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Abstract  26 

Negative frequency-dependent selection (NFDS) is an important mechanism for species 27 

coexistence and for the maintenance of genetic polymorphism. Long-term coexistence 28 

nevertheless requires NFDS interactions to be resilient to further evolution of the interacting 29 

species or genotypes. For closely related genotypes, NFDS interactions have been shown to be 30 

preserved through successive rounds of evolution in coexisting lineages. On the contrary, the 31 

evolution of NFDS interactions between distantly related species has received less attention. Here, 32 

we tracked the coevolution of Escherichia coli and Citrobacter freundii that initially differ in their 33 

ecological characteristics. We showed that these two bacterial species engaged in an NFDS 34 

interaction particularly resilient to further evolution: despite a very strong asymmetric rate of 35 

adaptation, their coexistence was maintained owing to an NFDS pattern where fitness increases 36 

steeply as the frequency decreases towards zero. Using a model, we showed how and why such 37 

NFDS pattern can emerge. These findings provide a robust explanation for the long-term 38 

maintenance of species at very low frequencies.  39 

Keywords 40 

Experimental coevolution, Escherichia coli, Citrobacter freundii, Nalidixic acid, polymorphism, 41 

negative frequency dependent selection, NFDS  42 



Introduction  43 

Astounding biodiversity can be observed at different scales: from locus to species, from newly 44 

emerging polymorphism to trans-specific polymorphisms maintained for millions of years (e.g. in 45 

(Devier et al. 2009; van Diepen et al. 2013). Understanding the maintenance of such diversity 46 

among species (coexistence in communities) and within species (genetic polymorphism) is a long-47 

standing question in ecology and evolution. Various mechanisms can explain stable coexistence 48 

by a balance between selection and other forces, such as migration or mutation (listed in Débarre 49 

and Lenormand 2011). However, one of the most effective ways to maintain long-term 50 

coexistence or polymorphism is when selection itself operates in a frequency-dependent manner, 51 

favoring rare types. With such negative frequency-dependent selection (NFDS), by definition, a 52 

small frequency perturbation below (resp. above) the equilibrium frequency leads to positive 53 

(resp. negative) selection, bringing the system back to its equilibrium point and ensuring stability 54 

(Lewontin 1958; Haldane and Jayakar 1963; Ayala and Campbell 1974; Bell 2008; Felsenstein 55 

2017). Apart from selection on alleles caused by overdominance in diploids, NFDS can emerge 56 

from a diversity of underlying ecological mechanisms (see Table S1). Demonstrating NFDS in field 57 

or in laboratory experiments requires measuring how relative fitness varies when the competing 58 

types are manipulated to be at different frequencies (we term “NFDS pattern” the relationship 59 

between the selection coefficient and the frequency). Such findings are usually taken as a strong 60 

argument in favor of long-term coexistence, as long as environmental conditions remain 61 

unchanged (e.g. in Turner et al. 1996; Gigord et al. 2001; Weeks and Hoffmann 2008; Takahashi 62 

and Kawata 2013; Healey et al. 2016). However, NFDS patterns may evolve, which may 63 

compromise coexistence, even under constant environmental conditions. For instance, when two 64 

types are maintained by NFDS, each can still independently adapt to the surrounding 65 

environmental conditions and to the presence of the other type, hence putatively disrupting NFDS 66 

interactions.  67 

The evolution of NFDS patterns and long-term coexistence have been intensively studied 68 

particularly for interactions within species. The long-term persistence of polymorphic alleles in 69 

sexual species has been repeatedly demonstrated and can last hundreds of millions of years 70 

(Takahata and Nei 1990; Devier et al. 2009; Karasov et al. 2014; Těšický and Vinkler 2015). Many 71 

studies using experimental evolution on bacteria have demonstrated that emerging 72 

polymorphisms can arise, evolve and reach metastable equilibria (Turner et al. 1996; Rainey and 73 

Travisano 1998; Rozen and Lenski 2000; Friesen et al. 2004; Rozen et al. 2007; Blount et al. 2008, 74 

2012; Plucain et al. 2014; Maddamsetti et al. 2015; Healey et al. 2016; Good et al. 2017). In those 75 

cases, coexistence can be disrupted as beneficial mutations accumulate in one competing lineage 76 

