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Comparison of Mixed Integer Linear Models for
Fuel-Optimal Air Conflict Resolution with Recovery

Jérémy Omer

Abstract—Any significant increase in current levels of air
traffic will need the support of efficient decision-aid tools. One
of the tasks of air traffic management is to modify trajectories
when necessary to maintain a sufficient separation between pairs
of aircraft. Several algorithms have been developed to solve this
problem, but the diversity in the underlying assumptions makes it
difficult to compare their performance. In this article, separation
is maintained through changes of heading and velocity while
minimizing a combination of fuel consumption and delay. For
realistic trajectories, the speed is continuous with respect to
time, the acceleration and turning rate are bounded, and the
planned trajectories are recovered after the maneuvers. After
describing the major modifications to existing models that are
necessary to satisfy this definition of the problem, we compare
three mixed integer linear programs. The first model is based
on a discretization of the airspace, and the second relies on a
discretization of the time horizon. The third model implements
a time decomposition of the problem; it allows only one initial
maneuver, and it is solved periodically with a receding horizon
to build a complete trajectory. The computational tests are
conducted on a benchmark of artificial instances specifically
built to include complex situations. Our analysis of the results
highlights the strengths and limits of each model. The time
decomposition proves to be an excellent compromise.

Index Terms—Air traffic control, Conflict resolution, Mixed
integer linear programming.

I. INTRODUCTION

The airspace is a crowded environment, so air traffic man-
agement (ATM) is necessary for both security and economic
reasons. ATM is organized into successive layers correspond-
ing to levels of anticipation that converge toward real-time.
The last layer is air traffic control (ATC); for portions of
the airspace outside the direct vicinity of airports, it involves
monitoring traffic, establishing communication with pilots, and
taking actions to ensure the fluidity and safety of the traffic.

For safety, ICAO [1] defines required separation distances
that depend on airspace class. Two aircraft are considered
separated if they respect either a required horizontal or vertical
distance, else the aircraft are in conflict. A potential conflict
occurs when the predicted trajectories of two aircraft are in
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conflict at some future time. The ATC operator must detect
potential conflicts, determine maneuvers that lead to conflict-
free trajectories, and communicate the maneuvers to pilots.
The second task is usually referred to as conflict resolution
(CR). Automated CR could benefit the overall ATM. Indeed,
the inclusion of an automated CR in the toolbox available to
controllers could lead to a major increase in airspace capac-
ity [2]. Since the CR problem is also intrinsically difficult, it
has been the focus of a large literature. The review articles
written by Kuchar and Yang [3] and Martı́n-Campo [4] allow
to understand, compare and contextualize the large diversity
of existing studies. These surveys also show that an ideal
approach should rely on general assumptions, fit the nature of
the problem, and be computationally efficient. In practice, CR
algorithms represent a compromise among these three aspects.

Optimal control methods search for a continuous-time
control law optimizing a cost functional. Since the aircraft
trajectories involve continuous-time positions, speeds, and
accelerations, optimal control is a logical candidate for solving
the CR problem. Complete models are derived in [5]–[7].
The optimal solution can be found for simple cases with
two aircraft and a constant velocity [5]. However, numerical
methods are necessary to solve the problem under more
general assumptions.

If the aircraft fly at the same altitude, one approach is to
limit the possible maneuvers to a finite set of heading and/or
speed changes. With this restriction, Bicchi and Pallottino
[6] suggest a heuristic that builds conflict-free trajectories
with sequences of straight lines and circular arcs. Frese and
Beyerer [8] focus on instantaneous heading changes with
constant speed and velocity changes with constant heading
to solve the problem through a tree-exploration technique.
With the same maneuvers, Durand et al. [9] develop a genetic
algorithm to handle complex situations.

A second approach is to formulate the CR problem with
discrete time. For instance, Raghunathan et al. [7] sample
the time interval to focus on a finite set of variables and
constraints. The resulting model is a nonlinear program (NLP)
with nonconvex separation constraints. The NLP can be solved
numerically, but fast algorithms cannot guarantee more than
a local optimum. Moreover, when solving nonconvex NLPs,
these algorithms are sensitive to the point from which they
are started. Borrelli et al. [10] show that this results in
large computational times and oscillations in the costs of the
solutions.

For faster solution and guaranteed convergence, the non-
linear constraints and objective function of the NLP can be
approximated with linear equations involving integer variables
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to obtain a mixed integer linear program (MILP). MILPs have
been very popular in ATC, because they may achieve a good
approximation of the NLP (see [11]), and implementations of
state-of-the-art algorithms (e.g., CPLEX1 or Gurobi [12]) find
optimal solutions of large instances in a reasonable time. For
instance, time-discretized MILPs are developed in [13]–[16].

An extreme time sampling is to take only the two extremities
of the time interval. In this case, the conflicts resolution must
be achieved with one initial maneuver per aircraft, thus leading
to a simpler form of the NLP. In particular, the separation
constraints become a disjunction of two linear constraints
(see [17]–[20]).

MILPs also arise from space discretization. Instead of
sampling the time interval, these models reduce the airspace
to a finite set of important points, namely the initial and
final points of the trajectories and the points where pairs
of trajectories intersect. Since space discretization makes it
hard to represent geographic deviations from the predicted
trajectories, in these models the maneuvers are usually re-
stricted to speed changes [21]–[24]. By introducing lateral
shifts similar to those described in [19], Omer [25] develops
a space-discretized model that also includes heading changes.

Despite the abundant literature on CR, there has been
little experimental comparison of different models. Frese and
Beyerer [26] conduct an experimental study for the avoidance
of collisions between cars. In [10], [16], results are presented
for an NLP and an MILP and [16] shows that the MILP may
be used as a first step toward the final result by providing a
starting point for the NLP [16]. The first motivation for this
article is to add to the body of knowledge by conducting an ex-
perimental comparison of CR models. Since a large proportion
of the existing models are MILPs and they represent a wide
range of options, this work focuses on MILPs. Based on the
literature review above, we compare three different families of
MILPs: time-discretized, one-maneuver, and space-discretized
models.

