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Abstract: A comparative study of syn vs. anti carboxylic acids in hybrid peptides based 

on experimental electron density studies and theoretical calculations shows that, in the 

anti form, all the three bond angles surrounding Ccarboxyl of the –COOH group are close to 

~120°, as expected for a C-sp2 atom, whereas in the syn form, the C–C(O)–Ohydroxyl 

angle is significantly smaller by 510°. The oxygen atom in the carboxyl group is more 

electronegative in the anti form, so the polarity of the acidic OH bond is higher in the anti 

form compared to the syn form,as observed within the limitations of H atom treatment in 

X-ray diffraction. Consequently, the investigated anti carboxylic acid forms the strongest 

OHꞏꞏꞏO hydrogen bond among all model compounds. Furthermore, according to Natural 

Bond Orbital analysis, the oxygen lone pairs are clearly non-equivalent, as opposed to 



the general notion of hybridization of equivalent sp2 and sp3 lone pairs on carbonyl or 

hydroxyl oxygen atoms. The hybridization of the lone pairs is directly related to the 

directionality and strength of hydrogen bonds. 

 

 

Introduction 

Carboxylic acids have a rich chemistry since they act as Brønsted and Lewis acids as 

well as Lewis bases. The carboxylate group serves as a general-base catalyst in various 

chemical and enzymatic reactions,1,2 and proton transfer is the most common enzyme 

catalyzed reaction.3 The stereoelectronic preferences of lone pairs in carboxylates for 

catalysis have been an active research topic.4  In the 1980s, Gandour proposed that the 

syn lone pair of the carboxylic group (Scheme 1a) may be significantly more basic, by 

103104 in the Ka ratio, than the anti lone pair.5 This was rationalized with the fact that syn 

carboxylic acids are more stable, hence  weaker acids. Correspondingly, in the 

carboxylate anion, the conjugate base of carboxylic acids, the syn lone pairs are more 

basic (Scheme 1a; in this study, the hybrid peptides are referred to as syn and anti 

according to the H atom position.)  

 

Scheme 1. a) Syn and anti H atom positions in carboxylic acids relative to the carbonyl 

oxygen atom. The hybrid peptides in this study are referred to as syn and anti according 

to the H atom position. Consequently, in anti carboxylic acid, the oxygen lone pair is syn 

relative to the carbonyl oxygen atom and vice versa. b) Definition of α and β angles for 

HꞏꞏꞏO=C interactions: P is the projection of H on the ABC=O plane. In the spirit of 



spherical polar coordinate system, the angle between OP and C=O directions (y axis) in 

the ABC=O plane is  and the angle between OH and C=O directions (y axis) in the plane 

perpendicular to ABC=O is .   

 

Experimental and theoretical studies in gas phase and solution confirm that the syn lone 

pairs in carboxylates are more basic, although the difference in basicity of the two 

carboxylate lone pairs is not as large as originally proposed.6,7  

The carboxylate group, like other hydrogen-bonding acceptors, can play a role for 

directing molecular organisation of catalytic components along with promoting catalysis. 

Although basicity and hydrogen bonding ability are two intrinsic properties of syn and anti 

lone pairs of oxygen atoms in carboxylates,8-10  it has been addressed that 

stereoelectronic preferences for the two different roles that the carboxylate group plays - 

molecular organization by H-bond formation and catalytic activity governed by basicity- 

might not be similar. A Cambridge Structural Database (CSD) analysis showed no 

significant preference, statistical or geometric, for syn hydrogen bonds (involving the syn 

lone pairs of carboxylates) over anti hydroden bonds (involving the anti lone pairs of 

carboxylates), reflecting that both the lone pairs sites have equal hydrogen bond acceptor 

ability.11 However, an in-depth knowledge of stereochemistry and relative strength of 

hydrogen bonds is a prerequisite in drug design and crystal engineering.12,13  

In carboxylic acids, the syn form (Scheme 1a) is more stable, by ~6-8 kcal/mol, compared 

to the anti form in the gas phase.14 In the 1970s, the general perception was that, in crystal 

structures, the –COOH group mostly adopts the syn-planar configuration and only in rare 

cases when it forms intramolecular OHꞏꞏꞏO bonds, the anti-planar conformation can 

occur.15 It has been shown that the preference for syn reduces to 1-2 kcal mol-1 upon 

formation of OHꞏꞏꞏO hydrogen bonds.10  Different packing motifs of the –COOH group 

as well as cyclic dimers vs. catameric forms have also been studied in detail.16,17 It has 

been observed that the preference of syn over anti in presence of other potential hydrogen 

bond donors and acceptors is greatly influenced by the formation of hydrogen bonded 

dimers/catemers. Stabilization of anti –COOHꞏꞏꞏX (X=neutral or anionic O, Cl, N) has 

been explored in a recent CSD database survey.18 A CSD database19 search for this 



study [version 5.38, using ConQuest 1.19, May 2017] on carboxylic acids shows that syn 

conformations occur much more frequently than anti conformations, with 15482 vs. 1893  

entries, respectively. 

In this study, we have chosen hybrid peptides as model compounds to examine and 

evaluate the preference of syn over anti conformations of carboxyl functional groups in a 

variety of environments created through different hydrogen bonding patterns. 

Conformational analysis of peptides carried out so far in the literature generally focuses 

on classic H-bonds, NHꞏꞏꞏO and OHꞏꞏꞏO, with different carbonyl oxygen acceptors, 

namely (urethane, amide or carboxylic acid) and considerably less on the weaker 

CHꞏꞏꞏO hydrogen bonds as the former dictate the overall conformation in peptide 

molecules. Hence, in the current study of syn vs. anti carboxylic acids, only NHꞏꞏꞏO and 

OHꞏꞏꞏO hydrogen bonds with oxygen as acceptor are considered. The insertion of 

additional atoms into the backbone of synthetic polypeptides greatly enhances the 

possibility of internally folded structures via hydrogen-bonding.20,21 Although the common 

packing motifs associated with the carboxyl groups are dimers and catemers,15 in hybrid 

peptides such motifs are absent due to the presence of other hydrogen bond donor and 

acceptor groups. 