(Maddamsetti et al. 2015) or be maintained in the very long-term owing to successive rounds of 77 



evolution in the two diverging ecotypes (Le Gac et al. 2012). The evolution of NFDS among 78 

divergent species has received, comparatively, much less attention. There are however reasons to 79 

expect a different regime for long-term coexistence in this case. 80 

At first sight, the mechanism of negative frequency dependence applies equally well to alleles at a 81 

locus within a sexual species as it does to different clones in an asexual species or to different 82 

species in a community. And indeed, the basic theoretical models are virtually indistinguishable 83 

in these cases (Levin 1988; Mazancourt and Dieckmann 2004). However, there might be an 84 

important difference between these situations in terms of long-term coexistence. In a sexual 85 

species, alleles maintained polymorphic at a locus by NFDS are likely to share the same genetic 86 

background, except perhaps for the portion of the genome in the close vicinity of that locus. Hence 87 

the evolution of the NFDS pattern is expected to be limited since it will mostly occur by the 88 

occurrence of new alleles at that locus (e.g. for self-incompatibility, Castric and Vekemans 2004, 89 

or mating type loci, Billiard et al. 2011), as illustrated in Figure 1a. Polymorphic clones de novo 90 

emerging in an asexual species also share similar backgrounds, but, in that case, coexistence is 91 

expected to be less stable compared to the previous case, as NFDS patterns may evolve due to 92 

mutations and frequency variation at a large number of loci, in entire genomes evolving 93 

independently. However, the initial similarity of the two types will be unlikely to cause fast NFDS 94 

destabilization (Figure 1b). Divergent species engaging new NFDS interactions are expected to be 95 

the least prone to long-term coexistence since such genetically and phenotypically different types 96 

may immediately exhibit differences in their rate of adaptation to their common environment, 97 

which could quickly destabilize their coexistence (Figure 1c). Overall, because of intercept 98 

variation of the NFDS pattern, we would expect polymorphism maintained by NFDS to persist 99 

longer among alleles in a sexual species than among species, and longer between recently-100 

diverged than anciently-diverged species.  101 

The shape and slope of the NFDS pattern may also evolve. In the three situations mentioned above 102 

and illustrated in Figure 1a,b,c, the evolution of a steeper NFDS pattern will promote long-term 103 

coexistence as with a larger slope, larger changes in intercept are required to selectively eliminate 104 

one type (Figure 1d). Ultimately, it is the relative evolution of the intercept and slope of the NFDS 105 

pattern that will dictate long-term coexistence. While the variation in intercept may be expected 106 

to differ for the different cases mentioned above (alleles, recently-diverged, anciently-diverged 107 

species), there are no clear predictions for the slope. As for most situations of specialization, the 108 

relative availability of the different types of mutations (on intercept or slope) depends mostly on 109 

the shape of the underlying trade-offs that are difficult to predict (Lenormand 2012). Some of this 110 

variation might depend on the age of the NFDS relationship. Ancient coexistence situations are 111 

likely to involve interaction-stabilizing traits and relatively steeper NFDS slopes (as they have 112 



been maintained for a long time) than more recent NFDS interactions. However, the current traits 113 

of coexisting species might have been shaped by multiple interactions with other functionally-114 

related species in the past, even if the observed NFDS interaction is recent and involves new 115 

partners. In other words, the degree to which divergent species are expected to maintain long-116 

term coexistence in an NFDS interaction is difficult to predict. For these different reasons, 117 

expectations based on the wealth of knowledge accumulated for NFDS among alleles within sexual 118 

species and among emerging asexual lineages is unlikely to be sufficient to draw global, 119 

interspecific conclusions about the role of NFDS for long-term coexistence.  120 

To address this question, we study the long-term coexistence between two bacteria species, 121 

Escherichia coli (hereafter E. coli or E) and Citrobacter freundii (hereafter C. freundii or C) grown 122 

on a medium with two carbon sources, glucose and citrate. E is particularly efficient at using 123 

glucose, but cannot take up citrate under aerobic conditions, while C can use both carbon sources. 124 

As we show, E and C can coexist by NFDS. We investigate the evolution of their NFDS patterns in 125 

multiple replicates in a ca. 900 generations experimental evolution setting. In particular, we 126 

investigate whether different abiotic conditions (different concentration of an antibiotic, nalidixic 127 

acid) change long-term coexistence, as would be expected if different environments represent 128 

different adaptive challenges to the two coevolving species. 129 

Material and methods 130 

Strains and experimental evolution 131 

In our experiment, NFDS occurs between one Lenski's long term experiment derived E. coli strain 132 

(Lenski and Travisano 1994) (E) constitutively expressing yellow fluorescent proteins (YFP) that 133 

has been previously evolved in the presence of nalidixic acid (Nal) (Gallet et al. 2012; Harmand et 134 

al. 2017, 2018) and one C. freundii strain (C) at very low starting frequency resulting from 135 

contamination of E glycerol stocks. Hence, E is well adapted to the experimental conditions in the 136 

absence of C whereas these conditions are new for C. Bacterial populations were propagated 137 

through daily 100-fold dilutions (Sup. Methods) into fresh Davis minimal medium containing 250 138 

