A. Bianco, H. Cheng, T. Enoki, Y. Gogotsi, R. H. Hurt et al., All in the Graphene Family-A Recommended Nomenclature for Two-Dimensional Carbon Materials, Carbon, vol.65, pp.1-6, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02106170

A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater, vol.6, p.183, 2007.

A. K. Geim, Graphene: Status and prospects, Science, vol.324, pp.1530-1534, 2009.

Y. Zhu, H. Ji, H. Cheng, and R. S. Ruoff, Mass production and industrial applications of graphene materials, Nat. Sci. Rev, vol.5, pp.90-101, 2018.

J. I. Paredes, S. Villar-rodil, A. Martínez-alonso, and J. M. Tascon, Graphene oxide dispersions in organic solvents, Langmuir, vol.24, pp.10560-10564, 2008.

H. M. Kim, S. G. Kim, and H. S. Lee, Dispersions of partially reduced graphene oxide in various organic solvents and polymers, Carbon Lett, vol.23, pp.55-62, 2017.

A. Bianco and M. Prato, Safety concerns on graphene and 2D materials: A Flagship perspective. 2D Mater, vol.2, p.30201, 2015.

L. M. Guiney, X. Wang, T. Xia, A. E. Nel, and M. C. Hersam, Assessing and Mitigating the Hazard Potential of Two-Dimensional Materials, ACS Nano, vol.12, pp.6360-6377, 2018.

A. Kraegeloh, B. Suarez-merino, T. Sluijters, and C. Micheletti, Implementation of Safe-by-Design for Nanomaterial Development and Safe Innovation: Why We Need a Comprehensive Approach, Nanomaterials, vol.8, p.239, 2018.

M. V. Park, E. A. Bleeker, W. Brand, F. R. Cassee, M. Van-elk et al., Considerations for Safe Innovation: The Case of Graphene, ACS Nano, vol.11, pp.9574-9593, 2017.

D. G. Goodwin, A. S. Adeleye, L. Sung, K. T. Ho, R. M. Burgess et al., Detection and Quantification of Graphene-Family Nanomaterials in the Environment, Environ. Sci. Technol, vol.52, pp.4491-4513, 2018.

A. Mottier, F. Mouchet, É. Pinelli, L. Gauthier, and E. Flahaut, Environmental impact of engineered carbon nanoparticles: From releases to effects on the aquatic biota, Curr. Opin. Biotechnol, vol.46, pp.1-6, 2017.

J. Zhao, Z. Wang, J. C. White, and B. Xing, Graphene in the Aquatic Environment: Adsorption, Dispersion, Toxicity and Transformation, Environ. Sci. Technol, vol.48, pp.9995-10009, 2014.

G. Ersan, O. G. Apul, F. Perreault, and T. Karanfil, Adsorption of organic contaminants by graphene nanosheets: A review, Water Res, vol.126, pp.385-398, 2017.

K. Haubner, J. Murawski, P. Olk, L. M. Eng, C. Ziegler et al., The Route to Functional Graphene Oxide, ChemPhysChem, vol.11, pp.2131-2139, 2010.

X. Guo and N. Mei, Assessment of the toxic potential of graphene family nanomaterials, J. Food Drug Anal, vol.22, pp.105-115, 2014.

L. Ou, B. Song, H. Liang, J. Liu, X. Feng et al., Toxicity of graphene-family nanoparticles: A general review of the origins and mechanisms, Part. Fibre Toxicol, p.57, 2016.

B. Fadeel, C. Bussy, S. Merino, E. Vázquez, E. Flahaut et al., Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment, ACS Nano, vol.12, pp.10582-10620, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01975177

S. Das, S. Singh, V. Singh, D. Joung, J. M. Dowding et al., Oxygenated Functional Group Density on Graphene Oxide: Its Effect on Cell Toxicity. Part. Part. Syst. Charact, vol.30, pp.148-157, 2013.

E. Hashemi, O. Akhavan, M. Shamsara, M. Daliri, M. Dashtizad et al., Synthesis and cytogenotoxicity evaluation of graphene on mice spermatogonial stem cells, Colloids Surf. B Biointerfaces, vol.146, pp.770-776, 2016.

R. Li, L. M. Guiney, C. H. Chang, N. D. Mansukhani, Z. Ji et al., Surface Oxidation of Graphene Oxide Determines Membrane Damage, Lipid Peroxidation, and Cytotoxicity in Macrophages in a Pulmonary Toxicity Model, ACS Nano, vol.12, pp.1390-1402, 2018.

