimate requires that v does not depend on ¢ (and it leads to the term “k” in the right
hand side of (30.2) in Theorem 30.2). The error estimate, in the case where v depends on ¢, is given in
Remark 30.2.

27.1 Existence, uniqueness and L*> stability

The following proposition gives an existence and uniqueness result of the solution to (25.2), (25.6). In
this proposition, v may depend on ¢ and one does not need to assume ug € BV(]Rd).



165

Proposition 27.1 Under Assumption 24.1, let T be an admissible mesh in the sense of Definition 25.1
and k > 0. Let g € C(IR*,IR) satisfy Assumption 25.1.
Then there exists a unique solution {uj,, n € IN, K € T} C [Up,,Unm]| to (25.2),(25.6).

PROOF of Proposition 27.1

One proves Proposition 27.1 by induction. Indeed, {u%, K € T} is uniquely defined by (25.2) and one
has u9% € [Uy, Upyl, for all K € T, since Uy, < ug < Ups a.e.. Assuming that, for some n € IN, the
set {u, K € T} is given and that v} € [Uy,,,Un], for all K € T, the existence and uniqueness of
{u%', K € T}, such that u%"! € [U,,, Up] for all K € T, solution of (25.6), must be shown.

Step 1 (uniqueness of {u', K € T}, such that 'yt € Uy, Un] for all K € T, solution of (25.6))
Recall that n € IN and {u, K € T} are given. Let us consider two solutions of (25.6), respectively
denoted by {ux, K € T} and {wg, K € T}; therefore, {ug, K € T} and {wg, K € T} satisty {ux,
K e T} C [Um,U]u], {wK, K e T} C [Um,U]u],

U — u%
m(K)% + Z (vi. 1 9(ux,ur) —vf i g(ur,uk)) =0, VK € T, (27.1)
LeN(K)
and
wr — Uy
mm% + Y (Wi glwi,we) — o} i glwr,wk)) =0, VK €T. (27.2)
LEN(K)

Then, substracting (27.2) to (27.1), for all K € T,

m(kK) (ug —wk) + Le;(m Ve, (9(uk s ur) — g(wi, ur))

+ Y vkplglwr,un) = glwg,wp)) = Y vE g(gun,ux) = glwr, uk)) (27.3)
LeN(K) LEN(K)

- > i glg(wr,uk) = g(wr, wi)) =0

LeN(K)

thanks to the monotonicity properties of g, (27.3) leads to

m(K
Utk —wkl + Y viclatu us) — gl ur)
LeN(K)
+ 3 o la(wruk) —glwrw) <3 vk lg(wi ur) — glwk,wy) (27.4)
LeN(K) LEN(K)
+ Z V7 klg(ur, uk) — glwr, ur)|.
LeN(K)

Let ¢ : R+ R% be defined by ¢(z) = exp(—~|z|), for some positive 4 which will be specified later.
For K € T, let @i be the mean value of ¢ on K. Since ¢ is integrable over IR? (and thanks to (25.1)),
one has )7 ¢r < (1/(ozhd))||gp||L1(Rd) < 00. Therefore the series

e Y vRpla(wi,un) — glw,we)l) and > (> vF glg(ur,u) = glwe, ur))

KeT LeN(K) KeT LeN (K)

are convergent (thanks to (25.1) and the boundedness of v on IR? and g on [U,,,, Ups]?).
Multiplying (27.4) by ¢k and summing for K € T yields five convergent series which can be reordered
in order to give
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m(K "
> (k )|UK —wiler <Y Y vk plglu,ur) — g(wic, ur)|lek — il

KeT KeT LEN(K)
+Y 0> v klglwr, uk) — g(wr, wi)|lex — L),
KeT LEN(K)

from which one deduces

Z aglug —wg| < Z b |ux — wk|, (27.5)
KeT KeT

with, for all K € T, ax = #@K and by = Z (Vi.L91 + VL k92)lPK — oLl
LeN(K)
For K € T, let xx be an arbitrary point of K. Then,

1
ax > Eahd inf{p(x), z € B(zk,h)}

and

bK<

VDL 92) 0 (| Vep(a), = € Bl 20},

Therefore, taking v > 0 small enough in order to have

inf{o(y), y € B(z,h)} > Csup{|Ve(y)|, y € B(z,2h)}, Vo € R? (27.6)

with C' = (2kV (g1 + g2))/a?, yields ax > by for all K € T. Hence (27.5) gives ux = wy, for all K € T.
A choice of v > 0 verifying (27.6) is always possible. Indeed, since |Vp(z)| = vexp(—7|z|), taking v > 0
such that vy exp(3yh) < 1/C is convenient.

This concludes Step 1.

Step 2 (ewistence of {u'x"', K € T}, such that s € [Uy,, Ung] for all K € T, solution of (25.6)).
Recall that n € IN and {ul, K € T} are given. For r € N*, let B, = B(0,r) = {z € R?, |z| < r} and
T.={K €T, K C B} (as in Lemma 26.2). Let us assume that r is large enough, say r > rq, in order
to have T, # (.

IfKeT\T,set u%) = u'%. Let us first prove that there exists {u%), K € 7.} C [Un, Un, solution to
ug — (r) () (1) ()
m(K)T + Z (U?(,L glug’suy’) — UE,K glup’ up’)) =0, VK € T,. (27.7)
LeN (K)

Then, we will prove that passing to the limit as » — oo (up to a subsequence) leads to a solution
{u', K € T} to (25.6) such that u};t € [U,,, Un] for all K € T

For a fixed r > rg, in order to prove the existence of {ug), K € T;} C [Un, U] solution to (27.7), a
“topological degree” argument is used (see, for instance, DEIMLING [45] for a presentation of the degree).

Let U = {u%, K € T,} and assume that U, = {u(lp, K € T,} is a solution of (27.7). The families U,
and U? may be viewed as vectors of RY, with N = card(7;.). Equation (27.7) gives

s k n r I n T T n
U(I()+M Z (Vi1 g(ug()aU(L))*vL,K g(U(L)vug()))ZUKVKETT’
LEN(K)

which can be written on the form

U, — G.(U,) =UP", (27.8)

where G, is a continuous map from IR™ into RY.
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One may assume that g is nondecreasing with respect to its first argument and nonincreasing with
respect to its second argument on R? (indeed, thanks to the monotonicity properties of g given by
Assumption 25.1, it is sufficient to change, if necessary, g on IR? \ [Unm,Un]?, setting, for instance,
g(a,b) = g(Up, T(UnLa), U, T(UnrLd))). Then, since uly € [Up,, Un], for all K € T, and u%) =ul} €
[Un, Upr], for all K € T \ T, it is easy to show (using div(v) = 0) that if U, satisfies (27.8), then one
has u(;) € [Um,Unm], for all K € T,. Therefore, if C, is a ball of IRY of center 0 and of radius great
enough, Equation (27.8) has no solution on the boundary of C,., and one can define the topological degree
of the application Id — G, associated to the set C, and to the point U, that is deg(Id — G,,C,,U").
Furthermore, if A € [0,1], the same argument allows us to define deg(Id — AG,,C,,U"). Then, the
property of invariance of the degree by continuous transformation asserts that deg(Id — AG,., C,, U) does
not depend on A € [0, 1]. This gives

deg(Id — G,,C.,U") = deg(Id,C,.,U).
But, since U}' € C,,

deg(Id,C.,U") = 1.

Hence

deg(Id — G,,C.,U") # 0.

This proves that there exists a solution U, € C, to (27.8). Recall also that we already proved that the
components of U, are necessarily in [U,,, U]

In order to prove the existence of {u%!, K € T} C [Upn, Upr] solution to (25.6), let us pass to the limit
as r — oo. For r > rg, let {ug), K € T} be a solution of (27.7) (given by the previous proof). Since

u(r), r € IN} is included in [U,,, U], for all K € T, one can find (using a “diagonal process”) a sequence
K g &
(r)iew, with 7 — oo, as | — oo, such that (u}});en converges (in [Uy,, Up]) for all K € T. One sets

uit! = limy_,oo u}t. Passing to the limit in (27.7) (this is possible since for all K € T, this equation is
satisfied for all [ € IN large enough) shows that {u’"*, K € T} is solution to (25.6).

Indeed, using the uniqueness of the solution of (25.6), one can show that u%) — u?jl

KeT.
This completes the proof of Proposition 27.1. [

, as 7 — oo, for all

27.2 “Weak space BV” inequality

One gives here an inequality similar to Inequality (26.4) (proved for the explicit scheme). This inequality
does not make use of ug € BV(]Rd) and v can depend on ¢. Inequality (26.5) also holds but is improved
in Lemma 27.3 when ug € BV(le) and v does not depend on ¢.

Lemma 27.1 Under Assumption 24.1, let T be an admissible mesh in the sense of Definition 25.1 and
k> 0. Let g € C(IR? IR) satisfy Assumption 25.1 and let {ul,n € N, K € T} be the solution of (25.6),
(25.2) such that 't € [Up, Un) for all K € T and all n € N (existence and uniqueness of such a
solution is given by Proposition 27.1).

Let T >0, R >0, Npp =max{n € N,n < T/k}, TR ={K € T,K C B(0O,R)} and €}, = {(K,L) €
T2, L e N(K),K|L C B(0,R) and u} > u?}}.

Then there exists C,, € IR, only depending on v, g, ug, o, R, T such that, for h < R and k < T,
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Ntk

kY] {v?@( max  (g(¢,;p) — f(q))+  max (g(q,p)—f(p)))Jr

’u,nJr1<p<q<u71+1 un+1<p<q<un+1
n=0 (K,L)Egg+l L =1 ="K L == ="K

(L max  (f@-gwa)+ | max  (F) -gwa))] 7Y

1 1 1 1
up T <p<g<ul uf T <p<g<ul

Furthermore, Inequality 26.5 page 161 holds.

PROOF of Lemma 27.1

We multiply (25.6) by ku?jl, and sum the result over K € Tp and n € {0,...,Np}. We can then
follow, step by step, the proof of Lemma 26.2 page 161 until Equation (26.15) in which the first term of
the right hand side appears with the opposite sign. We can then directly conclude an inequality similar
to (26.18), which is sufficient to conclude the proof of Inequality (27.9). Inequality 26.5 page 161 follows
easily from (27.9). L]

27.3 “Time BV?” estimate

This section gives a so called “strong time BV estimate” (estimate (27.14)). For this estimate, the
fact that ug € BV (IR?) and that v does not depend on t is required. Let us begin this section with a
preliminary lemma on the space BV (IR).

Lemma 27.2 Let T be an admissible mesh in the sense of Definition 25.1 page 156 and let u € BV(IRd)
(see Definition 21.19 page 141). For K € T, let ux be the mean value of u over K. Then,

c
> m(K[Dluk —uzl < —lulpy ). (27.10)
K|Leg&

where C' only depends on the space dimension (d =1, 2 or 3).

PROOF of Lemma 27.2

Lemma 27.2 is proven in two steps. In the first step, it is proved that if (27.10) holds for all u €
BV(R% N CY(IR% R) then (27.10) holds for all u € BV(IR?). In Step 2, (27.10) is proved to hold for
u e BV(RY) NnCY(RY, R).

Step 1 (passing from BV(IR?) N CY (R, R) to BV (IRY))

Recall that BV(R?) € L}, .(RY). Let u € BV (IR), let us regularize u by a sequence of mollifiers.

Let p € C°(IR%, IR, ) such that Ja p(z)dz = 1. Define, for all n € IN*, p, by pn(x) = np(nz) for all
z € R% and u,, = U * P, that is

wnle) = [ oo =)y Vo € R

It is well known that (uy,),en~ is included in C*°(IR? IR) and converges to u in L}, (IR%) as n — oo.
Then, the mean value of w, over K converges, as n — oo, to ug, for all K € 7. Hence, if (27.10)
holds with u,, instead of u (this will be proven in Step 2) and if |un|py (ray < |u|gy (ray for all n € IN7,
Inequality (27.10) is proved by passing to the limit as n — co.

In order to prove |un|py ey < |u[py(re) for all n € IN* (this will conclude step 1), let n € IN* and
¢ € C*(R*R?) such that |p(z)] < 1 for all z € R? A simple computation gives, using Fubini’s
theorem,
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| u@aive@is = [ ([ @ pivel)ds) o)y < oy, @711

since, setting ¥, = p(y+ ) € C (RY, RY) (for all y € RY),

/ u(z — y)divp(z)de = / u(z)divey (2)dz < |u| gy (ray, Yy € R4,
R4 R4

and

/Rd pn(y)dy = 1.

Then, taking in (27.11) the supremum over ¢ € C°(IR¢,IR?) such that |p(x)| < 1 for all z € IR? leads
to [un|py(re) < [ulpyv(re)-

Step 2 (proving (27.10) if u € BV(R%) n CY(R%,R))

Recall that B(z, R) denotes the ball of IR? of center z and radius R. Since u € C'(R% R),

/IRd u(z)divp(x)de = — /}Rd Vu(z) - p(z)dz.

Then |u| gy (ray = [|[(IVul)|| 1 (ray and we will prove (27.10) with |[(|Vul)|[ 11 (re) instead of [u|gy (ra)-
Let K|L € £, then K € T, L € N(K) and

quuLf // y))dzdy.

Forall z € K and all y € L,

- [ Vit ta =) - = par

Then,

m(K)m(L |uK—uL|</// [Vu(y + t(z — y))||x — y|dtdz)dy

s/ / / Vuly + t(z —y)llo — yldzdt)dy

Using |z — y| < 2h and changing the variable x in z = z — y (for all fixed y € L and ¢ € (0,1)) yields

1
m(K)m(L)|ug —ur| < 2h/(/ / [Vu(y + tz)|dzdt)dy,
L Jo JB(0,2n)

which may also be written (using Fubini’s theorem)

m(K)m(L)|ugx —ur| < 2h/B(0 2h)(/0 /L [Vu(y + tz)|dydt)dz. (27.12)

For all K € T, let xx be an arbitrary point of K.
Then, changing the variable y in £ = y + tz (for all fixed z € L and ¢ € (0,1)) in (27.12),

1
m(K)m(L)|uxg —ur| < 2h (/ / |Vu(€)|dEdt)dz
B(0,2h B(x1,3h

which yields, since T is an adimissible mesh in the sense of Definition 25.1 page 156,
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d

2h
(KD —us] < SpmBO.20) [ V(@)

Therefore there exists C7, only depending on the space dimension, such that

m(K|L)|ug —ur| < %/ [Vu(é)|dé, VKL € E. (27.13)
Q” JB(xr,,3h)

Let us now remark that, if M € T and L € T, M N B(x,3h) # () implies L C B(xps,5h). Then, for a

fixed M € T, the number of L € T such that M N B(z,3h) # () is less or equal to m(B(0,5h))/(ah?)

that is less or equal Co/a where Cy only depends on the space dimension.

Then, summing (27.13) over K|L € £ leads to

CC CC
S (K D ) < 523 /w IVu(©)lde = P IVl s

o
K|Le€& MeT

that is (27.10) with C' = C1Cs. n

Note that, in Lemma 27.2 the estimate (27.10) depends on «. This dependency on « is not necessary
in the one dimensinal case (see (19.6) in Remark 19.4) and for particular meshes in the two and three
dimensional cases. Recall also that, except if d = 1, the space BV (IR%) is not included in L>*(R%). In
particular, it is then quite easy to prove that, contrary to the 1D case given in Remark 19.4, it is not
possible, for d = 2 or 3, to replace, in (27.10), ux by the mean value of uw over an arbitrary ball (for
instance) included in K.

Let us now give the “strong time BV estimate”.

Lemma 27.3 Under Assumption 24.1, let T be an admissible mesh in the sense of Definition 25.1 and
k> 0. Let g € C(R%*R) satisfy Assumption 25.1. Assume that ug € BV (IR?) and that v does not
depend on t.

Let {u},,n € IN, K € T} be the solution of (25.6), (25.2) such that u}y € [Up, Upn) for all K € T and all
n € IN (existence and uniqueness of such a solution is given by Proposition 27.1 page 165).

Then, there exists Cy, only depending on v, g, ug and « such that

K
Z % uttt — | < Gy, ¥n € IN. (27.14)

KeT
PROOF of lemma 27.3
Since v does not depend on ¢, one denotes vy, = vy r, for all K € T and all L € N(K).
For n € IN, let

S m(k Jugc — ukl
A = m _—_—
KeT

and
Bu=> | > [k gufe,uf)—vrx g(uf,ui)]l.
KeT LeN(K)

Since ug € BV(]Rd) and divv = 0, there exists C}, > 0, only depending on v, g, up and «, such that
By < . Indeed,

Bo< Y > Vigi+g2)m(K|L)|uf —ul.
KeT LEN(K)
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Thanks to lemma 27.2, By < Cy, with Cj, = 2V (g1 4 g2)C(1/a*)|uo| gy (<), where C only depends on the
space dimension (d =1, 2 or 3).

From (25.6), one deduces that B,11 < A,, for all n € IN. In order to prove Lemma 27.3, there only
remains to prove that A, < B,, for all n € IN (and to conclude by induction).

Let n € IN, in order to prove that A, < B, recall that the implicit scheme (25.6) reads

utt —
m(K)—H——+ ) (UKL gl upt) —vp i g(uft, ’;(“)) —0. (27.15)
LeEN(K)

From (27.15), one deduces, for all K € T,

n+1

uttt — o §

m(K)KTK + Y vk (g gt — g, upth)
LeN(K)

b 2 v (k™) ko)) = B v (o0 R - gt )
LeN(K LEN(K)
B S (oupui™) = gl o))
LeN(K)
- Z vk, 9(ufe, ug) + Z vr,kx g(uf, ug).

LEN (k) LENTK)

Using the monotonicity properties of g, one obtains for all K € T,

n+1
U —U n n n n
m(O) P S g ) — gl )
LeN(K)
+ Y vk gl uitt) = g(uf, ug))|
LEN(K) (27.16)
< = > wkngluiut)+ > ok g(uf,uk)|
LeN(K) LeN(K)
+ Y vk gl ut ™) — g(ui,u) |+ Y vnk lguit uit) — g(u, up™h).
LEN(K) LEN(K)

In order to deal with convergent series, let us proceed as in the proof of proposition 27.1. For 0 < v < 1,
let o, : R — IR’ be defined by ¢ () = exp(—~|z|).

For K € T, let ¢ i be the mean value of ¢, on K. As in Proposition 27.1, since ¢~ is integrable over
RY, Y ke Py, i < 00. Therefore, multiplying (27.16) by ¢, x (for a fixed ) and summing over K € T
yields six convergent series which can be reordered to give

lug — u|

Z (K) k K (10'77K

KeT

<Y =Y vkpgluguf)+ Y vnk g(ulup)lesx
KeT  LeN(K) LeN(K)

22 s Lo R gt — glufe, uf Y oy — 9y il
KeT LeEN(K

+Z Z VL, K lg(uF,u )*Q(UTLIaUTII()||<P'y,K*SD'vyL|~
KeT LEN(K)

For K € T, let xx € K be such that ¢, x = ¢, (7). Let K € T and L € N(K). Then there exists
s € (0,1) such that ¢y 1, — ¢y xk = Voo (2 + s(zr — 2K)) - (21 — 2K). Using |V, (z)| = vexp(—v|z]),
this yields [0y, — ¢y, x| < 2hy exp(2hy) iy, < 2hy exp(2h) @y k-
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Then, using the assumptions 24.1 and 25.1, there exists some a only depending on k, V, h, «, g1 and g2
such that

n+1 n
> ()M = 1 qa)
KeT
< Z | — Z vk, Lg(u, ur) + Z vr,k g(ur, ug)|py,x < By.
KeT  LeEN(K) LEN(K)

Passing to the limit in the latter inequality as v — 0 yields A,, < B,,. This completes the proof of Lemma
27.3. [

28 Entropy inequalities for the approximate solution

In this section, an entropy estimate on the approximate solution is proved (Theorem 28.1), which will
be used in the proofs of convergence and error estimate of the numerical scheme. In order to obtain
this entropy estimate, some discrete entropy inequalities satisfied by the approximate solution are first
derived.

28.1 Discrete entropy inequalities

In the case of the explicit scheme, the following lemma asserts that the scheme (25.4) satisfies a discrete
entropy condition (this is classical in the study of 1D schemes, see e.g. GODLEWSKI and RAVIART [75],
GODLEWSKI and RAVIART [76]).

Lemma 28.1 Under assumption 24.1 page 153, let T be an admissible mesh in the sense of Definition
25.1 and k > 0. Let g € C(R? R) satisfying assumption 25.1 and assume that (25.3) holds.

Let uty be given by (25.5), (25.4), (25.2); then, for oll k € R, K € T and n € IN, the following
inequality holds:

|u7ll(+1 — ’i| — |u7}( — ’i| n n n n n
m(K) A + Z [ VI (g(uKT/ﬁ, Ut TK) — g(uKLFa,uLLFa))—
LeN(K) (28.1)

vz,K<g(u’LlTn, ukTr) — g(uf Lk, ’U,?(J_Ii))} <0.

PROOF of lemma 28.1

From relation (25.4), we express u}‘("’l as a function of u% and w7, L € N(K),

k
uitt = ul + m(K) Z (i x 9(up, uk) — v g(uk,ur)).
LeEN(K)

The right hand side is nondecreasing with respect to u%, L € N(K). Tt is also nondecreasing with respect
to u, thanks to the Courant-Friedrichs-Levy condition (25.3), and the Lipschitz continuity of g.
Therefore, for all Kk € IR, using divv = 0, we have:

k
u}’fl—l—li <uxRTk+ K Z [UZ,K g(ul TR U TK) — VL g(ug Tk, uz—l—n)} (28.2)
m( ) LeEN(K)
and
n n k n n n n n n
Lk > ul Lk + ) Z (V7 x g(up Lk, up LK) —vi p g(uf Lk, uf LK)). (28.3)

( ) LeN(K)
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The difference between (28.2) and (28.3) leads directly to (28.1). Note that using divv = 0 leads to

e ol =l
S [ k(o TroupTr) = Flui TR) = gluf Lr,uf Le) + f(ul Ln)) - (28.4)
LeN(K)

VT K (g(u’i—l—n, Utk TR) — f(ukTk) — g(u} Lk, ul Lk) + f(u}‘(J_n))} <0.

For the implicit scheme, one obtains the same kind of discrete entropy inequalities.

Lemma 28.2 Under assumption 24.1 page 153, let T be an admissible mesh in the sense of Definition
25.1 page 156 and k > 0. Let g € C(IR* R) satisfying assumption 25.1.

Let {u},, n € N, K € T} C [Un,Un) be the solution of (25.6),(25.2) (the existence and uniqueness of
such a solution is given by Proposition 27.1). Then, for all k € R, K € T and n € IN, the following
inequality holds:
n+1
K

lug = #l = luk —

m(K) -

ul + Z {U?(,L (Q(U?(HTR, UZHTFJ) — g(u?(HLm, uZ“Lm))
LEN(K) (28.5)
—VL i (Q(UZHT’%U?(HTH) — g(quJ_fi,u}’(HJ_n))} <0.

PROOF of lemma 28.2
Let k € R, K € T and n € IN. Equation (25.6) may be written as

k
uptt =l — (k) Z (i p gupupt™y — o} g gupt uEh).
LEN(K)

The right hand side of this last equation is nondecreasing with respect to u’ and with respect to u7£+1
for all L € N(K). Thus,

n n k: n n n n n n
uptt <u TR - m(K) Z (Vi gut ut TR — VY K g(u T TR, uithy).
LEN(K)
k
Writing k = k — T Z (Vi1 9(k, k) —vf ¢ g(K, K)), one may remark that
LeN(K)
n k: n n n n
K< upTh— (K) Z (V.1 gk, ut ™ TR) — vl K g(ut T T, K)).
LeN(K)

Therefore, since u}?HTFa = u}‘("’l or K,

L
m(K)

u?(ﬂTm SupTh— Z (U%L g(u?(ﬂTmUZHTH) - UZ,K Q(UZHT’% U?(HT“))- (28.6)

LeN (K)

A similar argument yields

ke
m(K)

Hence, substracting (28.7) to (28.6) gives (28.5). L]

uit Lk > u Lk — Z (V.1 g Lkttt k) — vl K gu Ui, uit Lk)). (28.7)

LeN(K)
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28.2 Continuous entropy estimates for the approximate solution

For @ = R% or R? x IR, we denote by M(fQ) the set of positive measures on €2, that is of o-additive
applications from the Borel o-algebra of Q2 in R. If p € M(Q2) and ¢ € C.(f2), one sets (u, ¥) = [ dp.
The following theorems investigate the entropy inequalities which are satisfied by the approximate solu-
tions w7y in the case of the time explicit scheme (Theorem 28.1) and in the case of the time implicit
scheme (Theorem 28.2).

Theorem 28.1 Under assumption 24.1, let T be an admissible mesh in the sense of Definition 25.1 page
156 and k > 0. Let g € C(IRQ, R) satisfy assumption 25.1 and assume that (25.3) holds.

Let ur . be given by (25.5), (25.4), (25.2); then there exist ur ) € M(R® x Ry) and pr € M(IRY) such
that

/11{ /IRd( lur k(1) — K|@s (2, )+
(fur (@, t)Tr) = flurk(z,t)Lk))v(z,t) - V@(w,t))dxdt N

/]Rd |uo(z) — klp(x,0)dx > (28.8)

_/IRGZX]R+ (|<Pt(ac,t)| +|Vg0(:c,t)|)du7—,k(x,t) _/IRd(‘D(x’O)dMT(x)’

Ve eR, Voe CP(R? xRy, R,).
The measures pr 1, and pr verify the following properties:

1. For all R >0 and T > 0, there exists C depending only on v, g, ug, o, &, R and T such that, for
h<Randk<T,

pr.k(B(0, R) x [0,T]) < CVh. (28.9)
2. The measure 7 is the measure of density |uo(-) — ur,0(-)| with respect to the Lebesgue measure,
where ur, is defined by uro(x) = u% for a.e. v € K, for all K € T.
If ug € BV(]Rd), then there exists D, only depending on ug and «, such that

pr(R*) < Dh. (28.10)
Remark 28.1

1. Let u be the weak entropy solution to (24.1)-(24.2). Then (28.8) is satisfied with w instead of wr j
and pr =0 and pr = 0.

2. Let BVjo.(R?) be the set of v € L) _(IR%) such that the restriction of v to Q belongs to BV (Q) for

loc

all open bounded subset Q of IR%.

An easy adaptation of the following proof gives that if ug € BVj,.(IR%) instead of BV (IR?) (in the
second item of Theorem 28.1) then, for all R > 0, there exists D, only depending on ug, a and R,
such that 7 (B(0, R)) < Dh.

PRrROOF of Theorem 28.1
Let ¢ € C*(R? x R4, Ry) and € IR.

Multiplying (28.4) by k¢ = (1/m(K)) fézﬂ)k J5 o(x, t)dxdt and summing the result for all K € 7 and
n € IN yields

T+ 15 <0,



with

and

n+l e (n+1)k
T = Z Z [uic le i Sl / / oz, t)dzdt,
nk K

neEINKeT

kY Y

nelN (K.L)e&n

Vi 1Pk (g(u}‘(—l—n, utTr) — f(uETk) — g(ulk Lr,ul LK) + f(u’}(J_n))
—Vg L¥T (g(u}‘(T/ﬁ, Ut TR) = f(u}TkK) — glul Lk, ul LK) + f(u’iLm))
—V7 Pk (g(u’i—l—m, W TR) — fulTr) — g(u} Le, ul Lr) + f(ull Lk)
+07 kT (g(u’Llei,u}’(Tn) — f(u}Tk) —g(u}Le,ul LK)+ f(uzJ_n)) ,

where &, = {(K,L) € T?, u% > ul}.