In this work we consider the restriction of the CR problem
to deterministic and planar motion, so the main characteristics
of the problem are the following:
• fuel consumption and delays are minimized;
• speed and heading changes are allowed;
• speed and heading are continuous functions of time;
• velocity, acceleration, and turning rate are bounded;
• aircraft must revert to their planned trajectories.

For a meaningful comparison of the three families of MILPs,
the compared models must all be based on the same require-
ments. Our first major contribution is thus to modify existing
time-discretized and one-maneuver models with this goal
in mind. Our second major contribution is an experimental
comparison of the three models. We generate a large set of
benchmark instances to ensure that the conclusions illustrate
general tendencies, and we highlight the main features of each
family of model. The most interesting result is that the one-
maneuver model emerges as an excellent compromise.

Our approach is based on the formal definition of the

1CPLEX is freely available for academic and research purposes under the
IBM academic initiative: http://www-03.ibm.com/ibm/university/academic

problem given in Section II. In Section III, we briefly de-
scribe a previously developed space-discretized model. Our
original modeling contribution includes the insertion of fuel
consumption in a time-discretized model in Section IV and a
larger revision of a one-maneuver model in Section V. Based
on experimental tests, we compare the models in Section VI.

II. FORMAL DEFINITION OF THE CONFLICT RESOLUTION
PROBLEM

The CR problem aims to keep a set A of aircraft separated
on a time interval [0, T ]. Denoting C the set of pairs of distinct
aircraft in A, a new trajectory is planned for each aircraft in A
so that each pair in C respects the required separation distances
on [0, T ]. The control horizon T may be related to the transit
time through control sectors, so the value of T typically ranges
from 10 to 15 minutes.

In this section we define the specific CR problem studied in
the rest of the paper. The definition covers aircraft dynamics,
separation constraints, recovery of the planned trajectories and
cost minimization.

A. Dynamics of the aircraft

The motion of an aircraft Ai ∈ A is described by its position
pi(t), speed vi(t), and acceleration ui(t) at each time t ∈
[0, T ]. The particular problem we are focusing on deals with
planar motion, which allows us to capture a large part of
the conflicts between cruising aircraft. Stated otherwise, pi(t),
vi(t), and ui(t) are assumed to be two-dimensional vectors, so
separation is achieved through heading and speed maneuvers.
Moreover, we restrict the problem to deterministic motion.
The studies by Erzberger and Paielli [27], and Chaloulos and
Lygeros [28] justify that this restriction should not have major
consequences in the conclusions of this study. Indeed, [27],
[28] show that the errors in trajectory prediction do not exceed
a few nautical miles for the considered control horizon. In
Section VII, we discuss how uncertainties could be taken into
account in a future comparative study.

As is standard for the CR problem, we model the motion
as a double integrator:(

dpi(t)
dt

dvi(t)
dt

)
=

(
vi(t)
ui(t)

)
. (1)

A reasonable level of realism is ensured by assuming that
acceleration is stepwise constant. In other words, the ma-
neuvers are executed with a constant acceleration vector, and
the speed vector remains constant between two consecutive
maneuvers. This assumption is consistent with the continuity
of speed with respect to time and the need to execute maneu-
vers smoothly.

The performance of an aircraft imposes a minimum and
a maximum speed, V min and V max. Moreover, as specified
in [29], large velocity decreases below the preferred value
are usually not appreciated by pilots. As a consequence, the
minimum velocity is the larger of the value based on the air-
craft’s performance and that based on the pilots’ preferences.
In addition, the comfort of the passengers leads to maximum
values, Umax and ωmax, for the derivatives of velocity and
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heading, which are called acceleration and yaw rate in what
follows. These constraints are formalized as: ∀t ∈ [0, T ],

V min
i ≤ Vi(t) ≤ V max

i , (2)∣∣∣∣dχi(t)dt

∣∣∣∣ ≤ ωmax
i and

∣∣∣∣dVi(t)dt

∣∣∣∣ ≤ Umax
i , (3)

where χi(t) is the heading and Vi(t) is the velocity of Ai at
time t.

B. Ensuring separation
Since the modeled aircraft dynamics are restricted to the

horizontal plan, only the horizontal separation D is considered.
The separation constraints are thus formulated as:∥∥pj(t)− pi(t)

∥∥ ≥ D,∀(Ai, Aj) ∈ C,∀t ∈ [0, T ], (4)

where ‖ · ‖ is the Euclidean norm.

C. Reverting to the planned trajectory
Trajectory recovery reflects the natural idea that CR should

minimize perturbations to the overall trajectory of an aircraft.
Moreover, several projects consider a trajectory-based ATM
in which both the airlines and ATC commit to do all they
can to keep each aircraft as close as possible to a previously
negotiated business trajectory (BT) (see [30]).

In this article, both space and time deviations from the BT
are controlled. A constraint is then added for each aircraft to
recover the course of its planned trajectory. For this, the final
position must be on the straight line directed by the planned
final speed and going through the planned final position:

(pi(T )− pTi )⊗ vTi = 0, ∀Ai ∈ A, (5)

where pTi and vTi are the planned position and speed of Ai
at time T and ⊗ is the vector product. The temporal aspect
of trajectory recovery is taken into consideration through a
penalty in the cost function rather than a hard constraint. This
issue is dealt with in the next section.

D. Cost minimization
The economic efficiency of a flight is usually measured

by duration and fuel consumption. Fuel-optimal conflict-free
trajectories are thus determined, for instance, in [18]. In this
article, the trajectories minimize a combination of the fuel
consumption and the time deviations from the BT at time T .

To derive fuel consumption we use the physical model
described in the BADA user manual [31]. Sample consumption
profiles are plotted in Figure 1.

