Y. Zhang, B. R. Bakshi, and E. S. Demessie, Life cycle assessment of an ionic liquid versus molecular solvents and their applications, Environ. Sci. Technol, vol.42, 1724.

P. G. Jessop, Searching for green solvents, Green Chem, pp.13-1391, 2011.
DOI : 10.1039/c0gc00797h

P. Pollet, E. A. Davey, E. E. Urena-benavides, C. A. Eckert, and C. L. Liotta, Solvents for sustainable chemical processes, Green Chem, vol.16, pp.1034-1055, 2014.
DOI : 10.2495/chem110031

URL : http://www.witpress.com/Secure/elibrary/papers/CHEM11/CHEM11003FU1.pdf

J. R. Vanderveen, J. Durelle, and P. G. Jessop, Design and evaluation of switchable-hydrophilicity Solvents, Green Chem, vol.16, pp.1187-1197, 2014.

J. M. Desimone, Practical approaches to green solvents, Science, vol.297, pp.799-803, 2002.

W. Leitner and M. Poliakof, ) Statistics: CO 2 Emissions from Fuel Combustion, Green Chem, vol.10, issue.7, p.730, 2008.

M. Aresta and A. Dibenedetto, Utilisation of CO 2 as a chemical feedstock: Opportunities and challenges, Dalt. Trans, 2007.

B. Díaz-reinoso, A. Moure, H. Domínguez, . Parajo?, and J. C. Parajo?, Supercritical CO 2 extraction and purification of compounds with antioxidant activity, J. Agric. Food Chem, vol.54, pp.2441-2469, 2006.

A. Capuzzo, M. E. Maffei, and A. Occhipinti, Supercritical fluid extraction of plant flavors and fragrances, Molecules, vol.18, pp.7194-7238, 2013.
DOI : 10.3390/molecules18067194

URL : https://www.mdpi.com/1420-3049/18/6/7194/pdf

P. Kraujalis and P. R. Venskutonis, Supercritical carbon dioxide extraction of squalene and tocopherols from amaranth and assessment of extracts antioxidant activity, J. Supercrit. Fluids, vol.80, pp.78-85, 2013.

Y. Sanchez-vicente, A. Cabanas, J. A. Renuncio, and C. Pando, Supercritical CO 2 as a green solvent for eucalyptus and citrus essential oils processing: Role of thermal effects upon mixing

N. Herzi, J. Bouajila, S. Camy, S. Cazaux, M. Romdhane et al., Comparison between supercritical CO 2 extraction and hydrodistillation for two species of eucalyptus: Yield, chemical composition, and antioxidant activity, J. Food Sci, vol.78, pp.667-672, 2013.

S. Machmudah, K. Kitada, M. Sasaki, M. Goto, J. Munemasa et al., Simultaneous extraction and separation process for coffee beans with supercritical CO 2 and water, Ind. Eng. Chem. Res, 2011.
DOI : 10.1021/ie101252w

S. Camy, S. Montanari, A. Rattaz, M. Vignon, and J. Condoret, Oxidation of cellulose in pressurized carbon dioxide, J. Supercrit. Fluids, vol.51, pp.188-196, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00499383

J. Condoret, M. Suzelei, S. Daniel, and V. Michel, Method for the Controlled Oxidation of Polysaccharides. Patent WO2006018552A1, 2004.

S. Campestrini and U. Tonellato, Selective catalytic oxidations in supercritical carbon dioxide, Curr. Org. Chem, vol.9, pp.31-47, 2005.
DOI : 10.2174/1385272053369330

C. Yu and C. Tan, Production of para-cymene from alkylation of toluene with propylene in supercritical CO 2 over shape-selective HZSM-5 pellets, Ind. Eng. Chem. Res, vol.46, pp.4421-4425, 2007.

B. Walsh, J. R. Hyde, P. Licence, and M. Poliakoff, The automation of continuous reactions in supercritical CO 2 : The acidcatalysed etherification of short chain alcohols, Green Chem, vol.7, pp.456-463, 2005.