One has to prove

Tio+To < /

(I )] + Vol ) araant) + [ ol O (),
RIXR 4 R4

for some convenient measures 7 ; and g7, and Thg, Too defined as follows

To = —/ / lur (2, t) — Klp(z, t)dedt — / |ug(x) — klp(z,0)de,
Ry JRY R4

Tho = — /IR /]R ((Flura@ D Tr) = Flur (o) Lr)v(a.t) - V(e t) ) dud.
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(28.11)

(28.12)

(28.13)

(28.14)

In order to prove (28.13), one compares T7 and Tio (this will give pr, and a part of pur ) and one
compares Ty and T (this will give another part of w7 k).
Inequality (26.5) (in the comparison of 77 and Tj¢) and Inequality (26.4) (in the comparison of T5 and
Tyo) will be used in order to obtain (28.9).
Comparison of 77 and T

Using the definition of ur x and introducing the function ur o (defined by ur o(z) = u%, for a.e. z € K,
for all K € T) yields

neINKeT
Juro(@) = Kl = Juo(z) = &])e(z, 0)dz.
R
The function | - —x| is Lipschitz continuous with a Lipschitz constant equal to 1, we then obtain

™ — | O
1ol < Y 3 M ] /nk /K o, (n + k) — p(a, O)|dedt +

which leads to

n+l e (n+1)k
R S B e I AR
nk K

neEINKeT

|uo(z) — ur o(2)lp(z,0)d,
R4

(n+1)k
[Ty — Tho| < Z Z lultt — u}‘(|/ / |oe(z, t)|dzdt +
nk K

neNKeT

/ |ug(x) — ur o(z)|e(x,0)d.
Rd

(28.15)
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Inequality (28.15) gives

[Ty — Tho| < / loi(z, t)|dvr i (2, t) —|—/ o(x, 0)dpr(x), (28.16)
RIxR 4 R

where the measures 7 € M(R?) and v, € M(IR? x IR, ) are defined, by their action on C.(IR%) and
C.(RY x Ry), as follows

)= [ Juota) —urofalwla)ds, o € R

(n+1)k
Z Z Z |u"Jrl fu?(|/k /KT/J(x,t)dzdt,

nelN KeT

Ve € cc(le xRy).

The measures @7 and v are absolutely continuous with respect to the Lebesgue measure. Indeed,
one has duy(z) = |ug(z) — uro(z)|dz and dvr p(z,t) = (X en Soxer UET — Wl sk, (n1)k) ) dadt
(where 1¢ denotes the characteristic function of Q for any Borel subset Q of R*™).

If up € BV(IR?), the measure y7 verifies (28.10) with some D only depending on [uo| gy () and « (this
is classical result which is given in Lemma 28.3 below for the sake of completeness).

The measure v i, satisfies (28.9), with v j, instead of 7, thanks to (26.5) and condition (25.3). Indeed,
for R>0and T > 0,

T
VT,k(B(OvR) x [OaT]) :/ /( ) Z Z |U?<+1 - u?{”KX[nk,(n-i—l)k)dxdt;
0 JB(0O,R

nelN KeT
which yields, with T35 = {K € T, K C B(0,2R)} and Ny k <T < (Nyj + 1)k, h < Rand k < T,

N i

kC
vra(BO,R) x [0,T) <k > > m(K)[upH u}ung,
n=0 K€Tar h

where (7 is given by lemma 26.2 and only depends on v, g, ug, «, & R, T. Finally, since the condition
(25.3) gives k < Coh, where Cy only depends on v, g, ug, «, &, the last inequality yields, for h < R and
k<T,

vrx(B(0,R) x [0,T]) < C3Vh, (28.17)

with C3 = C1Cs.
Comparison of 75 and Ts,
Using divv = 0, and gathering (28.14) by interfaces, we get

==Y Y { ( Tn)—f(u}‘(Lfs))—(f(u’L‘TH)—f(uZLH)))

nelN (K,L)e&,
(n+1)k
/ / -ng oz, t))dv(x)dt} )
K|L Jnk

Define, for all K € T, all L € N(K) and all n € IN,

(28.18)

(n+1)k
(vp 7;( / / v(z,t) kL) o(x, t)dy(x)dt
KL

and

(n+1)k
v<pKL— / /K|L v(z,t) - ng ) ez, t)dy(z)dt.
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Note that (vcp)?(z = (vp)7 k- Then, (28.18) gives

NP>

nelN (K,L)EE,
(vgo)’}(’jz (g(u’}(T/ﬁ, utTkR) = f(UETR) — g(ulk L, ul LK) + f(u}‘(LFa))
(o) P (9 Ty Th) = FwlTR) = gl Ly u L) + f(uf L) ) (28.19)
—(v) g (g TR, ui Tr) — f(uf Tk) — g(u} Lk, uf LK) + f(u’}(J_n))
(’U(,D)L g TR uETR) — f(u}p TR) — g(u} Lk, ul L) + f(’L/LLJJi))}
Let us introduce some terms related to the difference between ¢ on K € 7 and K|L € &,

n,+

nJJE = |U?(,L(P?( (USO)KL

e
and

re L = VE kel — (o)Ll
Then, from (28.12) and (28.19),

[Ty — Too| < Zk Z

nelN (K,L)EE,

TKL g Tr UL TR) = f(uk Tr) + g(ukg Lr,u} LK) — (UKJ_H)) +

1\ 9k TR uf Tk) — f(uf Tw) + g(uf Lr, uf Le) — f(uf Lk) (28.20)
TR (Wi TR) = g(uf Th,ux Tk) + f(ufkLr) — g(u} Lk, uKLfi)) i

ik (S @ETR) = guf Th, wl Tr) + fluf Lr) = g(uf Lr, uf L) ) |.

For all (K, L) € &,, the following inequality holds:
0<gugTr,upTr) = fugTr) < max  (g9(q,p) = f(q)),

up Sp<q<ui
more precisely, one has g(u}k Tk, u}TkK) — f(ukTr) = 0, if kK > uf%, and one has g(u} Tk, u} Tk) —
FwkTr) =9g(¢,p) — f(q) with p =k and ¢ = wlt if K € [u},u}], and with p = v} and ¢ = u'% if kK < uf.
In the same way, we can assert that

0 < glugLr,uplr) = flufLr) < max  (g(g,p) = f(q))-
uL,PSqSuK

The same analysis can be applied to the six other terms of (28.20).
To conclude the estimate on [To — Thl, there remains to estimate the two quantities rnKiL This will be

done with convenient measures applied to |Vp| and |p]. To estimate T?I, for instance, one remarks
that

n 1 (n+1)k  p(n+1)k N
T Si/ / // o(x,t) — oy, s)|(v(y,s) - nk )" dy(y)dedtds.
Wisman L Lo o e - el maa) )

= Pm(K) /n”“>k/<"+1 t/ /K|L/|VWE+9 —x),t+0(s—1) - (y— )+

gat( +0(y—x),t+0(s—1))(s— ‘n.)Td0dy(y)dzdtds

Hence

which yields
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W< /("+1 /("+1 //K|L/ BV + 0y — ), + 0(s — 1))+

klon(z + 0(y — ), t+9(57t>>|)( (y, 5) - ng.p)* dOdy(y)dadtds.

This leads to the definition of a measure MK ', given by its action on Cc(le x IRy ):

(s ) = /n+1)k/(n+l //K|L/ h+k: (x4 6(y —:c)t—l—@(s—t)))

-ng.1)tdOdy(y)dzdtds, Vi € C.(R? x R,

in order to have QT?(JZ < (MK Vel + |<,0t|>

We define in the same way 3, changing (v(y,s) - nk,r)* in (v(y,s) - nx ). We finally define the
measure U7 j by

rawy =Yk Y [( max  (9(a.p) = F(@) i)

neN (K.L)eEn uy <p<q<uf )
+ (uz Jnax . (9(ap) = f(p))) (hp x> ) s21)
+ (un Jmax (@) = 9(p, q))) (WL )
+(, max  (F(0) — 90 ) (i e )]

Since 27“?7 (,uK 17+ IVl +ee]), (28.20) and (28.21) leads to |15 — Tho| < (U7 i, [Vo| +|¢e]). Therefore,
setting pur p = v7 i + Uk, using (28.16) and 11 + 1> < 0,

T+ T < [ (o) + Vil )duraot) + [ ole,0)dur (@),
IR,'i><1R,+ R4

which is (28.13) and yields (28.8).
There remains to prove (28.9).

For all K € T, let xx be an arbitrary point of K. For all K € T, all K € N(K) and all n € IN, the
supports of the measures M;(iL are included in the closed set B(x g, h) N [nk, (n + 1)k]. Furthermore,

P (R x Ry) < 20% (b + k) and p 7 (R x Ry) < 207 (b + k).
Then, for all R > 0 and 7" > 0, the definition of p1 (1.e. wr. e = vrk+ 1)) leads to

MT,k(B(OvR) X [OaT]) < 03\/E
Nt

w2t )Yk D ok, max  (o(ap) ~ f@) + , max  (ala.p) ~ f(7)

uy <p<g<uly up <p<g<uf
n=0 (K,L)EE, g K r K

ot e, max  (F@) = g(p.a) + | max  (F(p) = 9(p.0))]:

uyp Sp<qluf up Spqsufe
for h < R and k < T, where C3v/h is the bound of v x(B(0, R) x [0,T]) given in (28.17). Therefore,
thanks to Lemma 26.2,

1w (B(0, R) x [0,T]) < Csv/R + (1 + Cz)h% — v,

where C' only depends on v, g, ug, o, £, R and T'. The proof of Theorem 28.1 is complete. [

The following theorem investigates the case of the implicit scheme.
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Theorem 28.2 Under Assumption 24.1, let T be an admissible mesh in the sense of Definition 25.1 and
k> 0. Let g € C(IR*,R) satisfy Assumption 25.1.

Let {u},n € IN,K € T}, such that u} € [U,,,Un) for all K € T and n € IN, be the solution of
(25.6),(25.2) (existence and uniqueness of such a solution are given by Proposition 27.1). Let ur ) be
given by (25.5). Assume that v does not depend on t and that ug € BV (IR?).

Then, there exist urj € M(R® x Ry) and pr € M(R?) such that

/IR+ /md( lur k(2,1) — Koy (, 1)+

(flur i(x,t)TR) — flurr(z, t)L))v(x,t) - Vgﬁ(z,t)) dxdt +
/ Juole) — sli(e,0)da > (28.22)
Rd

/]Rdxm (|Sﬁt(x,t)|+|V<p(x,t)|)du7—7k(z,t)/]I{dcp(x,())dHT(x)v

Ve eR, Vpe CP(R?xR,,R,).

The measures pr 1, and pr verify the following properties:

1. Forall R>0 and T > 0, there exists C, only depending on v, g, ug, o, R, T such that, for h < R
and k < T,
pr (B0, R) x [0,T]) < C(k + Vh). (28.23)

2. The measure pr is the measure of density |uo(-) — w7y ,o(-)| with respect to the Lebesgue measure and
there exists D, only depending on uog and «, such that

pr(R?) < Dh. (28.24)

PROOF of Theorem 28.2
Similarly to the proof of Theorem 28.1, we introduce a test function ¢ € COO(IRd x R4, R;) and a

real number x € IR. We multiply (28.5) by (1/m(K)) f("H)k S5 p(@, t)dxdt, and sum the result for all
K €T and n € IN. We then define T} and T3 such that T} + T> < 0 using equations (28.11) and (28.12)
in which we replace u’ by u”+ and u} by u"+1 Therefore we get (28.16), where the measure vy j is
such that for all 7' > 0, there exists C'; only depending on v, g, ug @« and T, such that, for k < T,

VT,k(]Rd X [O,T]) S Clk/’,

using Lemma 27.3 page 170, which is available if v does not depend on ¢ (and for which one needs that
uop € BV (IRY)).

The treatment of 75 is very similar to that of Theorem 28.1, replacing u' by u’y Land u? 7 by u"+1 But,
since v does not depend on ¢, the bounds on rKi are simpler. Indeed,

L 1 /(n+1)k/ / N
k) < — . .
TKLS Tm(E) K‘Llw(w,t) oy, )(v(y) - i) dy(y)dwdt

Now 27’KL </LKL, |[V|) where uKL is defined by

(i) = ka /er)k//;m/ h1/1x+9 — ), ))

(V TLKL id@d’y d:L'dt Yy € C, (IR X IR+)

With this definition of ,u?(’ 1, the bound on vy (defined by (28.21), replacing ul; by uK ! and u} by

u"™1) becomes, thanks to Lemma 27.1 page 167,
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lN/T,k(B(OaR) X [OaT]) < CQ\/Ea

for h < R and k < T, where C5 only depends on v, g, ug, o, R and T'.
Hence, defining (as in Theorem 28.1) w7, = v7 i + U7k, for all R > 0 and all T > 0 there exists C, only
depending on v, g, ug, a, R, T such that, for h < Rand k < T,

prk(B(0, R) x [0,T]) < C(k + Vh),
which is (28.23) and concludes the proof of Theorem 28.2. ]

Remark 28.2 In the case where v depends on ¢, Lemma 27.3 cannot be used. However, it is easy to
show (the proof follows that of Theorem 28.1) that Theorem 28.2 is true if (28.23) is replaced by

e (B(0,R) x [0,T)) < 0(% +Vh), (28.25)

which leads to the result given in Remark 30.2. The estimate (28.25) may be obtained without assuming
that up € BV (IRY) (it is sufficient that ug € L®(R?)).

For the sake of completeness we now prove a lemma which gives the bound on the measure p7 in the
two last theorems.

Lemma 28.3 Let T be an admissible mesh in the sense of Definition 25.1 page 156 and let u € BV(IRd)
(see Definition 21.19 page 141). For K € T, let ugx be the mean value of uw over K. Define ur by
ur(x) = ug for a.e. x € K, for all K € T. Then,

C
v —urlprmey < ¥h|u|BV(IRd)7 (28.26)
where C' only depends on the space dimension (d =1, 2 or 3).

PROOF of Lemma 28.3
The proof is very similar to that of Lemma 27.2 and we will mainly refer to the proof of Lemma 27.2.
First, remark that if (28.26) holds for all u € BV (R)NC' (IR%, R then (28.26) holds for all u € BV (IR?).

Indeed, let u € BV(IRd), it is proven in Step 1 of the proof of Lemma 27.2 that there exists a sequence
(Un)nen € C°(R?, R) such that u,, — u in L}, (IR?), as n — oo, and lunll gy rey < llull pyme) for all

loc
n € IN. One may also assume, up to a subsequence, that u, — u a.e. on R?. Then, if (28.26) is true
with u,, instead of u, passing to the limit in (28.26) (for u,) as n — oo leads to (28.26) (for u) thanks to
Fatou’s lemma.

Let us now prove (28.26) if v € BV (IRY) N C1(IRY,R) (this concludes the proof of Lemma 28.3). Since
ue CHRYR),
|u|BV(IRd) = ||(|VU|>HL1(1Rd);

hence we shall prove (28.26) with ||(|Vul)|| 11 (e instead of |u|gy (Rra)-
For K € T,

/| ) =l < s ([ tute) = uwlda)ay.

Then, following the lines of Step 2 of Lemma 27.2,

1 1
/K lu(z) — ug|de < mh/B(o,h)(/o /K |Vu(y + tz)|dydt)dz. (28.27)

For all K € T, let xx be an arbitrary point of K.
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Then, changing the variable y in £ = y + ¢z (for all fixed z € K and t € (0,1)) in (28.27),

1 1
/K lu(z) — ug|de < m(K)h/B(o,h)(/o /B(IKQh) [Vu(§)|dédt)dz

which yields, since T is an admissible mesh in the sense of Definition 25.1 page 156,

/K o) ~ uclde < —m(BO.M [ |Vu(e)lde

B(IK,Qh)

Therefore there exists C7, only depending on the space dimension, such that

/ |u(z) — ug|de < ﬁh/ [Vu(§)|dé, VK € T. (28.28)
K «Q B(xr,2h)

As in Lemma 27.2, for a fixed M € T, the number of K € T such that M N B(zk,2h) # 0 is less or
equal to m(B(0,4h))/(ah?) that is less or equal to Ca/a where Cy only depends on the space dimension.
Then, summing (28.28) over K € T leads to

C,C cC
> [ o) = uchde < 20 S0 [ Val©)lds = 2B g1y

KeT MeT
that is (28.26) with C' = C1Cs. n

29 Convergence of the scheme

This section is devoted to the proof of the existence and uniqueness of the entropy weak solution and of
the convergence of the approximate solution towards the entropy weak solution as the mesh size and time
step tend to 0. This proof will be performed in two steps. We first prove in section 29.1 the convergence
of the approximate solution towards an entropy process solution which is defined in Definition 29.1 below
(note that the convergence also yields the existence of an entropy process solution).

Definition 29.1 A function p is an entropy process solution to problem (24.1)-(24.2) if u satisfies
g€ LR x RE x (0,1)),
+oo
/ / / plx,t,a))er(a,t) + P (p(z, t, a))v(z,t) -V(p(x,t))dadtdac
R4

1(uo(x))e(z,0)dx = 0,
R4

for any ¢ € CH(R? x R, R,),
for any convex function n € C*(IR,IR), and ® € C*(IR,IR) such that ®" = f'»/

(29.1)

Remark 29.1 From an entropy weak solution u to problem (24.1)-(24.2), one may easily construct
an entropy process solution to problem (24.1)-(24.2) by setting p(z,t, ) = u(x,t) for ae. (x,t,a) €
R? x IR” x (0,1). Reciprocally, if u is an entropy process solution to problem (24.1)-(24.2) such that
there exists u € Loo(le x R%) such that pu(z,t, ) = u(x,t), for ae. (z,t,a) € R? x IR% x (0,1), then
u is an entropy weak solution to problem (24.1)-(24.2).

In section 29.2, we show the uniqueness of the entropy process solution, which, thanks to remark 29.1,
also yields the existence and uniqueness of the entropy weak solution. This allows us to state and prove,
in section 29.3, the convergence of the approximate solution towards the entropy weak solution.

We now give a useful characterization of an entropy process solution in terms of Krushkov’s entropies (as
for the entropy weak solution).



182

Proposition 29.1 A function p is an entropy process solution of problem (24.1)-(24.2) if and only if,
@€ LR x RY x (0,1)),
/]Rd /+°°/ |,u x,t, ) — klpe(x, t) + P(u(x, t, ), k)v(z, t) - Vgﬁ(z,t))dadtd:c
+/ |uo(z) — K|e(z,0)dz > 0,
R

Ve € R, Yo € CHIR? x Ry, Ry),
where we set ®(a,b) = f(aTb) — f(alb), for all a, b € R.

(29.2)

PROOF of Proposition 29.1

The proof of this result is similar to the case of classical entropy weak solutions. The characterization
(29.2) can be obtained from (29.1), by using regularizations of the function |- —k|. Conversely, (29.1)
may be obtained from (29.2) by approximating any convex function n € C*(IR,IR) by functions of the

form: n,,(- Za(" =k, with o™ > 0. "

29.1 Convergence towards an entropy process solution

Let @« > 0and 0 < < 1. Let (T, km)men be a sequence of admissible meshes in the sense of Definition
25.1 page 156 and time steps. Note that 7, is admissible with « independent of m. Assume that k,,
satisfies (25.3), for T = T, and k = k,,,, and that size(T,,) — 0 as m — oo.

By Lemma 26.1 page 160, the sequence (ur,, k., )men of approximate solutions defined by the finite
volume scheme (25.2) and (25.4) page 157, with 7 = 7,, and k = k,,, is bounded in L>®(RR% x RY);
therefore, there exists p € L"O(]Rd xIR% x(0,1)) such that w7, x,, converges, as m tends to oo, towards
1 in the nonlinear weak-* sense (see Definition 32.1 page 201 and Proposition 32.1 page 202), that is:

lim / / (ut,, ko, (2, 1)) (2, t)dtdx */ / / (x,t, a))p(z, t)dadtdz,
Mmoo IRd R 7 Nl Re JR4 Jo(1) (29.3)
Vo € LY(IR x RY), V0 € C(R,R).

Taking for €, in (29.3), the Krushkov entropies (namely 6 = | - —x|, for all & € IR) and the associated
functions defining the entropy fluxes (namely 0 = f(,x) = f(-Tk) — f(-Lk)) and using Theorem 28.1
(that is passing to the limit, as m — oo, in (28.8) written with uy = wr,, . ) yields that p is an entropy
process solution. Hence the following result holds:

Proposition 29.2 Under assumptions 24.1, let « > 0 and 0 < § < 1. Let (Tm, km)men be a sequence
of admissible meshes in the sense of Definition 25.1 page 156 and time steps. Note that T, is admissible
with o independent of m. Assume that k,, satisfy (25.3), for T = Ty and k = kyy,, and that size(Ty,) — 0
as m — oo.

Then there exists a subsequence, still denoted by (Tr, km)men, and a function € L>°(IR® x IR% % (0,1))
such that

1. the approzimate solution defined by (25.4), (25.2) and (25.5) with T = T, and k = ky,,, that is

UT,, ks CONVETGES towards p in the nonlinear weak-x sense, i.e. (29.3) holds,
2. wis an entropy process solution of (24.1)-(24.2).

Remark 29.2 The same theorem can be proved for the implicit scheme without condition (25.3) (and
thus without &).

Remark 29.3 Note that a consequence of Proposition 29.2 is the existence of an entropy process solution
to Problem (24.1)-(24.2).
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29.2 Uniqueness of the entropy process solution

In order to show the uniqueness of an entropy process solution, we shall use the characterization of an
entropy process solution given in proposition 29.1.

Theorem 29.1 Under Assumption 24.1, the entropy process solution p of problem (24.1),(24.2), as
defined in Definition 29.1 page 181, is unique. Moreover, there exists a function u € L"O(]Rd x RY) such

that u(z,t) = p(z,t, ), for a.e. (z,t,a) € R x R x (0,1). (Hence, with Proposition 29.2 and Remark
29.1, there exists a unique entropy weak solution to Problem (24.1)-(24.2).)

PROOF of Theorem 29.1

Let 1 and v be two entropy process solutions to Problem (24.1)-(24.2). Then, one has p € L"O(]Rd X
R % (0,1)), v € L®(R? x R} x (0,1)) and

+oo
/d/ / |z, t, ) — klp(x,t)
IR

(f(u(z, t,a)Tr) — f(p(z, t,a) Lr))v(x,t) - ch(x,t))dadtdz (29.4)
+/ luo(z) — Klp(z,0)dz > 0, Vi € R, Yo € CHIR? x R4, R,),

/IRd /+OO/ v(y,s,B) = kles(y, s)

+(F (V.5 B TR) = (w5, 8)LR) V(Y. 5) - Viply, ) ) dBdsdy (29.5)
# [ Tuoo) — rloto. 0y > 0. € IR, ¥ € CUIRY X TR R, ).

The proof of Theorem 29.1 contains 2 steps. In Step 1, it is proven that

/ / /]R /IR lu(z,t, @) —v(z,t, Bl (z, 1)

( (u(z, t, ) Tu(z, t, B)) — Fu (x,t,a)J_V(z,t,ﬂ)))v(x,t)-Vz/)(x,t) dedtdadB > 0,
vy € CHIRY x Ry, Ry).

(29.6)

In Step 2, it is proven that u(z,t, ) = v(z,t, ) for ae. (z,t,a,8) € R? x IR% x (0,1) x (0,1). We
then deduce that there exists u € L™(IR* x R%) such that u(z,t,a) = u(x,t) for ae. (z,t,a) €
R x IR% x (0,1) (therefore u is necessarily the unique entropy weak solution to (24.1)-(24.2)).

Step 1 (proof of relation (29.6))
In order to prove relation (29.6), a sequence of mollifiers in IR and IR? is introduced .
Let p € C°(R%, R, ) and 5 € C®°(IR, R, ) be such that

{z € RY% p(x) # 0} € {z € R |2 < 1},

{r € R; p(z) # 0} C [-1,0] (29.7)

/}Rd p(z)dz = 1, Ap(x)dx .y

For n € IN*, define p,, = np(nz) for all z € R and p,, = np(nz) for all z € R.
Let ¥ € CHIRY xR, IR, ). For (y,s,8) € R*xRy x(0,1), let us take, in (29.4), ¢(z,t) = ¥ (x, t)p, (z—
y)pn(t — s) and k = v(y, s, ). Then, integrating the result over R x Ry x (0,1) leads to

and
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A+ Ay + As+ Ay + A5 >0, (29.8)
where
w= [ et v
G, ) po(x — )pn(t — s)} drdtdydsdadp,
e[ [ [l Lo
W@, t)pn (@ — y)p, (t — )}dzdtdydsdadﬂ,
As =/1 /1 /OO/ d/oo/ d[(f(u(fc,taa)TV(y,s,ﬁ)) —f(u(w,t,a)il/(y,s,ﬁ)))
Cor v(:c,t)-Vq/)(z,t)pn(:c—y)ﬁn(t—s)]dzdtdydsdadﬂ,
A4=/1 /1 /OO/ d/oo/ d[(f(u(fc,taa)TV(y,s,ﬁ)) —f(u(w,t,a)il/(y,s,ﬁ)))
Co o v(z,t)~Vpn(x—y)w(x,t)ﬁn(t—s)}dmdtdydsdadﬂ
and

ts= [T ole) vty 0Ot )55 s

Passing to the limit in (29.8) as n — oo (using (29.5) for the study of As + A4 and Ay) will give (29.6).
Let us first consider A; and As. Note that, using (29.7),

/ / pn(z — y)pn(t — s)dsdy = 1, Vz € RY, Vt € R
R? J0

1Ay — ///m/m (@, t, @) — vz, t, B) iz, t)| dedtdadp]

/ / /]Rd/ /Rd (@,t,8) = v(y, s, B)||[Ye(x, )| pn(x — y)pn(t — s) | dvdtdydsdp

< HthLw(mdxm*)E n, S),

with S = {(x,t) € R? x R ; ¢(z,t) # 0} and

Then,

1 1
e(n,S) =sup{|[v —v(-+n,- + 7, )L (sx(0,1)); Inl < o 0<7< ﬁ}‘

Since v € L, (IR x R x [0,1]) and S is bounded, one has &(n, S) — 0 as n — co. Hence,

loc

Aq %/ / / / lp(z,t, ) — v(z,t, B)|Ye(z, t) | dedtdadB, as n — cc. (29.9)
R, JR4

Similarly, let M be the Lipschitz constant of f on [—D, D] where D = max{|| /|, [|V||oc }» With ||||cc =
H'||L°°(Rd><IR*+><(O,1))a

|A3—/ / /m/ e t,0) To(a, 1, B)) — Flue.t ) Lu(a.t, )

) - V(z, t)dzdtdadB| < 2MV||(|VY) | L (RxTRY) e(n, S),



185

which yields

As %/ / /IR+ /]Rd wlx,t, o) Tv(z, t, 5)) — f(u(z,t,a)iy(x,t,ﬂ))) (29.10)
v(z,t) - Vi(x,t)dedtdadf, as n — oo.