To penalize the time deviation, we estimate the cost of a
delay as the fuel cost that would be incurred to make up with
the delay created by the maneuvers. Since this operation is
not an emergency, the speed should not be pushed to its limit.
Denoting V nom

i the nominal speed of Ai, 1
2 (V nom

i + V max
i )

or 1
2 (V nom

i + V min
i ) are acceptable speeds to make up with

a positive or negative delay. The penalties for being behind
or ahead of the BT, ρ−i and ρ+

i , are thus computed as the
additional fuel consumption needed to return to the BT. A
detailed description of the computation of ρ−i and ρ+

i is given
in [11].
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Fig. 1: Fuel consumption per distance unit; the profiles are
normalized by setting the minimum consumption equal to 1.0

III. SPACE-DISCRETIZED MODEL

Space discretization focuses on the points of the airspace
that are most likely to be important for the conflict resolution.
These are the measured positions of the aircraft at t = 0, the
predicted final positions of the aircraft, and the conflict points,
i.e., the points where the trajectories of two aircraft intersect.
Although it is not identified as such, a space discretization is
used in [21], [22], [24] to derive a model involving only speed
maneuvers. The main contribution of a previous work [25] is
to include heading maneuvers. Since we implement the same
model, we describe only the principles of space discretization
(Section III-A) and the assumptions made to allow for a
linear formulation with heading maneuvers (Section III-B).
The complete mathematical formulation can be found in the
original description of the model.

A. Principle of the space discretization

For given traffic, space discretization leads to a directed
graph (N , E), where N is the union of the following set of
nodes:
• NI : nodes corresponding to the initial positions;
• NC : nodes corresponding to the conflict points;
• NT : nodes corresponding to the positions at time T .

Set E is then built by adding, for each aircraft, the pairs of
consecutive nodes over which the aircraft flies. The conflict
graph is completely built based on the BTs. In the model, the
structure of the graph is thus fixed. The variable features of
the graph are the characteristics of the edges. For instance, a
speed change modifies the flight time, and heading maneuvers
stretch out the length of an edge while introducing a lateral
shift with respect to the BT. Figure 2 illustrates the structure of
a conflict graph for a situation involving three aircraft: n1 and
n3 are the intial and final nodes of A1 and n2 is a conflict node;
(A1, n1, n2) and (A1, n2, n3) are the edges corresponding to
the BT of A1.

In Section II, the separation constraints focus on the po-
sitions of two aircraft at each time, whereas in a spatial
discretization they focus on the times the two aircraft fly over
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final nodes

initial nodes
conflict nodes

A1

A2

A3

n1 n2 n3(A1, n1, n2) (A1, n2, n3)

Fig. 2: Conflict graph for a situation with three aircraft [25]

the conflict point. Specifically, the times Ai and Aj fly over
the conflict point must be separated with a minimum time
separation Tmin

i,j that depends on the velocities and on the
angle between the trajectories of Ai and Aj . If the velocities
Vi and Vj are constant and so is the angle, θij , between the
trajectories of Ai and Aj , Tmin

i,j may be computed as in [21]:

Tmin
i,j =

D

ViVj |sin θi,j |

√
(Vi)2 + (Vj)2 − 2ViVj cos θi,j .

The combinatorics intrinsic to the problem appears in the
choice of the aircraft that passes first at the conflict point.
This is modeled with two big-M constraints that involve one
binary variable δij and a large constant value M . The strength
of this model is that it involves only one binary variable per
pair of aircraft. Let Ti and Tj be the times Ai and Aj fly over
the conflict point; then the separation constraints are

Ti−Tj ≥ Tmin
i,j −Mδij , and Tj −Ti ≥ Tmin

i,j −M(1− δij).

B. Including heading maneuvers

The maneuvers are restricted to those corresponding to a
combination of the two patterns represented in Figure 3, and
they cannot extend over more than one edge. In the heading
maneuver depicted in Figure 3a, the aircraft has the same
heading at the beginning and at the end of the maneuver:
the purpose is to move the aircraft away laterally from its
BT or to spatially recover it. The speed maneuvers illustrated
in Figure 3b end with the same speed as they started: their
purpose is to move the aircraft back or forward temporally
(or longitudinally) from its BT. These maneuvers are called
trapezoidal speed and heading changes in reference to the
shape of the graphs of speed and heading as functions of
time. Finally, they are executed with the maximum yaw rate or
acceleration to minimize the transition between the initial and
final speeds or headings. The choice of these patterns is made
to fit in the framework of MILPs. Other maneuvers may be
more efficient, but the simplicity of the patterns may also be
an asset for the communication between pilots and controllers.

The inclusion of heading maneuvers relies on the fact that
a trapezoidal heading change generates a lateral shift with
the BT. This shift can in turn be converted into a temporal
shift at the conflict point. Indeed, Figure 4 illustrates that
if Ai is laterally shifted by ∆i then the conflict point is
moved by a distance ∆i tan θij along the trajectory of Ai,

constant yaw rate

translation of

conflict point of the BTs

Ai

Aj

fol
low

ne
w

he
ad

ing
back to initial heading

lateral shift

heading change
the conflict point

(a) Heading maneuver

initial speed V nom

constant speed V

velocity change
with constant acceleration U

time

velocity

(b) Speed maneuver

Fig. 3: Representation of the two permitted types of maneuvers

BT of Ai

Ai

Aj

∆i tan θij θij

∆i sin θij

D

D
sin θij

conflict point of the BTs

∆i

extremities of the segments with constant speed

actual conflict point
D

D

D

terminal nodes of the edges

Fig. 4: Focus on a crossing conflict in presence of a lateral
shift

and by a distance ∆i sin θij along the trajectory of Aj . If
the speed vectors of Ai and Aj are constant, Ti and Tj
are then linear functions of the decision variables. Constant
speed vectors would forbid any maneuver, but it is actually
not necessary to have the velocities constant in the region
where there is no risk of conflict. As a consequence, the speed
vectors are constrained to be constant on the segments where
the distance between the trajectories is less than or equal to
the required separation distance D. As depicted in Figure 4,
this corresponds to an interval of length 2 D

sin θij
centered on

the conflict point.
Finally, a stepwise linear approximation of the fuel con-
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Fig. 5: Representation of the separation constraint
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Fig. 6: Representation of the velocity bounds

sumption is minimized, and the recovery of the BT is ensured
by demanding a zero lateral shift and minimizing the time
shift at the nodes of NT . The overall model is called SPACE.