W. Ren, B. Rutz, A. M. Scurto, S. Wesselbaum, U. Hintermair et al., Continuous-flow hydrogenation of carbon dioxide to pure formic acid using an integrated scCO 2 process with immobilized catalyst and base. Angew. Chemie Int, J. Supercrit. Fluids, vol.51, issue.21, pp.8585-8588, 2009.

P. Licence, J. Ke, M. Sokolova, S. K. Ross, and M. Poliakoff, Chemical reactions in supercritical carbon dioxide: From laboratory to commercial plant, Green Chem, vol.5, pp.99-104, 2003.

B. Subramaniam, Gas-expanded liquids for sustainable catalysis and novel materials: Recent advances, Coord. Chem. Rev, vol.254, pp.1843-1853, 2010.
DOI : 10.1016/j.ccr.2009.12.009

G. R. Akien and M. Poliakoff, A critical look at reactions in class I and II gas-expanded liquids using CO 2 and other gases, Green Chem, vol.11, pp.1083-1100, 2009.
DOI : 10.1039/b904097h

B. Subramaniam, Exploiting neoteric solvents for sustainable catalysis and reaction engineering: Opportunities and challenges, Ind. Eng. Chem. Res, pp.49-10218, 2010.
DOI : 10.1021/ie101543a

P. G. Jessop and B. Subramaniam, Gas-expanded liquids, Chem. Rev, vol.107, 2007.
DOI : 10.1002/chin.200737233

T. S. Chamblee, R. R. Weikel, S. A. Nolen, C. L. Liotta, and C. A. Eckert, Reversible in situ acid formation for ?-pinene hydrolysis using CO 2 expanded liquid and hot water, Green Chem, vol.6, pp.382-386, 2004.
DOI : 10.1039/b400393d

G. Musie, M. Wei, B. Subramaniam, and D. H. Busch, Catalytic oxidations in carbon dioxide-based reaction media, including novel CO 2 -expanded phases, Coord. Chem. Rev, 2001.
DOI : 10.1016/s0010-8545(01)00367-8

M. Wei, G. T. Musie, D. H. Busch, and B. Subramaniam, CO 2 -expanded solvents: Unique and versatile media for performing homogeneous catalytic oxidations, J. Am. Chem. Soc, vol.124, pp.2513-2517, 2002.
DOI : 10.1021/ja0114411

P. G. Jessop, M. M. Olmstead, C. D. Ablan, M. Grabenauer, D. Sheppard et al., Carbon dioxide as a solubility "switch" for the reversible dissolution of highly fluorinated complexes and reagents in organic solvents: Application to crystallization, Inorg. Chem, pp.3463-3468, 2002.

R. Sih, F. Dehghani, and N. R. Foster, Viscosity measurements on gas expanded liquid systems?Methanol and carbon dioxide, J. Supercrit. Fluids, vol.41, pp.148-157, 2007.

M. S. Kelkar and E. J. Maginn, Effect of temperature and water content on the shear viscosity of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide as studied by atomistic simulations, J. Phys. Chem. B, vol.111, pp.4867-4876, 2007.

A. Ahosseini, E. Ortega, B. Sensenich, and A. M. Scurto, Viscosity of N-alkyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)amide ionic liquids saturated with compressed CO 2, Fluid Phase Equilib, vol.286, pp.72-78, 2009.

C. A. Eckert, D. Bush, J. S. Brown, and C. L. Liotta, Tuning solvents for sustainable technology, Ind. Eng. Chem. Res, vol.39, pp.4615-4621, 2000.

B. Subramaniam, Gas-expanded liquids for sustainable catalysis and novel materials: Recent advances, Coord. Chem. Rev, vol.254, pp.1843-1853, 2010.

W. Keim, Multiphase catalysis and its potential in catalytic processes: The story of biphasic homogeneous catalysis, Green Chem, vol.5, pp.105-111, 2003.

H. Blaser and M. Studer, Catalysis for fine chemicals: Who needs (will use) new solvents? Green Chem, vol.5, pp.112-117, 2003.