S. Jaworski, E. Sawosz, M. Kutwin, M. Wierzbicki, M. Hinzmann et al., In vitro and in vivo effects of graphene oxide and reduced graphene oxide on glioblastoma, Int. J. Nanomed, vol.10, pp.1585-1596, 2015.

F. F. Contreras-torres, A. Rodríguez-galván, C. E. Guerrero-beltrán, E. Martínez-lorán, E. Vázquez-garza et al., Differential cytotoxicity and internalization of graphene family nanomaterials in myocardial cells, Mater. Sci. Eng. C, vol.73, pp.633-642, 2017.

S. P. Jackson and J. Bartek, The DNA-damage response in human biology and disease, Nature, vol.461, pp.1071-1078, 2009.

S. Sukumaran and A. Grant, Effects of genotoxicity and its consequences at the population level in sexual and asexual Artemia assessed by analysis of inter-simple sequence repeats (ISSR), Mutat. Res. Toxicol. Environ. Mutagen, vol.757, pp.8-14, 2013.

A. B. Seabra, A. J. Paula, R. De-lima, O. L. Alves, and N. Durán, Nanotoxicity of Graphene and Graphene Oxide, Chem. Res. Toxicol, vol.27, pp.159-168, 2014.

M. Ema, M. Gamo, and K. Honda, A review of toxicity studies on graphene-based nanomaterials in laboratory animals, Regul. Toxicol. Pharmacol, vol.85, pp.7-24, 2017.

N. A. El-yamany, F. F. Mohamed, T. A. Salaheldin, A. A. Tohamy, W. N. El-mohsen et al., Graphene oxide nanosheets induced genotoxicity and pulmonary injury in mice, Exp. Toxicol. Pathol, vol.69, pp.383-392, 2017.

Y. Liu, Y. Luo, J. Wu, Y. Wang, X. Yang et al., Graphene oxide can induce in vitro and in vivo mutagenesis, Sci. Rep, issue.3, p.3469, 2013.

M. C. Mendonça, E. S. Soares, M. B. De-jesus, H. J. Ceragioli, S. P. Irazusta et al., Reduced graphene oxide: Nanotoxicological profile in rats, J. Nanobiotechnol, vol.14, p.53, 2016.

J. P. Souza, J. F. Baretta, F. Santos, I. M. Paino, and V. Zucolotto, Toxicological effects of graphene oxide on adult zebrafish (Danio rerio), Aquat. Toxicol, vol.186, pp.11-18, 2017.

A. Montagner, S. Bosi, E. Tenori, M. Bidussi, A. A. Alshatwi et al., Ecotoxicological effects of graphene-based materials

J. De-lapuente, J. Lourenço, S. A. Mendo, M. Borràs, M. G. Martins et al., The Comet Assay and its applications in the field of ecotoxicology: A mature tool that continues to expand its perspectives, Front. Genet, vol.6, p.180, 2015.

F. Mouchet, L. Gauthier, . Genotoxicity, and . Contaminants, Amphibian Micronucleus Assays. In Encyclopedia of Aquatic Ecotoxicology

J. Férard and C. Blaise, , pp.978-94, 2013.

F. Mouchet, P. Landois, E. Sarremejean, G. Bernard, P. Puech et al., Characterisation and in vivo ecotoxicity evaluation of double-wall carbon nanotubes in larvae of the amphibian Xenopus laevis, Aquat. Toxicol, vol.87, pp.127-137, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01339334

F. Mouchet, P. Landois, P. Puech, E. Pinelli, E. Flahaut et al., Carbon nanotube ecotoxicity in amphibians: Assessment of multiwalled carbon nanotubes and comparison with double-walled carbon nanotubes, Nanomedicine, vol.5, pp.963-974, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01339444

A. Mottier, F. Mouchet, C. Laplanche, S. Cadarsi, L. Lagier et al., Surface Area of Carbon Nanoparticles: A Dose Metric for a More Realistic Ecotoxicological Assessment, Nano Lett, vol.16, pp.3514-3518, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01346283

L. Muzi, F. Mouchet, S. Cadarsi, I. Janowska, J. Russier et al., Examining the impact of multi-layer graphene using cellular and amphibian models
URL : https://hal.archives-ouvertes.fr/hal-01462915

L. Lagier, F. Mouchet, C. Laplanche, A. Mottier, S. Cadarsi et al., Surface area of carbon-based nanoparticles prevails on dispersion for growth inhibition in amphibians, vol.119, pp.72-81, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01578367

W. S. Hummers and R. E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc, vol.80, p.1339, 1958.

B. Lobato, C. Merino, V. Barranco, and T. A. Centeno, Large-scale conversion of helical-ribbon carbon nanofibers to a variety of graphene-related materials, RSC Adv, vol.6, pp.57514-57520, 2016.

