Allergic Rhinitis and its Impact on Asthma (ARIA) Phase 4 (2018): Change management in allergic rhinitis and asthma multimorbidity using mobile technology

To cite this version:

HAL Id: hal-02099400
https://hal.archives-ouvertes.fr/hal-02099400
Submitted on 8 Jun 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Allergic Rhinitis and its Impact on Asthma (ARIA) Phase 4 (2018): Change management in allergic rhinitis and asthma multimorbidity using mobile technology

Jean Bousquet, MD,a,b,c Peter W. Hellings, MD,d Ioana Agache, MD,e Flore Amat, MD,f, Isabella Annesi-Maesano, MD,g

Igancio J. Anotegui, MD,h Josep M. Anto, PhD,i,j,k Claus Bachert, MD,l Eric D. Bateman, MD,m,n Anna Bedbrook, BSc,n Kazi Bennoor, MD,a Michael Bentwich, MD,n Carsten Bindslev-Jensen, MD,p Sinthia Bosnic-Anticevich, PhD,q Isabelle Bosse, MD,r Jan Brozek, MD,s Luisa Bruissino, MD,t Giorgio W. Canonica, MD,u Victoria Cardona, MD,v Thomas Casale, MD,w Alfonso M. Cepeda Sarabia, MD,x Niels H. Chavannes, MD,y Lorenzo Cecchi, MD,z

Jaime Correia de Sousa, MD,a,a Elsio Costa, PhD,b,b Alvaro A. Cruz, MD,a,c Mieczyslawa Czarlewski, MD,d,d Giuseppe De Carlo, MD,e,e Giulia De Feo, MD,f,f Pascal Demoly, MD,g,g Philippe Devillier, MD,h,h Mark S. Dykewicz, MD,i,i Yehia El-Gamal, MD,j,j Espen Ellegaard, MD,k,k Jean-François Fontaine, MD,l,l Jean-Bosquet, MD,m,m Maria-Antonieta Guzmán, MD,n,n Tari Haaheta, MD,o,o Maddalena Illario, MD,p,p Juan-Carlos Ivancevich, MD,q,q Jocelyne Just, MD,r,r Igor Kaidashev, MD,s,s Masa Kaitov, PhD,t,t Omer Kalayci, MD,u,u Thomas Keil, MD,v,v Ludger Klimek, MD,w,w Marek L. Kowalski, MD,x,x Piotr Kuna, MD,y,y Violeta Kvedariene, MD,z,z

Desiree Larens-Linnemann, MD,a,a Daniel Laune, PhD,b,b Ban T. T. Le, MD,c,c Karin Lodrup Carlsen, MD,d,d Olga Lourenço, PhD,e,e Bassam Mahboub, MD,f,f Alpama Mair, PhD,g,g Enrica Menditto, PhD,h,h Branislava Milenkovic, MD,i,i Mario Moraes-Almeida, MD,j,j Ralph Mosges, MD,k,k Joaquin Mullol, MD,l,l Ruth Murray, PhD,m,m Robert Nhalero, MD,n,n Leyla Namazova-Baranova, MD,o,o Ettore Novellino, PhD,p,p Robyn E. O’Hehir, MD,q,q Ken Ohta, MD,r,r Yoshitaka Okamura, MD,s,s Kimi Okubo, MD,t,t Gabrielle L. Onorato, MSc,b Susanna Palkonen, MD,u,u Petr Panzner, MD,v,v Nikos G. Papaioanou, MD,w,w Hae-Sim Park, MD,x,x Ema Paulin, PhD,y,y Ruby Pawankar, MD,z,z Oliver Pfaar, MD,a,a Davor Plavec, MD,b,b Ted A. Popov, MD,c,c Paul Potter, MD,d,d Emmanuel P. Prokopakis, MD,e,e Menachem Rottem, MD,f,f Dermot Ryan, MD,g,g Johanna Salimaki, MSc,h,h Boleslaw Samolinski, MD,i,i Mario Sanchez-Borges, MD,j,j Holger J. Schunemann, MD,k,k Aziz Sheikh, MD,l,l Juan-Carlos Sisul, MD,m,m Rojin Rajabian-Söderlund, PhD,n,n Talant Sooronbaev, MD,o,o Cristina Stellato, MD,p,p Teresa To, PhD,q,q Ana-Maria Todo-Bom, MD,r,r Peter-Valentino Tomazic, MD,s,s Sanna Toppila-Salmi, MD,t,t Antonio Valero, MD,u,u Arunas Valiulis, MD,v,v Erika Valovirta, MD,w,w Maria-Teresa Ventura, MD,x,x Martin Wagenmann, MD,y,y De Yun Wang, MD,z,z Dana Wallace, MD,a,a Susan Waserman, MD,b,b Magnus Wickman, MD,c,c Arzu Yorgancioglu, MD,d,d Loo Zhang, MD,e,e Nanping Zhong, MD,f,f Mihaela Zidarn, MD,g,g and Torsten Zubert, MD,h,h for the Mobile Airways Sentinel Network (MASK) Study Group