A. E. Collis and I. T. Horvath, 2011, 1, 912?919. (39) Baker, R. T.; Tumas, W. Toward greener chemistry, Catal. Sci. Technol, vol.284, pp.1477-1479, 1999.

J. H. Clark and S. J. Tavener, Alternative solvents: Shades of green, Org. Process Res. Dev, vol.11, pp.149-155, 2006.

Y. Gu and F. Jerome, Bio-based solvents: An emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry, Chem. Soc. Rev, vol.42, pp.9550-9570, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00967377

M. Bhanage, B. Shirai, M. Arai, M. Ikushima, and Y. , Multiphase catalysis using water-soluble metal complexes in supercritical carbon dioxide, Chem. Commun, pp.1277-1278, 1999.

D. Chouchi, D. Gourgouillon, M. Courel, and J. Vital,

M. Ponte, The influence of phase behavior on reactions at supercritical conditions: The hydrogenation of a-pinene, Ind. Eng. Chem. Res, vol.40, pp.2551-2554, 2001.

E. Bogel-lukasik, I. Fonseca, R. Bogel-lukasik, Y. A. Tarasenko, M. N. Da-ponte et al., Phase equilibrium-driven selective hydrogenation of limonene in high-pressure carbon dioxide, Green Chem, vol.9, pp.427-430, 2007.

Z. K. Lopez-castillo, S. N. Aki, M. A. Stadtherr, and J. F. Brennecke, Enhanced solubility of hydrogen in CO 2 -expanded liquids, Ind. Eng. Chem. Res, vol.47, pp.570-576, 2007.

G. Combes, E. Coen, F. Dehghani, and N. Foster, Dense CO 2 expanded methanol solvent system for synthesis of naproxen via enantioselective hydrogenation, J. Supercrit. Fluids, vol.36, pp.127-136, 2005.

X. Zuo, F. Niu, K. Snavely, B. Subramaniam, and D. H. Busch, Liquid phase oxidation of p-xylene to terephthalic acid at medium-high temperatures: Multiple benefits of CO 2 -expanded liquids, Green Chem, vol.12, pp.260-267, 2010.

D. C. Grills and E. Fujita, New directions for the photocatalytic reduction of CO 2 : Supramolecular, scCO 2 or biphasic ionic liquid? scCO 2 systems, J. Phys. Chem. Lett, 2010.

E. J. Beckman, D. Hancu, and E. J. Beckman, Production of H 2 O 2 in CO 2 and its use in the direct synthesis of propylene oxide, Green Chem, vol.5, issue.50, pp.80-86, 2001.

D. Ha?-ncu, J. Green, and E. J. Beckman, H 2 O 2 in CO 2 /H 2 O biphasic systems: Green synthesis and epoxidation reactions, Ind. Eng. Chem. Res, vol.41, pp.4466-4474, 2002.

S. A. Nolen, J. Lu, J. S. Brown, P. Pollet, B. C. Eason et al., Olefin epoxidations using supercritical carbon dioxide and hydrogen peroxide without added metallic catalysts or peroxy acids, Ind. Eng. Chem. Res, vol.41, pp.316-323, 2001.

G. B. Jacobson, L. C. Ted, K. P. Johnston, and W. Tumas, Enhanced catalyst reactivity and separations using water/carbon dioxide emulsions, J. Am. Chem. Soc, vol.121, pp.11902-11903, 1999.

Y. Akiyama, X. Meng, S. Fujita, Y. Chen, N. Lu et al., Carbon Dioxide pressure induced heterogeneous and homogeneous Heck and Sonogashira coupling reactions using fluorinated palladium complex catalysts, J. Supercrit. Fluids, vol.51, pp.209-216, 2009.

C. A. Eckert, C. L. Liotta, D. Bush, J. S. Brown, and J. P. Hallett, Sustainable reactions in tunable solvents, J. Phys. Chem. B, vol.108, pp.18108-18118, 2004.

A. Karam, N. Villandier, M. Delample, C. K. Koerkamp, J. Douliez et al., Je?ro?Je?ro? me, F. Rational design of sugar-based-surfactant combined catalysts for promoting glycerol as a solvent, Chem.?Eur. J, vol.14, 2008.