IV. TIME-DISCRETIZED MODEL

Time-discretization consists in sampling the time horizon
to model the problem with a set of variables and constraints
that describe the states of the aircraft at each time step. This
technique is used to derive an MILP in [13]–[16]. The model
in [16] satisfies all the constraints described in Section II and
differs only by the minimized objective, so we use it as a basis
for the time-discretized model described in this section. As a
consequence, we first present a synthesis of the study in [16].
We then develop an objective function that takes into account
fuel consumption and delays.

A. A linear time-discretized model

In [16] the time interval [0, T ] is sampled according to a
constant step h. A time-discretized model is then obtained by
focusing on a sequence of K + 1 times, 0 = t0 < . . . <
tK = T . Separation constraints and bounds on velocity and
acceleration are nonlinear but they can be approximated using
linear constraints.

The linearization relies on two related techniques that are
most clearly understood via a geometric representation of the
constraints. Figure 5 illustrates a potential conflict between

two aircraft Ai and Aj in the mobile frame attached to Ai.
The loss of separation is avoided if Aj remains outside of the
separation circle with radius D centered on Ai. The circle is
then approximated using four tangents (the dotted lines) that
delimit a separation square. Each tangent corresponds to one
linear constraint and at least one of these constraints must be
satisfied. As in SPACE, this disjunction is modeled with a
set of big-M constraints involving as many binary variables as
tangents: ∀ (Ai, Aj) ∈ C,∀k ∈ {0, . . . ,K − 1} :

〈pkij
∣∣ eθ〉 ≥ D + h2/8

(
uki + ukj

)
−Mδkθij ,∀θ ∈ Θs (6)

〈pk+1
ij

∣∣ eθ〉 ≥ D + h2/8
(
uki + ukj

)
−Mδkθij ,∀θ ∈ Θs (7)∑

θ∈Θs

δkθij = 3, (8)

where pkij is the relative position of Aj with respect to Ai at
tk, Θs = {0, π2 , π,

3π
2 } identifies the positions of the tangents,

δkθij is a binary variable that nullifies only if the corresponding
contraints (6)-(7) are satisfied, uki is an upper bound of the
acceleration of Ai at tk, eθ is the unit vector with coordinates
(cos θ, sin θ) and 〈 .| .〉 is the scalar product. Constraint (8)
guarantees that at least one of the four tangent constraints is
satisfied. The two constraints (6)-(7) are necessary to guarantee
that the separation is maintained on the whole [tk, tk+1]
time interval. The higher order terms involving uki and ukj
are necessary to take the acceleration into account in non-
instantaneous maneuvers.

Figure 6 represents the bounds on velocity as two concentric
circles in Cmin and Cmax with radii V min

i and V max
i (in

dotted lines). To respect the bounds, the endpoint of vi must
lie between Cmin and Cmax. The circles Cmin and Cmax are
then approached using respectively Nv tangents and chords.
With this approximation, vi must lie in the shaded area of
Figure 6. This surface is included between Cmin and Cmax,
so the original bounds will also be respected. The upper
bound is then a conjunction of linear constraints and the
lower bound is a disjunction modeled with big-M constraints:
∀Ai ∈ A,∀k ∈ {0, . . . ,K} :

〈vki
∣∣ eθ〉 ≤ V max

i × cos(π/Nv),∀θ ∈ Θv (9)

〈vki
∣∣ eθ〉 ≥ V min

i −Mvε
kθ
i ,∀θ ∈ Θv (10)∑

θ∈Θv

εkθi = Nv − 1, (11)

where vki is the speed vector of Ai at tk, Θv = { 2nπ
Nv
}0≤n<Nv

,
εkθi is a binary variable that nullifies only if the corresponding
constraint is satisfied and Mv is a large constant value.

B. Minimizing a meaningful objective function

The model in [16] minimizes acceleration and requires a
complete recovery of the BTs. Our intent is to relax the time
recovery and minimize a combination of fuel consumption and
delay.

The fuel consumption per time unit is a nonlinear func-
tion of velocity that can be linearized if we make the fol-
lowing two approximations. First, the velocity is approxi-
mated on each subinterval [tk, tk+1] by the average value
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1
2

(∥∥vki ∥∥+
∥∥vk+1

i

∥∥). Second, the fuel consumption is approx-
imated with a stepwise linear function joining NZ + 1 points
of the real curve. The accuracy of the second approximation
is illustrated in Figure 7 where the fuel consumption of an
Airbus A320 is approached with as few as four segments.

For a particular aircraft Ai ∈ A, let Z = αni V + βni be
the equation of the nth segment, 1 ≤ n ≤ NZ . The fuel-
consumption function was found to be convex on the interval
[V min, V max] for all the aircraft types that were tested, so it
is approximated by zki on [tk, tk+1] if zki is minimized and

zki ≥ h×
(αn

2

(∥∥vki ∥∥+
∥∥vk+1

i

∥∥)+ βn

)
, 1 ≤ n ≤ NZ (12)

Now,
∥∥vki ∥∥ is a nonlinear function of the speed coordinates but

it may be approximated with a new variable vki by replacing
the upper bound (9) with:

〈vki
∣∣ eθ〉 ≤ vki cos(π/Nv),∀θ ∈ Θv (13)

V min
i ≤ vki ≤ V max

i . (14)

These constraints guarantee that the velocity remains below
V max
i and vki ≥

∥∥vki ∥∥. As a consequence, instead of (12) we
add the following linear constraints to the model:

zki ≥ h×
(αn

2

(
vki + vk+1

i

)
+ βn

)
, 1 ≤ n ≤ NZ . (15)

Since zki is minimized, the upper bound vki will get as close
as possible to the actual velocity

∥∥vki ∥∥.
Space recovery is then enforced by constraint (5), and the

delay is minimized by penalizing the longitudinal deviations:∑
Ai∈A

∑
tk∈T −

zki +(
∆+
‖,i + ∆−‖,i

)
× Cd,i (V nom

i ) + ρ+
i ∆+

‖,i + ρ−i ∆−‖,i,

(16)

where ∆+
‖,i and ∆+

‖,i are the positive and negative longitudinal
deviations of Ai.

The overall time-discretized model is called TIME.