µg/mL of glucose and Nal at six different concentrations: 0, 3, 8, 20, 100 and 200 g/mL (referred 139 

below to as Nal0, Nal3, etc.). We followed the frequency of the coevolving species in 44 140 

coevolutionary replicates (hereafter CRep, 8 per dose of Nal, and 4 in absence of Nal). The 141 

frequencies of E and C were estimated for each CRep at ca. 0, 200, 550 and 870 generations using 142 

flow cytometry. See supplementary methods for details about the coevolution protocol and 143 

frequency measures. E and C were isolated based on phenotypic differences between the two 144 

species. Their growth patterns on glucose, on different doses of citrate or on filtrate of medium 145 



where the other species had grown were measured following optical density using standard 146 

methods (Sup. Methods).  147 

NFDS patterns and fitness measures 148 

Two CRep from Nal20 (CRep20A and CRep20B) were selected to investigate detailed variations 149 

in the NFDS patterns during coevolution. Six independent clones of both C and E type were 150 

isolated from those CRep at time 0, 214 and 870 generations and mixed to constitute E and C lines 151 

representative of each time point. Variations of the NFDS patterns were investigated by 152 

performing five different series of competitions: 1) E against C at time zero (E0 against C0), 2) E 153 

against C at 214 generations (E2 against C2), 3) E against C at 870 generations (E8 against C8), 4) 154 

E0 against C8, and 5) E8 against C0. The first three series should indicate whether the interaction 155 

changed during coevolution, while the last two should indicate how each species contributed to 156 

that change. Separate overnight cultures of the E and C lines were mixed with a large range of 157 

initial frequencies and mixes were incubated for 24h in the same conditions as the experimental 158 

evolution. Selection coefficients per generation were calculated in a standard way, as in Harmand 159 

et al. (2018), eq. (1), using frequency variation over 24h (supp. methods).  160 

Results 161 

NFDS patterns evolved rapidly and consistently across abiotic conditions  162 

The two species were still coexisting in 39 CRep out of 44 at generations 200, 550 and 870 (Fig. 163 

2). The frequency of E decreased very consistently across replicates. This decrease was also 164 

consistently (much) stronger for increasing Nal concentrations (Fig. 2). A clear NFDS pattern was 165 

present at generations 0 and 870 for CRep20A and CRep20B (Fig. 3). Remarkably, these NFDS 166 

patterns were highly nonlinear, with a steep fitness change near frequency = 0 or 1. In the five 167 

remaining CRep (one at Nal0, two at Nal3, one at Nal100 and one at Nal200), C was never detected, 168 

and probably did not establish from the start (supp. methods). 169 

Fig. 3 shows that the NFDS patterns changed dramatically along coevolution in CRep20A and 170 

CRep20B replicates investigated in detail. Their shape was not strongly changed between initial 171 

and final time, but was shifted significantly downwards (which is analogous to a change in 172 

intercept as illustrated in Fig. 1). Consistent with this shift, E frequency declined in these 173 

replicates. In other replicates, where we did not investigate the NFDS pattern, E frequency also 174 

declined regularly.  This decline is consistently more pronounced at increasing Nal concentrations 175 



(Fig. 2). CRep20A and CRep20B do not particularly stand out: they are just two replicates among 176 

many others showing a very similar trend in frequency variation.   177 

Evolution of NFDS pattern is mostly driven by the adaptation of C. freundii  178 

We performed competitions at generations 0, 214 and 870 as well as time-shifted competitions in 179 

order to assign specific patterns of variation in NFDS patterns to E or C evolution. Competitions 180 

between E0 and C8 should indicate whether the evolution of C was responsible for the change in 181 

NFDS pattern, and the reciprocal competition should measure how much change of the pattern 182 

was due to the evolution of E. Fig. 3 shows that E8-C0 pattern is nearly identical to the E0-C0 183 

pattern, and that E0-C8 patterns are nearly identical to the E8-C8 pattern. This indicates that E did 184 

not evolve much and therefore that nearly all the evolutionary changes modifying the NFDS 185 

pattern occurred in C. The growth curves of isolated C and E lines confirm that C was adapting 186 

rapidly during coevolution. In particular, these growth curves show a reduction in C lag time for 187 

citrate consumption (CRep20A and B, Fig. 4) and improved growth on glucose (CRep20B, Fig. 4). 188 

In contrast, E showed no obvious adaptation to the abiotic conditions. Hence, the variation of the 189 

NFDS is almost entirely due to the evolution of C.  190 

The shapes of the NFDS patterns at initial and final time are very similar (Fig. 3). The main 191 

difference is an overall shift downwards, as would be expected if C accumulated many more 192 

unconditionally beneficial mutations over this period. Here we refer as unconditionally beneficial 193 

to mutations that confer the same fitness advantage at all frequencies. However, this 194 

interpretation is not correct. At intermediate time, the NFDS patterns show a very different shape 195 