M. Delample, N. Villandier, J. Douliez, S. Camy, J. Condoret et al., Glycerol as a cheap, safe and sustainable solvent for the catalytic and regioselective ?,?-diarylation of acrylates over palladium nanoparticles, Green Chem, vol.12, pp.804-808, 2010.

K. P. Johnston, K. L. Harrison, M. J. Clarke, S. M. Howdle, M. P. Heitz et al., Water-incarbon dioxide microemulsions: An environment for hydrophiles including proteins

C. Capello, U. Fischer, and K. Hungerbuhler, What is a green solvent? A comprehensive framework for the environmental assessment of solvents, Green Chem, vol.9, pp.927-934, 2007.

A. Bo?-smann, G. Francio?, E. Janssen, M. Solinas, W. Leitner et al., Activation, tuning, and immobilization of homogeneous catalysts in an ionic liquid/compressed CO 2 continuous-flow system, Angew. Chem., Int. Ed, 2001.

R. A. Sheldon, R. M. Lau, M. J. Sorgedrager, F. Van-rantwijk, and K. R. Seddon, Biocatalysis in ionic liquids, Green Chem, vol.4, pp.147-151, 2002.

P. Lozano, T. De-diego, . Carrie?, D. Carrie?, M. Vaultier et al., Continuous green biocatalytic processes using ionic liquids and supercritical carbon dioxide, Chem. Commun, pp.692-693, 2002.

M. T. Reetz, W. Wiesenhofer, G. Francio, and W. Leitner, Biocatalysis in ionic liquids: Batchwise and continuous flow processes using supercritical carbon dioxide as the mobile phase, Chem. Commun, pp.992-993, 2002.

S. M. Cenci, L. R. Cox, and G. A. Leeke, Ultrasound-induced CO 2 / H 2 O emulsions as a medium for clean product formation and separation: The Barbier reaction as a synthetic example, ACS Sustainable Chem. Eng, vol.2, pp.1280-1288, 2014.

M. Mccarthy, H. Stemmer, and W. Leitner, Catalysis in inverted supercritical CO 2 /aqueous biphasic media, Green Chem, vol.4, pp.501-504, 2002.

K. Burgemeister, G. Francio?, V. H. Gego, L. Greiner, H. Hugl et al., Inverted supercritical carbon dioxide/aqueous biphasic media for rhodium-catalyzed hydrogenation reactions, Chem. ? A Eur. J, vol.13, 2007.

K. Burgemeister, G. Francio, H. Hugl, and W. Leitner, Enantioselective Hydrogenation of Polar Substrates in Inverted Supercritical CO 2 /aqueous biphasic media, Chem. Commun, pp.6026-6028, 2005.

S. V. Dzyuba and R. A. Bartsch, Recent advances in applications of room-temperature ionic liquid/supercritical CO 2 systems, Angew. Chemie Int. Ed, vol.42, pp.148-150, 2003.

S. M. Mahajani, M. M. Sharma, T. Sridhar, B. Subramaniam, R. V. Chaudhari et al., Extractive hydration of n-butene with solid acid catalysts in the liquid phase and under supercritical conditions, Chem. Eng. Sci, vol.56, issue.70, pp.3-18, 2001.

C. M. Gordon, New developments in catalysis using ionic liquids, Appl. Catal. A Gen, vol.222, pp.101-117, 2001.

R. Brown, P. Pollet, E. Mckoon, C. Eckert, C. L. Liotta et al., Asymmetric hydrogenation and catalyst recycling using ionic liquid and supercritical carbon dioxide, J. Am. Chem. Soc, vol.123, pp.1254-1255, 2001.

F. Liu, M. B. Abrams, R. T. Baker, and W. Tumas, Phase-separable catalysis using room temperature ionic liquids and supercritical carbon dioxide, Chem. Commun, pp.433-434, 2001.

M. F. Sellin, P. B. Webb, and D. J. Cole-hamilton, Continuous flow homogeneous catalysis: hydroformylation of alkenes in supercritical fluid-ionic liquid biphasic mixtures, Chem. Commun, pp.781-782, 2001.