The specific nature of the interactions between donors and acceptors suggests that H-

bonding is predominantly directional and there is a statistically significant tendency for 

hydrogen bonding to occur in the directions of the lone pairs on the acceptor atoms.22,23 

However, the directionality of the hydrogen bonds is still a matter of debate to date. A 

recent study indicates that the lone pair configuration as obtained from deformation 

electron density analysis shows striking differences for phenol, alcohol, carbonyl and 

other oxygen types acting as hydrogen bond acceptors.24 Although there has been much 

interest in the geometry of the AHꞏꞏꞏB systems (A, B = oxygen, nitrogen, etc.), 

comparatively fewer details are known on the angular distribution of proton donors around 

an acceptor atom, eg., analysis of HꞏꞏꞏO=C angles. Also in the literature, the description 

of the HꞏꞏꞏO=C angle is not unique.11,24,25 A CSD analysis study proposed that  the 

variations  of the HꞏꞏꞏO=C angle could be related to the hybridization, i.e. the extent of the 

sp2 character on the concerned O atom,11 but it is still an open question. In this study, we 



have considered ,  angle definitions24 to describe the HꞏꞏꞏO=C angle as has been 

implemented  in the MoPro package26,27 (Scheme 1b) and we have performed Natural 

Bond Orbital (NBO) analysis28,29 to explore the hybridization of concerned atoms.  

The acidic OH bond in syn vs. anti carboxylic acids has not been investigated to the 

same extent as that of syn vs. anti lone pairs of carboxylates. In conventional X-ray 

crystallography, XH distances are found to be shorter than from neutron diffraction and 

hence common practice is to normalize the XH distances to values obtained from 

neutron diffraction experiments.30,31 However, even, in standard tables that summarize 

results from neutron diffraction,30 there are no separate entries for syn and anti OH 

groups of the –COOH moiety. In fact, there is one single representative OH neutron 

distance entry for all carboxylic acids.30 It might be worth recalling that there is a linear 

correlation between bond length and pKa values of the conjugate acid based on a CSD 

database study on ethers and esters.32 All these analyses underpin the necessity for a 

systematic investigation of OH bonds in syn and anti carboxylic acids and associated 

lone pairs.  



 

Scheme 2. Chemical structures of the model compounds; four syn and one anti hybrid 

peptides with atom labelling scheme. 



 

In this report, we have determined molecular structures of four syn carboxylic acids, 

BocLeuValValOH, 1,  BocLeuValLeuValOH , 2,  BocValValOH, 3, and 

BocLeuLeuOH, 4, and one anti carboxylic acid BocLeuValValOH , 5, (Scheme 

2) from single-crystal X-ray diffraction. Among them molecules 1, 2 and 3 are new 

compounds synthesized for this study. Because of the crystal quality, we managed to 

collect an experimental charge density dataset of anti 5, only.  

 

Experimental  and Computational Procedures 

 

Experimental Section.  

 

Synthesis.  

The three new hybrid peptides 1, 2 and 3 were synthesized by the standard solution-

phase method. The tert-butoxycarbonyl (Boc) group was used for N-terminus protection, 

and the C-terminus was protected as a methyl ester. Deprotections were performed using 

98% formic acid for the Boc group and saponification for the methyl ester. The peptide 

couplings were performed using N,N′-dicyclohexylcarbodiimide (DCC)/1-

hydroxybenzotriazole (HOBt) or 1-[Bis(dimethylamino)methylene]-1H- 1, 2, 3- triazolo 

[4,5-b] pyridinium 3-oxid hexafluorophosphate (HATU)/HOBt as the coupling reagent. 

The target peptides were purified by high-performance liquid chromatography (HPLC) on 

a reverse-phase C18 column (5–10 μm, 7.8 mm × 250 mm) using methanol–water 

gradients. All the final compounds were characterized by electrospray ionization mass 

spectrometry (ESI-MS) on a Broker Daltonics Esquire-3000 instrument and further details 

have been deposited in the supplementary information. 

 

Single Crystal X-ray diffraction.  

 

Good quality single crystals were chosen using a polarizing microscope and affixed to a 

Hampton Research Cryoloop using Paratone-N oil. The crystals were cooled to 100 K 

with a liquid nitrogen stream using an Oxford Instruments Cryojet-HT nitrogen gas-stream 



cooling device. X-ray diffraction data were collected on an Oxford Xcalibur (Mova) 

diffractometer equipped with an EOS CCD detector using MoKα radiation (λ = 0.71073 

Å). The crystal-to-detector distance was fixed at 45 mm and the scan width (Δω) was 1º 

per frame during the data collection. The data collection strategy was chosen in such a 

way to yield a high resolution X-ray data set (d = 0.45 Å) with high redundancy and 

completeness of 100% for anti 5. For the other four syn compounds, i.e., 1-4, routine 

100(2) K data sets at 0.77 Å resolution were collected. Cell refinement, data integration 

and reduction were carried out using the program CrysAlisPro.33 Face indexing was done 

for an accurate numerical absorption correction for the experimental charge density 

dataset of anti 5. Sorting, scaling, and merging of the data sets were carried out using the 

program SORTAV.34 The crystal structure was solved by direct methods using 

SHELXS9735 and refined according to the spherical-atom approximation (based on F2) 

using SHELXL9735  included in the WinGX suite.36 In most of the cases, the acidic 

hydrogen atoms were located whereas other hydrogen atoms were fixed 

stereochemically and the positions and isotropic thermal parameters were allowed to 

refine in the spherical atom model. The capped-stick representation37 of the compounds, 

1-5, are shown in Figure 1.A  and crystallographic details are summarized in Table 1. 

 

Table 1. Crystallographic, measurement and refinement details. 

 Syn 1 Syn 2 Syn 3 Syn 4 Anti 5
Empirical 
formula 

C25H47N3O6 C32H62N4O8 C17 H32 N2 O5 C19 H36 N2 O5 C23H43N3O6 

CCDC number 1059075 1059077 1007207 1059078 1059076 
Formula weight 

(g/mol) 
485.65 630.85 344.45 372.50 457.6 

Crystal size 
(mm) 

0.06x0.21x0.38 0.58x0.11x0.04 0.46x0.30x0.24 0.07x0.09x0.55 0.17x0.25x0.56 

Crystal system Monoclinic Monoclinic Monoclinic Orthorhombic Orthorhombic 
Space Group P21 P21 P21 P 21 21 21 P 21 21 21 

a (Å) 10.224(1) 10.312(1) 9.868(1) 5.215(1) 9.4237(1) 
b (Å) 12.325(1) 10.980(2) 17.500(2) 15.095(1) 15.9868(2) 
c (Å) 12.340(1) 16.812(2) 12.292(1) 27.017(3) 17.3878(2) 
 (°) 109.39(1) 106.62(1) 102.71(1) 90 90 