(see NFDS patterns at generation 214 in Fig. 5). They are only shifted downwards for large starting 196 

frequencies of E, not for small frequencies.  The modification of the NFDS pattern therefore 197 

occurred in a stepwise fashion. C first acquired mutations that presented an advantage when C 198 

was rare. In a second step, other beneficial mutations occurred that were beneficial in a higher 199 

range of C frequencies. The same pattern holds very consistently for CRep20A and CRep20B.  200 

Ecological context of the frequency-dependent selection 201 

C presents a diauxic growth (i.e. a growth curve with two exponential phases on two different 202 

resources), but E does not (Fig 4). C overall carrying capacity increases linearly with citrate 203 

concentration, confirming that C consumes citrate. Citrate concentration has almost no effect on 204 

the first growth phase of C, indicating that C consumes glucose first (Fig S2). E maximal carrying 205 

capacity occurs at 100% citrate (i.e. the concentration corresponding to that of the experimental 206 

evolution medium). At other citrate concentrations, this carrying capacity is smaller, but the 207 

difference is modest in all cases. This small variation does indicate that citrate plays a role in E 208 



metabolism, but not as a resource (e.g. pH buffering). The modest effect of citrate concentration 209 

on E carrying capacity did not change between generation 0 and 870 (all these results are shown 210 

in Fig S2). At the start of the coevolution, C growth achieved on glucose is always lower than E 211 

growth, indicating that C has a lower efficiency on glucose. To achieve a larger overall carrying 212 

capacity than E, C requires some citrate (at least ~one quarter of the concentration in the DM250, 213 

Fig S1a). At generation 870, these comparisons cannot be made easily as the diauxic shift for C 214 

cannot be well identified (see for instance Fig 4). In most C lines, the lag time of switching from 215 

glucose to citrate resource becomes hardly detectable. Finally, E did not grow in the filtrated 216 

medium produced after a growth cycle of C (while C could use citrate in the reverse situation, 217 

Suppl. results.). This indicates that they do not excrete byproducts that are left undigested. This 218 

observation does not rule out the possibility that some metabolites are excreted and then 219 

reabsorbed and consumed later (e.g. acetate can be produced and temporarily excreted).  220 

Modelling non-linear NFDS patterns  221 

We investigated theoretically the NFDS patterns that can be obtained in competition scenarios of 222 

two strains with two resources and diauxy. We detail this model in Appendix 1 and Fig S1 presents 223 

it graphically. Figure 6a-c illustrates the NFDS patterns expected under one-niche, two-niches and 224 

three-niches models. In the one niche model, the NFDS patterns emerge from a differential 225 

specialization on growth rate and conversion efficiency for two types exploiting the same 226 

resource. The two niches model corresponds to the Levene’s model (1953) with two types 227 

competing on two resources. Finally, in the three niches model, there are two resources/niches, 228 

but a third one is created by an anticipated metabolic switch of one type to the second resource 229 

before the first resource is depleted (i.e. the lag phase on the second resource starts earlier by a 230 

quantity t). The other type then has a ‘private’ third niche corresponding to the leftover of the 231 

first resource.   232 

Interestingly, the NFDS patterns of this third model are generally consistent with the overall “S-233 

shape” of the NFDS patterns observed with strong curvature at extreme frequencies (Fig. 3). The 234 

model can further indicate ways to mimic the observed NFDS pattern evolution through time (Fig 235 

6d). Initially, increasing C citrate conversion efficiency can shift down the NFDS pattern at high 236 

frequency of E (as observed at generation 214 for CRep20A and CRep20B). Then, C may evolve to 237 

consume more glucose, switching to citrate closer to the time of glucose depletion (smaller t). 238 

This change favors C when frequent while maintaining a small ‘private niche’ for E, and an upward 239 

NFDS curvature at very low frequencies of E (as observed at generation 870 for CRep20A and 240 

CRep20B), hence preserving E and C coexistence. The model also shows that C growth rate and 241 

lag time on citrate do not change selection coefficients against E, once all resources are exhausted. 242 



Indeed these parameters only influence how fast citrate is consumed, which is irrelevant to E that 243 

does not consume citrate.  244 

Discussion 245 

Interactions between co-evolving species evolve quickly, but can be maintained 246 

through nonlinear NFDS patterns 247 

In this study, we investigated the long-term NFDS coexistence of two species. Following the 248 

scenario developed in the introduction, we hypothesized that the two species may not coexist in 249 

the long-term, especially if they present asymmetrical rates of adaptation (Fig 1c), as expected for 250 

divergent species. Consistent with this scenario, one species (C. freundii) evolved at a considerably 251 

faster rate than the other (E.coli), and became dominant in most of the coevolving cultures with 252 