Let us now consider Ay + As.
For (z,t,a) € R? x Ry x (0,1), let us take ¢(y, s) = (z,t)pn(x — y)pu(t — s) and k& = p(z,t, @) in
(29.5). Integrating the result over R? x IR x (0, 1) leads to

—Ay — By >0, (29.11)

sen=[ [ /R d / (a0 Toto.8) = flute.t.o) Loty )

v(z,t) —v(y,s)) - Vou(z —y)(z, t)pn(t — s)} dxdtdydsdadf.

with

Note that By = Ay if v is constant (and one directly obtains (29.13) below). In the general case, in order
to prove that Ay — By — 0 as n — oo (which then gives (29.13)), let us remark that, using divv = 0,

/ / / /m d / |ttt o) Totant,8) = f(utat.0) Lot 1. 5) 01

z,t) — v(y,s)) - Vpnlz — )w(z,t)ﬁn(tfs)}d:cdtdydsdadﬂ:0.

Indeed, the latter equality follows from an integration by parts for the variable y € IR?. Then, substracting
the left hand side of (29.12) to A4 — By and using the regularity of v, there exists Cy, only depending on
M, v and v, such that |44 — Bs| < Cie(n, S). This gives A4 — B4 — 0 as n — oo and, thanks to (29.11),

limsup(As + A4) < 0. (29.13)

n— o0

Finally, let us consider As.
For z € R, let us take o(y,s) = ¥(x,0) pn y) [ pn(—7)dr and & = ug(z) in (29.5). Integrating the

resulting inequality with respect to z € IR? gives

—As + Bsq + Bsp > 0, (2914)

/ / /IRd /Rd/ v(y, s, B) Tuo(z)) — f(v(y,s, B)Luo(z)))

v(y,s) - Vpn(z — y)i(z,0)pn(—7)drdydzdsdp,

with

Bs, = /IRd R4 ¥(2,0)pn(z — y)luo(x) — uo(y)|dyda.

Let Sp = {x € R?; (x,0) # 0} and

1
con. 50) = sup{ [ uo(e) — uo(e + mldas In] < 2,
So

so that Bs, < [[9(+,0)|| e (may€0(n, So)-

Since ug € L? (IRd) and since Sy is bounded, one has €¢(n,Sy) — 0 as n — oco. Then, By, — 0 as

n — OQ.

loc
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Let us now prove that Bs, — 0 as n — oo (then, (29.14) will give (29.15) below). Note that Bs, =
—DBs. + (B5a + B5C) with

me=[ ][ / (55, 8) Teto(w) = F(v (3,5, 6) Luo(w)

vﬂn(‘r - W(% O)ﬁn(_T)deyddedﬁ
Integrating by parts for the = variable ylelds

/ / /IRd /Rd/ v(y, s, B) Tuo(y)) — f(v(y, s, B)Luo(y)))

V¢($ O)Pn(l' - y)ﬁn(_T)deydwdeﬁ

Noting that the integration with respect to s is reduced to [0,1/n], Bs. — 0 as n — oo.
There remains to study Bsa + Bsc. Noting that |f(aTb) — f(aTc)| < M[b—c| and |f(aLb) — f(aLlc)| <
MIb—c|if b, ¢ € [-D, D], where D = |lug|| (g and M is the Lipschitz constant to f on [-D, D]

)

Brat Beel <200V [ [ [ (o) = )| Voo~ (e, 0)pn(-r)drdydads,
0 R* JIR Js

which yields the existence of Cs, only depending on M, V and 1, such that

|Bsq + Bse| < C’z/ / / luo(z) — uo(z — 2)|n?Ttdzdxds.
So

Therefore, | Bsq 4+ Bsc| < Cse9(n, Sp), with some C3 only depending on M, V and . Since £¢(n, Sp) — 0
as n — 0o, one deduces |Bs, + Bs.| — 0 as n — oco. Hence, Bs, — 0 as n — oo and (29.14) yields

lim sup A5 < 0. (29.15)
n—r oo
It is now possible to conclude Step 1. Passing to the limit as n — oo in (29.8) and using (29.9), (29.10),
(29.13) and (29.15) yields (29.6).

Step 2 (proof of p = v and conclusion)

Let R > 0 and T > 0. One sets w = VM (recall that V is given in Assumption 24.1 and that M is given
in Step 1).

Let ¢ € CL(IR4, [0, 1]) be a function such that ¢(r) = 1if r € [0, R+wT], p(r) = 0if r € [R+wT +1,00)
and ¢'(r) <0, for all » € R ..

One takes, in (29.6), ¢ defined by

Y(a,t) = (|| + wt) L=, for z € R and ¢ € [0, 7],
Y(z,t) =0, for e R% and ¢t > T.

The function v is not in Cé’o(]Rd x IRy,IR4), but, using a usual regularization technique, it may be
proved that such a function can be considered in (29.6), in which case Inequality (29.6) reads

/// /md |Mxta—u(xtﬁ|(—wg0(|x|+wt__<p(|$|+wt)

f(u(x t,a)Tv(x,t, 8)) — f(p(e, t, ) Lv(a, t 6))) Tgo (|| + wt)v(z,t) - }dmdtdadﬁ > 0.

(aL0))¢ (2] +wt)v(z, ) (2/la]) < la—blu(—/ (|| +w)),

Since w = VM and ¢’ <0, one has (f(aTb)— f
[=D, D] (D is defined in Step 1). Therefore, the previous inequality

for a.e. (z,t) € R*xIRY andalla, b €

gives
/ / / / (z,t, ) (z,t,ﬂ)|%<p(|z| + wt)dxdtdadp < 0. (29.16)
R
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Then, since ¢(|z| +wt) =1 if (z,t) € B(0, R) x [0,T],

1 1 T
/ / / / |u(z,t, ) — v(x,t, B)|dedtdadf <0,
o Jo Jo JB(O,R)

which yields, since R and T are arbitrary, u(x,t, o) = v(x,t, B) for a.e. (x,t,a, ) € R? x R% x (0,1) x
(0,1).
Let us now deduce also from this uniqueness result that there exists u € L"O(IRd x IR%) such that
pw(z,t, o) = u(x,t), for ae. (z,t,a) € R x IR% x (0,1) (then it is easy to see, with Definition 29.1, that
u is the entropy weak solution to Problem (24.1)-(24.2)).
Indeed, it is possible to take, in the preceeding proof, u = v (recall that the proposition 29.2 gives
the existence of an entropy process solution to Problem (24.1)-(24.2), see Remark 29.3). This yields
p(z,t,a) = p(z,t, ) for ae. (z,t,a,8) € R x IR% x (0,1) x (0,1). Then, for a.e. (z,t) € R x R7,
one has

p(z,t, o) = p(z,t, B) for a.e. (o, 8) € (0,1) x (0,1)
and, for a.e. a € (0,1),

pu(z,t, o) = p(z,t,B) for a.e. B € (0,1).
Thus, defining u from IR? x R} to R by

1
wawzéuummw,

one obtains pu(z,t, o) = u(z,t), for a.e. (z,t,a) € R? x IR% x (0,1), and w is the entropy weak solution
to Problem (24.1)-(24.2). This completes the proof of Theorem 29.1. L]

The proof of Theorem 29.1 may be adapted in order to prove the principle of “finite speed of propagation”
for the solution to a hyperbolic equation, namely Proposition 29.3.

Proposition 29.3 Under Assumption 24.1, let w and v be the entropy weak solutions of (24.1),(24.2),
where ug is replaced by vy for v, (see 24.3 page 154 for the definition of entropy weak solution). Then,
for any zo € R, R >0 and T > 0,

/ / lua, t) — v(a, £)|dedt < T/ o () — v ()| da, (29.17)
0 JB(xzo,R)

B(zo,R+wT)
where, w = VM and B(x,a) = {y € R%, |y — z| < a}.

PROOF of Proposition 29.3 Let R > 0 and 7" > 0. Taking into account the fact that vy # wug in the proof
of Theorem 29.1, Inequality 29.16 becomes

T 1
/ / (e, £) — o(a, £) = (|| + wt)dadt — / o () — vo () |p()da < 0.
0 R T R
Then, the choice of ¢ gives
T
/ / |u(z,t) — v(z, t)|dedt < T/ [uo(z) — vo(x)|e(x)da.
0 Br BrtwT+1

In this inequality, it is quite easy to replace Briwr+1 by Briwr+e for any € > 0 (changing the choice of
@ in the proof). Then, letting ¢ — 0,

T
[ ]ttty = o nleel + wtidodt <7 [ fuota) = oo
0 Br Briwr
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Finally, the point 0 may be replaced by any point xg in the proof and we obtain 29.17. [

Remark 29.4 Proposition 29.3 gives the so-called “Finite speed of propagation” for a hyperbolic equa-
tion. Namely it gives (under the hypothesis of Proposition 29.3) that if ug = vy a.e. Brywr, then u = v
a.e. in Brx]0,T.

Another interesting consequence of the proof of Theorem 29.1 (changing conveniently the function v in
the proof) is the continuity in time of the entropy weak solution of (24.1),(24.2). More precisely, if u is
the entropy weak solution of (24.1),(24.2), then, there exists @ € C([0, 400, Lj,.(IR?)) such that @ = u a.e
on R% x IR . Moreover, if ¢ is the continuous in time entropy weak solution corresponding to the initial
condition vy (as in Proposition 29.3), the proof of Proposition 29.3 (changing conveniently the choice of

) gives
/ iz, T) — oz, T)|dwdt < / o () — vo ()| da,
B(zo,R) B(zo,R+wT)

29.3 Convergence towards the entropy weak solution

We now know that there exists a unique entropy process solution to problem (24.1)-(24.2) page 153, which
is identical to the entropy weak solution of problem (24.1)-(24.2); we may now prove the convergence of
the approximate solution given by the finite volume scheme (25.4), (25.2) and (25.5) towards the entropy
weak solution as the mesh size tends to 0.

Theorem 29.2 Under Assumptions 24.1 page 153, let o« € R”. and § € (0,1) be given. For an admissible
mesh T in the sense of Definition 25.1 page 156 and for k > 0 satisfying (25.3) (note that o and & are
fized), let ur i, be the solution to (25.4), (25.2) and (25.5).

Then, ur — u in LfOC(IRd x R4) for all p € [1,00), as h = size(T) — 0, where u is the entropy weak
solution to (24.1)-(24.2) page 153.

PROOF of Theorem 29.2

In order to prove that uy  — u (in Lfoc(IRd xRy) for all p € [1,00), as h = size(T) — 0), let us proceed
by a classical way of contradiction which uses the uniqueness of the entropy process solution to Problem
(24.1)-(24.2) page 153. Assume that there exists 1 < py < 00, € > 0, @ a compact subset of R, 7> 0
and a sequence ((7p, km))men such that, for any m € IN, 7, is an admissible mesh, k,, satisfies (25.3)
(with 7 = T,, and k = k,, note that o and £ are independent of m), size(7,,) — 0 as m — oo and

T
/ / lur, K, —ulPPdzdt > e, Ym € IN, (29.18)
0o Ja
where w7, k. is the solution to (25.4), (25.2) and (25.5) with 7 = 7, and k = k,,, and w is the entropy
weak solution to (24.1)-(24.2).
Using Proposition 29.2, there exists a subsequence of the sequence ((7r, km))men, still denoted by ((7,
Eum))men, and a function g € L°(R? x IR% x (0,1)) such that

1. wr, k,, — K, as m — oo, in the nonlinear weak-x sense, that is:

mlgnoo/ /]Rd (wr,, ko (2, 1)), t)dadt = / / / w(x, t, @))p(z, t)dedtda, (29.19)

Vo € LYR?Y x RY), V0 € C(R, R),

2. p is an entropy process solution to (24.1)-(24.2).
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By Theorem 29.1 page 183, one has u(-, -, «) = u, for a.e. a € [0,1] (and w is the entropy weak solution
to (24.1)-(24.2)). Taking first 6(s) = s? in (29.19) and then 6(s) = s and @u instead of ¢ in (29.19) one
obtains:

/ / (ur, k, (2,1)) — u(z,t))*p(z, t)dzdt — 0, as m — oo, (29.20)
0o Jmre

for any function ¢ € LY(IR? x (0,7)). From (29.20), and thanks to the L>-bound on (u7., ,, )men,
one deduces the convergence of (ur,, ., )menN towards u in LfOC(IRd x IRy ) for all p € [1,00), which is in
contradiction with (29.18).

This completes the proof of our convergence theorem. [

Remark 29.5

1. Theorem 29.2 is also true with the implicit scheme instead of the explicit scheme (that is (25.6)
and (25.7) instead of (25.4) and (25.5)) without the condition (25.3) (and thus without &).

2. The following section improves this convergence result and gives an error estimate.

30 Error estimate

30.1 Statement of the results

This section is devoted to the proof of an error estimate of time explicit and time implicit finite volume
approximations to the solution u € L>°(IR% x IR?) of Problem (24.1)-(24.2) page 153. Assuming that
ug € BV(IRY), a “h1/*” error estimate is shown for a large variety of finite volume monotone flux schemes
such as those which were presented in Section 25 page 156.

Under Assumption 24.1 page 153, let 7 be an admissible mesh in the sense of Definition 25.1 page 156
and k > 0. Let g € C(IR? IR) satisfying Assumption 25.1.

Let u be the entropy weak solution of (24.1)-(24.2) and let ur j be the solution of the time explicit
scheme (25.4), (25.2), (25.5), assuming that (25.3) holds, or ur x be the solution of the time implicit
scheme (25.6), (25.2), (25.7). Our aim is to give an error estimate between u and w7y .

In the case of the explicit scheme, one proves, in this section, the following theorem.

Theorem 30.1 Under Assumption 24.1 page 153, let T be an admissible mesh in the sense of Definition
25.1 page 156 and k > 0. Let g € C(IR*IR) satisfy Assumption 25.1 and assume that condition (25.3)
holds. Let u be the unique entropy weak solution of (24.1)-(24.2) and ur i be given by (25.5), (25.4),
(25.2). Assume ug € BV(IRd). Then, for all R > 0 and all T > 0 there exists C, € R4, only depending
on R, T, v, g, up, @ and &, such that the following inequality holds:

T
/ / lur i (z,t) — u(z, t)|dedt < Cohi. (30.1)
0 JB(O,R)

(Recall that B(0, R) = {z € R?, |z| < R}.)

In Theorem 30.1, g is assumed to belong to BV (IR?) (recall that ug € BV (IRY) if sup{ [ ug(z)dive(r)dz,
¢ € C2(RYRY); |p(z)| <1, Vo € R} < 00). This assumption allows us to obtain an h'/* estimate
in (30.1). If ug ¢ BV (IR?) (but ug still belongs to L>°(IR%)), one can also give an error estimate which
depends on the functions £(r,.S) and go(r, S) defined in (30.16) and (30.23).

A slight improvement of Theorem 30.1 (and also Theorem 30.2 below) is possible. Using the fact that
uwe C(Ry, L (IRY) and thus u(-,t) is defined for all ¢ € IR, Theorem 30.1 remains true with

loc
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/ [ur (2, t) — u(z, t)|de < C.hY* vt e [0,7],
B(0,R)

instead of (30.1). The proof of such a result may be handled with an adaptation of the proof a uniqueness
of the entropy process solution given for instance in EYMARD, GALLOUET and HERBIN [54], see VILA
[158] and COCKBURN, COQUEL and LEFLOCH [32] for some similar results.

In some cases, it is possible to obtain h'/2, instead of h'/#, in Theorem 30.1. This is the case, for instance,
when the mesh T is composed of rectangles (d = 2) and when v does not depend on (z,t), since, in this
case, one obtains a “BV estimate” on wr . In this case, the right hand sides of inequalities (26.4) and
(26.5), proven above, are changed from C/v/h to C, so that the right hand side of (28.9) becomes Ch
instead of Cv/h, which in turn yields C.h'/? in (30.1) instead of C.h'/%. Tt is, however, still an open
problem to know whether it is possible to obtain an error estimate with h'/2, instead of h'/%, in Theorem
30.1 (under the hypotheses of Theorem 30.1), even in the case where v does not depend on (x,t) (see
COCKBURN and GREMAUD [34] for an attempt in this direction).

Remark 30.1 Theorem 30.1 (and also Theorem 30.2) remains true with some slightly more general
assumption on g, instead of 25.1, in order to allow g to depend on 7 and k. Indeed, in (25.4), one can
replace g(u%,ul) (and g(u},u})) by gr r(uf,ut, T, k) (and gr x(ul,ul, T, k)). Assume that, for all
K € T and all L € N(K), the function (a,b) — g 1(a,b, T, k), from [Up,, Up]? to IR, is nondecreasing
with respect to a, nonincreasing with respect to b, Lipschitz continuous uniformly with respect to K and
L and that gx.r(a,a,T,k) = f(a) for all a € [Up, Up] (recall that U, < ug < Ups a.e. on ]Rd). Then
Theorem 30.1 remains true.

However, note that condition (25.3) and C. in the estimate (30.1) of Theorem 30.1 depend on the Lipschitz
constants of gx. 1,(, -, T, k) on [Upm, Up]?. An interesting form for g 1, is gx.1.(a, b, T, k) = cx. (T, k) f(a)
+ (1—ck,.(T,k)) f(b) + Dk, (T, k) (a—b), with some ck (T, k) € [0,1] and D (T, k) > 0. In order to
obtain the desired properties on g, it is sufficient to take max{|f’(s)|, s € [Um,Un]} < D (T, k) < D
(for all K, L), with some D € IR. The Lipschitz constants of g, 1, on [Uy,, Up]? only depend on D, f,
U,, and U,,.

For instance, a “Lax-Friedrichs type” scheme consists, roughly speaking, in taking Dy (T, k) of order
“h/E”. The desired properties on gg, 1, are satisfied, provided that k/h < C, with some C' depending on
max{|f'(s)], s € [Um,Unm]}. Note, however, that the condition k/h < C'is not sufficient to give a real
“p1/% estimate, since the coefficient C,, in (30.1) depends on D. Taking, for example, k of order “h?” leads
to an estimate “C,h'/*” which do not goes to 0 as h goes to 0 (indeed, it is known, in this case, that the
approximate solution does not converge towards the entropy weak solution to (24.1)-(24.2)). One obtains
a real “h!/%” estimate, in the case of that “Lax-Friedrichs type” scheme, by taking C; < (k/h) < Cy. In
order to avoid the condition C; < (k/h) (note that (k/h) < Cs is imposed by the Courant-Friedrichs-Levy
condition 25.3), a possibility is to take Dg (T,k) = D = max{|f'(s)|, s € [Un,Un|} (this is related
to the “modified Lax-Friedrichs 7 of Example 21.1 page 135 in the 1D case). Then D only depends on
f and uo and, in the estimate “C.h'/*” of Theorem 30.1, C, only depends on R, T, v, f, ug, o and &,
which leads to a convergence result at rate “h'/4” as h — 0 (with fixed o and €).

In the case of the implicit scheme, one proves the following theorem.

Theorem 30.2 Under Assumption 24.1 page 153, let T be an admissible mesh in the sense of Definition
25.1 page 156 and k > 0. Let g € C(IRQ, R) satisfy Assumption 25.1. Let u be the unique entropy weak
solution of (24.1)-(24.2). Assume that ug € BV (R?) and that v does not depend on t.

Let {u}, n € IN, K € T} be the unique solution to (25.6) and (25.2) such that u% € [Up,Un| for all
K €T andn € IN (existence and uniqueness of such a solution is given by Proposition 27.1). Let ur i
be defined by (25.7).
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Then, for all R > 0 and T > 0, there exists C., only depending on R, T, v, g, ug and «, such that the
following inequality holds:

T
/ / g (2, 8) — u(e, B)|dwdt < Cy(k + h3)}, (30.2)
o JB(O,R)

Remark 30.2 Note that, in Theorem 30.2, there is no restriction on k (this is usual for an implicit
scheme), and one obtains an “h'/4” error estimate for some “large” k, namely if k& < h'/2. In Theorem
30.2, if v depends on t and ug € L>®(IR?) (but ug not necessarily in BV (IR%)), one can also give an error
estimate. Indeed one obtains

1
2

T
k 1 1
/ / lur i (x,t) —u(z, t)|dedt < Co(— + h?)?,
o JB(O,R) h
which yields an “h'/4” error estimate if k is of order “h”.

Theorem 30.1 (resp. Theorem 30.2) is an easy consequence of Theorem 28.1 (resp. 28.2) and of a quite
general theorem of comparison between the entropy weak solution to (24.1)-(24.2) and an approximate
solution. This theorem of comparison (Theorem 30.3) may be used in other frameworks (for instance,
to compare the entropy weak solution to (24.1)-(24.2) and the approximate solution obtained with a
parabolic regularization of (24.1)). It is stated and proved in Section 30.3 where the proofs of theorems
30.1 and 30.2 are also given. First, in Section 30.2, two preliminary lemmata are given. Indeed, Lemma
30.2 is the crucial part of the two following sections.

30.2 Preliminary lemmata

Let us first give a classical lemma on the space BV.

Lemma 30.1 Let u € BVj,.(IRP), p € IN*, that is u € Li,.(IRP) and the restriction of u to Q belongs to

loc

BV (Q) for all open bounded subset Q of RP (see Definition 21.19 page 141 for the definition of BV (Q2)).
Then, for all bounded subset Q of RP and for all a > 0,

[u(- +n) = ullLrie) < llulpve,), Yn € RP, [n] < a, (30.3)
where Q, = {x € RP; d(z,Q) < a} and d(z,Q) = inf{|x — y|, y € Q} is the distance from x to Q.

PROOF of Lemma 30.1
Let © be a bounded subset of IRP and n € IRP. The following equality classically holds:

lu(-+n) —ullie) = Sup{/Q(U(w +1) = u(@)p(e)dr, ¢ € CF(QR), (ol =) <1} (30.4)

Let ¢ € C2°(Q,IR) such that [[¢]|pe~q) < 1.
Since p(z) = 0 if z € Q) \ Q (recall that Q),,) = {z € R?; d(z,Q) < n}),

/ u(x)p(x)de = / u(x)p(x)dx.
Similarly, using an obvious change of variables,
[ ute+me@its = [ uete - e

Therefore,
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[ w0 —u@)ete)ds = [ we)ete—n) - e@hdr == [ uio)( | V(e — sn) - nds)de

[n] [n]

and, with Fubini’s theorem,

/Q (ue + 1) — ule))p(@)dz = / ( / u(@)Vip(z — sn) - ndz)ds. (30.5)

[n]

For all s € (0,1), Define ¢5 € C°(Q),,IR”) by ¢s(x) = @(x — sn)n; since ¥y € CZ(Q),,IR?) and
[s(2)] < [n] for all z € IR, the definition of |u[py (g, ) yields

J

w(z)Veo(xr — sn) - ndx = / u(z)divyys(z)dz < |nllulv(a,)-

Q

[l [n]

Then, (30.5) gives

/Q(U(x +1) = u(@)p(x)de < [nllulsy(a,)- (30.6)
Taking in (30.6) the supremum over ¢ € C2°(2, R) such that [¢[| (o) < 1 yields, thanks to (30.4),

[u(-+n) —ullzy@) < Inllulv g, Y1 € R,
and (30.3) follows, since Q| C Q, if 5| < a. ]

Remark 30.3 Let us give an application of the lemma 30.1 which will be quite useful further on. Let
u € BVioe(R?), p € N*. Let ¢, ¢ € Co(R”, IRy ), a > 0 and 0 < & < a such that [, p(z)dz = 1 and
p(x) =0 for all z € RP, |z| > . Let S ={z € RP, ¢(x) # 0}.

Then,

/ / PI(@)p(e — y)dyde < el L [ulsy s, (30.7)
Rrr JIRP

where S, = {z € R,, d(z,5) < a}.
Indeed, Lemma 30.1 gives

lu(-+n) = ullLis) < Inllulpys,), Yn € R?,[n| < a. (30.8)
Using a change of variables in the left hand side of (30.7),

/IRP /IRP Y)Y (@)p(r — y)dydr < |[1] Lo (rr) /}3(0,5)(/3 [u(z) — u(x — 2)|dz)e(2)dz
Then, (30.8) yields

/ / D@z — y)dydr < el ]l mn lulzves,) / o(2)dz,
R? JIRP RP

which gives (30.7).
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Lemma 30.2 Under assumption 24.1, let ug € BV (IR?) and @ € L*(R*xIRY.) such that U, < @ < Un
a.e. on R x RY. Assume that there exist p € M(IR? x Ry) and po € M(IR?) such that

/IR /}Rd w(x,t) — kloe(x, t)+
+

(f(a(z,t)Tr) — fa(x,t)Lr))v(z,t) - Vgﬁ(z,t)) dedt  +
/ [uo(z) — K|o(z,0)dx > (30.9)
R4
[ (el + Vet 0] )dutant) - [ el 0)duo (o)
RIXR 4 R4

Ve € R, Ve OP(RYx R, Ry).

Let u be the unique entropy weak solution of (24.1)-(24.2) (i.e. u € L°(IR* x R is the unique solution
to (30.9) with u instead of t and pn =0, po =0).

Then for all ¢ € CgO(IRd x R4,IRy) there exists C only depending on v (more precisely on ||| oo,
|¥t]|oos IVY]loos and on the support of V), v, f, and ug, such that

+ R I

—Cuo({e(:, )# 0}) + ( ({1/) # 0})) + ({1/) %0}))
(-

where {¢p # 0} = {(z,t) € R x R, ¢(z,t) # 0} and {(-,0) # 0} = {x € R, ¢(x,0) # 0}. (Note
that ||-||c = ||'||L°o(11{dxn1;)~)

(30.10)

PROOF of Lemma 30.2

The proof of Lemma 30.2 is close to that of step 1 in the proof of Theorem 29.1. Let us first define
mollifiers in R and R?. For p = 1 and p = d, one defines p, € C>°(IR?,R) satisfying the following
properties:

supp(pp) = {z € R?; pp(z) # 0} C {z € RP; |z < 1},

pp(x) >0, Vo € RP,
| plarae=1
RP

pi(z) =0,Vr € Ry. (30.11)

and furthermore, for p = 1,

For r € R, r > 1, one defines p, .(z) = rPp,(rz), for all z € RP.
Using the mollifiers py, ,» will allow to choose convenient test functions in (30.9) (which are the inequalities
satisfied by @) and in the analogous inequalities satisfied by u which are

[ ) = sl s) + (£t ) To) = Fluly. 5100 )v(0:5) - Violy o) st
R, /R

]Rd|u0(y) — k|p(y,0)dy >0, Ve €R, V€ CP(R? x Ry, Ry).

(30.12)
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Indeed, the main tool is to take x = u(y, s) in (30.9), kK = @(z,t) in (30.12) and to introduce mollifiers in
order to have y close to x and s close to t.

Let ¢ € C®(RY x Ry, R,), and let ¢ : (IR? x R, )% — Ry be defined by:

o(x,t,y,5) = (x,t)par (v —y)p1r(t —5).

Note that, for any (y,s) € R? x IR, one has ol y,8) € Cé’o(le x Ry,IR4) and, for any (z,t) €
R? x IR, one has o(x,t,- ) € Cé’o(le x Ry, IR4). Let us take (-, -, y,s) as test function ¢ in (30.9)
and p(z,t,-,-) as test function ¢ in (30.12). We take, in (30.9), x = u(y,s) and we take, in (30.12),
k= 1(z,t). We then integrate (30.9) for (y,s) € R® x R4, and (30.12) for (z,t) € R x Ry. Adding
the two inequalities yields

En + Evg + Enz + Erg > —Ey, (30.13)
where
Eiy /OOO /IRd /OOO /]Rd [|ﬂ(x,t)fu(y,s)h/)t(x,t)pdm@fy)plyr(tfs)}d:cdtdyds,
Ba=[ [ / /IR (s Tuty. 9) - st ) Luty. )
) - Vo, Dpar (e = y)prp(t — 5)|dudtdyds,
pa=-[ [ | /IR (fe 0Tl ) — £t Luy.5) (a1
v(x,t)) - Vpar(x —y)p1,r(t — s)dedtdyds,
Bu= [ [ Juote) = )00 o = ) () dydsda
and

Bo= [ [ S (parte =001 9) 0050 3)

ot — 8) (Vo (, )par(z — y) + ¥(@, ) Vpar(z — ))|)dﬂ(x #)dyds (30.14)

/ /IRd/ (@, 0)par(x = y)p1r(=s)|duo(x)dyds.