Montpellier, Montigny-le-Bretonneux, Paris, La Rochelle, Levallois, and Reims, France; Brussels, Leuven, and Ghent, Belgium; Braso, Romania; Erandio and Barcelona, Spain; Cape Town, South Africa; Dhaka, Bangladesh; London, Edinburgh, and Manchester, United Kingdom; Odense, Denmark; Glebe, Australia; Hamilton and Toronto, Ontario, Canada; Torino, Milan, Prato, Salerno, Naples, and Bar, Italy; Tampa and Fort Lauderdale, Fla; Barranquilla, Colombia; Leiden and Amsterdam, The Netherlands; Braga/Guimaraes, Porto, Covilha, Lisbon, and Coimbra, Portugal; Salvador; Brazil; St Louis, Mo; Cairo, Egypt; Santiago, Chile; Helsinki, Finland; Buenos Aires, Argentina; Poltava, Ukraine; Moscow, Russian Federation; Ankara and Manisa, Turkey; Wuerzburg, Wiesbaden, Cologne, Hamburg, Mannheim, Dusseldorf, and Berlin, Germany; Lodz, Poland; Vilnius, Lithuania; Mexico City, Mexico; Hochhimin City, Vietnam; Oslo, Norway; Dubai, United Arab Emirates; Belgrade, Serbia; Dundalk, Ireland; Baltimore, Md; Melbourne, Australia; Tokyo and Chiba, Japan; Prague, Czech Republic; Athens and Heraklion, Greece; Siwon, South Korea; Osijek, Croatia; Sofia, Bulgaria; Afuila, Israel; Helsinki and Turku, Finland; Warsaw, Poland; Caracas, Venezuela; Asuncion, Paraguay; Stockholm and Eskilstuna, Sweden; Bishkek, Kyrgyzstan; Graz, Austria; Singapore; Beijing and Guangzhou, China; and Golnik, Slovenia.
Allergic Rhinitis and its Impact on Asthma (ARIA) has evolved from a guideline by using the best approach to integrated care pathways using mobile technology in patients with allergic rhinitis (AR) and asthma multimorbidity. The proposed next phase of ARIA is change management, with the aim of providing an active and healthy life to patients with rhinitis and to those with asthma multimorbidity across the lifecycle irrespective of their sex or socioeconomic status to reduce health and social inequalities incurred by the disease. ARIA has followed the 8-step model of Kotter to assess and implement the effect of rhinitis on asthma multimorbidity and to propose multimorbidity guidelines. A second change management strategy is proposed.
by ARIA Phase 4 to increase self-medication and shared decision making in rhinitis and asthma multimorbidity. An innovation of ARIA has been the development and validation of information technology evidence-based tools (Mobile Airways Sentinel Network [MASK]) that can inform patient decisions on the basis of a self-care plan proposed by the health care professional.

Key words: Change management, rhinitis, asthma, Allergic Rhinitis and Its Impact on Asthma

Allergic Rhinitis and its Impact on Asthma (ARIA) has evolved from a guideline using the best approach to integrated care pathways (ICPs) using mobile technology in patients with AR and asthma multimorbidity. The term comorbidity is commonly

Diseases, Golnik; and Comprehensive Allergy Center Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, and Global Allergy and Asthma European Network (GA²LEN), Berlin.

*For a listing of members of the Mobile Airways Sentinel Network (MASK) Study Group, see the acknowledgments section at the end of the article.

Supported by the European Innovation Partnership on Active and Healthy Ageing and POLLAR (EIT Health, European Union).