P. B. Webb, M. F. Sellin, T. E. Kunene, S. Williamson, A. M. Slawin et al., Continuous flow hydroformylation of alkenes in supercritical fluid?ionic liquid biphasic systems, J. Am. Chem. Soc, vol.125, pp.15577-15588, 2003.

M. R. Damen, R. W. Brand, S. C. Bloem, E. Pingen, K. Steur et al., Process intensification by combining ionic liquids and supercritical carbon dioxide applied to the design of Levodopa production, Chem. Eng. Process, vol.48, pp.549-553, 2009.

M. C. Kroon, L. J. Florusse, C. J. Peters, J. Van-spronsen, G. Witkamp et al., Process for Carrying out a Chemical Reaction with Ionic Liquid and Carbon Dioxide under Pressure, 2006.

F. Jutz, J. Andanson, and A. Baiker, Ionic liquids and dense carbon dioxide: A beneficial biphasic system for catalysis, Chem. Rev, vol.111, pp.322-353, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01629786

Z. Hou, N. Theyssen, A. Brinkmann, and W. Leitner, Biphasic aerobic oxidation of alcohols catalyzed by poly(ethylene glycol)-stabilized palladium nanoparticles in supercritical carbon dioxide, Angew. Chem., Int. Ed, vol.44, pp.1346-1349, 2005.

Z. Hou, N. Theyssen, and W. Leitner, Palladium nanoparticles stabilised on PEG-modified silica as catalysts for the aerobic alcohol oxidation in supercritical carbon dioxide, Green Chem, vol.9, pp.127-132, 2007.

J. Wang, F. Cai, E. Wang, and L. He, Supercritical carbon dioxide and poly(ethylene glycol): An environmentally benign biphasic solvent system for aerobic oxidation of styrene, Green Chem, vol.9, pp.882-887, 2007.

V. S. Bhise, , vol.4, p.559, 1983.

Z. Xie, J. Fang, B. Subramaniam, S. K. Maiti, W. Snavely et al., Enhanced hydroformylation by carbon dioxide-expanded media with soluble Rh complexes in nanofiltration membrane reactors, AIChE J, vol.59, pp.4287-4296, 2013.

A. M. Scurto and W. Leitner, Expanding the useful range of ionic liquids: Melting point depression of organic salts with carbon dioxide for biphasic catalytic reactions, Chem. Commun, pp.3681-3683, 2006.

P. G. Jessop, S. M. Mercer, and D. J. Heldebrant, CO 2 -triggered switchable solvents, surfactants, and other materials, Energy Environ. Sci, vol.5, pp.7240-7253, 2012.

M. A. Quadir, R. Snook, R. G. Gilbert, and J. M. Desimone, Emulsion polymerization in a hybrid carbon dioxide/aqueous medium, Macromolecules, vol.30, pp.6015-6023, 1997.

M. P. Dudukovic, Frontiers in reactor engineering, Science, vol.325, pp.698-701, 2009.

G. R. Akien, R. A. Skilton, and M. Poliakoff, Pressure drop as a simple method for locating phase transitions in continuous flow high pressure reactors, Ind. Eng. Chem. Res, vol.49, pp.4974-4980, 2010.

E. A. Brignole and S. Pereda, Preface. In Phase Equilibrium Engineering; Supercritical Fluid Science and Technology, vol.3, p.?xiv, 2013.

J. Ke, B. Han, M. W. George, H. Yan, and M. Poliakoff, How does the critical point change during a chemical reaction in supercritical fluids? A study of the hydroformylation of propene in supercritical CO 2, J. Am. Chem. Soc, vol.123, pp.3661-3670, 2001.

L. A. Blanchard, D. Hancu, E. J. Beckman, and J. F. Brennecke, Green processing using ionic liquids and CO 2, Nature, vol.399, pp.28-29, 1999.

L. A. Blanchard and J. F. Brennecke, Recovery of organic products from ionic liquids using supercritical carbon dioxide, Ind. Eng. Chem. Res, vol.40, pp.287-292, 2000.