One may be surprised by the fact that the inequation (30.13) is obtained without using the initial condition
which is satisfied by the entropy weak solution u of (24.1)-(24.2). Indeed, this initial condition appears
only in the third term of the left hand side of (30.12); since ¢(z,t,-,0) = 0 for all (z,t) € R? x IR, the
third term of the left hand side of (30.12) is zero when ¢(z,t,-,-) is chosen as a test function in (30.12).
However, the fact that u satisfies the initial condition of (24.1)-(24.2) will be used later in order to get a
bound on FE14.

Let us now study the five terms of (30.13). One sets S = {1 # 0} = {(z,t) € R? x R; ¥(x,t) # 0}
and Sy = {¢(-,0) # 0} = {z € R% ¢(x,0) # 0}. In the following, the notation C; (i € IN) will refer to
various real quantities only depending on || ||oc, ||¥¢|locs |V¥|loo, S, So, v, f, and uo.
Equality (30.14) leads to

FEy < (7‘ + 1)01#(5) + Cguo(So). (3015)
Let us handle the term E1;. For all 2 € R? and for all ¢ € IR, one has, using (30.11),

/ / par(x —y)p1r(t —s)dsdy = 1.
R4 Jo
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Then,

|Ei —/mogm[lﬂ(%t)—U(:v,t)lwt(ac,t)} dzdt| <
/O /Rd/o /}R {IU(w,t)—U(y,S)Illﬂt(w,t)lpd,r(w—y)pl,r(t—s) dadtdyds < ||1by]|see(r, S),

with

1
e(r, ) = sup{flu —u(-+n,-+7)lL1cs), Inl < -, 0<7 <~} (30.16)

Since ug € BV (IRY), the function u (entropy weak solution to (24.1)—(24.2)) belongs to BV (IR%x (~T,T)),
for all T' > 0, setting, for instance, u(.,t) = ug for ¢ < 0 (see KRUSHKOV [97] or CHAINAIS-HILLAIRET
[23] where this result is proven passing to the limit on numerical schemes).

Then, Lemma 30.1 gives, since r > 1, (takingp=d+1, Q=S5 and a = V2 in Lemma 30.1,)

03
.,

e(r,S) < (30.17)

Hence,

|E11/]R /m [|ﬁ(z,t)—u(z,t)|wt(x,t) drdt] < % (30.18)

In the same way, using |f(aTb) — f(aTc)| < M|b— ¢| and |f(aLld) — f(aLlc)] < M|b— ¢| for all a, b,
¢ € [Up, Upr] where M is the Lipschitz constant of f in [Uy,, U],

|1 f/ / (2, ) Tu(e,8)) = fla(z, ) Lu(z, 1))

z,t) - Vip(z,t))dadt| < Cse(r, S) < e,

Let us now turn to E13. We compare this term with

Eiyy = / /m/ /m (e, ) Tu(z, 1)) — f(ﬂ(z,t)iu(x,t)))w(:c,t)

—v(z,t)) - Vpar(x—y)p1,r(t —s) dedtdyds.

(30.19)

Since div(v(:,s) —v(x,t)) =0 (on IRd) for all z € R?, t € R, and s € IR, one has Fy3, = 0. Therefore,
substracting E13, from Ey3 yields

oo o0

Ba<Crf [ ] et - ut . (30.20)

|(v(y,s) — v(z, ; t)) - Vpd (@ —y)|p1r(t — s) dedtdyds.

The right hand side of (30.20) is then smaller than Cse(r, S), since |(v(y,s) — v(z,t)) - Vpar(z — y)]| is
bounded by Cor? (noting that |z — y| < 1/r). Then, with (30.17), one has

C
Ey3 < 22, (30.21)
T

In order to estimate Ey4, let us take in (30.12), for z € R? fixed, ¢ = p(z, -, ), with

P(00.5) = V(e Opara ) | " pia(rydr,

and k = uo(x). Note that ¢(z,-,-) € C®°(R? x Ry,IR;). We then integrate the resulting inequality
with respect to z € R?. We get
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—FE14 + E15 + Ei6 > 0,

o= [ /IR d / ) Tuo(w) = £ (uly,5) Luo(2)))

v(y,s x, )Vpdr(x* Y))p1,-(—7)drdydzds,

Eg = /IR'i /IRd /0 w(xa O)pd,T('T - y)pl,r(_T”uO(‘T) - uo(y)|d7'dydac.

To bound FE\5, one introduces Eys5;, defined as

Bun= [ /R d /IR d / $)Tuo(y) — f(uly. s) Luo(y)))

) - Vpa, r(fc —y)(x,0)p1,r(—7)drdydzds.
Integrating by parts for the x Varlable ylelds

B = [ /m d / [ Gt Tu) =l 9) Luo(s))

,8) - Vip(x, 0))Pd r(x —y)p1r(—7)drdydads.
Then, noting that the time support of this integration is reduced to s € [0,1/r], one has

with

C
Esp < —2. (30.22)
T

Furthermore, one has

Bt Bl <Cra [ [ [ [ luola) =~ wnlw)livl.) - Vs (@~ 1)1oe. ), (~r)drdydads,
0 R4 JRY Js

which is bounded by Ciszeq(r, Sp), since the time support of the integration is reduced to s € [0,1/r],
where g¢(r, Sp) is defined by

1
colr50) = supf [ uo(e) = uola+ ldzs [n] < 2}, (3023)
So

Since up € BV (IR?), one has (thanks to Lemma 30.1) eo(r,So) < Ci4/r and therefore, with (30.22),
Ey5 < Cys/r.

Since uy € BV (IRY), again thanks to Lemma 30.1, see remark 30.3, the term Ejg is also bounded by
ClG/T-

Hence, since Ei4 < E15 + Fig,

By < % (30.24)

Using (30.13), (30.15), (30.18), (30.19),(30.21), (30.24), one obtains

/IR+ /IR'i u(z,t) — u(w,t)|ie(z,t) +

(f( (z,8) Tu(z, b)) — flalz, t) Lu(z, t))) (v(z,t).w(z,t))] dodt >
—C1(r + 1)u(S) — Capo(So) — L=,

) —
which, taking r = 1//u(S) if 0 < u(S) <1 (r = oo if u(S) =0 and r = 1 if pu(S) > 1), gives (30.10).
This concludes the proof of the lemma 30.2. [
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30.3 Proof of the error estimates

Let us now prove a quite general theorem of comparison between the entropy weak solution to (24.1)-(24.2)
and an approximate solution, from which theorems 30.1 and 30.2 will be deduced.

Theorem 30.3 Under assumption 24.1, let ug € BV (IR?) and @ € L®(R® x RY) such that Uy, < @ <
Un a.e. on R? x RY. Assume that there exist p € M(IR® x Ry) and py € M(IR?) such that (30.9)
holds. Let u be the unique entropy weak solution of (24.1)-(24.2) (note that u € L (IR* x R} ) is solution
to (30.9) with u instead of t and pn =0, po =0).

Then, for all R > 0 and all T > 0 there exists C, and R, only depending on R, T, v, f and ug, such that
the following inequality holds:

Jo S @, t) = u(w,t)|dedt < Co(puo(B(0, R)) + [1u(B(0, R)

Recall that B(0, R) = {z € R?; |z| < R}.

PROOF of Theorem 30.3

The proof of Theorem 30.3 is close to that of Step 2 in the proof of Theorem 29.1. It uses Lemma 30.2
page 193, the proof of which is given in section 30.2 above.

Let R > 0 and T > 0. One sets w = VM, where V is given in Assumption 24.1 and M is the Lipschitz
constant of f in [Uy,, Up] (indeed, since f € C*(IR,IR), one has M = sup{|f'(s)]; s € [Upm,Unm]}).

Let p € C}(IR 4, [0,1]) be a function such that p(r) = 1if r € [0, R+wT], p(r) = 0if r € [R+wT +1,00)
and p'(r) <0, for all r € R (p only depends on R, T, v, f and uy).

One takes, in (30.10), ¢ defined by

H

Y(a,t) = p(lz| + wt) L=t for z € R and t € [0, 7],
Y(x,t) =0, for z € R and t > T.

Note that p(|z| + wt) =1, if (z,t) € B(0, R) x [0,T].

The function % is not in C’é’o(IRd x R4,R), but, using a usual regularization technique, it may be
proved that such a function can be considered in (30.10), in which case Inequality (30.10) reads, with
R=R+wl+1,

/ /IR 18t 1) — wtar, 01 (Lt U + ) — moplal + 1)) +
(a(z, ) Tu(z, b)) — f(ﬂ(z,t)iu(x,t))) I=t of(|z] + wt) (v (z,t)~‘7””‘)} dzdt >
*C(Ho( (0, R)) + (u(B(0, R) x [0,7]))% + pu(B(0, R) x [0,71)),

where C' only depends on R, T', v, f and ug.
Since w = VM and p’ < 0, one has

(G, T, 1)) — F(ate, ) LuCe, 1)) ol (] + wt) (v, 1) L) <
iz, 1) = u(, )] Trtw(—p' (2] +wt),
and therefore, since p(|z| +wt) =1, if (x,t) € B(0, R) x [0,T],

/0 /B(O R)|11(ac,t) — u(x,t)|dedt < CT(uo(B(0, R)) + (u(B(0, R) x [O’T]))% + u(B(0, R) x [0,17)).

This completes the proof of Theorem 30.3. [
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Let us now conclude with the proofs of theorems 30.1 page 189 (which gives an error estimate for the
time explicit numerical scheme (25.4), (25.2) page 157) and 30.2 page 190 (which gives an error estimate
for the time implicit numerical scheme (25.6), (25.2) page 157). There are easy consequences of theorems
28.1 and 28.2 and of Theorem 30.3.

PROOF of Theorem 30.1

Under the assumptions of Theorem 30.1, let @ = w7 ;. Thanks to the L estimate on ur x (Lemma 26.1)
and to Theorem 28.1, @ = w7y ) satisfies the hypotheses of Theorem 30.3 with p = 7, and po = pr
(the measures pu7 5 and g are given in Theorem 28.1).

Let R > 0 and T > 0. Then, Theorem 30.3 gives the existence of C; and R, only depending on R, T', v,
f and wug, such that

T 5 5 1
fO fB(O,R) |UT71€($’ t) - u(xa t)|d$dt < Cl(MT(B(Oa R)) + [MT,k(B(O’ R_) X [Oa T])]2

+u7 (B0, R) x [0,T7)).

For h small enough, say h < Ry, one has h < R and k < T (thanks to condition 25.3, note that Ry only

depends on R, T, v, g, ug, o and §).
Then, for h < Ry, Theorem 28.1 gives, with (30.25),

(30.25)

T
/ / () — u(z, B)|dedt < Cy(Dh + VT + CVE) < Coht,
o JB(O.R)

where Cs only depends on R, T', v, g, ug, @ and &.
This gives the desired estimate (30.1) of Theorem 30.1 for h < Ry.
There remains the case h > Ry. This case is trivial since, for h > Ry,

T
/ / i (2, 8) — i, £)|ddt < 2max{—Un, Un}m(B(0, R) x (0,T)) < Cs(Ro)* < Csht,
o JB(O,R)
for some C3 only depending on R, T', v, g, ug, a and &.
This completes the proof of Theorem 30.1. [

PROOF of Theorem 30.2

The proof of Theorem 30.2 is very similar to that of Theorem 30.1 and we follow the proof of Theorem
30.1.

Under the assumptions of Theorem 30.2, using Theorem 28.2 instead of Theorem 28.1 gives that @ = ur
satisfies the hypotheses of Theorem 30.3 with p = prx and po = w7 (the measures pr p and pur are
given in Theorem 28.2).

Let R > 0 and T > 0. Theorem 30.3 gives the existence of C; and R, only depending on R, T, v, f and
ug, such that (30.25) holds.

For h < R and k < T Theorem 28.1 gives with (30.25),

T
/ / lur (2, t) — u(z, t)|dedt < Cy(Dh+ VC(k+h?)? + Clk+ h?)) < Co(k + h?)7,
0o JB(O,R)

where C3 only depends on R, T, v, g, ug, . -
This gives the desired estimate (30.2) of Theorem 30.2 for h < R and k < T
There remains the cases h > R and k > T'. These cases are trivial since

T
/ / (2, ) — u(e, B)|dadt < 2max{—Un, Uns ym(B(0, R) x (0,T)) < Cyinf{ &%, T3}
o JB(O,R)

for some C3 only depending on R, T', v, g, ug.
This completes the proof of Theorem 30.2. [
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30.4 Remarks and open problems

Theorem 30.1 page 189 gives an error estimate of order h'/* for the approximate solution of a nonlinear
hyperbolic equation of the form u; + div(vf(u)) = 0, with initial data in L> N BV by the explicit finite
volume scheme (25.4) and (25.2) page 157, under a usual CFL condition k& < Ch (see (25.3) page 157).

Note that, in fact, the same estimate holds if ug is only locally BV. More generally, if the initial data ug
is only in L°°, then one still obtains an error estimate in terms of the quantities
1 1
E(Tv S) = Sup{ |’LL(.CC,t) - ’LL(.CC + 777t+ T)|d$dt, |77| < ) 0 <7< _}
S T r

and

1
eo(r, So) = sup{ | |uo(z) —uo(z +m)ldz; [n < —},
So
see (30.16) page 195 and (30.23) page 196. This is again an obvious consequence of Theorem 28.1 page
174 and Theorem 30.3 page 197.

We also considered the implicit schemes, which seem to be much more widely used in industrial codes in
order to ensure their robustness. The implicit case required additional work in order

(i) to prove the existence of the solution to the finite volume scheme,

(ii) to obtain the “strong time BV” estimate (27.14) if v does not depend on t.

For v depending on ¢, Remark 30.2 yields an estimate of order h'/4 if k behaves as h; however, in the
case where v does not depend on ¢, then an estimate of order h'/* is obtained (in Theorem 30.2) for a
behaviour of k as vh; Indeed, recent numerical experiments suggest that taking k of the order of VA
yields results of the same precision than taking k£ of the order of h, with an obvious reduction of the
computational cost.

Note that the method described here may also be extended to higher order schemes for the same equation,
see CHAINAIS-HILLAIRET [22]; other methods have been used for error estimates for higher order schemes
with a nonlinearity of the form F(u), as in NOELLE [120]. However, it is still an open problem, to our
knowledge, to improve the order of the error estimate in the case of higher order schemes.

31 Boundary conditions

In this section, a generalization of Theorem 23.1 is presented for the multidimensional scalar case together
with a rough sketch of proof. For the sake of simplicity, one considers d = 2 (the extension to d = 3 is
straightforward) and a flux function under the form v(z,t)f(u), with div(v(-,t)) = 0 (see [160] for the
general case of a flux function f(z,¢,u)). This leads to the following equation:

us +div(vf(u)) =0, in Q x (0,7), (31.1)

where  is a bounded polygonal open set of R?, T' > 0, f € C*(R,R) (or f : R — R Lipschitz
continuous) and v € C1(R? x [0,7]) — R? with div(v(-,¢)) = 0 in R? for all ¢ € [0,T]. The unknown is
u: 2x(0,7T)—R.

Let ug € L>() and ©w € L>°(92 x (0,7)). Let A, B € R be such that A < up < B a.e. on  and
A <7< Bae. ondQx (0,7). Following the work of [125], an entropy weak solution of (31.1) with the
initial condition ug and the (weak) boundary condition % is a solution of (31.2):
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u € L®(Q % (0,T)),
/ /Q U —K) g0t+81gni(ufn)(f( ) — f(k))v - grady|dxdt

+M / / (@, t)dy(z)dt (31.2)
o0
/ (10 — ) (2, 0)d > 0,
Vi €[4, B], Vp € CH@ x [0,T), Ry),
where dvy(z) stands for the integration with respect to the one dimensional Lebesgue measure on the

boundary of Q and M is such that ||v||e|f(s1) — f(s2)] < M|s1 — sa| for all s1, s3 € [A, B], where||v|oo =
SUP(, neax(o,r) [v(2, )| (and | - | denotes here the Euclidean norm in R?).

Remark 31.1

1. Ifu satisfies the family of inequalities (31.2), it is possible to prove that u is a solution of (31.1) (on a
weak form), u satisfies some entropy inequalities in Qx (0, T), namely |u— k| +div(v(f(max(u, k))—
f(min(u, k)))) <0 for all k € R, but also on the boundary of 9Q and ont = 0. u satisfies the initial
condition (u(-,0) = ug) and u satisfies partially the boundary condition. For instance, if f' > 0 and
u is reqular enough, then u(xz,t) = u(x,t) if v € 0Q, t € (0,T) and v(x,t) - n(x,t) < 0, where n is
the outward normal vector to OS2.

2. Let M > 1. It is interesting to remark that u is solution i(é’].?) if and only if u is solution of
(31.2) where the term [;,(uo — k) p(x,0)dz is replaced by M [, (uo — k) *p(z, 0)dz.

A sketch of proof of existence and uniqueness of the solution of (31.2) together with the convergence of
numerical approximations is now given, following [160].
STEP 1: APPROXIMATE SOLUTION. With a quite general mesh of Q (with triangles, for instance), denoted
by 7, and a time step k, it is possible to define an approximate solution, denoted by w7 i, using some
numerical fluxes (on the edges of the mesh) satisfying conditions similar to (C1)-(C3) in Sect. 23.1.
Under a so called CFL condition (like & < (1 — C)% in Sect. 23.1), it is easy to prove that A < ur < B
a.e. on Q x (0,7). Unfortunately, it does not seem easy to obtain directly a strong compactness result
on the familly of approximate solutions (alhough this strong compactness result is true, as we shall see
below).
STEP 2: WEAK COMPACTNESS. Using only this L bound on wur j, one can assume (for convenient
subsequences of sequences of approximate solutions) that wr r — u, as the mesh size goes to zero (with

the CFL condition), in a “non linear weak-+ sense” (similar to the convergence towards young measures,
see [53] for instance), that is v € L>°(Q x (0,T) x (0,1)) and

/ / (ur ks (z,t))(x, t)dxdt —>/ / / u(z, t, )z, t)dedtdo,

for all ¢ € LY(Q x (0,7)).

STEP 3: PASSING TO THE LIMIT. Using the monotonicity of the numerical fluxes, the approximate
solutions satisfy some discrete entropy inequalities. Passing to the limit in these inequalities gives that u
(defined in Step 2) is solution of some inequalities which are very similar to (31.2), namely:

uwe L®(Qx(0,T) x (0,1)),
/ / /Q u — k)T 4 signy (u — k)(f(u) — f(r))v - gradp|dedtda
+M / / Eo(z, t)dy(z)dt (31.3)
o0

/(uo — k)T p(z,0)dz > 0,
Vi € [A, B, Y € CLQ x [0,T),R),
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For this step, one chooses M not only greater than the Lipschitz constant of ||v||~f on [A4, B], but also
greater than the Lipschitz constant (on [4, B]?) of the numerical fluxes associated to the edges of the
meshes (the equivalent of L in Theorem 23.1). This choice of M is possible since the unique solution
of (31.2) does not depend on M provided that M is greater than the Lipschitz constant of ||v||sf on
[A, B] and since it is possible to choose numerical fluxes (namely, Godunov flux, for instance) such as the
Lipschitz constant of these numerical fluxes is bounded by the Lipschitz constant of ||v||~f (then, the
present method leads to an existence result with M only greater than the Lipschitz constant of ||v||so f
on s € [A, B], passing to the limit on approximate solutions given with these numerical fluxes).

STEP 4: UNIQUENESS OF THE SOLUTION OF (31.3). In this step, the “doubling variables” method of
Krushkov is used to prove the uniqueness of the solution of (31.3). Indeed, if u and w are two solutions
of (31.3), the doubling variables method leads to:

/ / / / lu(z,t, o) — w(x,t, B)|ps dedtdodf

/ / / / (max(u,w)) — f(min(u, w)))v - grade dedtdadf > 0
’ V(pe Ccl(ﬁx [OaT)aR-i-)a

(31.4)

Taking ¢(z,t) = (I'—t)* in (31.4) (which is, indeed, possible) gives that u does not depend on «, v does
not depend on 4 and u = v a.e. on  x (0,7). As a result, v is also the unique solution of (31.2).

STEP 5: CONCLUSION. Step 4 gives, in particular, the uniqueness of the solution of (31.2). It gives also
that the non linear weak-x limit of sequences of approximate solutions is solution of (31.2) and, therefore,
the existence of the solution of (31.2). Furthermore, since the non linear weak-x limit of sequences of
approximate solution does not depend on «, it is quite easy to deduce that this limit is “strong” in
LP(Q x (0,T)) for any p € [1,00) (see [53], for instance) and, thanks to the uniqueness of the limit, the
convergence holds without extraction of subsequences.

32 Nonlinear weak-x convergence

The notion of nonlinear weak-x convergence was used in Section 29.3. We give here the definition of this
type of convergence and we prove that a bounded sequence of L> converges, up to a subsequence, in the
nonlinear weak-x sense.

Definition 32.1 (Nonlinear weak-x convergence)
Let Q be an open subset of R (N > 1), (un)new € L=(Q) and u € L=(Q x (0,1)). The sequence
(un)nen converges towards u in the “nonlinear weak-+ sense” if

/Q (un(x) dac—>/ / (x)dzda, as n — +oo, (32.1)
V(p € Ll(Q), Vg € C(R,R).

Remark 32.1 Let Q be an open subset of RY (N > 1), (tn)new C L®(Q) and u € L=(Q x (0,1))
such that (u,)nen converges towards u in the nonlinear weak-+ sense. Then, in particular, the sequence
(un)new converges towards v in L>°(92), for the weak-+ topology, where v is defined by

1
v(z) :/ u(z, a)da, for a.e. x € Q.
0

Therefore, the sequence (uy,)nen is bounded in L°°(€)) (thanks to the Banach-Steinhaus theorem). The
following proposition gives that, up to a subsequence, a bounded sequence of L>°(£2) converges in the
nonlinear weak-x sense.
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Proposition 32.1 Let Q be an open subset of RY (N > 1) and (un)nen be a bounded sequence of
L>°(Q). Then there exists a subsequence of (un)newN, which will still be denoted by (up)new, and a
function w € L®(Q2 x (0,1)) such that the subsequence (un)new converges towards w in the nonlinear
weak-x sense.

PROOF

This proposition is classical in the framework of “Young measures” and we only sketch the proof for the
sake of completeness.

Let (un)new be a bounded sequence of L>°(Q) and 7 > 0 such that [u,||z ) < r,Vn € IN.

Step 1 (diagonal process)

Thanks to the separability of the set of continuous functions defined from [—r, 7] into IR (this set is
endowed with the uniform norm) and the sequential weak-+ relative compactness of the bounded sets of
L>(Q) , there exists (using a diagonal process) a subsequence, which will still be denoted by (u)nen,
such that, for any function g € C(IR,IR), the sequence (g(un))nenw converges in L>°(Q) for the weak-x
topology towards a function ug, € L>°(Q).

Step 2 (Young measure)
In this step, we prove the existence of a family (m,).cq such that

1. for all z € Q, m, is a probability on IR whose support is included in [—r, +7r] (i.e. m, is a o-additive
application from the Borel o-algebra of IR in IR such that m,(IR) =1 and m, (IR \ [-r,7]) = 0),

2. pig(x) = [z 9(s)dmy(s) for a.e. x € Q and for all g € C(R,IR).

The family m = (my)zcq is called a “Young measure”.

Let us first claim that it is possible to define u, € L>(Q) for g € C([—r,7],IR) by setting u, = p; where
f € C(R,IR) is such that f = g on [—r,r]. Indeed, this definition is meaningful since if f and h are two
elements of C(IR,IR) such that f = g on [—r,7] then puy and pp, are the same element of L>(Q) (i.e.
pp = pp, a.e. on §2) thanks to the fact that —r < w,, <r a.e. on  and for all n € IN.

For xz € Q, let

E, ={g € C([-r,r],IR); %im __ /B( Y pg(z)dz exists in IR},

—0m(B(0,h))
where B(x, h) is the ball of center = and radius h (note that B(x, h) C Q for h small enough).
If g € E,, we set

, 1
fig(x) = %%m/}g(m,h) fg(2)dz.

Then, we define T, from E, in R by T,(g) = fig(x). It is easily seen that E, is a vector space which con-
tains the constant functions, that T}, is a linear application from E, to IR and that T}, is nonnegative (i.e.
g(s) > 0 for all s € IR implies T,(g) > 0). Hence, using a modified version of the Hahn-Banach theorem,
one can prolonge T}, into a linear nonnegative application T, defined on the whole set C'([~r,7],IR). By
a classical Riesz theorem, there exists a (nonnegative) measure m, on the Borel sets of [—r, 7] such that

T.(9) = / g(s)dmy(s),Vg € C([-r,r],R). (32.2)
If g(s) = 1 for all s € [—r, 7], the function g belongs to E, and fig(z) = 1 (note that pu, = 1 a.e. on Q).
Hence, from (32.2), m, is a probability over [—r,r], and therefore a probability over IR by prolonging it
by 0 outside of [—r,r]. This gives the first item on the family (my)zecq-

Let us prove now the second item on the family (m;).cq. If ¢ € C([—r,7],IR) then g € E, for a.e.

z € Qand pg(x) = fig(x) for ae. x € Q (this is a classical result, since g € Lj,.(€2), see RUDIN [132]).
Therefore, pg(x) = Tx(9) = T1(g) for a.e. z € Q. Hence,
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fg(x) = /T g(s)dm,(s) for a.e. x € Q,

-r

for all g € C([—r,r],IR) and therefore for all ¢ € C(IR,IR). Finally, since the support of m, is included
in [—r, 7],

pg(x) = /IR g(s)dmg(s) for a.e. z € 2, Vg € C(IR,IR).

This completes Step 2.

Step 3 (construction of u)
It is well known that, if m is a probability on IR, one has

/ g(s)dm(s) = / g(u(a))da, Vg € My, (32.3)
R 0

where M, is the set of bounded measurable functions from IR to IR and with

’LL(O[) = Sup{c € IR? T?L((*OO, C)) < Oé}, Va € (05 1)
Note that the function u is measurable, nondecreasing and left continuous. Furthermore, if the support
of m is included in [a,b] (for some a, b € IR, a < b) then u(a) € [a,b] for all a € (0,1) and (32.3) holds
for all g € C(R,R).
Applying this result to the measures m, leads to the definition of u as

u(z, a) = sup{c € R; my((—00,¢)) < a}, Va € (0,1), Vo € Q.

For all z € €, the function u(x,-) is measurable (from (0, 1) to IR), nondecreasing, left continuous and
takes its values in [—r,7]. Furthermore,

1
pg(x) = / g(u(z, a))da for ae. € Q, Vg € C(R,R).
0

Therefore,

1
/ g(un(@)p(@)dz — | ( / g(u(w, a))da)p(x)dr, as n— ox,
Q Q Jo
Vo € LY(Q), Vg € C(R, R).
In order to conclude the proof of Proposition 32.1, there remains to show that modifying « on a negligible

set leads to a function (still denoted by w) measurable with respect to (z,«) € © x (0,1). Indeed, this
mesurability is needed in order to assert for instance, applying Fubini’s Theorem (see RUDIN [132]), that

/Q(/Olg(u(z,oé))da)@(:c)dx — /01(/Q (@, a))p(@)dz)da,

for all ¢ € L'(Q) and for all g € C(IR, R).