Disclosure of potential conflict of interest: F. Amat reports grants and personal fees from Novartis and nonfinancial support from Zambon and Stallergenes Greer outside the submitted work. C. Bachert reports personal fees from Uriach and Mylan outside the submitted work. F. de Blay reports grants from Stallergenes Greer; personal fees from Novartis, ALK-Abelló, Mundipharma, AstraZeneca, Boehringer and Tева; and other support from Stallergenes Greer, Novartis, ALK-Abelló, Medapharma, Teva, Boehringer, and AstraZeneca outside the submitted work. S. Bosnic-Anticevich reports personal fees from Teva, Boehringer Ingelheim, Sanofi, AstraZeneca, and GlaxoSmithKline and grants from Teva and Meda outside the submitted work. J. Bouquet reports personal fees and other support from Chiesi, Cipla, Hikma, Menarini, Mundipharma, Mylan, Novartis, Sanofi-Aventis, Takeda, Teva, and Uriach outside the submitted work and support from Kyomed. W. Carr reports other from Regeneron/ Sanofi, AstraZeneca, Teva, Glenmark Pharmaceuticals, Boehringer Ingelheim, and Optinose outside the submitted work. J. Correia de Sousa reports other support from Boehringer Ingelheim and Novartis and grants from AstraZeneca outside the submitted work. A. Cruz reports grants and personal fees from GlaxoSmithKline; personal fees from Boehringer Ingelheim, AstraZeneca, Novartis, Chiesi, Eurofarmaco, and Mylan; and personal fees from Merck, Sharp & Dohme, and Sanofi-Aventis outside the submitted work. J. C. Ivanovitch reports personal fees from Faez Farma and Sanofi and other support from Lab Casasco outside the submitted work. J. Just reports grants and personal fees from Novartis, personal fees from AstraZeneca, grants and personal fees from ALK-Abelló, and personal fees from Thermo Fisher outside the submitted work. P. Kuna reports personal fees from Adamed, Boehringer Ingelheim, and AstraZeneca and personal fees from Chiesi, FAES, Berlin Chemie, Novartis, Polpharma, and Allergopharma outside the submitted work. V. Kvedar has received payment for consultancy from GlaxoSmithKline and payment for lectures from Stallergenes Greer and Berlin-CHemie outside the submitted work. D. Larenas-Linnemann reports personal fees from GlaxoSmithKline, AstraZeneca, MEDA, Boehringer Ingelheim, Novartis, Grunenthal, UCB, Astmstrong, Siegfried, DBV Technologies, MSD, and Pfizer and grants from Sanofi, AstraZeneca, Novartis, UCB, GlaxoSmithKline, Teva, Chiesi, and Boehringer Ingelheim outside the submitted work. R. MÜSING reports personal fees from ALK-Abelló, Allergopharma, Allergy Therapeutics, Frialchim, Hexal, Servier, Klosterfrau, Bayer, FAES, GlaxoSmithKline, MSD, Johnson & Johnson, MEDA, STADA, UCBC, and Nuovo; grants from ASIT Biotech, Leti, Optima, Bito:pAG, Hulka, and Ursapharm; and grants and personal fees from Bencard and Stallergenes; personal fees and nonfinancial support from Lofarma and Novartis; and nonfinancial support from Atmos, RoXall, Bionorica, Otonomy, and Ferrero outside the submitted work. R. Nacario reports fees from the advisory boards of Sanofi and Novartis. Y. OOkomoto reports personal fees from Shionogi, Torii, GlaxoSmithKline, MSD, Kyowa, and Eizai; grants and personal fees from Kyorin and Tiho; and grants from Yakuruto and Yamada Bee Farm outside the submitted work. N. G. Papadopoulos reports personal fees from Abbvieve Novartis, Faes Farma, Biomay, HAL, Nutricia Research, Menarini, Novartis, MEDA, MSD, Omega Pharma, and Danone and grants from Menarini outside the submitted work. J. L. Pipin reports grants from the Air Liuqide Foundation, AGBV à dom, AstraZeneca, Fisher & Paykel, MutuaItalia, Philips, Resmed, and Vitalaire and other support from AGIR à dom, AstraZeneca, Boehringer Ingelheim, Jazz Pharmaceutical, Night Balance, Philips, Resmed, and Sefam outside the submitted work. O. Pfarr reports grants and personal fees from ALK-Abelló, Allergopharma, Stallergenes Greer, HAL Allergy Holding BV/HAL Allergy GmbH, Bencard Allergie GmbH/Allergy Therapeutics, Lofarma, ASIT Biotech Tools SA, Laboratorios LETILEITI Pharma, Anergis SA, grants from Bioway, Nuvo, Circassia, and Glaxo Smith Kline and personal fees from Novartis Pharma, MEDA Pharma, Mobile Chamber Experts (a GA2LEN Partner), Pohl-Boskamp, and Indoor Biotechnologies outside the submitted work. D. Plavac reports grants and personal fees from GlaxoSmithKline; personal fees from Menarini, Pliva, AbbVie, Novartis, MSD, Chiesi, and Revenio; personal fees and nonfinancial support from Boehringer Ingelheim; and nonfinancial support from Philips outside the submitted work. D. Price reports grants and personal fees from Aerocrine, Almirall, Ameen, Cipla, GlaxoSmithKline, Kyorin, Merck, Mylan, and Skypharma; grants from AKL Research and Development, the Respiratory Effectiveness Group, the British Lung Foundation, and the UK National Health Service; grants and personal fees from AstraZeneca, Boehringer Ingelheim, Chiesi, Mundipharma, Napp, Novartis, Pfizer, Teva, Theravance, and Zeneta; nonfinancial support from the Efficacy and Mechanism Evaluation Programme and Health Technology Assessment outside the submitted work; and stock/stock options from AKL Research and Development Ltd, which produces phytomedicinals; and he owns 74% of the social enterprise Optimum Patient Care (Australia, Singapore, and United Kingdom) and 74% of Observational and Pragmatic Research Institute (Singapore) outside the submitted work. D. Ryan reports personal fees from MEDA and personal fees from Stallergenes outside the submitted work. R. Stelmach reports grants from the São Paulo Research Foundation and MSD; grants and personal fees from Novartis; grants, personal fees, and nonfinancial support from AstraZeneca and Chiesi; and personal fees and nonfinancial support from Boehringer Ingelheim and Chiesi outside the submitted work. A. Todo-Bom reports grants and personal fees from Novartis, Boehringer Ingelheim, Mundipharma, and GlaxoSmithKline; personal fees from Teva Pharma and AstraZeneca; and grants from Leti outside the submitted work. M. Wagemann reports personal fees from AstraZeneca, Bionorica SE, HAL Allergy, MEDA Pharma, Stallergenes, Teva, and ALK-Abelló; grants and personal fees from Allergopharma and Sanofi Aventis; grants from Allakos; and grants from Hoffmann-La Roche, GlaxoSmithKline, Oromy, and Strekíin outside the submitted work. S. Waserman reports personal fees from Merck, GlaxoSmithKline, Novartis, Behring, Shire, Sanofi, Barid Arazale, Mylan Meda, and Pedipharma outside the submitted work. T. Zuberbier reports organizational affiliations with the WHO Initiative Allergic Rhinitis and Its Impact on Asthma (ARIA; committee member), the German Society for Allergy and Clinical Immunology (DGAKI; board membership), the European Centre for Allergy Research Foundation (ECARF; head), Global Allergy and Asthma European Network (GA2LEN; Secretary General), and the Committee on Allergy Diagnosis and Molecular Allergology, World Allergy Organization (WAO; membership) outside the submitted work. The rest of the authors declare that they have no relevant conflicts of interest.