W. Ren, B. Sensenich, and A. M. Scurto, High-pressure phase equilibria of {carbon dioxide (CO 2 ) + N-alkyl-imidazoliumbis-(trifluoromethylsulfonyl)amide} ionic liquids, J. Chem. Thermodyn, vol.42, pp.305-311, 2010.

S. Camy, J. Pic, E. Badens, and J. Condoret, Fluid phase equilibria of the reacting mixture in the dimethyl carbonate synthesis from supercritical CO 2, J. Supercrit. Fluids, vol.25, pp.19-32, 2003.

D. W. Cho, M. S. Shin, J. Shin, W. Bae, H. Kim et al., Highpressure phase behavior of methyl lactate and ethyl lactate in supercritical carbon dioxide, Fluid Phase Equilib, vol.56, issue.96, pp.41-52, 1989.

Y. Medina-gonzalez, T. Tassaing, S. Camy, and J. Condoret, Phase equilibrium of the CO 2 /glycerol system: Experimental data by in situ FT-IR spectroscopy and thermodynamic modeling, J. Supercrit. Fluids, vol.73, pp.97-107, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00877680

A. Staby, T. Forskov, and J. ;-m?llerup, Phase equilibria of fish oil fatty acid ethyl esters and sub-and supercritical CO 2 . Fluid Phase Equilib, vol.87, pp.309-340, 1993.

P. M. Ndiaye, E. Franceschi, D. Oliveira, C. Dariva, F. W. Tavares et al., Phase behavior of soybean oil, castor oil and their fatty acid ethyl esters in carbon dioxide at high pressures, J. Supercrit. Fluids, vol.37, pp.29-37, 2006.

K. Cheng, M. Tang, and Y. Chen, Vapor?liquid equilibria of carbon dioxide with diethyl oxalate, ethyl laurate, and dibutyl phthalate binary mixtures at elevated pressures, Fluid Phase Equilib, vol.181, pp.1-16, 2001.

L. Feng, K. Cheng, M. Tang, and Y. Chen, Vapor? liquid equilibria of carbon dioxide with ethyl benzoate, diethyl succinate and isoamyl acetate binary mixtures at elevated pressures, J. Supercrit. Fluids, vol.21, pp.111-121, 2001.

W. Hwu, J. Cheng, K. Cheng, and Y. Chen, Vapor? liquid equilibrium of carbon dioxide with ethyl caproate, ethyl caprylate and ethyl caprate at elevated pressures, J. Supercrit. Fluids, vol.28, pp.1-9, 2004.

L. Hongling, Z. Rongjiao, X. Wei, L. Yanfen, S. Yongju et al., Vapor?liquid equilibrium data of the carbon dioxide + ethyl butyrate and carbon dioxide + propylene carbonate systems at pressures from (1.00 to 13.00) MPa and temperatures from

K. , J. Chem. Eng. Data, vol.56, 1148.

Y. Tian, H. Zhu, Y. Xue, Z. Liu, L. Yin et al.,

K. , J. Chem. Eng. Data, vol.49, pp.1554-1559, 2004.

E. Reverchon, M. Poletto, L. S. Osseó, and M. Somma, Hexane elimination from soybean oil by continuous packed tower processing with supercritical CO 2, J. Am. Oil Chem. Soc, vol.77, pp.9-14, 2000.

. Sovova?, H. Sovova?, J. Jez, and M. Khachaturyan, Solubility of squalane, dinonyl phthalate and glycerol in supercritical CO 2, Fluid Phase Equilib, vol.137, pp.185-191, 1997.

J. Andanson, F. Jutz, and A. Baiker, Investigation of binary and ternary systems of ionic liquids with water and/or supercritical CO 2 by in situ attenuated total reflection infrared spectroscopy, J. Phys. Chem. B, vol.114, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01629809

A. Z. Panagiotopoulos, Y. Houndonougbo, H. Jin, B. Rajagopalan, K. Wong et al., Phase equilibria in carbon dioxide expanded solvents: Experiments and molecular simulations, J. Phys.: Condens. Matter, vol.12, issue.109, pp.13195-13202, 2000.