For all g € C(IR,IR), one chooses for p, (which belongs to L>°(2)) a bounded measurable function from
Q to IR.
Let us define € = {gap; a, b € Q, a < b} where g, € C(IR,IR) is defined by

Jap(z) =1if x < a,

Jap(z) = =L ifa <z <D,

Since & is a countable subset of C(IR,IR), there exists a Borel subset A of §2 such that m(A4) = 0 and
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pg(x) = / g(s)dmy(s), Ve € Q\ A, Vg € £. (32.4)
R
Define for all a € (0,1) v(., ) by

v(z,a) =0if z € A,
v(z,a) = sup{c € R, my((—o0,c)) < a}ifx € Q\ A,

so that u =wv on (Q\ A) x (0,1) (and then u = v a.e. on Q x (0,1)).

Let us now prove that v is measurable from Q x (0,1) to IR (this will conclude the proof of Proposition
32.1).

Since v(x,.) is left continuous on (0, 1) for all x € Q, proving that v(.,«) is measurable (from  to IR)
for all a € (0,1) leads to the mesurability of v on € x (0,1) (this is also classical, see RUDIN [132]).
There remains to show the mesurability of v(.,«) for all « € (0,1).

Let a € (0,1) (in the following, « is fixed). Let us set w = v(., ) and define, for ¢ € IR,

fe(x) =my((—00,¢)) —a, © € Q\ A,

so that v(x,a) = w(x) =sup{c € R, f.(z) <0} forall z € Q\ A.
Using (32.4) leads to

me((—00,¢)) = sup{ug(z), g < 1L, and g € £}, Vo € Q\ A,

Then, the function f. : @\ A — IR is measurable as the supremum of a countable set of measurable
functions (recall that u, is measurable for all g € £).

In order to prove the measurability of w (from € to IR), it is sufficient to prove that {z € Q\ A; w(z) > a}
is a Borel set, for all @ € IR (recall that w = 0 on A).

Let a € IR, since f.(x) is nondecreasing with respect to ¢, one has

{z e Q\ A w(x) Z a} =NMaso{z € O\ 4; f,_1(z) <0}

Then {z € Q\ A4; w(z) > a} is measurable, thanks to the measurability of f. for all ¢ € IR.
This concludes the proof of Proposition 32.1. [

Remark 32.2 Let Q be an open subset of RY (N > 1), (tn)nenw C L®(Q) and u € L®(Q x (0,1))
such that (un)new converges towards u in the nonlinear weak-x sense. Assume that u does not depend
on «, i.e. there exists v € L>°(Q) such that u(z,a) = v(x) for a.e. (xz,a) € Q x (0,1). Then, it is easy
to prove that (u,)nen converges towards w in LP(B) for all 1 < p < oo and all bounded subset B of Q.
Indeed, let B be a bounded subset of ). Taking, in (32.1), g(s) = s? (for all s € R) and ¢ = 15 and
also g(s) = s (for all s € IR) and ¢ = 1gv leads to

/ (un(2) — v(2))?dz — 0, as n — oo.
B

This proves that (u,),en converges towards u in L?(B). The convergence of (uy,)nen towards u in LP(B)
for all 1 < p < oo is then an easy consequence of the L>°(€2) bound on (u,)nen (see Remark 32.1).

33 A stabilized finite element method

In this section, we shall try to compare the finite element method to the finite volume method for the
discretization of a nonlinear hyperbolic equation. It is well known that the use of the finite element is not
straightforward in the case of hyperbolic equations, since the lack of coerciveness of the operator yields
a lack of stability of the finite element scheme. There are several techniques to stabilize these schemes,
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which are beyond the scope of this work. Here, as in SELMIN [137], we are interested in viewing the
finite element as a finite volume method, by writing it in a conservative form, and using a stabilization
as in the third item of Example 21.1 page 135.

Let F € C'(IR,TR?), consider the following scalar conservation law:

ug(z,t) + div(F(u))(z,t) =0, z € R*, t € R, (33.1)

with an initial condition. Let 7 be a triangular mesh of IR?, well suited for the finite element method. Let
S denote the set of nodes of this mesh, and let (¢;);es be the classical piecewise bilinear shape functions.
Following the finite element principles, let us look for an approximation of w in the space spanned by
the shape functions ¢,; hence, at time ¢,, = nk (where k is the time step), we look for an approximate

solution of the form
tn) = > ujey;
jES

multiplying (33.1) by ¢, integrating over IR?, approximating F(Y s ufdj) by 30 jcs F(uf)dj, using the
explicit Euler scheme for the time discretization) and the mass lumping technique on the mass matrix as
described in Remark 16.3 yields the following scheme:

MJ_“‘/ a)s =S ) [ 0@ Vow)s =0

jES
which reads, noting that / ¢ (2)Vi(x) / ¢i(x)V;(x)dx and that ZV@
JES
n+1 o
A / ¢i(x)dx —i—Z F(u?)) - /IR2 ¢i(x)Vo;(x)dx = 0.

jES

This last equality may also be written

n+17u
/ ¢z d$+ZEJ—O

JjES

where

Buj = 5 (Pl) + F@) - [ (0:(2)V65(2) ~ 0,(0) V61 (e))d
IR2
Note that Ej,i = *Ei,j-

This is a centered and therefore unstable scheme. One way to stabilize it is to replace E}'; by

o m R e )
B, = E7; + Dy j(ui —uf),

where D; ; = D, ; (in order for the scheme to remain “conservative”) and D; ; > 0 is chosen large enough
so that E}'; is a nondecreasing function of i’ and a nonincreasing function of uj, which ensure the
stability of the scheme, under a so called CFL condition, and does not change the “consistency” (see
(21.7) page 135 and Remark 30.1 page 190).

34 Moving meshes

For some evolution problems the use of time variable control volumes is advisable, e.g. when the domain
of study changes with time. This is the case, for instance, for the simulation of a flow in a porous medium,
when the porous medium is heterogeneous and its geometry changes with time. In this case, the mesh is
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required to move with the medium. The influence of the moving mesh on the finite volume formulation
can be explained by considering the following simple transport equation:

ug(z,t) + div(uv)(z,t) =0, =z R? teRy, (34.1)

where v depends on the unknown u (and possibly on other unknowns). Let k& be the time step, and set
t, = nk, n € IN. Let T(t) be the mesh at time ¢. Since the mesh moves, the elements of the mesh vary
in time. For a fixed n € IN, let R(K,t) be the domain of IR? occupied by the element K (K € T (t,)) at
time ¢, ¢t € [ty,tn11], that is R(K,t,) = K. Let v4(x,t) be the velocity of the displacement of the mesh
at point = € R? and for all t € [t,,t,.1] (note that v(z,t) € R?). Let u} and ux™ be the discrete
unknowns associated to element K at times ¢,, and t,+1 (they can be considered as the approximations of
the mean values of u(-,¢,) and u(-,t,+1) over R(K,t,) and R(K, t,41) respectively). The discretization
of (34.1) must take into account the evolution of the mesh in time. In order to do so, let us first consider
the following differential equation with initial condition:

dy

5(% t) = —vg(yla,t),t), tE€ [tn,tnt1], (34.2)

y(z, t,) = =
Under suitable assumptions on v, (assume for instance that v is continuous, Lipschitz continuous with
respect to its first variable and that the Lipschitz constant is integrable with respect to its second variable),
the problem (34.2) has, for all 2 € IR?, a unique (global) solution. For z € IR?, define the function
y(x,-) from [t,,t,11] to IR? as the solution of problem (34.2). Let (p,)pen € CH(IR? IR, ) such that
0<yp(z)<lforxe IR? and for all p € IN, and such that vp = 1 a.e. as p — +oo. Multiplying (34.1)
by ¥y (x,t) = pp(y(z,t)) and integrating over IR? yields

/ (%(o@, ) + (e, )V (y(e, 1) - voly(a, ), 1) — (wv)(@, 1) - V() Jde = 0. (34.3)
]I{‘Z

Using the explicit Euler discretization in time on Equation (34.3) and denoting by u"(x) a (regular)
approximate value of u(x,t,) yields

[ (@t - v @yt )dot
7 u(z)(vs(z, tn) — vz, tn)) - Vp(z)de =0,
RZ
which also gives (noting that ¥, (z,t) = vp(y(z,t)))
|7 (0 @ty tu)) = @y (o 1,) ) o~

div(u"™(vs — v))(z,t,) - pp(x)dz = 0.
RQ

(34.4)

Letting p tend to infinity and noting that 1x (y(x,t,)) = Lr(xk,e,)(®) and 1k (y(2, tny1)) = 1R t,00) (@),
(34.4) becomes

1
— (/ u" Y (x)dx — / u"(x)dx) + / div((v — vs)u")(x, t,)dx = 0,
ENJR(K i) R(K,tn) R(K,tn)

which can also be written
(' m(R(K, 1)) — upem(R(K, t,)))+

/ (v —ve)(z,tn) - ng(z, t,)u" (x)dy(x) =0,
OR(K,ty)

> =
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where v} = [1/m(R(K,t,))] fR(Kytn)u"(:c)d:c and uit = [1/m(R(K, tp41))] fR(Kﬁth)u"Jrl(z)dz. Re-
call that nx denotes the normal to 0K, outward to K. The complete discretization of the problem uses
some additional equations (on v, v,...).

Remark 34.1 The above considerations concern a pure convection equation. In the case of a convection-
diffusion equation, such a moving mesh may become non-admissible in the sense of definitions 9.1 page
37 or 10.1 page 63. It is an interesting open problem to understand what should be done in that case.



Chapter 7

Systems

In chapters 2 to 6, the finite volume was successively investigated for the discretization of elliptic,
parabolic, and hyperbolic equations. In most scientific models, however, systems of equations have
to be discretized. These may be partial differential equations of the same type or of different types, and
they may also be coupled to ordinary differential equations or algebraic equations.

The discretization of systems of elliptic equations by the finite volume method is straightforward, following
the principles which were introduced in chapters 2 and 3. Examples of the performance of the finite
volume method for systems of elliptic equations on rectangular meshes, with “unusual” source terms
(in particular, with source terms located on the edges or interfaces of the mesh) may be found in e.g.
ANGOT [3] (see also references therein), FIARD, HERBIN [66] (where a comparison to a mixed finite
element formulation is also performed). Parabolic systems are treated similarly as elliptic systems, with
the addition of a convenient time discretization.

A huge literature is devoted to the discretization of hyperbolic systems of equations, in particular to
systems related to the compressible Euler equations, using structured or unstructured meshes. We shall
give only a short insight on this subject in Section 35, without any convergence result. Indeed, very
few theoretical results of convergence of numerical schemes are known on this subject. We refer to
GODLEWSKI and RAVIART [76] and references therein for a more complete description of the numerical
schemes for hyperbolic systems.

Finite volume methods are also well adapted to the discretization of systems of equations of different
types (for instance, an elliptic or parabolic equation coupled with hyperbolic equations). Some examples
are considered in sections 36 page 219 and 37 page 223. The classical case of incompressible Navier-Stokes
(for which, generally, staggered grids are used) and examples which arise in the simulation of a multiphase
flow in a porous medium are described. The latter example also serves as an illustration of how to deal
with algebraic equations and inequalities.

35 Hyperbolic systems of equations

Let us consider a hyperbolic system consisting of m equations (with m > 1). The unknown of the system
is a function u = (u1,...,uy)", from Q x [0, 7] to IR™, where Q is an open set of R? (i.e. d > 1 is the
space dimension), and w is a solution of the following system:

3ui

ot
Jj=1

x=(21,...,2q) €Q,t€(0,T),i=1,...,m,

T (z,t) = gi(w,t,u(z,t)), (35.1)

(z,t) +

VR

where
Gij(z,t) = Fj(z,t,u(z,t)),

208
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and the functions F; = (Fyj,...,Fy, )t (j =1,...,d) and g = (g1,...,9m)" are given functions from
Qx[0,T]xIR™ (indeed, generally, a part of IR™, instead of IR™) to IR"™. The function F' = (F\, ..., Fy) is
assumed to satisfy the usual hyperbolicity condition, that is, for any (unit) vector of R?, n, the derivative
of F - n with respect to its third argument (which can be considered as an m x m matrix) has only real
eigenvalues and is diagonalizable.

Note that in real applications, diffusion terms may also be present in the equations, we shall omit them
here. In order to complete System (35.1), an initial condition for ¢ = 0 and adequate boundary conditions
for x € 092 must be specified.

In the first section (Section 35.1), we shall only briefly describe the general method of discretization
by finite volume and some classical schemes. In the subsequent sections, some possible treatments of
difficulties appearing in real simulations will be given.

35.1 Classical schemes

Let us first describe some classical finite volume schemes for the discretization of (35.1) with initial and
boundary conditions, using the concepts and notations which were introduced in chapter 6. Let 7 be an
admissible mesh in the sense of Definition 25.1 page 156 and k be the time step, which is assumed to be
constant (the generalization to a variable time step is easy). We recall that the interface, K|L, between
any two elements K and L of T is assumed to be included in a hyperplane of IR%. The discrete unknowns
are the v, K € T, n € {0,..., N, + 1}, with N, € N, (N, + 1)k =T. For K € T, let N(K) be the
set of its neighbours, that is the set of elements L of T such that the (d — 1) Lebesgue measure of K|L is
positive. For L € N(K), let nk 1, be the unit normal vector to K|L oriented from K to L. Let t,, = nk,
forn € {0,..., N+ 1}.

A finite volume scheme reads

(35.2)

where

1. m(K) (resp. m(K|L)) denotes the d (resp. d — 1) Lebesgue measure of K (resp. K|L),

2. the quantity g7, which depends on u% (or u}’(ﬂ or u% and u}’(ﬂ), for K € T, is some “consistent”

approximation of g on element K, between times ¢,, and t,,11 (we do not discuss this approximation
here).

3. the quantity F ;, which depends on the set of discrete unknowns uj, (or uh !t or uwl, and i)

for M € T, is an approximation of F - ng j, on K|L between times ¢, and t,41.

In order to obtain a “good” scheme, this approximation of F'- ng 5 has to be consistent, conservative
(that is Fg =Fr ) and must ensure some stability properties on the approximate solution given by
the scheme (indeed, one also needs some consistency with respect to entropies, when entropies exist. . . ).
Except in the scalar case, it is not so easy to see what kind of stability properties is needed. ... Indeed, in
the scalar case, that is m = 1, taking g = 0 and Q2 = R? (for simplicity), it is essentially sufficient to have
an L™ estimate (that is a bound on u%} independent of K, n, and of the time and space discretizations)
and a “touch” of “BV estimate” (see, for instance, chapters 5 and 6 and CHAINAIS-HILLAIRET [22] for
more precise assumptions). In the case m > 1, it is not generally possible to give stability properties from
which a mathematical proof of convergence could be deduced. However, it is advisable to require some
stability properties such as the positivity of some quantities depending on the unknowns; in the case of
flows, the required stability may be the positivity of the density, energy, pressure...; the positivity of
these quantities may be essential for the computation of F(u) or for its hyperbolicity.



210

The computation of Ff ; is often performed, at each “interface”, by solving the following 1D (for the

space variable) system (where, for simplicity, the possible dependency of F' with respect to x and ¢ is
omitted):

au afK,L(u) o
o7 (Bt + =551 =0, (35.3)

where fx 1 (u)(z,t) = Foug (u(z,t)), forall z € R and t € (0,7, which gives consistency, conservativity
(and, hopefully, stability) of the final scheme (that is (35.2)). To be more precise, in the case of lower
order schemes, Fg ; may be taken as: I ; = Fing, (w) where w is the solution for 2 = 0 of (35.3) with
initial conditions u(z,0) = v’ if x < 0 and u(z,0) = u} if > 0. Note that the variable z lies in IR, so
that the multidimensional problem has therefore been transformed (as in chapter 6) into a succession of
one-dimensional problems. Hence, in the following, we shall mainly keep to the case d = 1.

Let us describe two classical schemes, namely the Godunov scheme and the Roe scheme, in the case
d=1,Q=1R, F(z,t,u) = F(u) and g = 0 (but m > 1), in which case System (35.1) becomes

du OF (u)

in order to complete this system, an initial condition must be specified, the discretization of which is
standard.

Let 7 be an admissible mesh in the sense of Definition 20.1 page 128, that is T = (K;)icz, with
Ki:(zi_1/2,$i+1/2), with Ti—1/2 < Tit1/2, i € Z . One sets h; = Titr1/2 — Ti—1/2, 1 € Z . The discrete
unknowns are ul’, i € ZZ, n € {0,..., N + 1} and the scheme (35.2) then reads

(z,t) =0, z€ R, te (0,T). (35.4)

un+1 —un
it 4 Flyy — [y =0, i€ Z,ne{0,... Ny}, (35.5)
where F\ /2 Is a consistent approximation of F(u(xi41/2,tn). This scheme is clearly conservative (in the

sense defined above). Let us consider explicit schemes, so that F /2 is a function of u}, j € ZZ. The

principle of the Godunov scheme GODUNOV [77] is to take F}}

Tje = F(w) where w is the solution, for

2 =0 (and any t > 0), of the following (Riemann) problem

ou OF (u)

(z,6) =0, z€R,te Ry, (35.6)
u(z,0) =ul, if z <0,

u(z,0) = ul'y, if 2> 0. (35.7)

Then, w depends on u', u}',; and F.

The time step is limited by the so called “CFL condition”, which reads k < Lh,, for all ¢« € ZZ, where L
is given by F' and the initial condition. The quantity u?*l, given by the Godunov scheme, see GODUNOV
[77], is, for all i € Z, the mean value on K; of the exact solution at time k of (35.4) with the initial
condition (at time ¢ = 0) ug defined, a.e. on IR, by ug(x) = uj if 2;_1 /5 <& < 2115

The Godunov scheme is an efficient scheme (consistent, conservative, stable), sometimes too diffusive
(especially if k is far from Lh; defined above), but easy improvements are possible, such as the MUSCL
technique, see below and Section 22. Its principal drawback is its difficult implementation for many prob-
lems, indeed the computation of F'(w) can be impossible or too expensive. For instance, this computation
may need a non trivial parametrization of the non linear waves. Note also that F' is generally not given
directly as a function of u (the components of u are called “conservative unknowns”) but as a function of
some “physical” unknowns (for instance, pressure, velocity, energy...), and the passage from u to these
physical unknowns (or the converse) is often not so easy...it may be the consequence of expensive and
implicit calculations, using, for instance, Newton’s algorithm.
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Due to this difficulty of implementation, some “Godunov type” schemes were developed (see HARTEN,
Lax and VAN LEEr [81]). The idea is to take, for u?*l, the mean value on K; of an approximate
solution at time k of (35.4) with the initial condition (at time ¢ = 0), wug, defined by ug(x) = ul', if
Ti—1/2 < T < Tir1/2- In order for the scheme to be written under the conservative form (35.5), with a
consistent approximation of the fluxes, this approximate solution must satisfy some consistency relation
(another relation is needed for the consistency with entropies). One of the best known of this family of
schemes is the Roe scheme (see ROE [130] and ROE [131]), where this approximate solution is computed
by the solution of the following linearized Riemann problems:

ou(z,t)
ot

ou(z,t)

AW )

=0,z€R,teR,, (35.8)

u(z,0) =ul, if z <0,

77

u(x,0) = ulyy, if >0, (35.9)

where A(-,-) is an m X m matrix, continuously depending on its two arguments, with only real eigenvalues,
diagonalizable and satisfying the so called “Roe condition”:

A(u,v)(u —v) = F(u) — F(v),Vu,v € R™. (35.10)
Thanks to (35.10), the Roe scheme can be written as (35.5) with

Fz_ﬁ_% = F(u;l) + A_(u;lau;l-i-l)(u? - u?—i—l)
(= Fuiyy) + AT (0 uy ) (uf — i),

where AT are the classical nonnegative and nonpositive parts of the matrix A: let A be a matrix with
only real eigenvalues, ()\p)pzl,___m, and diagonalizable, let (gop)p:17,,,7m be a basis of IR"" associated to
these eigenvalues. Then, the matrix AT is the matrix which has the same eigenvectors as A and has
(max{Ap,0})p=1,...m as corresponding eigenvalues. The matrix A~ is (—A)*.

Roe’s scheme was proved to be an efficient scheme, often less expensive than Godunov’s scheme, with,
more or less the same limitation on the time step, the same diffusion effect and some lack of entropy
consistency, which can be corrected. It has some properties of consistency and stability. Its main
drawback is the difficulty of the computation of a matrix A(u,v) satisfying (35.10). For instance, when it
is possible to compute and diagonalize the derivative of F'; DF(u), one can take A(u,v) = DF(u*), but
the difficulty is to find u* such that (35.10) holds (note that this condition is crucial in order to ensure
conservativity of Roe’s scheme). In some difficult cases, the Roe matrix is computed approximately by
using a “limited expansion” with respect to some small parameter.

(35.11)

35.2 Rough schemes for complex hyperbolic systems

The aim of this section is to present some discretization techniques for “complex” hyperbolic systems.
In many applications, the expressions of g and F' which appear in (35.1) are rather “complex”, and it is
difficult or impossible to use classical schemes such as the 1D Godunov or Roe schemes or their standard
extensions, for multidimensional problems, using 1D solvers on the interfaces of the mesh. This is the
case of gas dynamics (Euler equations) with real gas, for which the state law (pressure as a function of
density and internal energy) is tabulated or given by some complex analytical expressions. This is also
the case when modelling multiphase flows in pipe-lines: the function F' is difficult to handle and highly
depends on z and u, because, for instance, of changes of the geometry and slope of the pipe, of changes
of the friction law or, more generally, of the varying nature of the flow. Most of the attempts given
below were developed for this last situation. Other interesting cases of “complexity” are the treatment of
boundary conditions (mathematical literature is rather scarce on this subject, see Section 35.4 for a first
insight), and the way to handle the case where the eigenvalues (of the derivative of F' - n with respect to
its third argument) are of very different magnitude, see Section 35.3. Another case of complexity is the
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treatment of nonconservative terms in the equations. One refers, for instance, to BRUN, HERARD, LEAL
DE Sousa and UHLMANN [17] and references therein, for this important case.

Possible modifications of Godunov and Roe schemes (including “classical” improvements to avoid exces-
sive artificial diffusion) are described now to handle “complex” systems. Because of the complexity of
the models, the justification of the schemes presented here is rather numerical than mathematical. Many
variations have also been developed, which are not presented here. Note that other approaches are also
possible, see e.g. GHIDAGLIA, KUMBARO and LE CoqQ [74]. For simplicity, one considers the case d = 1,
Q' =R, F(z,t,u) = F(u) and g = 0 (but m > 1) described in Section 35.1, with the same notations.
The Godunov and Roe schemes can both be written under the form (35.5) with F]% /2 computed as a
function of uj" and uf, ;; both schemes are consistent (in the sense of Section 35.1, i.e. consistency of the

“fluxes”) since I, , = F(u) if u}! = uj; = u.

i+1/2

Going further along this line of thought yields (among other possibilities, see below) the “VFRoe” scheme
which is (35.5), that is:

u’?""l —un
hisz +FL - FL =0, i€ Z,ne{0,..., Ni}, (35.12)
with Ff = F(w), where w is the solution of the linearized Riemann problem (35.8), (35.9), with
A(uj,uiy ) = DF(w*), that is:
u(z,t ou(z,t
u(;; ) +DF(w*)-Ué$ ) =0, zeR,te Ry, (35.13)
x

u(z,0) =ul, if z <0,

K2

u(z,0) = ul,, if 2 >0, (35.14)

where w* is some value between uj' and uj,; (for instance, w* = (1/2)(uj + uj,,)). In this scheme, the
Roe condition (35.10) is not required (note that it is naturally conservative, thanks to its finite volume
origin). Hence, the VFRoe scheme appears to be a simplified version of the Godunov and Roe schemes.
The study of the scalar case (m = 1) shows that, in order to have some stability, at least as much as
in Roe’s scheme, the choice of w* is essential. In practice, the choice w* = (1/2)(uj + uj, ;) is often
adequate, at least for regular meshes.

Remark 35.1 In Roe’s scheme, the Roe condition (35.10) ensures conservativity. The VFRoe scheme
is “naturally” conservative, and therefore no such condition is needed. Also note that the VFRoe scheme
yields precise approximations of the shock velocities, without Roe’s condition.

Numerical tests show the good behaviour of the VFRoe scheme. Its two main flaws are a lack of entropy
consistency (as in Roe’s scheme) and a large diffusion effect (as in the Godunov and Roe schemes). The
first drawback can be corrected, as for Roe’s scheme, with a nonparametric entropy correction inspired
from HARTEN, HYMAN and LAX [82] (see MASELLA, FAILLE, and GALLOUET [109]). The two drawbacks
can be corrected with a classical MUSCL technique, which consists in replacing, in (35.9) page 211, u?
and uf,; by Uiy o and u?+1/27+, which depend on {u?, j =i — 1,i,i+ 1,i + 2} (see, for instance,
Section 22 page 146 and GODLEWSKI and RAVIART [76] or LEVEQUE [103]). For stability reasons, the
computation of the gradient of the unknown (cell by cell) and of the “limiters” is performed on some
“physical” quantities (such as density, pressure, velocity for Euler equations) instead of u. The extension
of the MUSCL technique to the case d > 1 is more or less straightforward.

This MUSCL technique improves the space accuracy (in the truncation error) and the numerical results
are significantly better. However, stability is sometimes lost. Indeed, considering the linear scalar equa-
tion, one remarks that the scheme is antidiffusive when the limiters are not active, this might lead to a
loss of stability. The time step must then be reduced (it is reduced by a factor 10 in severe situations. . . ).
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In order to allow larger time steps, the time accuracy should be improved by using, for instance, an
order 2 Runge-Kutta scheme (in the severe situations suggested above, the time step is then multiplied
by a factor 4). Surprisingly, this improvement of time accuracy is used to gain stability rather than
precision. . .

Several numerical experiments (see MASELLA, FAILLE, and GALLOUET [109]) were performed which
prove the efficiency of the VFRoe scheme, such as the classical Sod tests (SoD [140]). The shock
velocities are exact, there are no oscillations. ... For these tests, the treatment of the boundary conditions
is straightforward. Throughout these experiments, the use of a MUSCL technique yields a significant
improvement, while the use of a higher order time scheme is not necessary. In one of the Sod tests, the
entropy correction is needed.

A comparison between the VFRoe scheme and the Godunov scheme was performed by J. M. Hérard
(personal communication) for the Euler equations on a Van Der Wals gas, for which a matrix satisfying
(35.10) seems difficult to find. The numerical results are better with the VFRoe schem, which is also much
cheaper computationally. An improvment of the VFRoe scheme is possible, using, instead of (35.13)-
(35.14), linearized Riemann problems associated to a nonconservative form of the initial system, namely
System (35.4) or more generally System (35.1), for the computation of w (which gives the flux F\, , in
(35.12) by the formula F}, , = F(w)), see for instance BUFFARD, GALLOUET and HiERARD [18] for a
simple example.

In some more complex cases, the flux F' may also highly, and not continuously, depend on the space
variable z. In the space discretization, it is “natural” to set the discontinuities of F' with respect to x on
the boundaries of the mesh. The function F' may change drastically from K; to K;;;. In this case, the
implementation of the VFRoe scheme yields two additional difficulties:

(i) The matrix A(uj,u}, ;) in the linearized Riemann problem (35.8), (35.9) now depends on x:

A(ui,uly ) = DyF(z,w*), where w* is some value between u} and wj,; and D, F denotes the

1199

derivative of F' with respect to its “u” argument.