V. THE ONE-MANEUVER SIMPLIFICATION

The specificity of the model presented in this section is that
it describes a conflict resolution involving only one maneuver

vij
n+
ij

n−
ij

Ai

D

Aj

pini
ij

forbidden
cone

separation circle

Fig. 8: Conflict solved with only one instantaneous maneuver

for each aircraft, all these maneuvers being executed simulta-
neously at the initial time. This model, denoted ONE, is based
on that developed by Vela et al. [18] in which fuel consumption
is also minimized. To respect the specific constraints listed in
Section II, we made three major modifications to the model of
[18]. First, the maneuvers are not instantaneous. This allows to
consider the bounds of acceleration and yaw rate and reduce
the error made in the computation of the maneuvers. Second,
a recovery maneuver is introduced to compute the total fuel
consumption and treat the recovery of the BT. Finally, the
model is solved multiple times with a receding horizon to
allow for the same number of maneuvers as in TIME.

We describe the constraints and the objective function of
ONE in Sections V-A and V-B, respectively. The receding
horizon algorithm implemented to compute multiple maneu-
vers is then detailed in Section V-C.

A. Constraints of the simplified model
The maneuvers are assumed to be performed with a con-

stant acceleration vector during a given time step. For a fair
comparison, the length of the time step is set to the sampling
period h of TIME. Starting with known position, speed vector
and velocity, pini

i , vini
i and V ini

i , the movement of an aircraft
Ai is thus entirely described by the target speed vector vi that
is reached at time h.

Adapting notations of the previous section to a unique time
step, the constraints on velocity are then similar to (10)–(11)
and (13)–(14): ∀Ai ∈ A :

〈vi| eθ〉 ≤ vi × cos (π/Nv) , ∀θ ∈ Θv (17)

V min
i ≤ vi ≤ min(V max

i , V ini
i + hUmax

i ), (18)

〈vi| eθ〉 ≥ max(V min
i , V ini

i − hUmax
i )−Mvε

θ
i , θ ∈ Θv (19)∑

θ∈Θv

εθi = Nv − 1 (20)

One effect of the simplification is that upper bounds on the
acceleration could be included in the constraints on velocity
(18) and (19), because the initial speed is known. The upper
bound on the yaw rate can also be expressed with linear
constraints involving the upper bound on the velocity, vi:

〈vi|vini
i 〉 ≥ vi × V ini

i × cos (hωmax
i ) , ∀Ai ∈ A. (21)

The most significant effect of performing only one ma-
neuver is that the separation constraint becomes a disjunc-
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tion between two linear constraints if the speed changes are
instantaneous. Figure 8 shows a potential conflict between
two aircraft Ai and Aj in the mobile frame attached to Ai.
Vector vij is the target relative speed vector resulting from the
maneuvers of Ai in Aj . Geometrically, the conflict is solved
if Aj remains outside the separation circle. Since only one
maneuver is performed, an equivalent condition is that vij is
outside the cone delimited by the two tangents going through
the initial relative position. The remaining issue is that speed
changes are not instantaneous.

Proposition 1. Consider p0, v0, u0 ∈ R2 and the functions
p and p̃ defined by

p(t) =

{
p0 + tv0 + t2

2 u0, 0 ≤ t ≤ h
p0 + hv0 + h2

2 u0 + (t− h)(v0 + u0h), h ≤ t

p̃(t) =

{
p0 + tv0, 0 ≤ t ≤ h

2

p0 + h
2v0 + (t− h

2 )(v0 + u0h), h2 ≤ t.

Then, p(t) = p̃(t),∀t ≥ h.

Proposition 1 states that after a speed vector change with
constant acceleration, the position is the same as if the change
had been achieved instantaneously after a delay equal to h/2.
Moreover, h is typically set to less than one minute, so a loss of
separation predicted in the time interval [0, h] would be treated
with a specific emergency protocol. As a consequence, it is
sufficient to consider the conflicts that are detected after time
h. Everything then behaves as if maneuvers were instantaneous
and the initial positions of the aircraft were given by p̃ini

i =
pini
i + h

2v
ini
i . For a given pair of aircraft (Ai, Aj), the tangents

defining the forbidden cone in Figure 8 are computed using
p̃ini
i and p̃ini

j as the initial positions of the two aircraft. The
two unit vectors, ñ+

ij and ñ−ij , orthogonal to these tangents
and pointing outside the forbidden cone then give rise to the
separation constraints:

〈vj − vi| ñ+
i,j〉 ≥ −Mδij , ∀(Ai, Aj) ∈ C, (22)

〈vj − vi| ñ−i,j〉 ≥ −M(1− δij), ∀(Ai, Aj) ∈ C, (23)

with δij ∈ {0, 1}. The value of M must be such that, for
all valid values of vi and vj , (22) and (23) are respectively
satisfied if δij = 1 and δij = 0. If we solve the model with a
branch and bound method based on linear relaxations of the
MILP, the best value of M is the smallest value that satisfies
this condition, because it leads to the tightest linear relaxations.
Here, we notice that

〈vj − vi| ñ+
i,j〉 ≥ −(‖vi‖+ ‖vj‖).

A valid value of the constant is thus obtained by M = V max
i +

V max
j . It is also the best value if we do not take maximum

accelerations and yaw rates into account.
Another application of Proposition 1 is to compute the

maximum error that would be made with the assumption
of instantaneous maneuvers. An equivalent formulation of
the proposition is that instantaneous maneuvers neglect an
h/2 delay in the starting time of the maneuver. The largest
maneuver that can be performed corresponds to an accelera-
tion hUmax and a turn hωmax. Denoting vmax

i the resulting

target speed vector, the h/2 delay can then create at most a
shift h/2(vini

i − vmax
i ) in the position of Ai. With standard

numerical values (see Table I), the maximum error is equal to
0.85 NM. Considering that the same error can be done for Aj
and that the standard required distance is 5 NM, this confirms
that the maneuvers should not be considered instantaneous.

B. Minimizing fuel consumption and delay

The estimation of the fuel consumption and delay rely on the
description of a complete trajectory. It is thus necessary that
the aircraft revert to their BTs. The difficulty is that an aircraft
should not start a recovery maneuver while a loss of separation
is possible. The value of the instant when a conflict ends is a
nonlinear function of the speed and acceleration vectors of the
aircraft. However, if no maneuver is performed, it is possible
to find an upper bound of this instant that depends only on
the initial data.