Corresponding author: Jean Bousquet, MD, CHU Arnaud de Villeneuve, 371 Avenue duDoyen Gaston Giraud, 34295 Montpellier Cedex 5, France. E-mail: jean.bousquet@orange.fr.

Abbreviations used

ARIA: Allergic Rhinitis and its Impact on Asthma
AR: Allergic rhinitis
CM: Change management
ICP: Integrated care pathway
CM2: Second phase of change management
DG Santé: Directorate General for Health and Food Safety
GR: Global Initiative for Asthma
GRADE: Grading of Recommendation, Assessment, Development and Evaluation
IT: Information technology
MASK: Mobile Airways Sentinel Network
POLLAR: Impact of Air Pollution on Asthma and Rhinitis
SDM: Shared decision making

AIRWAYS ICP: Integrated care pathway for airflow diseases
GRADE: Grading of Recommendation, Assessment, Development and Evaluation
ICP: Integrated care pathway
IT: Information technology
used for allergic diseases, but multimorbidity might be more appropriate. Comorbidity is the presence of 1 or more additional diseases co-occurring with a primary disease or the effect of such additional disorders or diseases. Multimorbidity is a term that means co-occurring diseases in the same patient.7,8

ARIA provides an evidence-based approach for managing the patient’s needs, but real-life data have shown that few patients use guidelines and that they often self-medicate (Menditto, in preparation). Moreover, patients largely use over-the-counter medications dispensed in pharmacies.9-11 Self-care and shared decision making (SDM) centered around the patient should be used more frequently.

Change is inevitable in health care. ARIA has followed a change management (CM) strategy in the past, but a new revised plan should be considered to fill in the gaps of knowledge translation in practice and to increase the benefits of self-care in integrated care pathways (ICPs) by using the currently available information and communication technology tools.12 These changes should prepare and support individuals, teams, and organizations in making organizational change centered around the patient for more efficient care.

BACKGROUND
The 4 ARIA phases
ARIA was initiated during a World Health Organization workshop in 1999 and has evolved in 4 phases.

Phase 1 included development of an evidence-based document to provide a guide for the diagnosis and management of AR and asthma multimorbidity.1,2 In 2008, ARIA was updated using the same recommendation system.3,13 ARIA has been disseminated and is implemented in more than 70 countries around the world.14

For Phase 2, in its 2010 revision, ARIA was the first chronic respiratory disease guideline to adopt the Grading of Recommendation, Assessment, Development and Evaluation (GRADE) approach, an advanced evidence evaluation and recommendation methodology for guidelines.3,5 When guidelines are made using the same methodology, the recommendations are similar.3,6,15

In Phase 3 ARIA focused on the implementation of emerging technologies for individualized and predictive medicine to develop ICPs for the management of AR and asthma by a multidisciplinary group centered around the patients (Mobile Airways Sentinel Network [MASK]).16-23

The proposed ARIA Phase 4 is CM to provide an active and healthy lifestyle to patients with rhinitis and asthma across the lifecycle, irrespective of their sex or socioeconomic status, with the aim of reducing health and social inequities globally.

SDM and patient empowerment
In SDM both the patient and physician contribute to the medical decision-making process, placing the patient at the center of the decision-making paradigm.24 Physicians explain treatments and alternatives to patients, who then choose the treatment option that best aligns with their beliefs, lifestyles, and goals along with the benefits and risks.25 In contrast to SDM, the traditional medical care system places physicians in a position of authority, with patients playing a passive role in care. Patients want greater involvement in SDM.26 An innovation of SDM in ARIA is the use of information technology (IT) evidence-based tools that can inform patients’ decisions based on a guided self-management plan proposed by their health care professionals.27 In asthmatic patients the effectiveness of 4 SDM studies shows improvement of control and some other parameters, but more studies are needed to confirm the data.28

CM
Change is inevitable in health care. However, many change projects fail because of varied beliefs and cultural circumstances, poor planning, unmotivated staff, deficient communication, or excessively frequent changes.20

CM aims to prepare and support individuals, teams, and organizations in making organizational change. It proposes methods for redirecting or redefining resources, business processes, budget allocation, and/or modes of operation. When properly applied, CM significantly changes health care and its organization. However, health systems differ largely between countries or even regions, and a combination of CM with ICPs might be more relevant, allowing each organization to use the CM principles according to their needs and regulations. CM deals with different disciplines from health care, behavioral, and social sciences to IT and business solutions.