(ii) once the solution, w, of the linearized problem (35.8) (35.9), for x = 0 and any ¢ > 0, is calculated,
the choice F ., = F(z,w) again depends on z.

i+1/2
The choice of F} | , (point (ii)) may be solved by remarking that, in Roe’s scheme, F} | , may be written
(thanks to (35.10)) as
Fl, = §(F(uz )+ Fuiyy)) + §Ai+%(ui —ui't1), (35.15)
where A7, |, = [A(uf, ui )|, and |A| = AT+ A~
Under this form, the second term of the right hand side of (35.15) appears to be a stabilization term,
which does not affect the consistency. Indeed, in the scalar case (m = 1), one has A7, j2 = |F(ul") —

F(up y)|/|ui — uj |, which easily yields the L> stability of the scheme (but not the consistency with
respect to the entropies). Moreover, the scheme is stable and consistent with respect to the entropies,
under a Courant-Friedrichs-Levy (CFL) condition, if F}, /o 18 nondecreasing with respect to u and
nonincreasing with respect to ug, ;, which holds if A?, , > sup{|F'(s)|, s € [uf, ui,] or [uf'y,u}]}.
This remark suggests a slightly different version of the VFRoescheme (closer to Roe’s scheme), which is
the scheme (35.12)-(35.14), taking

n 1 n n 1 * n n
it1/2 = i(F(Uz )+ F(uiyq)) + §|DF(w (i — it y),

in (35.12), instead of F;:,,}FI/Q

F(ui) and F(ugy) in the latter expression of F}, ,,

= F(w). Note that it is also possible to take other convex combinations of
without modifying the consistency of the scheme.

When F depends on z, the discontinuities of F' being on the boundaries of the control volumes, the

generalization of (35.15) is obvious, except for the choice of A7 /2 The quantity F'(ul") is replaced by
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n

i+1/2 for

F(z;,ul’), where x; is the center of K;. Let us now turn to the choice of a convenient matrix A
this modified VFRoe scheme, when F' highly depends on x. A first possible choice is

A%y = (2 (IDuF (@i al)| + [DuF (@i, ulyy)).

The following slightly different choice for A, /2 Seems, however, to give better numerical results (see
FAILLE and HEINTZE [60]). Let us define

A; =D, F(x;,ul) Vi€ Z
(for the determination of A?H /2 the fixed index n is omitted). Let ()\](f))p:L___m be the eigenvalues of A;
(with )‘1(21 < )\g), for all p) and (go,(,i))pzl,___7m a basis of R associated to these eigenvalues. Then, the

matrix A{) [resp. Agii/Q

i+1/2
(max{|)\1(f)|, |)\1(f+1) |})p=1,...m as corresponding eigenvalues. The choice of A

] is the matrix which has the same eigenvectors as A; [resp. A;;1] and has

n
i+1/2

is

A

n — —

Ai-‘r% D)

where A is a parameter, the “normal” value of which is 1. Numerically, larger values of )\, say A = 2 or

A = 3, are sometimes needed, in severe situations, to obtain enough stability. Too large values of A yield
too much artificial diffusion.

(A + A0, (35.16)

3

The new scheme is then (35.12)-(35.14), taking

i1/2= 5 (F(-Tz; ug') + F(-Tiaui-i-l)) + §Ai+%(ui —uiy). (35.17)

where A?+1/2 is defined by (35.16). It has, more or less, the same properties as the Roe and VFRoe
schemes but allows the simulation of more complex systems. It needs a MUSCL technique to reduce dif-
fusion effects and order 2 Runge-Kutta for stability. It was implemented for the simulation of multiphase
flows in pipe lines (see FAILLE and HEINTZE [60]). The other difficulties encountered in this case are the
treatment of the boundary conditions and the different magnitude of the eigenvalues, which are discussed
in the next sections.

35.3 Partial implicitation of explicit scheme

In the modelling of flows, where “propagation” phenomena and “convection” phenomena coexist, the
Jacobian matrix of F' often has eigenvalues of different magnitude, the “large” eigenvalues (large meaning
“far from 0”7, positive or negative) corresponding to the propagation phenomena and “small” eigenvalues
corresponding to the “convection” phenomena . Large and small eigenvalues may differ by a factor 10 or
100.

With the explicit schemes described in the previous sections, the time step is limited by the CFL condi-
tion corresponding to the large eigenvalues. Roughly speaking, with the notations of Section 35.1, this
condition is (for all i € Z ) k < |A\|7h;, where ) is the largest eigenvalue. In some cases, this limitation
can be unsatisfactory for two reasons. Firstly, the time step is too small and implies a prohibitive compu-
tational cost. Secondly, the discontinuities in the solutions, associated to the small eigenvalues, are not
sharp because the time step is far from the CFL condition of the small eigenvalues (however, this can be
somewhat corrected with a MUSCL method). This is in fact a major problem when the discontinuities
associated to the small eigenvalues need to be computed precisely. It is the case of interest here.

A first method to avoid the time step limitation is to take a “fully implicit” version of the schemes
developed in the previous sections, that is F} /2 function of U?-H, Jj € Z, instead of u?, j € Z (the
terminology “fully implicit” is by opposition to “linearly implicit”, see below and FERNANDEZ [63]).
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However, in order to be competitive with explicit schemes, the fully implicit scheme is used with large
time steps. In practice, this prohibits the use of a MUSCL technique in the computation of the solution
at time t,,41 by, for instance, a Newton algorithm. This implicit scheme is therefore very diffusive and
will smear discontinuities.

A second method consists in splitting the system into two systems, the first one is associated with the
“small” eigenvalues, and the second one with the “large” eigenvalues (in the case of the Euler equations,
this splitting may correspond to a “convection” system and a “propagation” system). At each time step,
the first system is solved with an explicit scheme and the second one with an implicit scheme. Both use
the same time step, which is limited by the CFL condition of the small eigenvalues. Using a MUSCL
technique and an order 2 Runge-Kutta method for the first system yields sharp discontinuities associated
to the small eigenvalues. This method is often satisfactory, but is difficult to handle in the case of
severe boundary conditions, since the convenient boundary conditions for each system may be difficult
to determine.

Another method, developed by E. Turkel (see TURKEL [148]), in connexion with Roe’s scheme, uses a
change of variables in order to reduce the ratio between large and small eigenvalues.

Let us now describe a partially linearly implicit method (“turbo” scheme) which was successfully tested
for multiphase flows in pipe lines (see FAILLE and HEINTZE [60]) and other cases (see FERNANDEZ [63]).
For the sake of simplicity, the method is described for the last scheme of Section 35.2, i.e. the scheme
defined by (35.12)- (35.14), where FZ’:_% is defined by (35.17) and (35.16) (recall that F' may depend on

Assume that I C {1,...,m} is the set of index of large eigenvalues (and does not depend on i). The aim
here is to “implicit” the unknowns coresponding to the 1arge eigenvalues only: let A;, AZ +1/2 and Agii /2
be the matrix having the same eigenvectors as A;, AL +1 /2 and AE +i /2 with the same large eigenvalues
(i.e. corresponding to p € I) and 0 as small eigenvalues. Let

in _ A=) A(+)

Ay = A2 (A e + A o)
Then, the partially linearly implicit scheme is obtained by replacing F}! | /2 in (35.5) by Fn 12 defined

by

1-’11 F+1 + 5 (Ai (™ =) + A (! — u)

n n+1 n n n+1
+3 A ( e U R )-

In order to obtain sharp discontinuities corresponding to the small eigenvalues, a MUSCL technique is
used for the computation of F/} /2 Then, again for stability reasons, it is preferable to add an order
2 Runge-Kutta method for the time discretization. Although it is not so easy to implement, the order
2 Runge-Kutta method is needed to enable the use of “large” time steps. The time step is, in severe
situations, very close to that given by the usual CFL condition corresponding to the small eigenvalues,
and can be considerably larger than that given by the large eigenvalues (see FAILLE and HEINTZE [60]
for several tests).

35.4 Boundary conditions

In many simulations of real situations, the treatment of the boundary conditions is not easy (in particular
in the case of sign change of eigenvalues). We give here a classical possible mean (see e.g. KUMBARO
[98] and DuBoI1s and LEFLOCH [47]) of handling boundary conditions (a more detailed description may
be found in MASELLA [108] for the case of multiphase flows in pipe lines).

Let us consider now the system (35.4) where “z € R” is replaced by “x € ” with Q = (0,1). In order
for the system to be well-posed, an initial condition (for ¢ = 0) and some convenient boundary conditions
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for z = 0 and « = 1 are needed; these boundary conditions will appear later in the discretization (we do
not detail here the mathematical analysis of the problem of the adequacy of the boundary conditions, see
e.g. SERRE [138] and references therein). Let us now explain the numerical treatment of the boundary
condition at x = 0.

Using the finite volume scheme (35.5) with < € {1,..., Ny} instead of i € Z needs, for the computation

of ™ with {ul, i € {1,..., N7}} given, a value for Fln/2 (which corresponds to the flux at point z = 0

With the notations of Section 35.1, the space mesh is given by {K;, i € {0,..., Ny}}, with vaq h; = 1.

and time t =t,,).

For the sake of simplicity, consider only the case of the Roe and VFRoe schemes. Then, the “interior
fluxes”, that is F}, , for i € {1,..., N7 — 1}, are determined by using matrices A(uj,uf ;) (i €
{1,..., Ny —1}). In the case of the Roe scheme, FJL 15 1s given by (35.11) or (35.15) and A(-, -) satisfies
the Roe condition (35.10). In the case of the VFRoe scheme, Fi7-l|-1/2 is given through the resolution of
the linearized Riemann problem (35.8), (35.9) with e.g. A(uj',ui ;) = DF((1/2)(uj +u},,)). In order
to compute Fln/27 a possibility is to take the same method as for the interior fluxes; this requires the
determination of some u{}. In some cases (e.g. when all the eigenvalues of D, F'(u) are nonnegative), the
given boundary conditions at = 0 are sufficient to determine the value u{, or directly F1"/2, but this is
not true in the general case.... In the general case, there are not enough given boundary conditions to
determine ug and missing equations need to be introduced. The idea is to use an iterative process. Since
A(uf,u}) is diagonalizable and has only real eigenvalues, let A1,..., Ay, be the eigenvalues of A(ug, uy)
and @1,...,¢m a basis of IR™ associated to these eigenvalues. Then the vectors uj and u} may be

decomposed on this basis, this yields

m m
n n
Uy = E Qi Pi, Uy = E Qi Pi-
i=1 i=1

Assume that the number of negative eigenvalues of A(uf}, u}) does not depend on u{ (this is a simplifying
assumption); let p be the number of negative eigenvalues and m — p the number of positive eigenvalues
of A(ug,uy).

Then, the number of (scalar) given boundary conditions is (hopefully ...) m — p. Therefore, one takes,
for u}, the solution of the (nonlinear) system of m (scalar) unknowns, and m (scalar) equations. The
m unknowns are the components of ug and the m equations are obtained with the m — p boundary
conditions and the p following equations:

Qg = 014, if \; < 0. (3518)

Note that the quantities ap,; depend on A(uf,u?); the resulting system is therefore nonlinear and may
be solved with, for instance, a Newton algorithm.

Other possibilities around this method are possible. For instance, another possibility, perhaps more
natural, consists in writing the m — p boundary conditions on uf /2 instead of u{ and to take (35.18) with
the components of uf, instead of those of ug, where u7 , is the solution at z = 0 of (35.8), (35.9) with
i = 0. With the VFRoe scheme, the flux at the boundary 2z = 0 is then F7, = F(u’f/Q). In the case of a
linear system with linear boundary conditions and with the VFRoe scheme, this method gives the same
flux FI"/2 as the preceding method, the value u? /2 is completely determined although u{ is not completely
determined.

In the case of the scheme described in the second part of Section 35.2, the following “simpler” possibility
was implemented. For this scheme, F\, , is given, for i € {1,..., Ny — 1}, by (35.15) with (35.16).
Then, the idea is to take the same equation for the computation of FI"/2 but to compute u( as above

(that is with m — p boundary conditions and (35.18)) with the choice A(uf},u}) = Dy, F(x1,u}).
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This method of computation of the boundary fluxes gives good results but is not adapted to all cases
(for instance, if p changes during the Newton iterations or if the number of boundary conditions is not
equal to m — p...). Some particular methods, depending on the problems under consideration, have to
be developped.

We now give an attempt for the justification of this treatment of the boundary conditions, at least for a
linear system with linear boundary conditions.
Consider the system

Ut(xat)"i_um(xat) =0,z ¢ (O,l),tE]R+, (35 19)
’Ut(zat)ivm( 7t):05x€(071>5t€IR+5 -
with the boundary conditions
u(0,t) + av(0,t) =0, t € R,
o(1,t) + Bu(1.t) = 0. t € Ry, (35.20)
and the initial conditions
u(x,O) = Uo(m), S (Oa 1); (35-21)

’U(:C,O) - ’Uo(:L'), T € (07 1>a

where o € R*, § € R™, ug € L>=(Q) and vy € L>(Q) are given. It is well known that the problem
(35.19)-(35.21) admits a unique weak solution (entropy conditions are not necessary to obtain uniqueness
of the solution of this linear system).

A stable numerical scheme for the discretization of the problem (35.19)-(35.21) will add some numerical
diffusion terms. It seems quite natural to assume that this diffusion does not lead a coupling between the
two equations of (35.19). Then, roughly speaking, the numerical scheme will consist in an approximation
of the following parabolic system:

up(x,t) + ug (2, t) — euge(x,t) =0, z € (0,1), t € Ry,

vi(w,t) —vp(z,t) — Nuge(2,8) =0, x € (0,1), t € Ry, (35.22)

for some £ > 0 and n > 0 depending on the mesh (and time step) and € — 0,  — 0 as the space and
time steps tend to 0.

In order to be well posed, this parabolic system has to be completed with the initial conditions (35.21)
and (for all ¢ > 0) four boundary conditions, i.e. two conditions at = 0 and two conditions at z = 1.
This is also the case for the numerical scheme which may be viewed as a discretization of (35.22). There
are two boundary conditions given by (35.20). Hence two other boundary conditions must be found, one
at x = 0 and the other at x = 1.

If these two additional conditions are, for instance, v(0,¢) = u(1,t) = 0, then the (unique) solution to
(35.20)-(35.22) with these two additional conditions does not converge, as ¢ — 0 and n — 0, to the
weak solution of (35.19)-(35.21). This negative result is also true for a large choice of other additional
boundary conditions. However, if the additional boundary conditions are (wisely) chosen to be v,(0,t) =
ug(1,t) = 0, the solution to (35.20)-(35.22) with these two additional conditions converges to the weak
solution of (35.19)-(35.21).

The numerical treatment of the boundary conditions described above may be viewed as a discretization
of (35.20) and v,(0,t) = uy(1,t) = 0; this remark gives a formal justification to such a choice.
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35.5 Staggered grids

For some systems of equations it may be “natural” (in the sense that the discretization seems simpler) to
associate different grids to different unknowns of the problem. To each unknown is associated an equation
and this equation is integrated over the elements (which are the control volumes) of the corresponding
mesh, and then discretized by using one discrete unknown per control volume (and time step, for evolution
problems). This is the case, for instance, of the well known discretization of the incompressible Navier-
Stokes equations with staggered grids, see PATANKAR [126] and Section 36.2.

Let us now give an example in order to show that staggered grids should be avoided in the case of
nonlinear hyperbolic systems since they may yield some kind of “instability”. As an illustration, let us
consider the following “academic” problem:

ug(x,t) + (vu)y(z,t) =0, z € R, t € Ry,

vi(@,t) + (v*)u(2,t) =0, z € R, t € Ry,

u(z,0) =up(x), z € R, (35.23)
v(x,0) = up(x), z € R,

where v is a bounded function from IR to [0, 1]. Taking u = v equal to the weak entropy solution of the
Biirgers equation (namely u; + (u?), = 0), with initial condition ug, leads to a solution of the problem
(35.23). One would expect a numerical scheme to give an approximation of this solution. Note that the
solution of the Biirgers equation, with initial condition ug, also takes its values in [0, 1], and hence, a
“good” numerical scheme can be expected to give approximate solutions taking values in [0,1]. Let us
show that this property is not satisfied when using staggered grids.

Let k be the time step and h be the (uniform) space step. Let z; = ih and ;44,0 = (i +1/2)h, for
1€ Z. Deﬁne, for i € Z, Kz = (zi—l/vai—i-l/Q) and Ki+1/2 = (zi,xi+1).
The mesh associated to u is {K;,7 € Z } and the mesh associated to v is {K; 12,7 € Z }. Using the

principle of staggered grids, the discrete unknowns are ul, i € Z, n € IN*, and V)2 1€ Z,necIN".
The discretization of the initial conditions is, for instance,

1
:—/ uo(x)dz, i € ZZ,
h Jg,

1
UZ.OJFl = —/ uo(x)de, i € Z.
pl h K. 4

i+3

(35.24)

The second equation of (35.23) does not depend on u. It seems reasonable to discretize this equation with
the Godunov scheme, which is here the upstream scheme, since wug is nonnegative. The discretization
of the first equation of (35.23) with the principle of staggered grids is easy. Since v /2 is always
nonnegative, we also take an upstream value for u at the extremities of the cell K;. Then, with the

explicit Euler scheme in time, the scheme becomes

1 n+1 n 1 n n n n :
E(ui *Ui)JFE(UH%Ui 7’01'7%’“1'71):071627”6]1\17

(35.25)
E(’Uijél*’Ui+%)+ﬁ((’vi+%)2*(Ui7%)2):0,ZEZ,TLGIN.

It is easy to show that, whatever k and h, there exists ug (function from IR to [0, 1]) such that sup{u},i €
7 } is strictly larger than 1. In fact, it is possible to have, for instance, sup{ul,i € Z } = 1+ k/(2h). In
this sense the scheme (35.25) appears to be unstable. Note that the same phenomenon exists with the
implicit Euler scheme instead of the explicit Euler scheme . Hence staggered grids do not seem to be the
best choice for nonlinear hyperbolic systems.
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36 Incompressible Navier-Stokes Equations

The discretization of the stationary Navier-Stokes equations by the finite volume method is presented in
this section. We first recall the classical discretization on cartesian staggered grids. We then study, in
the linear case of the Stokes equations, a finite volume method on a staggered triangular grid, for which
we show, in a particular case, the convergence of the method.

36.1 The continuous equation

Let us consider here the stationary Navier-Stokes equations:

uld
—vAuD (2 +Zu<ﬂ> N )+ Py = (D), w e Vim1,....d,

&T] ox;
d - (36.1)
Ou®
; 7o (z) =0, z € Q.
with Dirichlet boundary condition
uD(z) =020 Vi=1,....d, (36.2)

under the following assumption:

Assumption 36.1

(i)  is an open bounded connected polygonal subset of R% d=2,3,
(ii) v >0,
(iii) fO e L*(Q), Vi=1,...,d.

In the above equations, u(?) represents the ith component of the velocity of a fluid, v the kinematic
viscosity and p the pressure. The unknowns of the problem are u(?, i € {1,...,d} and p. The number
of unknown functions from  to IR which are to be computed is therefore d 4+ 1. Note that (36.1) yields
d+ 1 (scalar) equations.

We shall also consider the Stokes equations, which are obtained by neglecting the nonlinear convection
term.

—vAuD (z) + Op () = fO(x), 2€Q, Vi=1,...,d,
Z;
d o 36.3)
ou® (
E = Q.
1=1 6131 0, e

There exist several convenient mathematical formulations of (36.1)-(36.2) and (36.3)-(36.2), see e.g.
TEMAM [144]. Let us give one of them for the Stokes problem. Let

d
Ju
V="{u= @b,  uD)e (HQ))?
{u (U ) , U ) ( O( )) ) Z:ZI O
Under assumption 36.1, there exists a unique function u such that

u eV,
I/Z/ Yu Z) VU(Z dxfz fz) ( )d:c VU*( (1),.'.7v(d))t cv (36.4)

Equation (36.4) yields the existence of p € L? (unique if [, p(z)dz = 0) such that
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—vAu + aa_p =D inD'(Q), Vie{1,...,d}. (36.5)

z;
In the following, we shall study finite volume schemes for the discretization of Problem (36.1)-(36.2) and
(36.3)-(36.2). Note that the Stokes equations may also be successfully discretized by the finite element
method, see e.g. GIRAULT and RAVIART [73] and references therein.

36.2 Structured staggered grids

The discretization of the incompressible Navier-Stokes equations with staggered grids is classical (see
PATANKAR [126]): the idea is to associate different control volume grids to the different unknowns. In
the two-dimensional case, the meshes consist in rectangles. Consider, for instance, the mesh, say 7, for
the pressure p. Then, considering that the discrete unknowns are located at the centers of the elements of
their associated mesh, the discrete unknowns for p are, of course, located at the centers of the element of
T. The meshes are staggered such that the discrete unknowns for the z-velocity are located at the centers
of the edges of 7 parallel to the y-axis, and the discrete unknowns for the y-velocity are located at the
centers of the edges of T parallel to the z-axis. The two equations of “momentum” are associated to the
2 and y-velocity (and integrated over the control volumes of the considered mesh) and the “divergence
free” equation is associated to the pressure (and integrated over the control volume of 7). Then the
discretization of all the terms of the equations is straightforward, except for the convection terms (in
the momentum equations) which, eventually, have to be discretized according to the Reynolds number
(upstream or centered discretization. .. ). The convergence analysis of this so-called “MAC” (Marker and
Cell) is performed in NICOLAIDES [117] in the linear case and NICOLAIDES and WU [119] in the case of
the Navier-Stokes equations.

36.3 A finite volume scheme on unstructured staggered grids

Let us now turn to the case of unstructured grids; the scheme we shall study uses the same control
volumes for all the components of the velocity. The pressure unknowns are located at the vertices, and a
Galerkin expansion is used for the approximation of the pressure. Note that other finite volume schemes
have been proposed for the discretization of the Stokes and incompressible Navier-Stokes equations on
unstructured grids (BoTTA and HEMPEL [14]), but, to our knowledge, no proof of convergence has been
given yet.

We again use the notion of admissible mesh, introduced in Definition 9.1 page 37, in the particular case
of triangles, if d = 2, or tetrahedra, if d = 3. We limit the description below to the case d = 2 and to the
Stokes equations. Let  be an open bounded polygonal connected subset  of IR?. Let 7 be a mesh of €
consisting of triangles, satisfying the properties required for the finite element method (see e.g. CIARLET
[29]), with acute angles only. Defining, for all K € T, the point xx as the intersection of the orthogonal
bisectors of the sides of the triangle K yields that 7 is an admissible mesh in the sense of Definition 9.1
page 37. Let St be the set of vertices of 7. For S € S7, let ¢g be the shape function associated to S in
the piecewise linear finite element method for the mesh 7. For all K € T, let Sx C S be the set of the
vertices of K.

A possible finite volume scheme using a Galerkin expansion for the pressure is defined by the following
equations, with the notations of Definition 9.1 page 37:

() I¢s _ (i)

v Fp' + ps/ — (2)dz =m(K) f;/,
G'EZEK 7 SEZSK K axl (366)

VK eT,Vi=1,...,d,

Fl((i)a :TU(’U,(I? —u(Li)), ifo€&n,o=KI|L i=1,...,d,

' 36.7
FI((Z?G-:TUU([?a ifoegextﬂé}(,izl’_._’d7 ( )



221

ZZ Z’/ ai =0,VS € ST, (36.8)

KeTi=1
|3 psostaida =0, (36.9)
QSeST
(0 W /K f(z)dz, VK € T. (36.10)

The discrete unknowns of (36.6)-(36.10) are uy( ,KeT,i=1,...,d and pg, S € S1.
The approximate solution is defined by

T = Z PsPss (36.11)
SeST
WPa)y=ul?, ae ze K, VK e T, Vi=1,....d (36.12)

The proof of the convergence of the scheme is not straightforward in the general case. We shall prove
in the following proposition the convergence of the discrete velocities given by the finite volume scheme
(36.6)-(36.10) in the simple case of a mesh consisting of equilateral triangles.

Proposition 36.1 Under Assumption 36.1, let T be a triangular finite element mesh of ), with acute
angles only, and let, for all K € T, xx be the intersection of the orthogonal bisectors of the sides of
the triangle K (hence T is an admissible mesh in the sense of Definition 9.1 page 37). Then, there
exists a unique solution to (36.6)-(36.10), denoted by {u&?, KeT,i=1,...,d} and {ps, S € St}.
Furthermore, if the elements of T are equilateral triangles, then ur — u in (L*(2))%, as size(T) — 0,

where u is the (unique) solution to (36.4) and ur = (ug}), . ug—)) is defined by (56.12).

PROOF of Proposition 36.1.

Step 1 (estimate on uy)

Let 7 be an admissible mesh, in the sense of Proposition 36.1, and {uﬁ?, KeT,i=1,...,d}, {ps,
S € St} be a solution of (36.6)-(36.8) with (36.10).

Multiplying the equations (36.6) by ug?, summing over i = 1,...,d and K € T and using (36.8) yields

VZZTG (Dgult ZZ (36.13)

i=1o0€€& i=1KeT

with Dyu(® = |u(Ll) — u(I?| if o € Ent, 0 = K|L, i € {1,...,d} and Doul®d = |u§?| if 0 € Ext N &k,
1e{l,...,d}.
In step 2, the existence and the uniqueness of the solution of (36.6)-(36.10) will be essentially deduced
from (36.13).

Using the discrete Poincaré inequality (9.13) in (36.13) gives an L? estimate and an estimate on the
“discrete H} norm” on the component of the approximate velocities, as in Lemma 9.2 page 42, that is:

||u ||1T<C HUTHLZ(Q <CV’L€{1 d},

where C' only depends on Q, vu and ), i=1,...,d.

As in Theorem 9.1 page 45 (thanks to Lemma 9.3 page 44 and Theorem 14.2 page 94), this estimate
gives the relative compactness in (L2(Q))? of the set of approximate solutions u7, for 7 in the set of
admissible meshes in the sense of Proposition 36.1. It also gives that if w7, — u in (L2(2))%, as n — oo,
where u7, is the solution associated to the mesh 7,,, and size(7,,) — 0 as n — oo, then u € (H}(Q2))%.

This will be used in Step 3 in order to prove the convergence of ur to the solution of (36.4).
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Step 2 (existence and uniqueness of ur and pr)
Let T be an admissible mesh, in the sense of Proposition 36.1. Replace, in the right hand side of (36.8),

“0” by “gs” with some {gg, S € S} C R. Eliminating FI(?G, the system (36.6)-(36.8) becomes a linear

system with as many equations as unknowns. The sets of unknowns are {ug?, KeT,i=1,...,d} and
{ps, S € S7}. Ordering the equations and the unknowns yields a matrix, say A, defining this system.

Let us determine the kernel of A; let fj((i) =0and gs=0forall K € T,all S € Sy and alli € {1,...,d}.

Then, (36.13) leads to u}/ () =0 forall K €T and all i € {1,...,d}. Turning back to (36.6) yields that
pr (defined by (36.11)) is constant on K for all K € T. Therefore, since € is connected, p7 is constant
on . Hence, the dimension of the kernel of A is 1 and so is the codimension of the range of A. In order
to determine the range of A, note that

Z ps(z) =1, Vo € Q.