Proposition 2. Let (Ai, Aj) ∈ C be such that the two aircraft
fly with constant speed vectors vini

i and vini
j . Assume that Ai

and Aj are separated at t = 0 and t = T , and that a loss
of separation occurs in [0, T ]. The loss of separation ends no
later than at t = τij with

τij =
D∥∥vini
ij

∥∥ −
〈
pij(0)

∣∣ vini
ij∥∥vini
ij

∥∥2

〉
.

Proof. For constant speed vectors pij(t) = pij(0) + tvini
ij ,

t ∈ [0, T ]. The distance between the two aircraft at time t is
bounded by∥∥pij(t)∥∥ ≥

〈
pij(t)

∣∣ vini
ij∥∥vini
ij

∥∥
〉

=

〈
pij(0)

∣∣ vini
ij∥∥vini
ij

∥∥
〉

+t
∥∥vini

ij

∥∥
Replacing t with the expression of τij proves the result.

Proposition 2 shows that if no maneuver is performed, an
aircraft Ai will not be involved in a loss of separation after
τi = max{τij : (Ai, Aj) ∈ C}. Clearly, the estimation of the
end of the conflicts is incorrect if maneuvers are performed.
Nevertheless, it remains a valid guess as long as it is not
used to compute a real maneuver. A second virtual maneuver
starting at τi is thus added to simulate the complete trajectory
for Ai. This speed change is included only to estimate the
overall cost of a maneuver and is not meant to lead to an actual
control instruction. The actual recovery maneuver should be
started only once it cannot create a loss of separation.

Let v′i, Ai ∈ A, be the target speed vectors of the virtual
recovery maneuvers. According to Proposition 1, the estimated
final position is equivalently reached by following vi during
τi and v′i until the end of the time horizon:

pi(T ) = p̃ini
i + τivi + (T − τi −

h

2
)v′i, ∀Ai ∈ A.

As for TIME, the fuel consumption is approximated with a
stepwise linear function, and the final position of each aircraft
Ai is used to compute the longitudinal gaps ∆+

‖,i and ∆−‖,i. The
associated constraints and objective function are then similar
to (15) and (16); they are omitted to save space.
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C. Building a complete trajectory
Solving ONE produces at most one actual speed change

for each aircraft. For a consistent comparison with TIME,
ONE is solved at each time step tk ∈ T according to the
receding-horizon procedure summarized in Algorithm 1. The
result is a set of complete conflict-free trajectories reverting
to the associated BTs. In Algorithm 1, the conditional loop on
lines 4–6 identifies the moment when the recovery maneuver
may be started. If τi ≤ tk, then no maneuver is needed to
solve the conflicts involving Ai, so it may revert to its BT. The
recovery maneuver is computed to minimize a combination of
the fuel consumption and the penalties due to the longitudinal
deviation, as in (16).

Algorithm 1 Multiple solutions of ONE

Require: initial states
{(

pini
i ,v

ini
i

)}
Ai∈A

, final states
{pTi }Ai∈A

1: for tk ∈ T − do
2: for Ai ∈ A do
3: Estimate τi
4: if τi ≤ tk then
5: Compute the recovery maneuver of Ai
6: A ← A \Ai
7: Solve ONE: the solutions are described by {vi}Ai∈A
8: for Ai ∈ A do
9: pini

i ,p
k+1
i ← p̃ini

i + h
2vi

10: vini
i ,v

k+1
i ← vi

One drawback of Algorithm 1 is that the first solution of
ONE computes a set of simultaneous maneuvers that resolve
every conflict. Stated otherwise, there is no possibility to
postpone the resolution of a conflict if needed. In contrast, the
maneuvers may be started at any time step in TIME an on
any edge in SPACE. However, in a deterministic environment,
conflicts may be solved with smaller maneuvers if the latter are
started as soon as possible. Simultaneous maneuvers should be
efficient if they are started at t = 0.

In the remainder of this article, the term ONE will refer
to the model described in the previous subsection or to
Algorithm 1, provided the context is unambiguous.

VI. COMPUTATIONAL EXPERIMENTS

In this section, we compare the three MILPs described
in the previous sections. In Section VI-A, we compare the
dimensions of the three formulations from a theoretical point
of view. In Section VI-B, we then describe the benchmark
used in the experimental tests, and we analyze the results in
Section VI-C.

A. Comparison of the three formulations
The models TIME, ONE, and SPACE share an essential

feature: their feasible solutions all satisfy the constraints of the
problem definition in Section II. Hence, the approximations
that were made to obtain MILPs all lead to more conservative
constraints than the original ones. As a consequence, the differ-
ences between the three models impact only the computational
time and the cost of the optimal solution.

The three models involve a combinatorial decision. For each
pair of aircraft, a disjunction of linear constraints guarantees
the separation, so the solution process needs to choose which
constraint to satisfy. In SPACE, two choices are available
for each pair of aircraft, so 2|C| configurations are possible.
The same is true for ONE, but the model is solved at each
time step, so the solution process may explore K × 2|C|

configurations. In TIME, the separation must be ensured at
each time step by respecting one of the Nδ tangent constraints,
which leads to (Nδ)

K×|C| possibilities. The largest roundabout
instance described in the next section gives rise to 7× 109

configurations for SPACE, 7× 1010 for ONE and 5× 1033

for TIME. No fast solution process would explore all the con-
figurations, but this provides a hierarchy that would abstract
to any set of models built with the same discretizations.

The remaining variables and constraints of TIME describe
the state of each aircraft at each time step. Since ONE
is a time decomposition of TIME, the conflict resolution
with ONE involves K solutions of a model with O(|A|)
variables and constraints whereas TIME includes O(K×|A|)
variables and constraints. The comparison with SPACE is
more fuzzy. Indeed, SPACE computes the states of the aircraft
on each edge of the conflict graph, and the relation between
the numbers of aircraft and edges depends a lot on the
considered instance. Moreover, the approximations involved
in the linearizations of TIME and SPACE are different. The
corresponding parameters may thus impact both the solution
times and the optimal costs. For instance, if a larger number of
tangents are used to approach the separation circle in TIME,
the solution cost may be improved, but the solution time will
be longer.