Volume (Å3),Z 1466.7(3),2 1824.1(4),2 2070.7(4),4 2126.8(4),4 2619.56(1),4 
Calculated 

density (gcm-3) 
1.10 1.15 1.11 1.16 1.16 

F(0 0 0) 532 692 752 816 1000 
 (Å) 0.71073 0.71073 0.71073 0.71073 0.71073 

 (mm-1) 0.078 0.082 0.081 0.083 0.083 



Temperature 
(K) 

100(2) 120(2) 100(2) 100(2) 100(2) 

 range (°) 2.7-26.0 2.5-25.0 2.4-26.0 2.6-27.6 2.5-46.8 
Rint 0.064 0.072 0.0(twin) 0.118 0.048 

Measured 
reflections 

11439 6938 12322 17022 95816 

Unique 
reflections 

5758 5201 12322 4902 23524 

Completeness 
(%) 

99.9 99.8 99.9 99.9 99.9 

Spherical Atom Refinement 
Rall / wR2 0.106/0.144 0.183/0.235 0.046/0.092 0.151/0.188 0.074/0.116 

Robs 0.071/0.129 0.097/0.174 0.039/0.090 0.095/0.188 0.047 
GoF 0.999 1.020 1.010 1.077 1.026 

min, max 
(eÅ-3) 

-0.228,0.382 -0.304,0.289 -0.168, 0.189 -0.441,0.409 -0.251,0.447 

Data to 
parameter ratio 

5758/328=1
7.55:1 

5201/410=12.6
9:1 

12322/449= 
27.44:1 

4902/278=17.6
3:1 

23524/314=74.9
1:1 

Multipole refinement 
Refinement 
based on 

    F2 

No. of 
reflections  

    20830 

Total number 
of parameters 

    1166 

R(F)/wR2(F2)     0.036/0.057 
GOF     0.967 

min, max 
(eÅ-3) 

    -0.35,0.43 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 1. A. Capped stick representation37 of molecular structures of the four syn 1-4 and 

one anti 5 compounds based on the experimental geometries obtained from single crystal  

X-ray diffraction, showing intramolecular hydrogen bonds. B Intra and intermolecular 

hydrogen bonds in anti 5 with different O acceptors. 

Multipole Refinement 

The charge density modeling and multipolar non-spherical atom refinements for anti 5,  

were performed according to the Hansen and Coppens multipole formalism38 with 

MoPro39 and XD200640 packages. Initially in XD2006, the modelling was done with 

reflections I > 2σ(I). The core and valence scattering factors of all atoms were derived 



from Su, Coppens and Macchi wave functions.41 In this model, no chemical symmetry 

constraints were applied to the structures, whereas separate κ and κ′ were used to 

define different atom types based on chemical environment.  

In the second model obtained using MoPro, the least square  minimization was carried 

out using all reflections. Chemical equivalence and local symmetry restraints were applied 

to the charge density ( = 0.01).  and ’ of H atoms were restrained to be similar ( = 

0.05). ’ of non H atoms were restrained to 1( =0.05). The core and valence scattering 

factors of all atoms were derived from Clementi & Roetti wave functions.42 Initially, the 

scale factor was refined, then positional and thermal displacement parameters were 

refined against all reflections. The X−H bond lengths were constrained to the values 

determined by neutron diffraction experiments43.  The isotropic displacement parameters 

for H atoms were riding on their carrier atom Uiso = 1.2 Ueq (CH2, CH, NH) or 1.5 Ueq (CH3, 

OH). For H atoms, bond directed dipole (dz) components were allowed to refine. For non-

hydrogen atoms, multipole populations Plm were modelled up to octupole level (l = 3). The 

different charge density parameters Plm, ’, Pval and  were introduced in a stepwise 

manner in the refinement. The scale, positional, thermal anisotropic displacement 

parameters, Plm, Pval,  and ’  were refined successively, until convergence was reached. 

Near convergence, the model was used to calculate anisotropic displacement parameters 

of H atoms using the SHADE3 analysis44,45. Estimated ADPs for H atoms were kept fixed 

during the subsequent multipole refinements. The VMoPro tool26,27 was used to generate 

residual, deformation and Laplacian plots and to analyze the electron lone pairs.  

The second model with all reflections using chemical equivalence and local symmetry 

restraints produces a superior description of the charge density features and hence this 

model has been considered for all electron-density results shown in this paper. The fractal 

dimension plot for residual density corresponding to the second model is shown in Figure 

S1 in the supporting information.   

 

Computational Methods  

Theoretical charge density analysis was carried out using GAUSSIAN0946 at B3LYP-D/6-

311++g(2d,2p) level followed by the AIMAll package47 for single molecules. NBO analysis 



was performed with NBO6.0 as implemented in Gaussian09 at B3LYP-D/6-

311++g(2d,2p) level for all the model compounds, 1-5. As input geometry, for syn 1-4  

compounds, the X-ray structure with H distances elongated to neutron values was 

considered, and for anti 5, the geometry resulting from the experimental multipole model 

[as per I > 2σ(I)] was used. 

For periodic calculations, two approaches were considered: (i) generating theoretical 

structure factors from CRYSTAL1448 at the B3LYP/TZVP level49,50 followed by multipole 

modeling in XD200640 (ii) obtaining topological features directly from wave function 

analysis using TOPOND51,52 as implemented in CRYSTAL14. 

(i) The input geometries of compounds for single point periodic quantum chemical 

calculations using CRYSTAL1448 were taken from (a) the experimental multipole model 

on anti 5, (b) from the routine data sets at 100 K for syn 1 and 2. The single point 

calculations were performed at the B3LYP/TZVP level of theory. The shrinking factors 

(IS1, IS2, and IS3) along with the reciprocal lattice vectors were set to 4 (30 k-points in 

irreducible Brillouin zone). The bielectronic Coulomb and exchange series values for the 

truncation parameter were set as ITOL1−ITOL4 = 6 and ITOL5 = 14, respectively. The 

level shifter was set to 0.7 Hartree/cycle for better convergence. Upon convergence on 

energy (∼10−7 Hartree), the periodic wave functions were obtained, and subsequently 

theoretical structure factors at the same resolution as observed from the experiments 

were calculated by a standard procedure implemented in CRYSTAL14. All theoretical 

structure factors were assigned unit weights during the refinements based on the 

methodology followed in the literature.53,54 The anisotropic displacement parameters were 

set to zero to consider a static model, and multipolar refinements of the theoretical data 

were carried out up to the same levels as those used for the experimental charge density 

modeling. 