antibiotics (Fig. 2). The shift in the NFDS pattern is rapid so that the frequency of the two species 253 

do not even have time to equilibrate at the frequency where their fitness is equal: by the time this 254 

frequency is reached, the NFDS has further shifted down so that E is always more frequent than 255 

would be expected by the current NFDS pattern. This is observed for both CRep20A and CRep20B 256 

at intermediate and final times (Fig. 3, 5). The rate of change of NFDS patterns is here somewhat 257 

faster (at the scale of 100s of generations) than those observed in the case of emerging 258 

polymorphism within an asexual species (see e.g. the changes occurring at ~500 generation scale 259 

in Rozen and Lenski 2000). However, in those cases where a polymorphism emerges within 260 

asexual species, such an asymmetry quickly favoring one genotype is unexpected since the 261 

coevolving genotypes are initially identical, save for a handful of mutations unlikely to drastically 262 

favor one at the expense of the other. In our case, E and C are genetically largely divergent, and 263 

did not have the same history of adaptation. E was initially relatively well adapted to the 264 

environment, due to 10,000 generations of evolution in similar conditions in DM25, and then 265 

~500 generations in DM250-Nal (Harmand et al. 2018). Because adaptation most often shows a 266 

pattern of diminishing returns (Lenski and Travisano 1994; Elena and Lenski 2003), E was most 267 

probably not prone to important and rapid further adaptation to the abiotic conditions (including 268 

to the Nal antibiotic, Harmand et al. 2018). In contrast, C had probably not been previously 269 

exposed to serial batch culture in minimal medium (although the history of this strain cannot be 270 

established), and hence was prone to faster and larger adaptive changes in those new conditions. 271 

Such asymmetry in adaptive responses are likely to be pervasive among interacting species in 272 

many natural situations, for example among populations that were temporarily isolated or 273 

brought into contact secondarily or during invasion events. In those cases, long-term species co-274 

existence can be maintained through NFDS interactions only if those interactions are resilient to 275 



further adaptation of these species, meaning that observation of NFDS interactions at one given 276 

evolutionary time does not guarantee long-term coexistence. In our case, and despite a strong 277 

asymmetry in rates of adaptation of the two interacting species, they were still coexisting after 278 

870 generations (in the 39 replicates where C initially established). This striking outcome was due 279 

to the particular S-shape of the NFDS patterns with extensive curvature near the fixation points 280 

(Fig. 3) protecting E from extinction by strongly favoring it when rare. Such “S-shaped" NFDS 281 

pattern can considerably extend long-term coexistence of interacting species, as an internal 282 

equilibrium can still be preserved even with large shifts in intercepts. This is an important 283 

departure from the simplified scenario usually envisioned and illustrated in Fig. 1, where linear 284 

NFDS patterns do not strongly protect competing types against extinction if one is evolving 285 

quicker. Hence, the shape of initial NFDS patterns between interacting types can be qualitatively 286 

different among divergent species than among emerging polymorphisms, with a strong 287 

consequence on their long-term coexistence. 288 

The evolution of NFDS patterns through time 289 

Asymmetric rates of adaptation to the abiotic conditions between E and C are clearly not a 290 

sufficient explanation for all the results. For CRep20A and B, the NFDS patterns were mainly 291 

shifted downwards between the initial and final time points. This pattern would be expected if 292 

unconditionally beneficial mutations accumulated in C. However, NFDS patterns at an 293 

intermediate time (generation 214, Fig 5) showed that, in both cases, the shape of the NFDS 294 

changed sequentially, first shifted downward for the range of frequencies where C is rare (i.e. on 295 

the right of x-axis in Fig 5), and then, later, shifted downward for the range of frequencies where 296 

C is frequent (i.e. on the left of x-axis in Fig. 5). This degree of malleability of NFDS patterns is 297 

surprising, but not unexpected. Initially, C is rare. It will therefore mostly fix mutations that confer 298 

an advantage at this frequency (irrespective of their effect when C is frequent). Then the 299 

equilibrium frequency of C, dictated by the NFDS pattern, increases, which triggers the fixation of 300 

other mutations that confer an advantage at higher C frequency, as is observed. Consequently, the 301 

final NFDS pattern appears as shifted down at all frequencies, giving the impression that it was 302 

modified by the accumulation of beneficial but frequency–independent mutations. On the 303 

contrary, the evolution of the NFDS pattern appears to be highly dynamic. It indicates that many 304 

mutations are available but that some confer different selective advantages at different 305 

frequencies, providing ample flexibility in the possible evolutionary deformation in the NFDS 306 

pattern. Because these mutations influence the shape of the NFDS pattern, and have a frequency-307 

dependent effect, they probably modify the interaction between the two species, rather than being 308 

unconditionally beneficial to the laboratory condition. This is a second important departure from 309 