L. Tabet, C. Bussy, N. Amara, A. Setyan, A. Grodet et al., Adverse Effects of Industrial Multiwalled Carbon Nanotubes on Human Pulmonary Cells, J. Toxicol. Environ. Health A, vol.72, pp.60-73, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00351136

, Agence nationale de sécurité sanitaire de l'alimentation de l'environnement et du travail (Anses) AVIS relatif à « l'évaluation des risques liés au GRAPHISTRENGTH C100 réalisée dans le cadre du programme Genesis, 2019.

E. J. Petersen, T. B. Henry, J. Zhao, R. I. Maccuspie, T. L. Kirschling et al., Identification and Avoidance of Potential Artifacts and Misinterpretations in Nanomaterial Ecotoxicity Measurements, Environ. Sci. Technol, vol.48, pp.4226-4246, 2014.

L. Ayouni-derouiche, M. Méjean, P. Gay, M. Milliand, P. Lantéri et al., Development of efficient digestion procedures for quantitative determination of cobalt and molybdenum catalyst residues in carbon nanotubes, Carbon, vol.80, pp.59-67, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01077228

P. D. Nieuwkoop and J. Faber, Normal Table of Xenopus Laevis (Daudin). A Systematical and Chronological Survey of the Development from the Fertilized Egg Till the End of Metamorphosis, P. D. Nieuwkoop , J. Faber. Q. Rev. Biol, p.85, 1958.

A. S. Tsiftsoglou, I. S. Vizirianakis, and J. Strouboulis, Erythropoiesis: Model systems, molecular regulators, and developmental programs, IUBMB Life, vol.61, pp.800-830, 2009.

K. J. Livak and T. D. Schmittgen, Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2???CT Method, Methods, vol.25, pp.402-408, 2001.

I. Barjhoux, P. Gonzalez, M. Baudrimont, and J. Cachot, Molecular and phenotypic responses of Japanese medaka (Oryzias latipes) early life stages to environmental concentrations of cadmium in sediment, Environ. Sci. Pollut. Res, vol.23, pp.17969-17981, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02153605

R. Mcgill, J. W. Tukey, and W. A. Larsen, Variations of Box Plots, Am. Stat, vol.32, pp.12-16, 1978.

I. Jung, D. A. Field, N. J. Clark, Y. Zhu, D. Yang et al., Reduction Kinetics of Graphene Oxide Determined by Electrical Transport Measurements and Temperature Programmed Desorption, J. Phys. Chem. C, vol.113, pp.18480-18486, 2009.

R. Larciprete, S. Fabris, T. Sun, P. Lacovig, A. Baraldi et al., Dual Path Mechanism in the Thermal Reduction of Graphene Oxide, J. Am. Chem. Soc, vol.133, pp.17315-17321, 2011.

D. Konios, M. M. Stylianakis, E. Stratakis, and E. Kymakis, Dispersion behaviour of graphene oxide and reduced graphene oxide, J. Colloid Interface Sci, vol.430, pp.108-112, 2014.

M. Y. Song, Y. S. Yun, N. R. Kim, and H. Jin, Dispersion stability of chemically reduced graphene oxide nanoribbons in organic solvents, RSC Adv, vol.6, pp.19389-19393, 2016.

I. Chowdhury, N. D. Mansukhani, L. M. Guiney, M. C. Hersam, and D. Bouchard, Aggregation and Stability of Reduced Graphene Oxide: Complex Roles of Divalent Cations, pH, and Natural Organic Matter, Environ. Sci. Technol, vol.49, pp.10886-10893, 2015.

H. Ren, C. Wang, J. Zhang, X. Zhou, D. Xu et al., DNA Cleavage System of Nanosized Graphene Oxide Sheets and Copper Ions, ACS Nano, vol.4, pp.7169-7174, 2010.