Although theories might seem abstract and impractical for health care practice, they can help in planning solutions to common health care problems.29 The Lewin 3-step model is widely used.30,31 unfreezing, moving, and refreezing.31 Lippitt et al32 and Kotter12 have added intermediate steps (Table I).12,29,31-33 Several models of organizational and personal change have been reviewed for respiratory diseases.34 Kotter’s theory has been applied to different fields of medicine35-37 and pharmacies.38

ARIA PHASES 1 AND 2 FOLLOWED THE KOTTER 8-STEP CHANGE MODEL
Goals
Guidelines, such as Global Initiative for Asthma (GINA),39,40 Global Initiative for Lung Diseases,31,42 EPOS (European Position Paper on Rhinosinusitis and nasal polyps),33 and ARIA,2,3,13 developed a CM strategy that was very effective and produced many updates and revisions while having a positive effect on clinical care and influencing research priorities.

Most guidelines are condition specific, but ARIA was unique because it included, for the first time, the multimorbid component of airway diseases. Although it followed the patient’s perspectives, epidemiologic evidence,34 and some supporting mechanistic studies,35 this concept was not accepted by the leadership of GINA, who considered neither the asthma-rhinitis multimorbidity concept nor the benefit for the patients.

The 8-step model
Establish a sense of urgency. The sense of urgency should identify and highlight the potential threats and repercussions that might arise in the future by examining the opportunities that can be tapped through effective interventions. In patients with AR and asthma, in the 1990s, the sense of urgency was to provide guidelines that could reduce both the burden of the disease and the mortality (in asthmatic patients). Although there were articles indicating the links between the upper and lower airways,6,47 the effect of rhinitis on asthma was not fully recognized, and ARIA was initiated to better recognize the interrelationships between the 2 diseases and to propose multimorbid guidelines.
Create a guiding coalition. The ARIA Working Group was initiated during a World Health Organization meeting (December 1999) and evolved as a powerful group with 400 members in 70 countries.14 Members have been working together for years and include all stakeholders needed for CM.1,6 The patient organization European Federation of Allergy and Airways Diseases Patients’ Associations has always been an active member of ARIA.

Develop a vision and strategy. The ARIA vision has always been to provide a guide for the diagnosis and management of AR and asthma multimorbidity, including developing countries,1,2 by using the best available evidence.3,5 ARIA has established 2 major targets: the recognition and implementation of the asthma-rhinitis multimorbidity, as well as a new classification (intermittent-persistent and mild-to-moderate severe AR) to meet patients’ expectations. Moreover, ARIA priorities have always included primary care physicians, pharmacists, and patients’ organizations.

Communicate the change vision. One of the ARIA strengths has been to communicate its vision effectively worldwide. More than 1000 articles have been posted on PubMed from more than 50 countries by using the ARIA recommendations.14 The number of training sessions in more than 70 countries cannot be counted. ARIA has been endorsed by many governments and international organizations: ARIA recommendations have been used for the labeling of allergen immunotherapy by the European Medicines Agency.
Empower others to act on the vision. Organizational processes and structures are in place and are aligned with the overall organizational vision. However, a continuous check is needed for barriers and for people who are resisting change. We have implemented proactive actions to remove the obstacles involved in the process of change.

ARIA has been recognized as the major rhinitis and asthma multimorbidity guideline for years in most countries, except for the United States and Japan. However, the recent US guidelines are using the evidence-based approach of ARIA (GRADE), and the recommendations are similar to those of ARIA. The recent Japanese guidelines for AR are also creating bridges with ARIA.

Generate short-term wins. As proposed by Kotter, creating short-term wins early in the change process instead of having a single long-term goal can produce a feeling of victory in the early stages of change, which will reinforce support for the strategy.

The concept of asthma and rhinitis multimorbidity is now globally accepted in developed and developing countries. It is now recognized that multimorbidity is independent of IgE-mediated allergy, and new phenotypes of severe airway disease have been identified. The implementation of the multimorbid concept in clinical practice has a direct benefit for the patient whose nasal symptoms are often more bothersome than asthma.

Consolidate gains and produce more change. The goals of step 7 are to achieve continuous improvement by analyzing the success stories individually and improving from those individual experiences. These goals are exactly those that have been followed by ARIA for the past 18 years.

Anchor new approaches in the culture and institutionalize the changes. The goals of step 8 are met by the ARIA strategy:

1. Discuss widely the successful stories related to change initiatives.
2. Ensure that the change becomes an integral part of the practice and is highly visible.
3. Ensure that the support of both existing and new leaders continues to extend toward the change.

Results, drawbacks, and solutions

ARIA has fully achieved its goals following the 8-step Kotter model shown Fig. 1. The outcome assessment can be measured in the following ways.

1. By the numbers of citations of ARIA: ARIA 2001 has been cited 1750 times, ARIA 2008 has been cited more than 2300 times (and is the only article on asthma cited >200 times a year), and ARIA 2010 has been cited 710 times. This initiative is far better cited than GINA.
2. By the countries that have endorsed ARIA in their national allergy programs: Finland, Malaysia, the Philippines, Portugal, and Singapore.
3. By the approval of treatments by agencies: The European Medicines Agency used the ARIA classification in the approval of Acarizax (mite sublingual immunotherapy).

Some drawbacks have been pointed out in the Kotter change model. In particular, the model is essentially top-down and might discourage any scope for participation or cocreation. In ARIA we considered that the first CM model was a great success but that its lifecycle had come to an end. It was then decided within the coalition to propose a new CM model based on patients’ needs and emerging technologies (second phase of change management [CM2 model]).