SeS+
Then, a necessary condition in order that the linear system (36.6)-(36.8) has a solution is

> gs=0 (36.14)
SeST
and, since the codimension of the range of A is 1, this condition is also sufficient. Therefore, under the
condition (36.14), the linear system (36.6)-(36.8) has a solution, this solution is unique up to an additive
constant for py. In the particular case gg = 0 for all S € Sy, this yields that (36.6)-(36.10) has a unique
solution.

Step 3 (convergence of ur to u)

In this step the convergence of ur towards u in (L%(Q))? as size(7) — 0 is shown for meshes consisting of
equilateral triangles. Let (T, )nen be a sequence of meshes (such as defined in Proposition 36.1) consisting
of equilateral triangles and let (ut,)nenw be the associated solutions. Assume that size(7,) — 0 and
ur, — w in (L?(2))? as n — oo. Thanks to the compactness result of Step 1, proving that u is the
solution of (36.4) is sufficient to conclude this step and to conclude Proposition 36.1.

By Step 1, u € (H}(Q))?. It remains to show that u € V (which is the first part of (36.4)) and that u
satisfies the second part of (36.4).

For the sake of simplicity of the notations, let us omit, from now on, the index n in 7, and let h = size(T).
Note that zx (which is the intersection of the orthogonal bisectors of the sides of the triangle K) is the
center of gravity of K, for all K € T. Let ¢ = (oM, ..., (@)t € V and assume that the functions ¢
are regular functions with compact support in , say ¢(? € C>(Q) for all i € {1,...,d}. There exists
C > 0 only depending on ¢ such that

. 1 _
(0ek) - o [ o (a)dal < O, (36.15)
m(K) [k
forall K € T andi=1,...,d. Let us proceed as in the proof of convergence of the finite volume scheme

for the Dirichlet problem (Theorem 9.1 page 45).
Assume that h is small enough so that ¢(z) = 0 for all  such that z € K, K € T and Ex N Eext # 0.
Note that (0¢s)/(0x;) is constant in each K € T and that

3, et = [ oxei3 5o

Then,

SF S ps [ St [ 0w =

1=1KeT SeSk
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Therefore, multiplying the equations (36.6) by (1/m(K)) [, ¢ (z)dx, for each i = 1,...,d, summing
the results over K € T and ¢ € {i...,d} yields

VZ Z Ti|1( ()ué))(m(lL)/w(i)(x)dxﬁ/ oD (2)dz) =
. X " (36.16)

Y | @

i=1KeT
Passing to the limit in (36.16) as n — oo and using (36.15) gives, in the same way as for the Dirichlet
problem (see Theorem 9.1 page 45), that u satisfies the equation given in (36.4), at least for v € V' N
(C2(Q))4. Then, since V N (C°(Q))4 is dense (for the (H(Q))%-norm) in V (see, for instance, LIONS
[105] for a proof of this result), u satisfies the equation given in (36.4).
Since u € (H(2))%, it remains to show that u is divergence free. Let ¢ € C°(Q). Multiplying (36.8) by
¢(S5), summing over S € St and noting that the function 3 ¢ 5 ¢(S)ds converges to ¢ in H(Q), one
obtains that u is divergence free and then belongs to V. This completes the proof that w is the (unique)
solution of (36.4) and concludes the proof of Proposition 36.1. L]

37 Flows in porous media

37.1 Two phase flow

This section is devoted to the discretization of a system which may be viewed as an elliptic equation
coupled to a hyperbolic equation. This system appears in the modelling of a two phase flow in a porous
medium. Let 2 be an open bounded polygonal subset of R%, d =2 or 3, and let @ and b be functions of
class C! from IR to IR . Assume that a is nondecreasing and b is nonincreasing. Let g and u be bounded
functions from 9Q x Ry to IR, and ug be a bounded function from © to IR. Consider the following
problem:

ug(x, t) — div(a(u)Vp)(z,t) = 0, (z,t) € Q xRy,
(1 —w)e(x,t) —div(b(u)Vp)(z,t) = 0, (z,t) € Q2 xRy,
Vp(z,t) -n(z) = g(z,t), (z,t) €02 xRy, (37.1)
u(z,t) = ulx,t), (x,t) €0 xRy ; gz, t) >0,
u(z,0) = wo(x), =€,

where n is the normal to 992, outward to 2. The unknowns of this system are the functions p and u (from
QxR to R). Adding the two first equations of (37.1), this system may be viewed as an elliptic equation
with respect to the unknown p, for a given u (note that there is no time derivative in this equation), with
a Neumann condition, coupled to a hyperbolic equation with respect to the unknown u (for a given p).
Note that, for the elliptic problem with the Neumann condition, the compatibility condition on g reads

M(u(z, 1)g(e, H)dy(@) = 0, t € R,
of)

where M = a + b. It is not known whether the system (37.1) has a solution, except in the simple

case where the function M is a positive constant (which is, however, already an interesting case for real
applications).

In order to discretize (37.1), let 7 be an admissible mesh of € in the sense of Definition 10.1 page 63 and
k > 0 be the time step. The discrete unknowns are p% and u% for K € T and n € IN*. The discretization
of the initial condition is
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o _ 1 /
Up = (K Kuo(x)dx, KeT.

In order to take into account the boundary condition on u, define, with t,, = nk,

1 n+1
UK = @K 1 oD u(x,t)dy(z)dt, K IN.
K km(aKﬂaQ)/aKﬂag /tn, u(z,t)dy(z)dt, K€T, ne€

The scheme will use an “upstream choice” of a(u) and b(u) on each “interface” of the mesh, that is, for
al K e T, L e N(K),

(a()k., = aluf) i pi* = pi
(a(w)i,p = auf) if pi <pi”,
()i, = bluje) if Pl = i
(b(u) i, = blul) if P <pp™,
The discrete equations are, for all K € 7, n € IN,
U7Il(+1 B u’rll( n41 n-+1 n
m(K) S 0 ) (e,
LEN(K)
tn+1 tn+1
/ / (x,t)dy() dt+ / / “(x,t)dy(z)dt = 0,
JOKN0Q Jt, OKNON Jt,
—um .
—m(K £ = Z TK\L( PKH)(b(U))KL
LeN(K)
tn+1 tn+1
(x,t)dy(x) (2, t)dy(z)dt =
dKNON Jt, oKNoN Jt,

Recall that g (z,t) = max{g(z,t),0}, g~ = (—g)" and 7x |, = m(K|L)/d/, (see Definition 9.1 page 37).
This finite volume scheme gives very good numerical results under a usual stability condition on the time
step with respect to the space mesh. It can be generalized to more complicated systems (in particular, for
the simulation of multiphase flows in porous medium such as the “black 0il” case of reservoir engineering,
see EYMARD [48]). It is possible to prove the convergence of this scheme in the case where the function M
is constant and the function g does not depend on ¢. In this case, the scheme may be written as a finite
volume scheme for a stationary diffusion equation with respect to the unknown p (which does not depend
on t) and an upstream finite volume scheme for a hyperbolic equation with respect to the unknown w.
The proof of this convergence is given below (Theorem 37.1) under the assumptions that a(u) = u and
b(u) = 1—wu (see also VIGNAL [154]). Note that the elliptic equation with respect to the pressure may also
be discretized with a finite element method, and coupled to the finite volume scheme for the hyperbolic
equation. This coupling of finite elements and finite volumes was introduced in FORSYTH [68], where it
is called “CVFE” (Control Volume Finite Element), in SONIER and EYMARD [141] and in EYMARD and
GALLOUET [49], where the convergence of the finite element-finite volume scheme is shown under the
same assumptions.

37.2 Compositional multiphase flow

Let us now turn to the study of a system of partial differential equations which arises in the simulation
of a multiphase flow in a porous medium (the so called “Black Oil” case in petroleum engineering, see
e.g. EYMARD [48]). This system consists in a parabolic equation coupled with hyperbolic equations and
algebraic equations and inequalities (these algebraic equations and inequalities are given by an assumption
of thermodynamical equilibrium). It may be written, for x € Q and ¢t € R, as:

o (01 () 1) — div(fy (0, 0,0) V) 1) =0, (372)
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(a1~ = (1= ) 1) — div (o, v, ) Vp) 1) =0, (37.3)
%(Pz (P, 0)(1 —u—v)e+ ps(p)v)(x,t) — div(fs(u, v,¢)Vp)(xz,t) =0, (37.4)
(v(x,t) =0 and c(x,t) < f(p(z,t)) or (c(z,t) = f(p(x,t)) and v(z,t) > 0), (37.5)

where € is a given open bounded polygonal subset of IR? (d =2 or3), f1, fa, f3 are given functions from
R? to IRy, f, p1, ps are given functions from IR to IR . and ps is a given function from IR? to IR.. The
problem is completed by initial and boundary conditions which are omitted here. The unknowns of this
problem are the functions w,v, ¢, p from Q x IR to IR.

In order to discretize this problem, let k be the time step (as usual, k£ may in fact be variable) and 7 be a
cartesian mesh of Q2. Following the ideas (and notations) of the previous chapters, the discrete unknowns
are u'%, vk, ¢ and plk, for K € T and n € IN* and it is quite easy to discretize (37.2)-(37.4) with a
classical finite volume method. Note that the time discretization of the unknown p must generally be
implicit while the time discretization of the unknowns wu,v,c may be explicit or implicit. The explicit
choice requires a usual restriction on the time step (linearly with respect to the space step). The only
new problem is the discretization of (37.5), which is now described.

Let n € IN. The discrete unknowns at time ¢,41, namely w/;™, v ¢ and pit!) K € T, have to be

computed from the discrete unknowns at time ¢,,, namely v, v}, ¢ and p}, K € T. Even if the time
discretization of (37.2)-(37.4) is explicit with respect to the unknowns u,v and ¢, the system of discrete
equations (with unknowns u}?”l, U?(‘H, c’}(ﬂ and p’}(ﬂ, K € T) is nonlinear, whatever the discretization
of (37.5). It can be solved by, say, a Newton process. Let [ € IN be the index of the “Newton iteration”,
and u}’(ﬂ’l, v?rl’l, c?ju and p?jl’l (K € T) be the computed unknowns at iteration . As usual, these
unknowns are, for I = 0, taken equal to u%, v, ¢t and p%. In order to discretize (37.5), a “phase index”

is introduced,; it is denoted by ¢, for all K € 7 and n € IN and it is defined by:

if i, = 0 then v}t =0 (and ¢} < f(pl)),
if % = 1 then ¢ = f(p%) (and v} > 0).

In the Newton process for the computation of the unknowns at time ¢,41, a “phase index”, denoted by

i?jl’l is also introduced, with i%'""* = i%. This phase index is used in the computation of u?jl’lﬂ,
n+1,14+1 n+1,l14+1 n+1,14+1 n+1,0+1 . n+1,1 n+1,0 n+1,1 n+1,1 .n+1,1
Vi y Cpe e D za;nd iy (K le T), startmglfrom Up ; Ve, Cpe Py and i
. n+1,04+1 e on+1,0 n+1,04+1 n+1,041\ .0 .n4+1,0 . .
Setting v =0ifi " =0, and cj = f(px ) if i% " = 1, the computation of (inter-

n+1,0+1  nt1l0+1  ntll4+l ntl,i+l
K » Ui Cx K

mediate) values of u is possible with a “Newton iteration” on (37.2),
(37.3), (37.4) (note that the number of unknowns is equal to the number of equations). Then, for each
K € T, three cases are possible:

) )

)

. 1,041 1,041 1,041 A1+l _ ntl
Loif PV < p(pnt ) and o > 0, then set i b = gt

) L1 1041 ool 1,041 Li+1

2 M R fand necessarily 77 = 0), then set ¢ = SR and
bl
iy =1

)

n+1,0 1

. 1,041 . 1,041 1,041
3. if o < 0 (and necessarily 7 AL — g and i = 0.

), then set v
This yields the final values of u?fl’lﬂ, v?rl’lﬂ, c?(“’l“, p}’(ﬂ’lﬂ and z'?(H'Hl (KeT).

When the “convergence” of the Newton process is achieved, say at iteration {*, the values of the unknowns
at time ¢, 11 are found. They are taken equal to those indexed by (n + 1,1*) (for u,v,c,p,i). It can be
proved, under convenient hypotheses on the function f (which are realistic in the applications), that
there is no “oscillation” of the “phase index” during the Newton iterations performed from time ¢, to
time t,,11 (see EYMARD and GALLOUET [50]). This method, using the phase index, was also successfully
adapted for the treatment of the obstacle problem and the Signorini problem, see HERBIN and M ARCHAND
[87, 89].
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37.3 A simplified case

The aim of this section and of the following sections is the study of the convergence of two coupled finite
volume schemes, for the system of equations u; — div(uVp) = 0 and Ap = 0, defined on an open set
Q. A finite volume mesh 7 is used for the discretization in space, together with an explicit Euler time
discretization. Similar results are in VIGNAL [154] and VIGNAL and VERDIERE [156] where the case of
different space meshes for the two equations is also studied.

We assume that the following assumption is satisfied.

Assumption 37.1 Let Q be an open polygonal bounded connected subset of R?, d =2 or 3, and 9K its
boundary. We denote by n the normal vector to 02 outward to €.
Let g € L*(0R) be a function such that

/’gWMﬂmza
oN

and let 00T ={x € 99Q, g(x) > 0}, QT =QUINT and 9N~ = {x € 99, g(x) < 0}. Let uy € L>®()
and © € L>® (00T x IR”) represent respectively the initial condition and the boundary condition for the
unknown u.

The set
DT xRy)={p e C®(R**xR,R), p=00n 0~ x Ry}

will be the set of test functions for Equation (37.10) in the weak formulation of the problem, which is
given below.

Definition 37.1 A pair (u,p) € L>°(Q2 x IR} ) x H'(Q) (u is the saturation, p is the pressure) is a weak
solution of

Ap(z) =0, Vo € €,
Vp(z) - n(z) = g(x), Vo € 09,
ur(z,t) — div(uVp)(z,t) =0, VoeQ,Vte Ry, (37.6)
u(z,0) = uo(x), Vo € €,
u(z, t) = u(x,t), Vo € 00T, Vt € Ry.
if it verifies
pe H(Q), (37.7)
we L®(Q x RY), (37.8)
Vp(z) - VX (z)dx — X (z)g(z)dy(z) = 0,YX € H(Q). (37.9)
Q r9)

and

/ / u(z, t)(pe(x,t) — Vp(x) - Vo(z, t)dzdt —|—/ uo(z)p(x, 0)dz+

R+ /2 @ (37.10)
[ e g @ = 0¥ € DO xR,

Ry Joa+

Under Assumption 37.1, a classical result gives the existence of p € H'(f) and the uniqueness of Vp
where p is the solution of (37.7),(37.9), which is a variational formulation of the classical Neumann prob-
lem. Additional hypotheses on the function g are necessary to get the uniqueness of u € L°°(IRd xRY)
solution of (37.10). The existence of u results from the convergence of the scheme, but not its uniqueness,
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which could be obtained thanks to regularity properties of Vp. We shall assume such regularity, which
ensures the uniqueness of the function v and allows an error estimate between the finite volume scheme
approximation of the pressure and the exact pressure. In fact, for the sake of simplicity, we assume (in
Assumption 37.2 below) that p € C2(Q). This is a rather “strong” assumption which can be weakened.
However, a convergence result (such as in Theorem 37.1) with the only assumption p € H'(f2) seems
not easy to obtain. Note also that similar results of convergence (for the “pressure scheme” and for the
“saturation scheme”) are possible with an open bounded connected subset of R? with a C2 boundary (in-
stead of an open bounded connected polygonal subset of ]Rd) using Definition 18.4 page 116 of admissible
meshes.

Assumption 37.2 The pressure p, weak solution in H'(Q) to (37.9), belongs to C*(Q).
Remark 37.1 The solution (u,p) of (37.7)-(37.10) is also a weak solution of
(I —u)e(x,t) — div((1 — w)Vp)(x,t) = 0.

Remark 37.2 The finite volume scheme will ensure the conservation of each of the quantities u and
1 — u. It can be extended to more complex phenomena such as compressibility, thermodynamic equilib-
rium. . . (see Section 37.2)

Remark 37.3 The proof which is given here can easily be extended to the case of the existence of a
source term which reads

—Ap(z) = v(x), x €,

Vip(z) - n(z) = g(z), v e 00,

u(z,t) — div(uVp)(z,t) + u(z, t)v~(z) = s(x, t)vT(x), z€Q,t€R,,
u(z,0) = up(x), x €,

u(z,t) = u(x,t), xeINT, te Ry,

where v € L?(Q) with / g(x)dy(x) + /v(x)dm =0and s € L>(Q2 x IR?). All modifications which are

o0 Q
connected to such terms will be stated in remarks.

37.4 The scheme for the simplified case

Let © be an open polygonal bounded connected subset of IR?. Let 7 be an admissible mesh, in the sense
of Definition 10.1 page 63, and let h = size(T). Assume furthermore that there exists a > 0 such that
dy > ah for all o € Epy.

The pressure finite volume scheme

We first define the approximate pressure, using the finite volume scheme defined in section 10 page 63
(that is (10.6)-(10.8)).

(i) The values G, for K € T, are defined by

Gk = / g(x)dy(z) if m(OK NoN) #0,
d

KNoQ (37.11)
Gr =0, if m(0K NoQ) = 0.
(ii) The scheme is defined by
- Z TK|L(pL *pK) =Gk, VK €T, (37.12)

LeN (K)
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and
> m(K)pk = 0. (37.13)
KeT

We recall that, from lemma 10.1 page 64, there exists a unique function py € X (7T) defined by pr(z) = px
for a.e. x € K, for all K € T, where (px ) ket satisfy equations (37.11)-(37.13). Then, using Theorem
10.1 page 69, there exist C and Cs, only depending on p and €2, such that

lp7 —pllz2@) < Cih (37.14)

and

pPL —PK 1 2 2
KLze:&mm(Kw)dKlL( dgip m(K|[L) /KlL VP(@) - rdy(@)” < (Cah)” (87.15)

Last but not least, using lemma 10.6 page 74, there exists C3, only depending on g and {2, such that

Z TrL(pr — pr)? < (Cs)?. (37.16)
K|L€EEint

The saturation finite volume scheme

Let us now turn to the finite volume discretization of the hyperbolic equation (37.10). In order to write
the scheme, let us introduce the following notations: let

' =/ g* (x)dy(z) and G =/ g~ (z)dv(x),
OKNON OKNON

so that G(;) — G(K_) = Gg. Let
¢ = [ gt @) = 36
o9 KeT

(note that G() does not depend on 7). The scheme (37.12) may also be written

S e (pr i) + G -G =0, VK €T, (37.17)
LeN(K)

Remark 37.4 In the case of the problem with source terms, the right hand side of the equation (37.12)
is replaced by G + VI((JF) — VI(;) with

V1(<i) :/ v (x)dz.
K

Then, in the equation (37.17) the quantities G(éc) are replaced by Gﬁ?’ + VI((i).
Let £ € (0,1). Given an admissible mesh T, the time step is defined by a real value k > 0 such that

k< inf { mF) (1 —¢)

- KeT Z TK|L(pL*pK)++G§:)
LeEN(K)

(37.18)
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Remark 37.5 Since the right hand side of (37.18) has a strictly positive lower bound, it is always
possible to find values k& > 0 which satisfy (37.18). Roughly speaking, the condition (37.18) is a linear
condition between the time step and the size of the mesh. Let us explain this point in more detail: in
most practical cases, function g is regular enough so that |pr — px|/dk |z, is bounded by some C only
depending on g and 2. Assume furthermore that the mesh 7 is admissible in the sense of Definition 10.1
page 63 and that, for some a > 0, dg» > ah, for all K € T and o € £. Then the condition k£ < Dh,
with D = ((1—£&)a)/(d(C+ ||g| L (o0))), implies the condition (37.18). Note also that for all g € L?*(9€2)
we already have a bound for [p7|i,7 (but this does not yield a bound on |pr, — px|/dk|z). Finally, note
that condition (37.18) is easy to implement in practise, since the values 7x|z, and pg are available by the
pressure scheme.

Remark 37.6 In the problem with source terms, the condition (37.18) will be modified as follows:

k< inf m(X) 1 —¢) .
- KeT Z Tr1L(PL — )T+ Gﬁ?) + V1(<+)
LeEN(K)
The initial condition is discretized by:
1
ufe = m/}(uo(x)dx, VK eT. (37.19)

We extend the definition of @ by 0 on 92~ x IRy, and we define u};, for K € 7 and n € IN, by

(n+1)k

L 1
YK T Rk m(0K NoQ) /nk
@n =0, if m(0K N aQ) = 0.

/¢9Kﬁ6§2 a(z, t)dy(x)dt, it m(OK NoQ) # 0, (37.20)

Hence the following function may be defined on 02 x IR4:

ar gz, t) =ufk, Ve € OK NOQ,VK € T,Vt € [nk, (n+1)k), n € IN.

The finite volume discretization of the hyperbolic equation (37.10) is then written as the following relation
between /! and all uf, L € T.

m(K) (i —u) — k [ 3 TK|LU?(,L(pL7pK)+ﬁ?(G(;)fu?(G(K_)} =0,VK €T, Vn e N, (37.21)
LeN(K)

in which the upstream value uj ; is defined by

u?(,L = ’LL?(, lpr Z PL,

n n. (37.22)
Uk, p = Ur, if pr. > pr.
The approximate solution, denoted by w7t j, is defined a.e. from @ x R4 — to IR by
urp(z,t) =ufk, Vo e K,VK € T, V¥t € [nk,(n+ 1)k), Vn € IN. (37.23)

Remark 37.7 In the case of source terms, the following term is defined:

1 (’nJrl)k
N = t)dxdt
K mEk / /K( Jd

and the term k(s}’(Vl((Jr) — u’}(VI((_)) is added to the right hand side of (37.21) .
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37.5 Estimates on the approximate solution
Estimate in L>(Q x IRY)

Lemma 37.1 Under the assumptions 37.1 and 37.2, let T be an admissible mesh in the sense of Defini-
tion 10.1 page 63 and k > 0 satisfying (37.18). Then, the function ut j, defined by (37.11)-(37.13) and
(37.19)-(37.23) satisfies

HuTkHLoo(QX]R*) < ma.X{HUOHLoc Q)5 Hu||Loo(6Q+XIR )} (37.24)

PRrOOF of Lemma 37.1
Relation (37.21) can be written as
k

ujt = U}?[l ———( Y Tilox —pr)” + G+
(K) LeN(K)

Z TK|LUL (pr —pr)™ Jrng)ﬁ?().
eEN(K

Using

> el —pr)T + Gy = > Txilpx —pr)” + Gy,
LeN(K) LeN(K)

and Inequality (37.18), the term u}’(ﬂ may be expressed as a linear combination of terms u7}, L € T, and
', with positive coefficients. Thanks to relation (37.17), the sum of these coeflicients is equal to 1. The
estimate (37.24) follows by an easy induction. [

Remark 37.8 In the case of source terms, Lemma 37.1 remains true with the following estimate instead
of (37.24):
HUTk||L°°(Qx1R ) < maX{HUOHLW(Q) HUHLoo 29+ xIRY) ls ||L°°(Q><IR )}

Weak BV estimate

Lemma 37.2 Under the assumptions 37.1 and 37.2, let T be an admissible mesh in the sense of Def-
inition 10.1 page 63. Let h = size(T) and « > 0 be such that d, > «oh for all o € Eny. Let k > 0
satisfying (37.18). Let {u, K € T, n € IN} be the solution to (37.19)-(37.22) with {px, K € T}
given by (37.11)-(37.13). Let T > k be a given real value, and let N be the integer value such that
Nrwk <T < (Npy+ 1)k. Then there exists H, which only depends on T, Q, ug, @, g, « and &, such
that the following inequality holds:

Ntk Ntk

I |
YT ST o —pollule — i + 8> Y G g — alk <7 (37.25)
n=0 K|LE&nt n=0KeT

PROOF of Lemma 37.2
For n € IN and K € 7, multiplying (37.21) by v yields

m(K) (ufufe — wieu) — k(Y Tripul pulk(pn — pr) + ugu Gy — (u)* Gy = 0. (37.26)
LEN(K)

Writing w/pt e — upul = —2(uptt —uk)? — L(wp)? + L(up)? and summing (37.26) on K € T and
n € {0,..., Ny} gives
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53 S mE) e — w4 5 S mE) (Y — @)
e = (37.27)

k> 3> ek puk (pn — pr) + Wi Gy — (265 =0
n=0K€eT LeN(K)

Using (37.22) gives, for all K € T,

> ik pukr —px) = Y k) ok —po)t = Y mrpufui (e —pr)*
LEN(K) LeN(K) LEN(K)

Then,
*Z Z TR|LUK, LUK (PL — PK) Z Z i) ((wh)? — wiuf) (ke —pr)*.
KeT LEN(K) KeT LeEN(K)

Therefore, since (ul})? —upul = $(uk —ul)? + L((wk)? — (u})?),

=3 Y Uk ke —pr) = 5> Y mrn(ui —uf) ek —pr)?

KeT LeN(K) KeT LeN(K)

+3Y D> (k) (px —pr)t

KET LEN(K)

Z Z x| (ur) *(px —pr)*

KeT LeEN(K)
= 3 Z Z 7'K\L U *UL) (P *pL)Jr
KeTLeN(K)
+3 Z Z L (UK ) *(px —pr)
KeT LeEN(K)

and, using (37.17),

=3 Y mpuk ke —pr) = 5> Y mrn(ui —uf) ek —pr)?

KeT LeN(K) KGTLEN(K)
Z G(+) Z G( )
KeT KeT
Hence
Ntk

,kz Z ( Z TK\Lu%Lu’}((pL —pr) + ﬂ?{u";{ng) _ (urlz()zG(K—)) _
n=0KeT LeN(K)
Nt

WO mrnlpr — pol(ui —u)? + Y G (uhe — ag)?) - (37.28)
n=0 K|LEEm KeT
Nr i

1kz Z G(-‘r) G( )( ny2),

n=0KeT
Using (37.21), we get

Nr,1 Ntk

n n n _ + n —)\ 2
> 3 m(E)(ui! ~ ZZ—K) > mueuin(pn - pi) + TG —ui GO
n=0KeT n=0KeT LeN(K)
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Then, for all K € T, using again (37.17) and the definition (37.22),

Nt

D0 m(E)(upt — k)’ =

n=0KeT

Nt )
3 Z (Y plul —uf)pr - pr)t + G (@ — ui)”.
n=o0ker™ LEN(K)

The Cauchy-Schwarz inequality yields

NT,k NTk

> SR < < Y Y (X mnlen— )+ 67)
n=0KeT n= OKeT LeN(K)

> mranlen - )t} - u)? +G;><a?(—u?<>2).
LeEN(K)

Using the stability condition (37.18) and reordering the summations gives

Nk Nt i
o> mE)(uEt —uk)? < Y k(1=
n=0KeT n=0 (37.29)
> mnlpr — prcl(ul — ui)? + >0 G (@ - ug)?).
K|LEEint KeT

Using (37.27), (37.28) and (37.29), we obtain

> m(E) ((ur™ ) = (u)?)