B. Generation of a large benchmark of complex problems

The experimental comparison of TIME, ONE, and SPACE
is based on the benchmark of [25], slightly extended to include
larger instances. The instances implement the three global
schemes depicted in Figure 9. For each pattern, we consider
five to six scenarios that mostly differ in the number of
aircraft involved. The scenarios are thus denoted by the first
letter of the corresponding pattern and the number of aircraft.
The roundabout scenarios (R04–R08) involve 4 to 8 aircraft
initially positioned in a circle and heading towards its center.
In the trail crossing scenarios (T02–T12), two trails of 2 to
6 aircraft intersect with a varying angle. The grid scenarios
(G06–G12) oppose two pairs of trails of 1 to 3 aircraft
that intersect orthogonally. These patterns represent complex
situations in which a large number of losses of separation
are predicted to occur in the next five to ten minutes. As the
number of aircraft grows, the corresponding situation involves
much more potential conflicts than the most difficult situations
that a controller ever deals with. Although they cannot reflect
the complexity of real traffic, these academic instances allow to
test the three algorithms with a diverse set of potential conflicts
and explore their limits.

Each scenario is used to randomly generate 100 instances.
When we generate the instances randomly, the initial sep-
aration between aircraft flying on the same trail is set to
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8 + U([−2.5, 2.5]) NM, where U([a, b]) follows a uniform
random law on the interval [a, b]. The distance between the
first aircraft of each trail and the closest conflict point is also
perturbed with a uniform term U([−2.5, 2.5]) NM, and the
crossing angle α follows U([π4 ,

3π
4 ]) for the trail scenarios.

The values of the parameters of the models are listed in
Table I. They reflect the content of BADA [31] for an Airbus
A320 flying at 33,000 feet. They also ensure the comfort of
passengers, according to the study of Paielli [29]. Additionally,
the characteristic values of the linear approximations are set
to NZ = 4 and Nv = 36.

D h K V nom V min V max Umax ωmax

5 NM 30 s 20 452 kt 425 kt 479 kt 0.4 kt.s−1 0.88◦.s−1

TABLE I: Optimization and aircraft-performance parameters

C. Analysis of the results

We solve TIME, ONE, and SPACE on 1600 instances
generated randomly according to sixteen scenarios. Gurobi is
used with its default options to solve each MILP on a quad-
core 2.5-GHz Intel processor with 4 Gb of RAM. The time
limit of Gurobi is set to 120 s, and we keep the best available
solution when the limit is reached. The simulation results are
summarized in Figure 10. For each scenario, Figure 10a gives
the fractions of instances for which conflict-free solutions
are found, and Figures 10b and 10c give the average costs
per aircraft and the Gurobi runtimes. The average costs are
given in kilograms of fuel because the delay penalties convert
the time deviations into fuel consumptions. Moreover, they
take into account only the conflict-free solutions, because
the costs of infeasible solutions may be exceptionally high.
We also emphasize that the runtime given for ONE reflects
the K solutions of the model, as described in Algorithm 1.
The scenarios are ordered on the x-axis according to the
growing solution time of SPACE, which is a valid measure
of complexity.

Although the three graphs in Figure 10 reveal significant
differences between the three models, we draw the attention
of the reader to the overall efficiency of the three algorithms.
If we omit G12, R07, and R08, which are included primarily
to test the limits of the models, a conflict-free solution is
found for all the instances. The computational time is always
reasonable and is not far from being compatible with an
operational implementation. Moreover, the average cost of the
associated maneuvers does not exceed 10 kg per aircraft.

When we compare the curves, a gross ordering appears,
with only minor exceptions if we consider G12, R07, or R08.
Let |S|MOD, ZMOD, and cpuMOD be respectively the fraction
of conflict-free solutions, the average cost, and the average
computational time when solving MOD. Global relations exist
between the three models:

|S|SPACE ≤ |S|TIME ≤ |S|ONE (24)
ZSPACE ≥ ZTIME ≥ ZONE (25)

cpuTIME ≥ cpuONE ≥ cpuSPACE. (26)
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Fig. 10: Comparison of the three mixed integer linear models

The discussion about complexity in Section VI-A allows to
explain (26). The model ONE is a decomposition of TIME,
so it needs to be solved multiple times, but each call to Gurobi
takes a negligible portion of the runtime needed for TIME.
We also observe that the solution time of SPACE is in the
same order of magnitude as that of ONE, so the order might
be reversed for slightly different modeling choices.

To explain (25), we consider a simple instance involving two
aircraft whose planned trajectories collide (i.e. reach a 0 NM
separation) at t = 4 min. The angle between the trajectories is
equal to 90◦, and the required separation distance is increased
to 10 NM to distinguish the solutions more easily. Figure 11
displays the trajectories found by the three models in the
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α = 45 ◦

D = 5 NM

4D waypoint

dmin = 45 NM +
U([−2.5, 2.5]) NM

(a) Roundabout scenario

D = 5 NM 70 NMα

4D waypoints

dmin = 30 NM +
U([−2.5, 2.5]) NM

ds = 8 NM +
U([−2.5, 2.5]) NM

(b) Trail crossing scenario
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15 NM

α

ds = 8 NM +
U([−2.5, 2.5]) NM

70 NM

dmin = 30 NM +
U([−2.5, 2.5]) NM

4D waypoints

(c) Grid scenario

Fig. 9: Scenarios used to build the benchmark

mobile frame attached to one of the aircraft. Since the three
trajectories were hard to read on a single figure, they appear
on the two separate figures. The costs of the solutions follow
the order in (25): ZSPACE ≈ 8 kg, ZTIME ≈ 10.5 kg and
ZONE ≈ 12 kg. Figure 11a shows why TIME generates a
more expensive solution than ONE. In TIME, the separation
circle is approached with a square, so the relative trajectory of
Aj goes farther from Ai than needed. In contrast, the trajectory
generated by ONE is tangent to the circle. Figure 11b shows
that the main drawback of SPACE is that it requires the speed
vectors to be constant in the vicinity of the conflict point.
Therefore, the lateral shift is created with a larger heading
change than needed.