Y. Houndonougbo, K. Kuczera, B. Subramaniam, and B. B. Laird, Prediction of phase equilibria and transport properties in carbondioxide expanded solvents by molecular simulation, Mol. Simul, vol.33, pp.861-869, 2007.

M. F. Eckstein, M. Peters, J. Lembrecht, A. C. Spiess, and L. Greiner, Maximise equilibrium conversion in biphasic catalysed reactions: mathematical description and practical guideline, Adv. Synth. Catal, vol.348, pp.1591-1596, 2006.

A. Paiva, R. Craveiro, I. Aroso, M. Martins, R. L. Reis et al., Natural deep eutectic solvents ? solvents for the 21st century, ACS Sustainable Chem. Eng, vol.2, pp.1063-1071, 2014.

S. T. Handy, M. Okello, and G. Dickenson, Solvents from biorenewable sources: Ionic liquids based on fructose, Org. Lett, vol.5, 2003.

Y. Fukaya, Y. Iizuka, K. Sekikawa, and H. Ohno, Bio ionic liquids: Room temperature ionic liquids composed wholly of biomaterials, Green Chem, vol.9, pp.1155-1157, 2007.

M. Petkovic, J. L. Ferguson, H. Q. Gunaratne, R. Ferreira, M. C. Leitao et al., Novel biocompatible cholinium-based ionic liquids-toxicity and biodegradability, Green Chem, vol.12, pp.643-649, 2010.

P. Moriel, E. J. García-sua?rezsua?rez, M. Martínez, .. B. García, M. A. Montes-mora?nmora?n et al., Ban? ares, M. a. Synthesis, characterization, and catalytic activity of ionic liquids based on biosources, Tetrahedron Lett, pp.4877-4881, 2010.

D. Yang, M. Hou, H. Ning, J. Zhang, J. Ma et al., Efficient SO 2 absorption by renewable choline chloride?glycerol deep eutectic solvents, Green Chem, p.2261, 2013.

G. R. Lipinski, Ullman's Encyclopedia of Industrial Chemistry

F. Liu, J. Barrault, . De-oliveira, and K. Vigier, Je?ro?Je?ro? me, F. Dehydration of highly concentrated solutions of fructose to 5-hydroxymethylfurfural in a cheap and sustainable choline chloride/ carbon dioxide system, ChemSusChem, vol.5, pp.1223-1226, 2012.

P. Azadi, R. Carrasquillo-flores, Y. J. Pagan-torres, E. I. Gurbuz, R. Farnood et al., Catalytic conversion of biomass using solvents derived from lignin, Green Chem, vol.14, pp.1573-1576, 2012.

A. De?molisde?molis, N. Essayem, and F. Rataboul, Synthesis and applications of alkyl levulinates, ACS Sustainable Chem. Eng, 1338.

F. He, P. Li, Y. Gu, and G. Li, Glycerol as a promoting medium for electrophilic activation of aldehydes: Catalyst-free synthesis of di(indolyl)methanes, xanthene-1,8(2H)-diones and 1-oxo-hexahydroxanthenes, Green Chem, vol.11, pp.1767-1773, 2009.

H. R. Safaei, M. Shekouhy, S. Rahmanpur, and A. Shirinfeshan, Glycerol as a biodegradable and reusable promoting medium for the catalyst-free one-pot three component synthesis of 4H-pyrans, Green Chem, vol.14, pp.1696-1704, 2012.

A. Wolfson, C. Dlugy, and Y. Shotland, Glycerol as a green solvent for high product yields and selectivities, Environ. Chem. Lett, vol.5, pp.67-71, 2007.

Y. Gu and J. Barrault, Je?ro?Je?ro? me, F. Glycerol as an efficient promoting medium for organic reactions, Adv. Synth. Catal, vol.350, 2007.

Y. Gu and F. Jerome, Glycerol as a sustainable solvent for green chemistry, Green Chem, pp.12-1127, 2010.

A. E. Diaz-alvarez, J. Francos, B. Lastra-barreira, P. Crochet, and V. Cadierno, Glycerol and derived solvents: New sustainable reaction media for organic synthesis, Chem. Commun, vol.47, pp.6208-6227, 2011.