KeT
Nt
+ek > (D Trilpie - pelug — up)? + >0 G (i - wk)?) (37.30)
n=0 K|LEEns KeT
Ntk
_kzz (+) G( )( ) )SO-
n=0KeT

Then, setting Cy = m(Q)HuOH%x(Q) + 2TG(+)||@H%OC(6Q+XH{*+) which only depends on Q, ug, T, g and @,

Ntk
ST m(E) w2+ kY Y G Wk < Gy
KeT n=0KeT
(this inequality will not be used in the sequel) and
NT,k NT,k C
n n n _n 4
KD > il = pul(uie — )P+ kYD Y G (e — w0 < (37.31)
n=0 K|LEEint n=0KeT
The Cauchy-Schwarz inequality yields
NT,k NT,k
n n +),.n =1
kz Z TK|L|PK—PL||UK_UL|+I<?Z ZG(K)|UK_ K| <
n=0 K|LEEn n=0KeT
Ntk Ntk
n n n =T 1
(kz Z Tx|L|PK — prl(uf — ut)? +k Z Z G(I;r) (up —ug)?)? (37.32)
n=0 K|LEEnt n=0KeT

Nt

(kZ( Z TK|L|pK—pL|_|_ ZGE)))%

n=0 K|LEEnt KeT



233

The expression W, defined by W = Z Ti|L|px — pr|, verifies

K‘Legim
W< ) (Y. ok — L)) < Cs( Y TrL)? (37.33)
K|L€gim K|L65int K‘Legim
using (37.16). Recall that C5 only depends on g and €.
Since
1 dm(2)
> ki< (Y mK|L)dgn) = <~ (37.34)
K|LEEn K|L€EE;nt
and
> 6= [ gt @),
KeT o9
we finally conclude that (37.25) holds.
Ntk
Remark 37.9 In the case of source terms, one adds the term k Z Z VI((+)|U?( — $%| in the left hand
n=0KeT

side of (37.25) (and H also depends on v and s).

37.6 Theorem of convergence

We already know, by the results of section 10 page 63, that the pressure scheme converges. Let us now
prove the convergence of the saturation scheme (37.21). Thanks to the estimate (37.24) in L>(Q2 x RY})
(Lemma 37.1), for any sequence of meshes and time steps, such that the size of the mesh tends to 0, we
can extract a subsequence such that the approximate saturation converges to a function u in L>°(Q x IR%)
for the weak-x topology. We have to show that u is the (unique) solution of (37.8), (37.10) (the uniqueness
of the solution is given by Assumption 37.2).

Theorem 37.1 Under assumptions 37.1 and 37.2, let £ € (0,1) and o > 0 be given. For an admissible
mesh T, in the sense of Definition 10.1 page 63, such that dy, > « size(T) for all o € &y and for a
time step k > 0 satisfying (37.18), let ur i be defined by (87.11)-(37.18) and (37.19)-(37.23). Then ur
converges to the solution w of (37.8), (37.10) in L>=(Q2 x RY) for the weak-x topology, as size(T) — 0.

PROOF of Theorem 37.1

In the case g(z) = 0 for a.e. (for the (d—1)-dimensional Lebesgue measure) x € 952, the proof of Theorem
37.1 is easy. Indeed, Vp(z) = 0 for a.e. = € Q and, for any mesh and time step, px — pr, = 0 for all K|
L € T. Then, u% = u% for all K € T and all n € IN. Therefore, it is easy to prove that the sequence
wr k converges, as size(7) — 0 (for any k...), to u, defined by u(z,t) = ug(x) for a.e. (x,t) € 2 x Ry;
note that w is the unique solution to (37.8), (37.10).

Let us now assume that g is not the null function in L?(9).

Let (Tm, km)menN be a sequence of space meshes and time steps. For all m € IN, assume that 7, is an
admissible mesh in the sense of Definition 10.1, that d, > asize(T,,) for all o € &y, and that k,, > 0
satisfies (37.18) (with k = k,, and T = T,,). Assume also that size(7,,) — 0 as m — oo.

Let u,, be the function ur ;, defined by (37.11)-(37.13) and (37.19)-(37.23), for 7 = T, and k = k,,. By
Lemma 37.1, the sequence (unm)men is bounded in L>(€2 x IR%). In order to prove that the sequence
(um)men converges in L>°(2 x IRY) for the weak-x topology to the solution of (37.8), (37.10), using a
classical contradiction argument, it is sufficient to prove that if u,, — u in L>(Q x IRY) for the weak-%
topology then the function w is a solution of (37.8), (37.10).
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Let us proceed in two steps. In the first step, it is proved that k,,, — 0 as m — oo. Then, in the second
step, it is proved that the function w is a solution of (37.8), (37.10).
From now on, the index “m” is omitted.

Step 1 (proof of k — 0 as m — o0)
The proof that &k — 0 (as m — 00) uses (37.18) and the fact that size(7) — 0.Indeed, define

Ar= > m(K|L)|pk —prl,
K|L€EE;nt

and, for o € &y, define x, from Q x Q to {0,1} by

Xo(z,y) =1, if o N[z, y] # 0,
Xa'(l';y) = 07 lfO'ﬁ [:C7y] - 0

Let n € R\ {0} and @ C Q be a compact set such that d(@,Q¢) > 5. Recall that py is defined by
pr(x) = px for a.e. x € K and all K € T. For a.e. « € © one has

pr@+n) —pr@)| < Y xelw,z+n)lpx —pil,
oc=K|LEEint

integrating this inequality over @ yields, using fa} Xo (2,2 +n)dx < |njm(c),

lp7(-+n) = p7llLr@) < InlAT. (37.35)

Assume A7 — 0 as m — oo. Then, since p7 — p in L*(€), one deduces from (37.35) that Vp = 0 a.e. on
Q which is impossible (since g is not the null function in L?(99)). By the same way, it is also impossible
that A7 — 0 for a subsequence. Then there exists a > 0 (only depending on the sequence (p7)men,
recall that py = p7, since we omit the index m) such that A7 > a for all m € IN.

Therefore, since Ay = Z Z m(K|L)(pr, — pr)T > a, there exists K € T such that

KeT LeN(K)

K)

_ + > &

> m(K|L)(pr —pr)T > @)

LEN(K)
Then, since TK\L = m(K|L)/dK|L and dK\L S 2h,
K)
_ + > m(
> txiplpr —pr)T = RETISIOR

LeN(K)
which yields, using (37.18),
2
E<(1- «f)m(Q)ah.
Hence k — 0 as m — oo (since h — 0 as m — 00). This concludes Step 1.

Step 2 (proof of u solution to (37.10))

Let ¢ € D(QT X Ry). Let T > 0 such that, for all ¢ > T — 1 and all z € Q, p(z,t) = 0. Let m € IN such
that h < 1 and k < 1 (thanks to Step 1, this is true for m large enough). Recall that we denote T = Ty,
h = size(Tp,) and k = ky,. Let Ny € IN be such that Np ik < T < (N + 1)k. Multiplying equation
(37.21) by p(zk,nk) and summing the result on K € 7 and n € IN yields

El,m + E2,m = Oa

with
Nt

Evm= > w(E)(ui" —uk)p(ri, nk)

n=0 KeT
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and
Nt

Eom = — Zk Z ( Z T LU (PL — PK) + Gg)ﬂ’}( — Gg(_)u’}()gp(z;(,nk).
n=0 KeT LeEN(K)

It is shown below that

lim Ey,, =11, (37.36)
m—r00
where
T =— / / u(x, t)py (@, t)dadt — / uo(x)p (2, 0)dz,
Ry JO Q
and that
hm E2,m = TQ, (3737)
m— 00
where

Tz/]I{+/91L(LE,15)V]?($)-V<,0(:c,t)dzdt/IR+ /BQﬂ(xvt)@(xvt)g(z)d’y(z)dt.

Then, passing to the limit in Ey ,, + E2,,, = 0 proves that u is the (unique) solution of (37.8), (37.10)
and concludes the proof of Theorem 37.1.

Let us first prove (37.36). Writing E ,,, in the following way:

o (e, (n = D) = (e, nk)
By = Y m(K)==5 = Y m(K)ufep(ex, 0),
n=1 KeT KeT

the assertion (37.36) is easily proved, in the same way as, for instance, in the proof of Theorem 18.1 page
113.

Let us prove now (37.37). To this purpose, we need auxiliary expressions, which make use of the conver-
gence of the approximate pressure to the continuous one. Define E3 ,, and Ejy ., by

Nt

Bam =Yk 30 (e —up)2 e | | el m)in(a)

d
n=0 K|LEEmt K|L

Nri
+;k};-(’u?( - U’VIL{) /(9KmaQ g(l‘)(p(x, nk)d,y(x)

and

(n+1)k
Ey = neZ]N/nk (/Q ur k(z, t)Vp(z) - Vo(z,nk)dr — [99 a7—7k(ac,t)<p(:c,nk)g(x)dv(m))dt.

We have Ey,, — T» as m — oo thanks to the convergence of ur j to u in L*(2 x IR) for the weak-x
topology and to the convergence of 7 to @ in L=(9NF x IRy ) for the weak-+ topology (the latter
convergence holds also in LP(Q1 x (0,5)) for all 1 < p < oo and all 0 < S < 00). Let us prove that
|Es3.m — Eam| — 0 as m — oo (which gives E3 ,, — T as m — 00).

using the equation satisfied by p leads to
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Nt

= Zk Z (ule —ul) /KL o(x,nk)Vp(z) - ng rdy(z)

n=0 K|LEEn;
N i

+ Z k Z — Uy /6Km6(2 g(x)p(x,nk)dy(z).

n=0 KeT

Therefore,

Nt

Bam—Bim = >k 3 (—up) [ P Spla) m )l k) ()

d
n=0 K|LEEnt KL
N i

-y ¥ ¢

n=0 KeT LeN(K

K~ Vp(e) - ng, ) (e, nk)dy (x)).

dK|L
Using the equation satisfied by the pressure in (37.6) and the pressure scheme (37.12) yields

N i

By = Eamn = > k> ui( 3 /K (BELE — Op(a) - n,) (Lo, nk) — plox, nk))d (@)).

Cdiy
n=0 KeT LeN(K KL

Thanks to the regularity of ¢ and p, there exists C5 > 0, only depending on p, and Cg, only depending
on ¢, such that, for all K|L € &,

PL — PK PL — PK 1
— =V . - \Y% . d Csh, V. K|L
PP Tpte) mpa)] < PG s [ 90() micada ()] + Coh, e € i

and, for all K € T,

(o, nk) — p(xc, nk)| < Csh, Vo € K, ¥ € IN.

Thus,
Ntk
Bam ~ Evnl < S 0Y k(Y frmnlo—px) = [ (o) miesdy(@)])Ca
n=0 KeT LeN (K) K|L
Nt
+ Ry Jukl( Y m(K[L)CeCsh?),
n=0 KeT LEN(K)

which leads to |Es p — E4m| — 0 as m — oo, using (37.15), (37.34) and the Cauchy-Schwarz inequality.
In order to prove that Es;,, — T» as m — oo (which concludes the proof of Theorem 37.1), let us show
that |Es ,, — E3 | — 0 as m — oc.

We get, using (37.17) and (37.22)

Nt

Eom = *Zk Z TK|L( —uk)(pr — pr)e(TK, nk)

n=0 K|LEEn
N i

—Zkzz ;)tp(xK,nk:).

n=0 KeT
This yields
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Nt
By —FBam= Y k Y 7ipuk —uf)(pr — pr)di .+
n=0 K|LEEn
o (37.38)
SR (ui - a5) G o,
n=0 Ke&T
where
).
"L = ——— o(z,nk)dy(x) — p(zvx,nk), VK € T, VL € N(K)
and

GPgp = / (i, nk)g(2)dy(z) — G plarc, k).
OKNoN

We recall that, for all 2 € 9Q, p(x,nk)g*(z) = ¢(z,nk)g(z), by definition of D(Q* x R, ). Therefore,
there exists C7, which only depends on ¢, such that |¢} ;| < Crh and G |¢%| < G Crh, for all
K €T, LeN(K) and all n € IN. Therefore, using Lemma 37.2, we get |E3 ,, — Ea | < C7h% which

yields |Ea ., — Es5 | — 0 and then Es ,, — T5 as m — oo. This concludes the proof of Theorem 37.1.
=

Remark 37.10 In the case of source terms, the convergence theorem 37.1 still holds. There are some
minor modifications in the proof. The definitions of Fs,,, E3 ., and Ej,, change. In the definition of
Es 1, the quantity G(I:)ﬂ’}( - G(K_)u’}( is replaced by G(I:)ﬂ’}( - G(K_)u’}( + VI((-HS?( - VI((_)u’}(. In the
definition of L3 ,, one adds

Nt
Z k Z (uf — s’}()/ vt (z)e(z, nk)dx.
n=0 KeT K

The quantity E3,, — E4,, does not change and in order to prove E3,, — Fs,, — 0 it is sufficient to
remark that there exists Cg, only depending on ¢, such that

|/ o(x,nk)v™ (z)dw — VI((JF)QD(,TK,?’L/{Z” < VI((JF)Cgh.
K

38 Boundary conditions

In the industrial context, efficient numerical simulators are often developped after a long “trial and error”
procedure. The efficiency of the simulators may be evaluated, for instance, by the fact that the solution
satisfies some natural constraints and that it is in agreement with experimental data. In some cases,
estimates on the approximate solutions allow to obtain the convergence of some sequences of approximate
solutions as the discretization size tends to 0. However, it is not easy to give the answer to the following
question: “Which problem is the limit of the approximate solutions the unique solution to 7”.

This paper will focus on the problem of boundary conditions needed in the discretization of non linear
hyperbolic equations or systems of equations; this problem is not yet clearly understood in many cases.
Two different cases will be presented: a two phase flow in a pipeline and a two phase flow in a porous
medium.
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38.1 A two phase flow in a pipeline

Description of the system A “simple” model for a two phase flow in a pipeline (see [60], for instance)
leads to a 3 x 3 system of conservations laws. The unknown w is a function from (0,1) x R4 in R3,
solution of the following system:

we + (F(w))s =0, z € (0,1), t € Ry, (38.1)

where (-); and (-), denote the derivatives with respect to ¢ and x variables. The first two equations of
(38.1) give the mass conservation of the 2 phases (gas and liquid) and the third one is the momentum
equation for the mixture. The expression of the given function F' : R? — R? is quite complicated. It
takes into account thermodynamical laws and a hydrodynamical law. System (38.1) is hyperbolic: for
any w € R3, the Jacobian matrix DF (w) is diagonalizable in R. The three eigenvalues can be ordered:
A(w) < Ag(w) < Az(w). In real situations, the first eigenvalue, A\; (w) is negative and the third, A\z(w), is
positive (they correspond to some “pressure waves” which are related to a “sound velocity”). The second
eigenvalue, \y(w), corresponds to some mean velocity between the two phases and can change sign. One
can also note that the field related to this second eigenvalue is quite complicated because it is not, in
general, a genuinely non linear field or a linearly degenerate field. In petroleum engineering, the wave
associated to this second eigenvalue is a “void fraction wave”; engineers require a good representation of
this wave in the numerical simulations.

Remark 38.1 In real situations, the function F in System (38.1) also depends on x, in order to take
into account, for instance, the variation in the slope of the pipeline. Moreover, some source terms have
to be added to the system, in order to take into account, for instance, some friction terms.

In order to complete System (38.1), an initial condition is prescribed:

w(z,0) = wo(x), x € (0,1), (38.2)

and it is also necessary to give some boundary conditions. This appears to be not so easy. Indeed,
classically, a general principle is that the number of boundary conditions needs to be equal to the number
of positive eigenvalues of the Jacobian matrix at x = 0 and to the number of negative eigenvalues of the
Jacobian matrix at = 1 (and these boundary conditions have to satisfy some compatibility conditions).
However, this principle is not so easy to understand when an eigenvalue changes sign during the simulation
(or in the case of a null eigenvalue). A very interesting case is the so called “severe slugging” case in
a pipeline. For this case, there are always two positive eigenvalues at x = 0 and two natural boundary
conditions are prescribed at x = 0, namely the fluxes of gas and liquid; these boundary conditions can be
taken constant in time. At x = 1, there is one natural boundary condition, namely the pressure (which
is the same for the two phases, in this model), to be prescribed. It can also be constant in time. The
true physical solution, which is measured by experiments (and the aim is to modelize these experiments),
is periodical in time and it appears that, at x = 1, the first eigenvalue is always positive and the third
one is always negative but the second eigenvalue changes sign during the simulation. In the sequel, one
presents different ways to take into account the boundary conditions and one gives a convergence result
in a simplified case.

Discretization of the problem In order to discretize Problem (38.1), (38.2) and some boundary
conditions, which will be introduced later, let h = % (with N € N*) be the mesh size and k > 0 be
the time step (assumed to be constant, for the sake of simplicity). The discrete unknown are the values
wl € R3 for i € {1,...,N} and n € N. The discretization of the initial condition leads to

1 ih
W) = _/ wo(z)dz, i € {1,...,N}. (38.3)
h Ji—1yn

For the computation of w}" for n > 0, one uses an explicit, 3-points scheme:



239

h .
E(w?“'l —wi)+ Ly —Fy =0,i€{l,...,N}, neN. (38.4)
Forie1,...,N — 1, one takes F‘:I-% = g(wl, wj, 1), where g is the numerical flux. It has to satisfy, in

particular, the classical consistency condition, namely g(a,a) = F(a), and needs to be chosen in order
to obtain some stability properties for the numerical scheme under a so called CFL condition on the
time step (see Sect. 23 for the study of a scalar model). In the case of two phase flow in a pipeline,
the classical numerical fluxes such as the Godunov flux (see [77]) or the Roe flux (see [131]) may not be
implemented, because of computational difficulties. A convenient choice is obtained with a simplified Roe
flux, namely g(a,b) = w + 1|A(a,b)|(a — b), where A(a,b) is some appoximation of the Jacobian
matrix, depending on a and b, but not satisfying the so called Roe condition, see [60].

Remark 38.2 In fact, for the simulation of a two phase flow in a pipeline, the magnitude of the so-
called fast eigenvalues, \1 and A3, is much greater than that of \a; the choice in [60] is to use an implicit
scheme with respect to the fast eigenvalues, whereas the eingevalue Ao, which corresponds to the void
fraction wave, is handled with an explicit second order discretization, since the void fraction wave needs
to be simulated precisely (see [60] for details).

Let us now define the fluxes F'{" and F'y 41 ab the boundary.
2 2

Boundary conditions for the discretized problem In order to compute F7 (and similarily Fy 41 )
2 2

a good way is to know, or to determine, some artificial value wi € R? (and wl,; € R?) and to take
T = go(wg,wy) (and Fy 1 = g1(wl, wi4q)). The numerical fluxes go and g; can be chosen equal to
2 2

g, but this is not at all necessary (see the convergence result of sections 23 and 31); in fact, there are
numerous situations where one should take gg and g; different from ¢g. Indeed, the scheme is often very
sensitive to the computation of the boundary fluxes and it is often worthwhile to use a more precise, but
also more expensive numerical flux (such as the Godunov flux, for instance) for the computation of the
boundary fluxes than for the computation of the interior fluxes. The difficulty is now to determine these
artificial values, wy and wy, .

Remark 38.3 In some cases, the choice of wy and wy, |, is quite easy. A well known example is given
by the wall-boundary condition for the Euler equations (with a perfect gas state law or a more general
state law). For the sake of simplicity, let us mention the one-dimensional case; the generalization to a
multi-dimensional case is quite easy. The Euler equations may be written the form (38.1), corresponding
to conservation of mass, momentum and energy, with w = (p, pu, E)t, where p is the density of the fluid,
u its velocity, and E its energy. The wall-boundary condition at x =0 is uw = 0, and the only component
to compute for the boundary condition is the second component of Fg which is equal here to the pressure

at x =0 (since u =0 at the wall), say p'y. The value w} may be computed from the values p7, uf and
2
pt. A natural choice for wl is to take pf = pt, ul = —u} and p§ = py. The flur F} (that is the value
2
p't ) is then obtained with F = go(w{, w}) and a convenient choice of the numerical flux go. We suggest
2 2

to choose gy as the Godunov flux (or as a linearized Godunov flux, see [19] for instance). Numerical
tests which were performed in [19] show that this choice is very satisfactory, even in the difficult case of
a strong depressurization at the boundary. These tests also show that the pressure obtained with the Roe
fluz is not so satisfactory and neither is the choice p’% = pt which may seem natural (in particular, in

2D simulations, using a dual mesh obtained with a finite element primal mesh,).

In most cases, however, the choice of wi and wy; | is not so easy. A possible method, which is described
in [53], is now layed out, for a fixed n and g given:

1. Compute DF (w?), its eigenvalues {\1, A2, A3} and a basis of R?, {1, @2, p3}, such that DF(w?)p; =
)\'LQO’U 1= 15 273
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2. Write w} on the basis {1, p2, ¢35}, namely w} = a1p1 + asps + azes,

3. Let p be the number of positive eigenvalues, compute wjj = 191+ P22+ 0303 and FT' = go(w{, w),
2

where the three unknowns g1, 82, and 83 are determined by the p equations stating the boundary
conditions (note that these equations involve the components of F7') and by the 3 — p equalities
2

ﬂi = Q4 for )\z < 0.

This method leads, at each time step, to a non linear system of 3 equations with 3 unknowns (except if
A; = 0 for some i), namely 51, B2 and f3; note that some compatibility conditions are needed in order
that this non linear system has a solution. Several variants of this method are possible. For instance, a
boundary condition may be imposed on w{ rather than F7'. A similar method is, of course, possible at

2
point z = 1 (changing the role of positive and negative eigenvalues).

This method is not always satisfactory. In the case of severe slugging for the simulation of two phase flow
in a pipeline, the method seems to perform well at x = 0, where the eigenvalues A1 and Ao are always
positive and the two boundary conditions (gas and liquid fluxes) are convenient. However, at x = 1,
the second eigenvalue sometimes becomes negative and one needs a second boundary condition (the first
one is a condition on the pressure). A natural condition seems to be ; = 0, where @ is the second
component of the flux F', that is the liquid flux, but this condition does not lead to good results. Other
possible choices of this additional boundary condition at z = 1 were tested and did not give good results.
A possible interpretation of this problem is the fact that the sign of Ay is computed with w%,. Roughly
speaking, it is “too late” when Aq(w?};) becomes negative (see Sect. 23 for the study of a simple scalar
case). Indeed, good results (in agreement with experiments) are obtained with the unilateral condition
Q@ > 0 (whatever the sign of Aa(w})). It consists in using the preceeding method (for the boundary
condition at x = 1) and in replacing, in the numerical scheme (38.4), the second component of Fy +1
by its positive part. Then, if A2(w% ) < 0, two boundary conditions are given at @ = 1 (pressure and
Q; = 0) and if A\o(w?) > 0, one boundary condition is given at x = 1 (pressure) but, in (38.4), the second
component of Fy 41 is replaced by its positive part.

We studied in Section 23 page 147 the sense of this boundary condition in the simplified scalar case.

38.2 Two phase flow in a porous medium

A second example is given by the modelization of a two phase flow, oil and water (for instance), in a
porous medium. Phases are immiscible. Compressibility and capillarity effects are neglected. The model
is obtained using the conservation of mass for each phase and Darcy’s law. This study is limited to the
one dimensional case. In this case the pressure can be eliminated and the problem is reduced to a single
equation, namely (23.1) with :

f) = D10)lat Bla(w) 55
Ji(u) + fa(u)

The unknown is the saturation of one phase, say water, and is denoted by u. The quantity « is the total
flux, which is constant in space, thanks to the incompressibility of the phases. One assumes also that it
is constant in time and positive. The quantity 3 is the difference between the densities of the phases.
The functions f; and fy are the mobilities of the phases. The function f; is nondecreasing, regular and
satisfies f1(0) = 0. The function fo is nonincreasing, regular and satisfies fo(1) = 0. The function f; + fo
is bounded from below by a positive number.

Remark 38.4 For the equivalent two or three dimensional model, the pressure cannot be eliminated and
the resulting model is a coupled system of two partial differential equations and two unknowns (pressure
and saturation). The problem to which the limit of the approzimate solutions is solution is then much
more complicated to determine. See [49] for a partial study of this question.
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Here again, an initial condition is prescribed, namely (23.2), with ug € L*((0,1)), 0 < ug < 1 a.e.. The
boundary condition will be given later.
The numerical scheme is as in Sect. 23.1; it is given by (23.3) and (23.4) with (23.5). The choice of the
numerical flux, g, satisfying (C1)-(C3), is usually given, for this model, using an “upwinding phase by
phase”, that is (see [15], for instance) :

sy = @O ER@)
niafiet Bty (35.6)
g(a,b) = @ T R0 if —a+pfi(a)>0

Let us then define fT and fy 1 On considers here the case of an injection of pure water at x = 0.
2 2
Then :

fi=a,n=0. (38.7)

At z = 1, The boundary condition is quite complicated. A simple example is (see [56] for a more complete
study):

P p— (uf)a
N fluR) + fa(u)
Then, the approximate solution is given with (23.3)-(23.5), ¢g given by (38.6), and (38.7)-(38.8).

(38.8)

In order to prove that the approximate solutions converge, as h and k go to zero, and to determine

the problem which the limit of the approximate solutions is the unique solution to, one proceeds as

in Sect. 23.3. Omne has to find go and g; satisfying (C1)-(C3) and w,u € L*°(R.) such that f? and
2

[ 41, respectively defined by (38.7) and (38.8), satisfy (23.6). This is again performed in [56]. The

most interesting case is obtained for Sfi(1) > a and when the function f is increasing on (0, ups) and
decreasing on (upz, 1), as in Sect. 23.3. In fact, the main point is the existence of a unique w,, € (0, 1)such
that f(um) = f(1) = a and that f is increasing on [0, u,,] and greater or equal to « on [y, 1]. Then, it
is quite easy to prove that (38.7) gives

11 == go(um, ub),

where ga is the Godunov flux given in Sect. 23.3.

For the boundary condition at x = 1, it is possible to construct (see [56]) a function g; : [0,1]> - R
satisfying (C1)-(C3) such that (38.8) gives :

fNsy = a(ug, 1)

It is now possible to use Theorem 23.1.

Let L be a common Lipschitz constant for g (given by (38.6)), g and g1 (on [0,1]?) and let ¢ > 0. If
k < (1—¢)Z, the approximate solution wuy, j, that is the solution defined by (23.3)-(23.5) (with g given
by 38.6), and by the boundary fluxes (38.7)-(38.8), takes its values in [0, 1] and converges towards the
unique solution of (38.9) in L (]0,1] x Ry ) for any 1 < p < oo, as h — 0:

loc
u € L*((0,1) x (0,00)),
/ / w— R)Ee + sign (u — k) (F(u) — [(5))p,)dudt

+M/ £4(0, t)dt+M/ (1— w)% (1, t)dt (38.9)

+/ (ug — k) o(x,0)dz > 0,
Vi € [0,1], Voo € CL([0,1] x [0,00), Ro),
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where M is a bound for |f’| on [0,1] (f is given by (38.5). As in Sect. 23.3. It is possible to give the sense
of the boundary condition if u is regular enough. Indeed, let u be a regular solution of (38.9). Then, u
satisfies the boundary conditions in the sense given by [9], that is :

sign(u(0,t) — wm)(f(w(0,t)) — f(K)) <0, V& € [tm,u(0,t)], for a.e. t € Ry,
1,6) — f

sign(u(1,t) — 1)(f(u(1,t)) — f(k)) > 0, Vk € [1,u(1,1)], for ae. t € Ry,

with [a,b] = {ta+ (1 — )b, t € [0, 1]} and sign(s) = 1 for s > 0, sign(s) = —1 for s < 0, sign(0) = 0.
This gives u(0,t) = uy, or u(0,t) = 1 and u(1,t) < uy, or u(1l,t) = 1. In particular, at 2 = 0, one has
f(u(0,t)) = « (only water is injected) and, at x = 1, f(u(1,t)) < a if u(1,t) < u,, (which states that
there is some oil production).
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