Because the Kotter model cannot be redesigned, we proposed a new maturity CM model based on the same Kotter 8-step change model. We used ARIA Phase 3 (care pathways for rhinitis and asthma multimorbidity using mobile technology) to better plan the second CM model (CM2 model) and make new assumptions using a patient-centered approach.

THE ALLERGY DIARY STRENGTHENS CM MASK

In 2012, the European Commission launched the European Innovation Partnership on Active and Healthy Ageing (Directorate General for Health and Food Safety [DG Santé] and Directorate General for Communications Networks, Content & Technology). The B3 Action Plan, which was devoted to innovative integrated care models for chronic diseases, selected integrated care pathways for airway diseases (AIRWAYS ICPs) with a lifecycle approach, as the model of chronic diseases. AIRWAYS ICPs Action Plan was devised, implemented, and scaled up. AIRWAYS ICPs is a World Health Organization Global Alliance against Chronic Respiratory Diseases research demonstration project.

MASK, ARIA Phase 3, is an AIRWAYS ICPs tool. It represents a good practice focusing on the implementation of multidisciplinary care pathways using emerging technologies with real-life data in rhinitis and asthma multimorbidity. MASK follows the Joint Action on Chronic Diseases and Promoting Healthy Ageing across the Life Cycle (2nd EU Health Programme 2008-2013) recommendations for good practices.

MASK was initiated to reduce the global burden of rhinitis and asthma by giving the patient a simple tool to better prevent and manage respiratory allergic diseases. More specifically, MASK should help to (1) understand the disease mechanisms and effects of air pollution in patients with allergic diseases, (2) better appraise the burden incurred by medical needs but also indirect costs, (3) propose novel multidisciplinary care pathways integrating pollution and patients’ literacy, (4) improve work productivity, (5) propose the basis for a sentinel network at the European Union level for pollution and allergy, and (6) assess the societal implications of the project to reduce health and social inequalities globally.

The Allergy Diary

The mobile technology of MASK is the Allergy Diary, an app (Android and iOS) freely available for patients with AR and asthma in 23 countries (16 European Union countries, Argentina, Brazil, Canada, Mexico, Switzerland, and Turkey) and 16 languages (translated and back-translated, culturally adapted, and legally compliant; Fig 3). Anonymous users fill in a simple questionnaire on asthma and rhinitis on registration and daily assess the effect of the disease by using a visual analog scale for global allergy symptoms, rhinitis, conjunctivitis, asthma, and work. Moreover, a questionnaire is applied every week to assess disease effect on patients’ quality of life (EuroQol).
Data of pilot studies in up to 17,000 users and more than 95,000 days are available. The Allergy Diary has been validated and has shown that (1) totally anonymized geolocation can be used in 23 countries (in preparation); (2) data can be analyzed in 23 countries and 17 languages; (3) sleep, work productivity, and daily activities are impaired in patients with AR; (4) daily work productivity is associated with AR severity; (5) everyday use of medications can be monitored, proposing a novel assessment of treatment patterns; (6) novel patterns of multimorbidity have been identified and confirmed in epidemiologic studies; and (7) more than 70% of patients with AR self-medicate and are nonadherent to medications (Menditto, in preparation).

The Allergy Diary (Technology Readiness Level 9) represents a validated mobile health tool for the management of AR. Asthma has also been monitored, but data have not yet been analyzed. Economic effects can be monitored by using work productivity. The results of the Allergy Diary have made innovative approaches of AR possible and are directly strengthening CM strategies in ARIA.

Transfer of Innovation of MASK

A Transfer of Innovation (Twinning) project has been funded by the European Innovation Partnership on Active and Healthy Ageing by using MASK in 25 reference sites or regions across Europe, Argentina, Australia, Brazil, Colombia, and Mexico. The number of countries is increasing, and MASK should be rapidly operative in the United States, China, India (in English only), and Japan. This will improve the understanding, assessment of burden, diagnosis, and management of rhinitis in old age by comparison with an adult population. Twinning has been tested in Germany (Region Kohln-Bonn) in a pilot study that has now been extended to the other German cities and countries of the Twinning project.

Clinical decision support system

Clinical decision support systems are software algorithms that advise health care providers on diagnosis and management based on the interaction of patient data and medical information. They should be based on the best evidence to aid patients and health care professionals to jointly determine treatment (SDM). In patients with AR, the MASK clinical decision support system is incorporated into a tablet interoperable with the Allergy Diary for health care professionals (ARIA Allergy Diary Companion). This is based on an algorithm to aid clinicians to select pharmacotherapy for patients with AR to stratify their disease severity. This approach will be adapted for the patient’s guided self-care in the context of SDM.

Impact of Air Pollution on Asthma and Rhinitis

Interactions between air pollution, sleep, and allergic diseases are clear but insufficiently understood. Impact of Air Pollution on
Asthma and Rhinitis (POLLAR) is a new Horizon 2020 project of the European Institute of Innovation and Technology for Health that will embed environmental data into the Allergy Diary. POLLAR aims at combining emerging technologies (including the Allergy Diary, which is Technology Readiness Level 9, meaning that the system is proved in an operational environment) with machine learning to (1) understand the effects of air pollution in patients with AR and its effects on sleep, work, and asthma; (2) assess societal consequences shared with citizens and professionals; (3) propose preventive strategies, including a sentinel network; and (4) develop participative policies.