T. Rengarajan, P. Rajendran, N. Nandakumar, B. Lokeshkumar, P. Rajendran et al., Exposure to polycyclic aromatic hydrocarbons with special focus on cancer, Asian Pac. J. Trop. Biomed, vol.5, pp.182-189, 2015.

H. I. Abdel-shafy and M. S. Mansour, A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation, Egypt. J. Pet, vol.25, pp.107-123, 2016.

L. Gauthier, E. Tardy, F. Mouchet, and J. Marty, Biomonitoring of the genotoxic potential (micronucleus assay) and detoxifying activity (EROD induction) in the River Dadou (France), using the amphibian Xenopus laevis, Sci. Total Environ, vol.323, pp.47-61, 2004.

F. Mouchet, L. Gauthier, C. Mailhes, V. Ferrier, and A. Devaux, Comparative study of the comet assay and the micronucleus test in amphibian larvae (Xenopus laevis) using benzo(a)pyrene, ethyl methanesulfonate, and methyl methanesulfonate: Establishment of a positive control in the amphibian comet assay, Environ. Toxicol, vol.20, pp.74-84, 2005.

Y. Wang, J. Wang, J. Mu, Z. Wang, Y. Cong et al., Aquatic predicted no-effect concentrations of 16 polycyclic aromatic hydrocarbons and their ecological risks in surface seawater of Liaodong Bay, China: Aquatic PNECs of 16 PAHs and their ecological risks, Environ. Toxicol. Chem, vol.35, pp.1587-1593, 2016.

M. Matesanz, M. Vila, M. Feito, J. Linares, G. Gonçalves et al., The effects of graphene oxide nanosheets localized on F-actin filaments on cell-cycle alterations, Biomaterials, vol.34, pp.1562-1569, 2013.

Y. Kang, J. Liu, J. Wu, Q. Yin, H. Liang et al., Graphene oxide and reduced graphene oxide induced neural pheochromocytoma-derived PC12 cell lines apoptosis and cell cycle alterations via the ERK signaling pathways, Int. J. Nanomed, vol.12, pp.5501-5510, 2017.

D. M. Petibone, T. Mustafa, S. E. Bourdo, A. Lafont, W. Ding et al., p53 -competent cells and p53 -deficient cells display different susceptibility to oxygen functionalized graphene cytotoxicity and genotoxicity: p53 function in oxygen functionalized graphene toxicity, J. Appl. Toxicol, vol.37, pp.1333-1345, 2017.

Y. Wang, J. Xu, L. Xu, X. Tan, L. Feng et al., Functionalized graphene oxide triggers cell cycle checkpoint control through both the ATM and the ATR signaling pathways, Carbon, vol.129, pp.495-503, 2018.

E. S. Helton and X. Chen, p53 modulation of the DNA damage response, J. Cell. Biochem, vol.100, pp.883-896, 2007.

E. R. Kastenhuber and S. W. Lowe, Putting p53 in Context. Cell, vol.170, pp.1062-1078, 2017.

L. Zhu, D. W. Chang, L. Dai, and Y. Hong, DNA Damage Induced by Multiwalled Carbon Nanotubes in Mouse Embryonic Stem Cells, Nano Lett, vol.7, pp.3592-3597, 2007.

Y. Xing, W. Xiong, L. ;. Zhu, E. O?-sawa, S. Hussin et al., DNA Damage in Embryonic Stem Cells Caused by Nanodiamonds, ACS Nano, vol.5, pp.2376-2384, 2011.

J. Yuan, H. Gao, J. Sui, H. Duan, W. N. Chen et al., Cytotoxicity Evaluation of Oxidized SingleWalled Carbon Nanotubes and Graphene Oxide on Human Hepatoma HepG2 cells: An iTRAQ-Coupled 2D LC-MS/MS Proteome Analysis, Toxicol. Sci, vol.126, pp.149-161, 2012.

R. P. Araldi, T. C. De-melo, T. B. Mendes, P. L. De-sá-júnior, B. H. Nozima et al., Using the comet and micronucleus assays for genotoxicity studies: A review, Biomed. Pharmacother, vol.72, pp.74-82, 2015.

M. Fenech, M. Kirsch-volders, A. T. Natarajan, J. Surralles, J. W. Crott et al., Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells, Mutagenesis, vol.26, pp.125-132, 2011.