the simplified scenario usually envisioned (presented in the introduction and in Fig. 1). Many 310 



mutations with a frequency-dependent effect seem to be available for adaptation, which allows 311 

for considerable malleability in the evolution of the shape of NFDS pattern through time, beyond 312 

mere changes in intercepts or slopes. 313 

The origin of non-linear NFDS patterns  314 

Different biological mechanisms can lead to NFDS (Table S1), and they can be difficult to tease 315 

apart as they can lead to identical NFDS patterns. In our case study, many possibilities can be ruled 316 

out (e.g. effect of parasites or predators) and some possibilities are worth discussing. First, NFDS 317 

can emerge from environmental heterogeneity (mainly represented here by different resources) 318 

provided that relevant fitness trade-offs exist among the different niches, as in Levene’s model 319 

(Levene 1953; Ravigné et al. 2004). This is a good candidate mechanism in this study since the 320 

medium includes two carbon sources, glucose and citrate, on which E and C are known to be 321 

specialized, respectively. In particular, E does not usually consume citrate under aerobic 322 

conditions (Dimroth 2013), but C does. Second, additional niches can be created by the strains 323 

themselves, as e.g. with cross-feeding interactions (Rosenzweig et al. 1994; Treves et al. 1998; 324 

Doebeli 2002; Plucain et al. 2014) or detoxification of the environment (Dugatkin et al. 2005; 325 

Kelsic et al. 2015). Third, the coexistence can rely on different strategies of exploitation of the 326 

same resource via a trade-off between the uptake efficiency and the energetic conversion of a 327 

resource. Finally, these mechanisms can be combined. For example, a strain which consumes the 328 

resource rapidly but with low efficiency (third mechanism) may be prone to excrete byproducts, 329 

which provides an opportunity for cross-feeding interactions (second mechanism). 330 

The NFDS patterns alone do not provide sufficient information to decipher among these 331 

mechanisms. Nevertheless, by modelling competition between one diauxic and one non-diauxic 332 

species (Fig. S1), we pinpoint likely hypotheses at the basis of the establishment and evolution of 333 

the interaction between the two species. First, we showed that an overall “S-shape” of the NFDS 334 

patterns can be obtained in a two-resource model only if the diauxic species switches to the 335 

second resource before the first one is entirely depleted. The remaining glucose constitutes a 336 

private niche to the non-diauxic species that becomes strongly favored when rare. Such a private 337 

niche cannot be revealed by growth curves of E and C in isolation (Fig 4). These curves showed 338 

that C initially exhibits a clear diauxic growth on two resources and that only C evolved, notably 339 

by decreasing the lag on citrate (𝜆𝐶2 smaller). This may erroneously suggest that the evolution of 340 

the NFDS pattern mainly rely on this smaller 𝜆𝐶2. However, as shown by our model, such change 341 

is neutral with respect to competition with E. It probably only evolved due to within-C competition 342 

for citrate consumption. Within-C competition may also be key for the evolution of C anticipated 343 

switch since it may be worthwhile for a diauxic species to anticipate the switch to a very abundant 344 



second resource before the first one is entirely depleted. Ultimately, the model showed that it is 345 

the time at which C initiates its switch to citrate rather than the time it takes to switch that is 346 

central for the evolution of NFDS pattern between E and C. Our modelling clarifies these points. 347 

Yet, it is likely that NFDS interactions can be generally more complex than the baseline situation 348 

depicted in the model. For instance, in our case study, it is very possible that other intermediate 349 

carbon sources (e.g. acetate, succinate) are temporarily excreted and exploited by E and C. The 350 

model also provides keys to pointing the most promising candidate mechanisms that can yield 351 

frequency-dependent changes that cannot be summarized by mere changes in intercept as 352 

presented in Fig. 1. In our case, such mechanism creates a situation where adaptation in one 353 

species indirectly opens a niche for another, in absence of cross-feeding. Further experiments are 354 

however required to identify the exact mechanism at work, notably by investigating the 355 

competition of the two species on glucose alone, provided that pH buffering in absence of citrate 356 

can be controlled for.  357 

NFDS evolution across environments 358 

The evolution of E frequency in our experiment was strongly influenced by abiotic environmental 359 

conditions (here the concentration of Nal). The patterns of variation are highly regular with 360 

respect to the gradient of Nal concentration. The importance of environmental conditions in the 361 

emergence or maintenance of biotic interactions has already been pointed out in other 362 

experiments (e.g. in Hansen and Hubbell 1980; Healey et al. 2016). These observations suggest 363 

that the environmental context can have a large influence on the long-term maintenance of NFDS 364 

interactions. This would be easily interpretable if such environmental variation was related to the 365 

mechanism of coexistence, for instance the proportion of the different available resources 366 

