A new inspection robot for pipelines with bends and junctions

Abstract : The application of robots for the inspection of pipelines are of greater significance in industries such as nuclear, chemical and sewage. The major problem in the design of these robots lies in the selection of a suitable locomotion principle, selection of an articulation unit that facilitates the robot to pass through pipe bends and management of cables. In this context, the design of a new bio-inspired piping inspection robot that resembles an elephant trunk has been presented. With the help of leg mechanisms and actuators, a caterpillar locomotion is used within this trunk for establishing adaptive contact points with the walls of pipeline. For the passage through bends and junctions, several case studies of existing researches have been taken into account for the design of an articulation unit. Two solutions, (i) a passive tensegrity structure and (ii) an active tensegrity structure have been proposed for the robot to pass through pipe bends and junctions. A detailed design analysis of the passive solution that uses a universal joint has been presented in this article.
Liste complète des métadonnées

Contributor : Swaminath Venkateswaran <>
Submitted on : Friday, April 12, 2019 - 3:47:01 PM
Last modification on : Saturday, April 13, 2019 - 1:32:59 AM


  • HAL Id : hal-02098350, version 1



Swaminath Venkateswaran, Damien Chablat. A new inspection robot for pipelines with bends and junctions. The 15th IFToMM World Congress, Jul 2019, Krakow, Poland. ⟨hal-02098350⟩



Record views