To explain the ordering in (24), we first focus on the curve
of SPACE in Figure 10a. Speed vectors need to be constant
on intervals centered on the conflict points in SPACE. This
reduces the space available for the maneuvers. Since all the po-
tential conflicts occur around the same point in the roundabout
scenarios, there is finally insufficient space to avoid every loss
of separation in R07 and R08. To a lesser extent, restricting the
maneuvers of SPACE to two fixed patterns also reduces the
space of the conflict-free solutions. As a consequence, if the
collision was planned at t = 3 minutes instead of 4 minutes
in the example depicted in Figure 11b, SPACE would be
the only model unable to produce conflict-free trajectories.
Secondly, the curve of TIME in Figure 10a shows that no
conflict-free trajectories could be found for some instances of
G-12 and R-08. This is due to the symmetry of the instances
and the large number of simultaneous potential conflicts.
As discussed in Section VI-A, the set of possible decisions
becomes prohibitively large for these scenarios. Gurobi is then
stopped before a feasible solution could be found.

The most surprising consequence of (24)-(26) is that ONE
is better than TIME on all three aspects. The main reason
for this is that, overall, fewer approximations are needed to
build ONE than TIME. Indeed, no approximation is needed in
ONE to model the separation constraints or the upper bounds
of acceleration and yaw rate. The disadvantage of ONE is
the time decomposition needed to get trajectories with more
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Fig. 11: Resolution of a conflict between two aircraft

than one modification of the speed vector. Since the complete
solution is the aggregation of the solutions obtained at each
time step, there is a necessary loss with regards to optimality.
This is compensated for by the fact that maneuvers have to
be started as soon as potential conflicts are detected to be
efficient. Consequently, the maneuvers computed at the first
time step need only a few adjustments during the following
iterations.

The comparison between SPACE and the other two MILPs
is less straightforward, because SPACE is either the worst or
the best on each aspect. For instance, Figure 10b shows that
the average cost for SPACE is approximately twice that for
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ONE. Another drawback of SPACE is that 35% to 40% of the
instances of R07 and R08 had no conflict-free solutions (see
Figure 10a). In contrast, Figure 10c highlights that SPACE is
solved in a few seconds. This alone could lead to a preference
for SPACE over TIME, because ATC has a strong need for
reactivity. ONE appears however to be a better compromise
on the three aspects that we focused on. Indeed, the only
advantage of SPACE is that it is solved faster than ONE,
but the latter model is still solved in a small computational
time. Moreover, if need be, Algorithm 1 may be stopped as
soon as it finds maneuvers that avoid every loss of separation.
In most cases, this is the first time step.

From a modeling point of view, SPACE involves tedious
mathematical developments and several restrictions on the
maneuvers. It also requires that the aircraft follow tracks. This
is the case in the current route network, but new technologies
may allow for more flexibility. It is difficult to say whether
new operational needs could be taken into account in a
space-discretized-model without other costly approximations.
In contrast, one-maneuver models are relatively simple.

VII. CONCLUSION

This article is motivated by the difficulty of objectively com-
paring the models and algorithms developed for the air conflict
resolution problem. We study three MILPs representing the
diversity of the state of the art for the CR problem restricted
to planar and deterministic motion. They are respectively
obtained by focusing on a small set of points including those
where trajectories intersect (SPACE), by sampling the time
horizon (TIME), and by assuming that each aircraft performs
only one maneuver (ONE). We describe major revisions of
two existing time-discretized and one-maneuver models that
are necessary to consider the same constraints and objective
function. Every model then minimizes a combination of fuel
consumption and delay and avoids losses of separation through
speed and heading maneuvers. Furthermore, each aircraft
respects dynamical constraints on the velocity, acceleration,
and yaw rate, and each reverts to its planned trajectory after
the maneuvers.

We then conduct a computational comparison on a bench-
mark of artificial instances representing very dense traffic. The
results reveal that every model may be solved to find conflict-
free and economically efficient trajectories in nearly every
situation. Our analysis focuses on the number of conflict-free
solutions, their average costs, and the computational times.
It shows that the apparently simpler one-maneuver model
represents the best compromise. The model fails to produce
a conflict-free solution on only one of 1600 instances, and
the computational time is compatible with an operational
implementation.

Future research could carry on the computational compar-
ison that has been started here. The most promising models
and algorithms using nonlinear programming, metaheuristics,
potential techniques, etc. could be adapted to satisfy the same
constraints and minimize the same objective function. Since
the instances we used cannot reflect the complexity of real
traffic, a more complete comparison could also involve an

extended benchmark including instances originating from real
traffic data.

It will also be necessary to study how more realistic
assumptions could be introduced in the models and how
they would impact the performance of the algorithms. To
be specific, the wind and the presence of human controllers
and pilots in the loop will introduce a shift between the
predicted and the observed maneuvers. A consistent approach
would be to design robust resolution maneuvers that would
account for uncertainties on speed vectors and on the starting
time of the maneuvers. For instance, Irvine [32] computes
an analytical expression of the probability of conflict for
independent and normally distributed uncertainties on aircraft
speed. Considering that an error on the starting time of the
maneuvers results in lateral and longitudinal shifts in the
initial positions of the aircraft, the method of Irvine could be
extended to include uncertainties on the starting time of the
maneuvers. The expression of the probability of conflict could
then be used to compute an increased separation distance that
guarantees a low probability of conflict. This would allow to
introduce several sources of uncertainties without modifying
the structure of the models.

Another impact of uncertainties is that maneuvers should
not be started as soon as potential conflicts are detected, since
the errors grow with the time to conflict. As a consequence,
it would be interesting to study the impact of uncertainties on
the optimal starting time of the maneuvers. None of the three
MILPs would be compatible with this study without major
modifications. Given the simplicity and the performance of
ONE, it seems to be a promising choice to deal with this
issue. One important step of this work will be to revise the
constraints to allow non simultaneous maneuvers.
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