(glucose or citrate). But this is not the case here: the environmental variable playing such a strong 367 

role is the concentration of the antibiotic, which seems entirely unrelated to the mechanism of 368 

coexistence and orthogonal to the issue of resource utilization. A possible explanation might be 369 

that Nal represents an asymmetrical challenge for C and E. For instance, contrary to E, C may be 370 

mostly unaffected by the presence of Nal at any concentration (e.g. because of reduced uptake or 371 

a Nal-proof gyrase target). Some tests (not shown) indicated that C growth rate was not affected, 372 

but E growth rate reduced with increasing Nal concentration up to 200 g/mL. Another possibility 373 

might be that, fortuitously, Nal resistance in E favored C. In particular, some (loss-of-function) 374 

mutations on enzymes of the Krebs cycle, have been shown to be selected in E to resist Nal. 375 

Presumably, metabolites that accumulate upstream of the blocks caused by the mutations 376 

increase the expression levels of generalist efflux pumps, thereby removing Nal from the organism 377 

(Helling and Kukora 1971; Lakshmi and Helling 1976; Helling et al. 2002). This resistance 378 

mechanism, however, reduces metabolic efficiency and leads to the excretion of intermediate 379 



metabolite that could be exploited by C.  In all cases, adding a direct advantage to C with increasing 380 

Nal concentration is sufficient to explain why E equilibrium frequency is lower at increasing Nal 381 

doses (scenario modelled and shown in Fig. 6e). Irrespective of the exact underlying mechanism, 382 

our results show that environmental conditions that are a priori unrelated to the mechanism of 383 

coexistence can largely impact the evolution of NFDS patterns. 384 

The maintenance of rare species 385 

The persistence of rare species in communities is often difficult to understand, as they should be 386 

very vulnerable to stochastic perturbations or to slight adaptation of their competitor. The 387 

occurrence of a sharply increasing selective advantage at very low frequencies, as demonstrated 388 

in our case, could explain these observations. This increased coexistence timespan may provide 389 

sufficient time for further niche specialization, and eventually stabilization of interactions among 390 

coevolving competitors. Here we showed that this non-linearity may occur because of incomplete 391 

exploitation of resources by the more generalist species. There is indeed a strong selection 392 

pressure within that generalist population (here C that consumes both glucose and citrate) to 393 

switch resources when the first resource starts to be too rare to be worth exploiting. This 394 

inevitably opens a private niche for a more specialized species that can persist in the long term at 395 

very low frequency. This process of indirect niche construction may provide a general mechanism 396 

to explain persistence of rare species in ecological systems. 397 
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Figure Legends 567 

Figure 1. Evolution of frequency-dependence and long-term coexistence. The figure illustrates 568 

patterns of negative frequency-dependent selection between types (NFDS, left panels) and the 569 

corresponding frequency variation in co-existing populations (right panels, the time scale is such 570 

that mutations appear as instantaneously fixed). Basically, NFDS can be described as a negative 571 

linear dependence between the selection coefficient of one type (y-axis) against its frequency (x-572 

axis) which defines the equilibrium frequency at which both types can eventually co-exist 573 

indefinitely (i.e. where the NFDS line intersects the x-axis). However, this selective equilibrium 574 

may be displaced by further mutations: Panels (a): In sexual species, a new allele at one 575 

polymorphic locus is supposed to have a limited impact on the equilibrium frequency because 576 

recombination will disconnect such allele at one locus from other mutations in the genome; Panels 577 

(b): In de novo divergent asexual species where recombination is absent, both emerging types 578 

share similar mutational opportunity to further adapt to their common environment at a whole 579 

genome scale. Any beneficial mutation fixed in one lineage will shift the NFDS line either up or 580 

down depending in which type such mutation arise (on fig. 1b, see e.g. beneficial mutations 2 and 581 

3 arising in type A shifting up the NFDS line whereas beneficial mutations 1 and 4 arising in type 582 

B shift it down). Overall, 2 types adapting at a similar rate will exhibit successive up and down 583 

variations of the NFDS line, temporally changing their equilibrium frequency but not disrupting 584 

their long-term coexistence; Panels (c): When NFDS occurs between types from 2 divergent 585 

species with an asymmetric rate of adaptation to a common environment, the NFDS line will shift 586 

up or down but to an extent causing the selective fixation of the type more prone to adapt to the 587 

common environment (on fig. 1c see e.g mutations 1, 3, 4 with large effect in B that are not 588 

ultimately counterbalanced by mutation 2 with smaller effect in A). Panel (d): The previous panels 589 

only consider the fixation of beneficial mutations uniformly affecting the fitness of one type 590 

independently of its frequency. However, mutation contributing to the specialization of one type 591 

to a dedicated ecological niche may alternatively affect the slope of the NFDS line instead of the 592 

equilibrium frequency (see Fig. 1d). Such a mutation may occur in previous cases (a, b, c) with 593 

increased slope improving long-term coexistence since mutation with a larger effect will be 594 

required to switch the NFDS line to a point where one type will be selectively outcompeted.   595 