ARIA PHASES 3 AND 4 DEPLOY A NOVEL KOTTER 8-STEP CHANGE MODEL

Goals

Although the first CM model developed by the ARIA initiative was a great success, there are still unmet needs in the treatment of asthma and rhinitis multimorbidity. In ARIA Phase 4 we encourage the participation of all the stakeholders.

The 8-step model

Establish a sense of urgency. ICPs will include multi-disciplinary structured care plans detailing the key steps of patient care, including self-care, as proposed by AIRWAYS ICPs.54 GRADE-based guidelines for physicians are available for AR, and their recommendations are similar.3,5,15 However, they are based on the assumption that patients regularly use their treatment and are not tested with real-life data. Unfortunately, adherence to treatment is very low, and real-life studies do not necessarily accord with all recommendations.20 New-generation guidelines embedding real-life data are being developed.

Create a guiding coalition. The ARIA Working Group initiated in 1999 includes more than 500 members in 70 countries.14 A successful coalition working on CM2 has been identified within the group.

The AIRWAYS ICPs coalition was established in 2014 and is part of the European Innovation Partnership on Active and Healthy Ageing (DG Santé and Directorate General for Communications Networks, Content & Technology). Moreover, many national and European scientific societies (the European Academy of Allergy and Clinical Immunology, the European Respiratory Society, and the International Primary Care Respiratory Group), and other patients’ organization (European Lung Foundation and Asthma UK) have joined the coalition. It is a World Health Organization Global Alliance against Chronic Respiratory Diseases demonstration project. Finally, the transfer of innovation of ARIA has been carried out to the reference sites of the European Innovation Partnership on Active and Healthy Ageing.64

This CM2 guiding coalition is already in place in the European Forum for Research and Education in Allergy and Airways Diseases (http://www.euforea.eu).67

Develop a vision and strategy. The vision of ARIA Phase 4 is to provide CM2 for AR and asthma multimorbidity to develop SDM with the ultimate goal of improving AR and asthma control while maintaining quality of life and reducing costs by using mobile technology and real-time data management to inform decisions.

The strategy for realizing the changes is based on the patient-centered implementation of ICPs, using IT solutions, such as the Allergy Diary.5

Communicate the change vision. The updated vision (CM2) will use the experience of the first CM strategy. It has already been discussed among the ARIA CM coalition members, and the present article is the first to be published. However, it takes time to address the concerns of all stakeholders, and articles
published recently on the Allergy Diary might help to convince many. ARIA is involving a maximum number of people to deploy the CM vision.

The integration of new paths of understanding health and change is a requirement for the strategy. The CM2 model clearly expands and strengthens the potential for actual change to occur and take hold in all kinds of organizations and institutions. Supplementary to the ambition of change in existing practices and institutions, it is also important to consider the integration of other modes of communication and dissemination on the basis of healthy behavior. A central example is the general need to increase the level of health literacy in society. The general public should clearly not be perceived simply as patients waiting for something to happen. They should have the ability to navigate and understand health messages, an essential tool for self-managing well-being, even before any actual condition or major challenge actually occurs. However, to do so, one must consider how to improve this health literacy by integrating it much better into the educational system and cultural settings to which it applies. This is a very long-term investment in self-care and prevention. However, to do so, one must consider how to improve this health literacy by integrating it much better into the educational system and cultural settings to which it applies. This is a very long-term investment in self-care and prevention. However, to do so, one must consider how to improve this health literacy by integrating it much better into the educational system and cultural settings to which it applies. This is a very long-term investment in self-care and prevention.

In a similar line of thinking, one could also consider a wider community-oriented approach to dissemination. This could also cover social media and self-help groups because some of the latter patients would benefit not only from both personal previous experience and knowledge about these ailments but also from a supportive environment, which would be better able to support and help these citizens/friends/family members, regardless of age, in their attempt to adapt to new modes of behavior. This is a wider application of the CM2 model and should also be considered in our work to help patients and citizens.

Empower others to act on the vision. Organizational processes and structures are in place and are aligned with the overall organizational vision. However, we need to continuously check for barriers and for those who are resistant to change and focus on the education of both physicians and patients on how to achieve the best outcomes of treatment. We are acting proactively to remove the obstacles involved in the process of change.

Generate short-term wins. We propose to create new short-term (eg, 12 months) and medium-term (eg, 24 months) targets. In 2018, a high-level meeting organized by POLLAR will approach the improvement in care pathway design to enhance patient participation, health literacy, and self-care through technology-assisted “patient activation.” In this meeting rhinitis and asthma multimorbidity will be used as a model of non-communicable disease (Fig 4). Three major aspects of ICPs will be considered: self-care, pharmacy care, and next-generation guidelines in which the recommendations of the GRADE guidelines on AR15 will be tested in real life by using MASK.

Consolidate gains and produce more change. Most of the goals of the Kotter change model step712 have been met by the ARIA CM and will be further developed in CM2.