 (ii) TOPOND55 is considerably different from other existing implementations of QTAIM56 

for crystalline systems52 due to its interface with the CRYSTAL package. It thus becomes 

a powerful tool for applying QTAIM to molecules, polymers, surfaces, and crystals, 

exploiting the full symmetry of each of these systems. It calculates full topological features 

of ρ(r) and -∇2ρ(r) scalar fields along with other QTAIM descriptors directly from wave 

function analysis. The level of theory used is B3LYP/ TZVP in our systems. 



 

Results and Discussion 

 

Geometry of the carboxyl group in syn and anti conformation 

 

The geometric parameters of the carboxyl moiety, relevant bond distances, bond angles 

and torsion angles in compounds 1-5 are shown in Figure 2. There is a slight change in 

C=O and COhydroxyl bond lengths of ~0.01 Å in syn vs. anti compounds, but a 

rearrangement of bond angles surrounding the carbonyl C atom in these two 

conformations is more pronounced. In anti 5, all the three angles, C–C(O)–Ocarbonyl 

(coloured in blue in Figure 1), C–C(O)–Ohydroxyl (green), Ocarbonyl–C(O)–Ohydroxyl (red) 

are symmetrically arranged, with values around ~120° each, as per sp2 hybridization of 

carbonyl C atom. But in case of syn, two of the angles, mainly Ocarbonyl–C(O)–Ohydroxyl 

(red) along with C–C(O)–Ocarbonyl (blue) are greater than 120° and as a result C–

C(O)–Ohydroxyl(green) has shrunk by up to ~6-8° compared to that of anti form.  



 

Figure 2.  Comparison of bond lengths, bond angles and torsion angles of the carboxyl 

group in syn (compounds 1-4) and anti (compound 5) carboxylic acids. The angle marked 

in ‘green’ shows the largest deviations between syn and anti conformations. 

 

A subsequent CSD database survey on relative populations of syn vs. anti carboxylic 

acids, restricted only to  ‘amino acids, peptides and complexes’ class of compounds, has 

produced 2000 vs. 137 entries of individual –COOH moieties with syn and anti 

conformations, respectively. The distribution of  torsion angles, bond angles and bond 

lengths of the –COOH moiety (Figure 3) supports the observation in our model systems 

as a general trend. With a mean value of 112.5° (2.0) for the angle C–C(O)–Ohydroxyl in 

syn compared to 117.6°(2.8) in anti compounds, there is a shrinkage of ~5.1° in syn. To 

balance, the increase in the remaining two angles, C–C(O)–Ocarbonyl and C–C(O)–



Ohydroxyl in syn are ~3.6° and ~1.5° larger, respectively, compared to those in the anti form. 

The changes in the bond lengths remain small (~0.01 Å) (Figure 3). 

 

Figure 3.  Histograms comparing bond lengths, bond angles and torsion angles in syn 

and anti carboxylic acids in peptides from a CSD analysis. 

 

H-bonding pattern in the crystal structures 



The molecular conformations of compounds 1-5 indicate that the insertion of additional 

atoms in the backbone of the polypeptide enhances the possibility of hydrogen-bonded 

folded structures, as observed in compound 2, 3 and 5 (Figure 1A). The backbone and 

side chain torsion angles for all the compounds are listed in supplementary Table S1.  

Compound 2, Boc–Leu–4(R)Val–Leu–4(R)Val–OH, adopts a folded conformation 

stabilized by two intramolecular C12 hydrogen bonds, a nomenclature often used in 

proteins to distinguish between different local folding patterns of polypeptide 

backbones57: [Leu(1)] C=OꞏꞏꞏHN  [4(R)Val (4)] and [Boc] C=OꞏꞏꞏHN [Leu (3)].  It 

crystallizes as a solvate58 with methanol and forms another intramolecular hydrogen 

bond, [methanol] OꞏꞏꞏHN [4(R)Val (2)].  In compound 3, an intramolecular C9 hydrogen 

bond is observed, [Boc] C=OꞏꞏꞏHN [Val(2)]. In compound 5,59 two intramolecular C12 

hydrogen bonds are formed: [Boc] C=OꞏꞏꞏHN  [Val (3)] and [Leu(1)] C=OꞏꞏꞏHO [COOH]. 

The hydrogen bonding patterns in compounds 1-5 have been analyzed in terms of 

acceptor carbonyl groups in amide, acid and urethane regions in each structure, Figure 

1.B depicts the same for anti 5. The geometrical details of the hydrogen bonds in 1-5 are 

given in Table S2. The hydrogen bonds are mostly not far from linearity, the XHꞏꞏꞏO 

(X=O/N) angle being generally > 150°. The angular distribution of proton donors around 

the acceptor, i.e., the C=OꞏꞏꞏH  angle reveals more about the lone pair directions since 

a nearly linear hydrogen bond is formed between a proton and a directed lone pair of 

electrons. Hence, the  and  angles of all Ocarbonyl acceptors in OHꞏꞏꞏO or NHꞏꞏꞏO 

bonds are listed in Table S2 as well. In the syn compounds, the acidic OH bond is not 

involved in intramolecular hydrogen bonds, only intermolecular ones; however, in anti 5, 

the acidic OH bond forms an intramolecular H-bond which plays a crucial role in the 

resulting folded structure. As discussed below in more detail, the [COOH] OHꞏꞏꞏO=C 

[Leu(1)] hydrogen bond is the strongest among all hydrogen bonds formed by all 5 

compounds. 

It is known that the Ocarbonyl,amide atom is a significantly stronger proton acceptor than the 

Ocarbonyl,COOH atom.60 Hence, in crystal structures, sometimes doubly H-bonded systems 

O-H…O (amide) and NHꞏꞏꞏO(amide) are observed, but OH…O(carboxyl) and 

NH…O(carboxyl) systems are generally less bifurcated. In the crystal structures 1-5, 



following the above trend, a few Ocarbonyl,amide atoms form bifurcated intermolecular H-

bonds, but none of the Ocarboxyl atoms form bifurcated H-bonds. Also, the NPA charges 

clearly support the trend that O(carboxyl) has less negative charge compared to O(amide) 

(Table S3). 