Figure 2. Evolution of the proportion (y-axis in %) of E. coli against C. freundii throughout the 596 

coevolution at different antibiotic concentrations (color code indicated in the figure for the 597 

different Nal concentrations). In panel (a), mean values and standard deviations are calculated 598 

per antibiotic dose (8 CRep per Nal dose, but 4 in Nal0). Values for each CRep are shown in panel 599 

(b). Frequency estimates were obtained using samples of 100,000 cells (E. coli frequency was 600 

computed as the proportion of YFP fluorescent cells). 601 



Figure 3: Negative frequency-dependent selection patterns between E. coli and C. freundii at 602 

initial (0) (grey dots) and final time (8) (black dots) of the coevolution from two sets of lines co-603 

evolved in DM250-Nal20 (CRep20A and B, top and bottom panels, respectively). Triangles 604 

represent the crossed-time competitions. Each point is the selection coefficient of one 605 

competition, some of which were done in duplicate (same E frequency). Green marks on the x-axis 606 

represent the frequency of E measured in the mixes at initial (higher values) and final time (lower 607 

values) of the coevolution. 608 

Figure 4: Growth curves in DM250-Nal20 of E. coli and C. freundii lines isolated from CRep20A 609 

and CRep20B throughout the coevolution (grey gradient). Growth curves were repeated four 610 

times, resulting in very similar curves, but for the clarity of the figure we selected one 611 

representative set. The optical density (OD) was measured at regular intervals of 10 minutes and 612 

each dot corresponds to one measure. 613 

Figure 5: Transient deformation of the NFDS pattern at generation 200 (black squares) compared 614 

to generation 0 (light grey dots) for CRep20A and CRep20B replicates. This deformation has 615 

almost completely disappeared at generation 870 (not represented here for clarity, see Fig. 3). 616 

Figure 6: NFDS patterns obtained by modeling competition between E and C types. The x-axis 617 

represents the frequency of E (from 0 to 1), and the y-axis the selection coefficient of E against its 618 

competitor C. In (a), only one resource is considered and C initially has a growth advantage over 619 

E (black line). The grey gradient represents a gradual increase of the efficiency of E in energetic 620 

conversion that, if large enough, can result in NFDS with an internal frequency equilibrium. In (b) 621 

and (c), two resources are considered. In the baseline situation (black lines) E and C are equally 622 

able to exploit resource 1 (glucose), but C can switch to exploit resource 2 (citrate) after glucose 623 

is depleted. In these conditions, C is favored at all frequencies. (b) If E evolves a shorter lag phase 624 

(or equivalently higher growth rate) when exploiting resource 1, NFDS can emerge as indicated 625 

by the grey lines crossing the x-axis (the larger the advantage of E on resource 1, the lighter the 626 

line). (c) If E parameters remain constant but C evolves an anticipated switch to resource 2 (the 627 

earlier the switch, the lighter the curve), a “S-shaped”-NFDS pattern emerges because C switches 628 

to citrate before glucose is depleted, hence opening a ‘private’ niche for E on the remaining 629 

glucose. This could equivalently be described as a three resources model (citrate, private glucose, 630 

shared glucose). In (d) and (e), the model is used to identify parameters sustaining the observed 631 

variations of NFDS patterns during the evolution of CRep. (d) Time dynamics in CRep20A (and 632 

similarly CRep20B). At time T0, E and C coexist through NFDS with the S-shaped pattern signature 633 

as described above. At time T2, the shift down of NDFS pattern mostly at high E frequency (step1 634 

arrow, as in Fig. 5) can be obtained by increasing C conversion efficiency on citrate, but with an 635 



earlier C switch to citrate (leaving more ‘private’ glucose to E). At time T8, the shift-down of NFDS 636 

pattern mostly at low E frequency (step2 arrow, as in Fig. 3) can be obtained if C keeps its 637 

conversion efficiency on citrate but evolves back to a later switch to citrate (i.e. leaving less 638 

‘private’ glucose to E compared to T2). (e) Negative impact of Nal on E frequency at the 639 

equilibrium. The shift-down of frequencies with increasing Nal concentrations (as in Fig. 2) can 640 

be obtained if Nal imposes a greater reduction of growth rate on glucose (or greater increase of 641 

lag phase) for E than for C. See sup. mat. for more details. 642 
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(three resources model)

(b) Trade-off on growth parameters
(two resources model)

(a) Trade-off uptake / conversion 
(one resource model)
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(d) Example of time dynamics
mimicking CRep20a
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(e) Example of hypothetical
effect of Nal
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