CONCLUSIONS

For the past 18 years, ARIA has had the major goal of providing a guide for the diagnosis and management of AR and asthma multimorbidity applicable to developing countries1,2 by using the best evidence.3-5 ARIA Phases 1 and 2 were developed in accordance to the Kotter 8-step change model and can be used as a model of CM in patients with chronic diseases. However, there
Asthma Reference Center, Escola Superior de Ciencias da Santa Casa de Misericordia de Vitoria-Esperito, Santo, Brazil; 322Allergy and Respiratory Research Group, Centre for Population Health Sciences, University of Edinburgh Medical School, Edinburgh, United Kingdom; 323Department of Pediatrics & Child Health, Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada; 324INSERM, Université Grenoble Alpes, IAB, U 1209, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Université Joseph Fourier, Grenoble, France; 325Società Paraguaia de Alergia Asma e Imunologia a, Paraguay; 326Division of Allergy, Clinical Immunology and Rheumatology, Department of Pediatrics, Federal University of São Paulo, São Paulo, Brazil; 327European Health Futures Forum (EHFF), Isle of Wright, United Kingdom; 328ENT, Aachen, Germany; 329Kyrgyzstan National Centre of Cardiology and Internal Medicine, Euro-Asian respiratory Society, Bishkek, Kyrgyzstan; 330University Hospital Olomouc, Olomouc, Czech Republic; 331Pulmonary Division, Heart Institute (InCor), Hospital da Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; 332Public Health Institute of Vilnius University, Vilnius, Lithuania; 333Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil; 334RNSA (Réseau National du Surveillances Aérobio), Brussels, France; 335Hospital for Sick Children, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada; 336Immunology and Allergy Research, Department of Medicine, University of Coimbra, Coimbra, Portugal; 337Department of ENT, Medical University of Graz, Graz, Austria; 338Campau Region, Division on Pharmacy and devices policy, Naples, Italy; 339Division of Respiratory Medicine, Hvidovre Hospital & University of Copenhagen, Denmark; 340Universidade Federal dos Pampas, Uruguaiana, Brazil; 341Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria; 342Pneumology and Allergy Department CIBERES and Clinical & Experimental Respiratory Immunology, IDIBAPS, University of Barcelona, Barcelona, Spain; 343Vilnius University Institute of Clinical Medicine, Clinic of Children’s Diseases, and Institute of Health Sciences, Department of Public Health, Vilnius, Lithuania, and the European Academy of Paediatrics (EAP/EUMES-SP), Brussels, Belgium; 344Department of Lung Diseases and Clinical Immunology Allergology, University of Turku and Terveystalo Allergy Clinic, Turku, Finland; 345PELYon, HESP ER 7425, Health Services and Performance Research–Université Claude Bernard, Lyon, France; 346Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden; 347Department of Chest Medicine, Centre Hospitalier Universitaire CLINAMUR, Université Catholique de Louvain, Yvoir, Belgium; 348University of Bari Medical School, Unit of Geriatric Immunology and Rheumatology, Università del Cattolica de L’Aquila, A Bari, Italy; 349Pulmonary Unit, Department of Medical Specialties, Arcispedale SMaria Nuova/IIRCCS, AUSL di Reggio Emilia, Italy; 350FILHA, Finnish Lung Association, Helsinki, Finland; 351Pulmonary Environmental Epidemiology Unit, CNR Institute of Clinical Physiology, Pisa, Italy, and CNR Institute of Biomedicine and Molecular Immunology “A Monroy,” Palermo, Italy; 352Medical University, Plovdiv, Bulgaria, Department of Otorhinolaryngology, Plovdiv, Bulgaria; 353Göttingen Hospital, Athens, Greece; 354Department of Otorhinolaryngology, Universitätsklinikum Düsseldorf, Germany; 355Asthma UK, Mansell street, London, United Kingdom; 356Nova Southeastern University, Fort Lauderdale, Fla.; 357Department of Otorhinolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; 358Department of Medicine, Clinical Immunology and Allergy, McMaster University, Hamilton, Ontario, Canada; 359Division of Immunohemaducology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany; 360Department of Medicine Solna, Immunology and Allergy Unit, Karolinska Institutet and Department of ENT diseases, Karolinska University Hospital, Stockholm, Sweden; 361Shepsman School of Pharmacy, University of North Carolina, Chapel Hill, NC; 362International Primary Care Respiratory Group, Aberdeen, Scotland; 363Bradford Institute for Health Research, Bradford Royal Infirmary, Bradford, United Kingdom; 364Medical College of Medical Faculty, Thracian University, Stara Zagora, Bulgaria; 365Department of Research, Olmsted Medical Center, Rochester, Minn; 366Cyprus International Institute for Environmental & Public Health in Association with Harvard School of Public Health, Cyprus University of Technology, Limassol, Cyprus, and Department of Pediatrics, Hospital “Archbishop Makarios III”, Nicosia, Cyprus; 367Cebal Bayar University Department of Pulmonology, Manisa, Turkey; 368Department of Paediatrics and Child Health, Red Cross Children’s Hospital, and MRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa; 369Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital and Beijing Institute of Otolaryngology, Beijing, China; 367Universidad Católica de Córdoba, Córdoba, Argentina, 368University Clinic of Respiratory and Allergic Diseases, Golenik, Slovenia; 369 Gesundheitsregion KölHöB-RHB Projekt GmbH, Cologne, Germany; 370Akershus University Hospital, Department of Otorhinolaryngology, Akershus, Norway; 371Northern Health Science Alliance and Northern Health Matters Ltd, Manchester, United Kingdom.

REFERENCES