 

Lewis picture and NBO analysis 

Natural bond orbital (NBO) methods, generally regarded as a ‘chemist’s basis set’, have 

a strong connection to the traditional concept of resonance, hybridization and bonding in 

chemistry.28,29 NBO analysis suggests higher polarity of the acidic OH bond in anti 

carboxylic acids compared to the OH bond in syn carboxylic acids through various 

descriptors. For example, natural population analysis (NPA) charges (Table 2) [and Bader 

atomic charges (Table S1)] on acidic H in anti 5 show slightly higher positive values 

compared to syn compounds and alcoholic H in methanol. The Wiberg bond index which 

roughly resembles the covalent contributions is lower by 0.1 for acidic OH bond, in anti 

5, compared to the syn compounds. Similarly the Ionicity Parameter iOH (Table 2) for the 

OH bond is higher in anti 5, compared to the syn acids. The solvent methanol OH bond 

in 5 has a higher Wiberg bond index and a lower iOH value, relative to all carboxylic acids 

indicating the less polar nature of alcoholic OH compared to acidic OH groups.  

 

Table 2. NBO based descriptors for the model compounds. 

 Syn 1 Syn 2* Syn 3 Syn 4 Anti 5 
NPA charges 

Ccarbonyl 0.82 0.82 0.83 0.83 0.82
Ocarbonyl -0.61 -0.62 -0.62 -0.61 -0.62 
Ohydroxyl -0.70 -0.69 -0.69 -0.70 -0.71 
Hhydroxyl 0.49 0.49 0.50 0.49 0.51

Wiberg bond indices 
C=O 1.74 1.72 1.73 1.75 1.72 

CO(H) 1.06 1.06 1.07 1.04 1.10 
OH 0.73 0.73 0.72 0.73 0.63 

Ionicity 
C=O, -bond 0.41 0.41 0.41 0.41 0.40 
C=O,-bond 0.30 0.30 0.30 0.31 0.30 

CO(H) 0.37 0.37 0.38 0.37 0.36 
OH 0.51 0.50 0.51 0.50 0.56 



* Syn 2 crystallizes as a solvate with methanol present in the asymmetric unit. For 

comparison with the acidic OH groups, the corresponding values the methanol OH group  

are: the NPA charges on C, O and Hhydroxyl are -0.19, -0.75 and 0.46. The Wiberg bond 

indices of CO and OH are 0.92 and 0.88. The ionicity of CO and OH are 0.36 and 

0.47. 

Each Ohydroxyl atom has two lone pairs according to the NBO analysis: one is unhybridized 

-type, nO
 (pure pz), the other one is hybridized -type, nO

 . Considering the second 

order perturbative estimate of the donor-acceptor stabilization (E2 energies) as obtained 

from NBO analysis (Figure 4),  the –COOH group in both syn and anti conformations is 

mostly stabilized by the -type non-bonding orbital at the hydroxyl oxygen atom to the 

anti-bonding π-orbital of the C=O bond [nO(, Ohydroxyl) *C=O delocalization]. However, 

in the syn form, nO(,Ohydroxyl) *C=O delocalization is also feasible. In the anti form, 

such delocalization is almost negligible, but OH*C=O delocalization compensates 

hyperconjugation involving the s-rich lone pair to a large extent. However, E2 energies 

alone cannot explain the greater stability of anti forms over syn forms; dipolar repulsion 

between the lone pairs of Ohydroxyl and C=O in the anti form contributes significantly to the 

destabilization of the anti form, as previously reported.61 



 

Figure 4. Second order perturbative estimate of the donor-acceptor stabilization, E2 

energies of –COOH group in syn and anti conformation. 

 

The localized Natural Resonance Theory (NRT) analysis,62,63 of the –COOH moiety in 

syn and anti orientations in compounds 1, 3 and 5 shows that mostly three Resonance 

Structures (RS) contribute with RS1 ~71%, RS2 ~25%  and RS3  ~1% (Figure 5). 

Generally,  carboxylic acids are less stable in anti conformation compared to syn because 

of the greater dipolar repulsion between the lone pairs of Ohydroxyl and C=O in the anti 

form.61  The RS2 resembles reduced dipolar repulsion due to the partial positive charge 

on Ohydroxyl. The higher relative percentage of RS2 in anti ~27%, compared to ~25% in 

syn, adds to the stability of the anti form to some extent. In RS3, since the carbonyl C 

atom is sp hybridized towards C=O, it uses more p character to form the C(=O)O bond. 

The higher relative contribution of RS3 in syn compared to anti supports the shrinkage of 

the C–C(O)–Ohydroxyl angle in syn, from a standard value of 120° corresponding to sp2 

hybridization. Likewise, the E2 stabilization energy corresponding to the orbital interaction 



of the parent Lewis structure that gives rise to the secondary form RS3, namely, [nO(, 

Ocarbonyl)*COhydroxyl delocalization],  is ~3.5 kcal mol-1  higher in syn (Table S4). This 

is in agreement with the findings summarized in Figure 3.  Although the reason behind 

the redistribution of angles in the syn form is not yet fully understood in this study, 

localized natural resonance theory analyses provide some explanation for the observed 

deviations. However, since these hybrid peptides are comparatively large molecules, for 

computational purposes, we have not investigated the full hyperconjugative delocalization 

effect on the geometry. We are currently investigating this effect on small organic 

molecules. 

 

 

 

Figure 5. Localised NRT analysis on –COOH group in syn and anti conformations in 

compounds syn 1 and syn 3 and anti 5. 



 

 

Oxygen Lone pairs and H-bond directionality 

It is generally assumed that the electron lone pairs on the carbonyl O atom are sp2 

hybridized and arranged in a trigonal geometry. In an extensive CSD database analysis 

on short hydrogen bonds involving Ocarbonyl as acceptor,  and  angles were found to be 

spread around 60° and 0°, respectively.24 In our model systems the distributions of  and 

 angles are quite widespread, 3.3°<  <59.8° with average value 32(16)° and 3.16°<  

< 59.3°, with average value 26(16)° (Table S2). For the intermolecular OHꞏꞏꞏO bond in 

syn 1,  = 51.2° and  = 8.0°; but in case of the intramolecular OHꞏꞏꞏO bond in anti 5, 

= 36.7° and =31.3°. The d(OꞏꞏꞏH) distances in the two hydrogen bonds are 1.721 Å 

and 1.634 Å, respectively.  

Natural bond orbital (NBO) analysis calculates the number of lone pairs, the percentage 

contribution of s and p orbitals in a particular lone pair and which lone pairs participate to 

the stabilization of a particular donor acceptor interaction. In our model systems, NBO 

analysis shows that the hybridization of O lone pairs is no longer idealized sp2 for carbonyl 

and sp3 for hydroxyl groups. In fact, for both functional groups, the two lone pairs are not 

equivalent. Similar to the oxygen lone pairs in water molecule,64 one is unhybridized -

type (mostly pure pz), nO
() and the other one is hybridized -type, nO

() (s-rich) (Figure 6).  