S. Sapra, A. L. Rogach, and J. Feldmann, Phosphine-free synthesis of monodisperse CdSe nanocrystals in olive oil, J. Mater. Chem, vol.16, pp.3391-3395, 2006.

M. Nunes-da-ponte, Phase equilibrium-controlled chemical reaction kinetics in high pressure carbon dioxide, J. Supercrit. Fluids, vol.47, pp.344-350, 2009.

K. Shimizu, I. F. Cheng, J. S. Wang, C. H. Yen, B. Yoon et al., Water-in-supercritical CO 2 microemulsion for synthesis of carbon-nanotube-supported Pt electrocatalyst for the oxygen reduction reaction, Energy Fuels, vol.22, pp.2543-2549, 2008.

R. Zhang, L. Guo, J. Chen, H. Gan, B. Song et al., CO 2 /water-regulating transamidation of urea and amines, ACS Sustainable Chem. Eng, vol.2, pp.1147-1154, 2014.

U. Hintermair, Z. Gong, A. Serbanovic, M. J. Muldoon, C. C. Santini et al., Continuous flow hydroformylation using supported ionic liquid phase catalysts with carbon dioxide as a carrier, Dalton Trans, pp.39-8501, 2010.

U. Hintermair, G. Francio, and W. Leitner, Continuous flow organometallic catalysis: New wind in old sails, Chem. Commun, vol.47, pp.3691-3701, 2011.

U. Hintermair, G. Francio?, and W. Leitner, A fully integrated continuous-flow system for asymmetric catalysis: Enantioselective hydrogenation with supported ionic liquid phase catalysts using supercritical CO 2 as the mobile phase, Chem. ? A Eur. J, vol.19, pp.4538-4547, 2013.

J. P. Arhancet, M. E. Davis, J. S. Merola, and B. E. Hanson, Hydroformylation by supported aqueous-phase catalysis: A new class of heterogeneous catalysts, Nature, vol.339, pp.454-455, 1989.

J. P. Arhancet, M. E. Davis, J. S. Merola, and B. E. Hanson, Supported aqueous-phase catalysts, J. Catal, vol.121, pp.327-339, 1990.

S. Marre, Y. Roig, and C. Aymonier, Supercritical microfluidics: Opportunities in flow-through chemistry and materials science, J. Supercrit. Fluids, vol.66, pp.251-264, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00695032

R. Guillaument, A. Erriguible, C. Aymonier, S. Marre, and P. Subrapaternault, Numerical simulation of dripping and jetting in supercritical fluids/liquid micro coflows, J. Supercrit. Fluids, vol.81, pp.15-22, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00829492

K. D. Heath and H. D. Cochran, Electrodispersion for supercritical CO 2 ?water phase contact, Ind. Eng. Chem. Res, vol.39, pp.4455-4461, 2000.

T. Moreno, S. J. Tallon, and O. J. Catchpole, Supercritical CO 2 Extraction of 1-Butanol From Aqueous Solutions Using a Hollow Fibre Membrane Contactor

, AIChE Annual Meeting, 2012.

A. Gabelman and S. Hwang, Experimental results versus model predictions for dense gas extraction using a hollow fiber membrane contactor, J. Supercrit. Fluids, vol.35, pp.26-39, 2005.

A. Gabelman, S. Hwang, and W. B. Krantz, Dense gas extraction using a hollow fiber membrane contactor: Experimental results versus model predictions, J. Membr. Sci, vol.257, pp.11-36, 2005.

G. D. Bothun, B. L. Knutson, H. J. Strobel, S. E. Nokes, E. A. Brignole et al., Compressed solvents for the extraction of fermentation products within a hollow fiber membrane contactor, J. Supercrit. Fluids, vol.25, pp.119-134, 2003.

G. D. Bothun, B. L. Knutson, H. J. Strobel, and S. E. Nokes, Mass transfer in hollow fiber membrane contactor extraction using compressed solvents, J. Membr. Sci, vol.227, pp.183-196, 2003.