 

Figure 6. Scatter plot of occupancies and orbital energies of O lone pairs in the five 

compounds for Ocarbonyl, Ohydroxyl, Oester atoms.  The shape of nO
() (p-type) and nO

() s-rich 

lone pair lobes are shown at the bottom left corner in the graph. The nO
() lone pairs have 

lower occupancy and weaker energy in magnitude (less negative, clustered at left upper 

corner in the figure) compared to nO
() lone pairs (right bottom corner). 

 

The hybridizations of O atom lone pairs are tabulated in Table S2. In fact, a plot of 

occupancies vs. orbital energies (Figure 6) clearly indicates how different the two types 

of lone pairs are. The nO
() lone pairs appear at the right bottom corner in Figure 6, with 

higher occupancy and stronger energy in magnitude (more negative values), i.e. they are 

more stabilized, compared to the nO
() lone pairs which are clustered at the left upper 

corner in Figure 6. The nO
() lone pairs have a larger span with respect to the x axis, i.e., 

they have a varying occupancy compared to p-type lone pairs. Moreover, the nO
() lone 

pairs associated to the various Ocarbonyl types appear at the higher occupancy site 

compared to Ohydroxyl,acid and Oester,Boc. Apparently, the nO
() lone pair of the Ohydroxyl, acid in 



anti 5 has the lowest occupancy and weakest energy in magnitude (least negative value) 

compared to all the other lone pairs (green diamond in Figure 6). However, there is no 

separation for nO
() lone pairs between Ocarbonyl ,Ohydroxyl or Oester. In a strong H-bond, the 

proton tends to be oriented towards the oxygen-lone pair. Hence, the distribution of ,  

angles with a wide range, not coinciding with idealized sp2 direction, can be explained 

with the different extent of s-contributions to the lone pairs. 

A closer look at NBO results indicates one striking difference between the intra- and 

intermolecular OHꞏꞏꞏO bonds in anti 5, and compared to syn 1. In the intramolecular 

O4H4ꞏꞏꞏO1 hydrogen bond in anti 5, both the lone pairs, with sp0.76 [nO
()] and sp25.8 [nO

()] 

hybridizations, on O1 (amide) participate to an almost equal extent as proton acceptor. 

The E2 energy values for nO*OH are 14.74 and 12.64 kcal mol-1, respectively (Table 

3), with even slightly greater stabilization involving more directional nO
() lone pairs. 

Whereas in syn 1, the calculation on a dimeric motif in which one molecule is linked via 

the intermolecular O4H4ꞏꞏꞏO2 hydrogen bond reveals that between the two lone pairs 

on acceptor O2 (amide), the nO
() lone pair (sp23.43 hybridization) contributes 16.65 kcal 

mol-1 and the nO
() (sp0.74 hybridization) contributes only 5.87 kcal mol-1, towards 

nO*OH. Also it is noteworthy that in the dimeric unit, the lone pair hybridizations on O2 

(amide) in the two molecules are not identical. In the free molecule where O2 is not 

interacting, the hybridization for nO
()  is sp0.63 and pure pz for nO

() 
 , while in the other 

molecule, which acts as proton acceptor in the intermolecular O4H4ꞏꞏꞏO2 interaction, 

the hybridizations are sp0.74 and sp23.43 , respectively for nO
()  and nO

() 
 lone pairs (Table 

3). For the same dimer of syn 1, the lone pair hybridization of the non-interacting O3 atom 

is sp0.69 and pure pz for nO
()  and nO

() lone pairs, whereas in the other molecule upon 

N2H2ꞏꞏꞏO3 hydrogen bond formation it changes to sp0.71 and pure pz respectively(Table 

2) with corresponding E2 values for nO*NH of 4.17 and 2.21 kcal mol-1. These small 

but noticeable differences in s/p mixing for the lone pairs which are directly involved as 

proton acceptors suggest that the p character gets redistributed to increase the 

directionality while participating in hydrogen bond formation. The analysis so far strongly 

suggests that there must be a relationship between H-bond strength, directionality and 

s/p hybridization of the lone pairs. 



Table 3. The acceptor oxygen lone pair hybridization and E2 energies [nO*OH] involved 

in intra vs. intermolecular OHꞏꞏꞏO / intramolecular OHꞏꞏꞏO vs. NHꞏꞏꞏO bonds, 

according to the NBO perspective. 

compound H bond Lone pair 
type (no) 

E2 

(kcal mol-1) 
Syn 1 Intermolecular  sp0.74 5.87 
 O4H4ꞏꞏꞏO2 sp23.43 16.65 
Anti 5 Intramolecular 

O4H4ꞏꞏꞏO1 
sp0.76 

sp25.8 
14.74 
12.64 

 Intramolecular 
N3H3ꞏꞏꞏO0 

sp0.63 

p 
7.86 
1.75 

 Syn  2 intramolecular sp0.61 8.79 
 N3H3ꞏꞏꞏO0 p 2.17 
  intramolecular sp0.61 5.29 
  N4H4ꞏꞏꞏO1 p 2.61 
  intramolecular sp1.97 5.15 
  N2H2ꞏꞏꞏO6s* sp5.49 5.43 

*In N2H2ꞏꞏꞏO6s in syn 2, the acceptor O is methanol O atom, whereas in all other H-

bonds the acceptor O is Ocarbonyl. 

 

Different approaches to address one chemical question complement each other and 

provide view points from various perspectives. The theory of Atoms in Molecules (AIM) 

pioneered by Bader and coworkers is based on the scalar field of molecular electron 

density, to extract chemical insight for bonding, molecular structure and the concept of an 

atom in a molecule.56  The experimental multipole model of anti 5 (‘ExpMul’), has been 

compared with a theoretical multipole model (henceforth termed ‘TheoMul’) of the same 

compound. Among the four syn compounds, we have derived TheoMul models for two 

compounds, 1 and 2, and mostly the results from compound 1 have been compared with 

the ExpMul and TheoMul models of the anti form. Static deformation density and two-

dimensional Laplacian maps of the carboxylic acid region are shown in Figure 7. At this 

scale, the maps appear quite similar. A major difference between the theoretical and 

experimental models can be found at the carbonyl oxygen lone pairs. It is not clear if this 

is an experimental feature or an artefact of the model. 



 

Figure 7.  Deformation density and Laplacian plots of –COOH are shown in first and 

second rows, respectively, for TheoMul model for syn 1 and both theoretical and 

experimental multipole models for anti 5.  Contours are drawn at the intervals of 0.05 

eÅ-3 for deformation maps. Laplacian is drawn in logarithmic contours. The colour code 

is: for deformation maps, blue solid lines indicate positive, red dashed line negative and 

green dashed lines zero contour; for Laplacian maps, red solid lines indicate negative 

and blue dashed lines indicate positive contour.  

Integrated Bader charges after multipole modelling (Table S3) do not provide a clear trend 

either for O atoms in different chemical environments. For example, it does not show less 

negative charges on Ocarboxyl atoms compared to Oamide atoms as speculated from the H-

bonding pattern and supported by NPA charges Table S3. The topological parameters of 

the covalent bonds corresponding to the –COOH moiety in compounds 1, 2 (TheoMul) 

and 5 (ExpMul and TheoMul) are listed in Table 4.  

 

 

 



Table 4. Topological properties at the bond critical point (BCP) of carboxylic acid groups 

in compounds 1, 2 and 5. d1 and d2 are the distances from the BCP to the first atom (eg, 

O3 in O3–C3) and second atom (eg, C3 in O3–C3), respectively. The interaction length, 

Rij=d1 +d2. 

 Bond (r) 
(eÅ-3) 

2(r) 
(eÅ-5) 

Rij 

(Å) 
d1 

(Å) 
d2 

(Å) 
 

Syn 1        
 O3–C3 3.04 -37.7 1.2058 0.7574 0.4484 0.14 
 O4–C3 2.23 -19.5 1.3260 0.7810 0.5450 0.13 
 O4–H4 1.97 -16.9 1.0180 0.7608 0.2572 0.02 

Syn 2        
 O4–C4 2.98 -37.8 1.2100 0.7560 0.4540 0.14 
 O5–C4 2.31 -20.9 1.3180 0.7710 0.5470 0.13 
 O5–H5 1.95 -16.2 1.0180 0.7652 0.2528 0.02 
 O6S–H6S 2.22 -21.3 0.9700 0.7288 0.2412 0.03 

Anti 5        
Expt O3–C3 3.04(2) -26.6(3) 1.2176 0.8047  0.4130 0.14 

Theory  2.90 -35.7 1.2196 0.7517 0.4678 0.18 
Expt O4–C3 2.30(1) -25.3(2) 1.3160 0.8637  0.4524 0.07 

Theory  2.22 -20.2 1.3169 0.7854 0.5315 0.16 
Expt O4–H4 2.21(6) -24.4(5) 0.9791 0.7419  0.2372 0.04 

Theory  2.09 -27.9 1.0180 0.7651 0.2529 0.02 

 

 

The electron density [(r)] at the bond critical point (bcp) of the acidic OH bond in the –

COOH group is higher in the anti form compared to syn form, by ~0.1 eÅ-3  and the 

Laplacian values [2(r)] is more negative by ~11 eÅ-5. These differences are outside the 

experimental standard uncertainties and outside the limit of statistical errors from multiple 

experiments and reproducibility indices as reported in literature.65,66 Therefore, these 

differences are statistically significant. The solvent of crystallization, methanol, present in 

the crystal structure of syn 2 allows us to compare the alcoholic OH vs. acidic OH bond. 

The (rbcp) value of the acidic OH bond in the anti form appears to be  lower than that of 

the alcoholic OH bond in methanol by ~ 0.1 eÅ-3; but the Laplacian value is more 

negative by 6.6 eÅ-5.   

The topological parameters of intra and intermolecular hydrogen bonds in compounds 1, 

2 and 5 are listed in Table S5, including hydrogen bonding energies roughly estimated 

using the Espinosa−Molins−Lecomte (EML) method, solely based on topological 



parameters at bond critical points.67-69  It establishes that the intramolecular hydrogen 

bond [COOH] OHꞏꞏꞏO=C [Leu(1)] in anti 5 is the strongest among all hydrogen bonds, 

contributing ~-34.6 kcal mol-1 towards the stability of the crystal structure of 5, compared 

to -12.3 and -14.4 kcal mol-1 for the intermolecular  OHꞏꞏꞏO bond in compounds 1 and 2, 

respectively. It agrees with the earlier reports that the preference of the syn form over the 

anti form decreases significantly in the solid state due to strong H-bond formation in the 

crystal. 

The deformation density maps of lone pairs on Ocarbonyl in urethane, amide and carboxylic 

acid moieties as obtained from the TheoMul models are shown in Figure 8 for syn 1 and 

anti 5. Similar plots for Ohydroxyl in –COOH in different orientations are shown in Figure 9 

and Oester in Boc is shown in Figure S2. In all different chemical environments Ocarbonyl 

appears as two separate lone pairs maxima, whereas Ohydroxyl appears as merged, 

similarly to the results from previous studies.70  

 

Figure 8. Lone pair lobes of Ocarbonyl in various chemical environments as visualized from 

deformation density maps for syn 1 and anti 5, corresponding to the respective TheoMul models. 

Contours are drawn at the intervals of 0.05 eÅ-3 for deformation maps. The colour code 

is: blue solid lines indicate positive, red dashed line negative and green dashed lines zero 

contour. 



 

Figure 9. Lone pair lobes on Ohydroxyl in the –COOH group as visualized from deformation 

density maps in different reference planes for syn 1 (upper row) and anti 5 (lower row) 

compounds, as obtained from TheoMul models. Definition of the planes: XY contains the 

C-O-C moiety; bZX contains the two LPs; bYZ: perpendicular to the OLP1 and OLP2 

inner bisecting direction. Contours are drawn at the intervals of 0.05 eÅ-3 for deformation 

maps. The colour code is: blue indicate positive, red negative and yellow zero contour. 

 

 

The lone pairs sites were located by means of (3,-3) critical points of the Laplacians. Both 

gas phase single-molecule and crystalline-state calculations show two widely separated 

lone pairs, much wider than 120° of a trigonal geometry for the Ocarbonyl belonging to 

urethane, amide and acids. The LPOLP’ angle and other relevant angles 

corresponding to the orientation of the lone pairs have been compiled in supplementary 

Table S6-S8 and Figure S3 and S4 for compounds syn 1 and anti 5, respectively. In 

general, the lone pair lobes of the carbonyl oxygen atoms are closer to each other by ~5-

10° in the crystal phase compared to the isolated molecule. Two distinct lone pair lobes 

on Oester and Ohydroxyl oxygen atoms, could not be identified in all cases in the electron 

density deformation maps. But whenever two separate lone pair lobes could be identified, 



the LP–O–LP’ angle was close to 109°, similar to a tetrahedral geometry. Although the 

angular orientation of the lone pairs of Ohydroxyl with respect to the CcarbonylOhydroxyl bond 

is similar in both syn and anti forms, the value of electron density and the Laplacian at the 

lone pair position is larger in anti compared to syn, the difference being (r) = 0.2 eÅ-3, 

[2(r)] = 8.9 eÅ-5 (Table S8). Similarly for different carbonyl groups, although the 

orientation of the lone pairs are quite similar in all the compounds, the associated 

Laplacian values (Table S8) show noticeable differences and reflect the asymmetry in the 

hydrogen bond features around the carbonyl oxygen atoms. 

 

 

Figure 10.  Electrostatic potential mapped on 0.074 a.u. isodensity surfaces of the  

–COOH group for compounds syn 1, syn 2 and anti 5, according to TheoMul models. The 

second row highlights the acidic H by imposing a different colour scale and choosing a 

different orientation. The blue, red and green regions represent electropositive, 

electronegative and neutral regions. 

 



The electrostatic potential mapped on isodensity surfaces (0.074 a.u.) of the carboxyl 

group has been analyzed (Figure 10). Electropositive, electronegative and neutral regions 

are indicated by blue, red and green surfaces, respectively. The Ocarbonyl and Ohydroxyl 

atoms of the carboxyl group appear to be more electronegative in anti 5, compared to the 

syn 1 (Figure 10, first row). The same electrostatic potential maps with a different scale 

to highlight the acidic hydrogen atom (second row in Figure 10) indicate that the acidic 

hydrogen in anti 5 is more polarized compared to syn 1. This is in agreement with the 

NBO analyses as well. 

 

 

Conclusions 

A comparative study on syn and anti carboxylic acids has been carried out with four syn 

and one anti hybrid peptides. The molecular conformations in the crystal structures 

obtained in this study as well as a thorough CSD analysis establish the difference in 

geometry of the carboxyl groups in syn and anti forms, especially the rearrangement of 

the bond angles surrounding the carbonyl C atom in the syn –COOH group. In the anti 

conformation, all the angles, namely, C–C(O)–Ocarbonyl, C–C(O)–Ohydroxyl, Ocarbonyl–

C(O)–Ohydroxyl are ~120°, as per sp2 hybridization of Ccarbonyl, whereas in the syn form  

Ocarbonyl–C(O)–Ohydroxyl is significantly smaller by 510° and as a result the remaining 

angles are greater than 120°.  

The hybrid peptides 1-5 show various hydrogen bonding patterns in the crystalline state. 

These interactions have been characterized quantitatively in terms of experimental and 

theoretical charge density analysis. The topological parameters indicate that the 

intramolecular [acid] OHꞏꞏꞏO=C hydrogen bond in anti 5 is the strongest among all the 

other intra and intermolecular hydrogen bonds present in the crystal structures. Thus it 

supports that the possibility of H-bond formation stabilizes the anti conformation in the 

crystalline state and thus the higher preference of syn over anti carboxylic acids 

decreases in the crystal state compared to the gas phase.  

The deformation density maps from charge density multipole models and NBO analyses 

reveal complementary viewpoints on oxygen lone pairs and OH bonds in syn and anti –



COOH. In deformation density maps Ocarbonyl in various chemical environments, urethane, 

amide, carboxylic acid, bears two distinct equivalent lone pairs, whereas Oester or Ohydroxyl 

atoms mostly show merged lone pair lobes. In contrast, the NBO analysis finds always 

two lone pairs on all types of O atoms, Ocarbonyl, Oester, Ohydroxyl, but they are not equivalent. 

One of them appears as unhybridized -type, nO
(), mostly of pure pz-type, and the other 

one resembles hybridized -type, nO
(),s-rich, (similar to the oxygen lone pairs in water 

molecule), as opposed to the general notion of two equivalent sp2 lone pairs for Ocarbonyl 

and two sp3 lone pairs for Oester or Ohydroxyl. 

Although the relative configurations of the two lone pairs of the Ohydroxyl oxygen atom are 

quite similar in syn and anti forms, the electron density and Laplacian values at the lone 

pairs positions indicate higher accumulation of electron density in the anti compared to 

the syn form.  Also, a plot of occupancy vs. orbital energy indicates separate regions of 

-type [nO
()] lone pairs for Ocarbonyl compared to Ohydroxyl and Oester. The higher the 

occupancy of the lone pair orbital, the more stable it is. 

A closer look at the COOH group in electrostatic potential maps indicates a greater 

polarization of the acidic OH bond in anti carboxylic acids compared to syn. NPA 

charges, Wiberg bond indices and ionicity parameters from NBO analysis also establish 

the higher polarity of the OH bond in anti carboxylic acids. However, in this study, the 

OH distances in both syn and anti carboxylic acid crystal structures have been fixed to 

the same averaged distance as obtained from neutron-diffraction experiments reported 

in the literature. The literature lacks separate entries for OH bond lengths in syn and anti 

carboxylic acids. The usage of identical bond lengths certainly has a bias on any 

comparative studies on syn and anti carboxylic acids. Hence, in order to obtain an 

accurate comparison, separate neutron data on both syn and anti systems would be 

preferred. Therefore, we plan neutron-diffraction studies of simple and small model 

systems bearing syn and anti carboxylic acid groups in the near future. 

 

Supporting information  

Table S1-S8 and Figures S1-S5; Table S1 lists backbone and side chain torsion angles 

of the five peptides. Table S2 lists lone pair properties of  different oxygen acceptors. 



Table S3 contains atomic charge and volume, Table S4 shows E2 stabilization energies 

from NBO calculation,  Table S5 topological parameters of intra and intermolecular H-

bonds. Table S6-S8 lists lone pair orientation of different oxygen atoms in Syn 1, Syn 2 

and Anti 5, respectively. Table S9 contains E2 energies related to –COOH group in the 

five peptides. Figure S1 depicts fractal dimension plots of residual density from 

experiment multipole model (second model, with all reflections) of compound Anti 5. 

Figure S2 shows lone pair lobes on O(ether) in the Boc group from deformation density 

maps in Syn 1 and Anti 5. Figure S3-S4 contain lone pair orientations of different oxygen 

atoms in Syn 1 and Anti 5 and Figure S5 shows mass spectra of the five peptides. 
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