O. Akhavan, E. Ghaderi, E. Hashemi, and E. Akbari, Dose-dependent effects of nanoscale graphene oxide on reproduction capability of mammals, Carbon, vol.95, pp.309-317, 2015.

M. Durán, N. Durán, and W. J. Fávaro, In vivo nanotoxicological profile of graphene oxide, J. Phys. Conf. Ser, vol.838, p.12026, 2017.

C. Lu, X. Jiang, M. Junaid, Y. Ma, P. Jia et al., Graphene oxide nanosheets induce DNA damage and activate the base excision repair (BER) signaling pathway both in vitro and in vivo, vol.184, pp.795-805, 2017.

S. W. Maluf, Monitoring DNA damage following radiation exposure using cytokinesis-block micronucleus method and alkaline single-cell gel electrophoresis, Clin. Chim. Acta, vol.347, pp.15-24, 2004.

A. Ivask, N. H. Voelcker, S. A. Seabrook, M. Hor, J. K. Kirby et al., DNA Melting and Genotoxicity Induced by Silver Nanoparticles and Graphene, Chem. Res. Toxicol, vol.28, pp.1023-1035, 2015.

X. Zhao, Self-Assembly of DNA Segments on Graphene and Carbon Nanotube Arrays in Aqueous Solution: A Molecular Simulation Study, J. Phys. Chem. C, vol.115, pp.6181-6189, 2011.

E. J. Petersen and B. C. Nelson, Mechanisms and measurements of nanomaterial-induced oxidative damage to DNA, Anal. Bioanal. Chem, vol.398, pp.613-650, 2010.

V. Ribas, C. García-ruiz, and J. C. Fernández-checa, Glutathione and mitochondria, Front. Pharmacol, vol.5, p.151, 2014.
DOI : 10.3389/fphar.2014.00151

URL : https://www.frontiersin.org/articles/10.3389/fphar.2014.00151/pdf

O. M. Ighodaro and O. A. Akinloye, First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex, J. Med, vol.54, p.4, 2017.

M. Chen, J. Yin, Y. Liang, S. Yuan, F. Wang et al., Oxidative stress and immunotoxicity induced by graphene oxide in zebrafish, Aquat. Toxicol, vol.174, pp.54-60, 2016.

W. Zhang, C. Wang, Z. Li, Z. Lu, Y. Li et al., Unraveling Stress-Induced Toxicity Properties of Graphene Oxide and the Underlying Mechanism, Adv. Mater, vol.24, pp.5391-5397, 2012.

M. Kryuchkova, A. Danilushkina, Y. Lvov, and R. Fakhrullin, Evaluation of toxicity of nanoclays and graphene oxide in vivo: A Paramecium caudatum study, Environ. Sci. Nano, vol.3, pp.442-452, 2016.

A. Manke, L. Wang, and Y. Rojanasakul, Mechanisms of Nanoparticle-Induced Oxidative Stress and Toxicity, BioMed Res. Int, pp.1-15, 2013.

X. Zhang, J. Yin, C. Peng, W. Hu, Z. Zhu et al., Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration, Carbon, vol.49, pp.986-995, 2011.

S. A. Sydlik, S. Jhunjhunwala, M. J. Webber, D. G. Anderson, and R. Langer, In Vivo Compatibility of Graphene Oxide with Differing Oxidation States, ACS Nano, vol.9, pp.3866-3874, 2015.

J. Ma, R. Liu, X. Wang, Q. Liu, Y. Chen et al., Crucial Role of Lateral Size for Graphene Oxide in Activating Macrophages and Stimulating Pro-inflammatory Responses in Cells and Animals, ACS Nano, vol.9, pp.10498-10515, 2015.

M. Xu, J. Zhu, F. Wang, Y. Xiong, Y. Wu et al., Improved In Vitro and In Vivo Biocompatibility of Graphene Oxide through Surface Modification: Poly(Acrylic Acid)-Functionalization is Superior to PEGylation, ACS Nano, vol.10, pp.3267-3281, 2016.

S. Bengtson, K. Kling, A. M. Madsen, A. W. Noergaard, N. R. Jacobsen et al., No cytotoxicity or genotoxicity of graphene and graphene oxide in murine lung epithelial FE1 cells in vitro: Graphene and Graphene Oxide in Vitro, Environ. Mol. Mutagen, vol.57, pp.469-482, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01849346

Z. Magdolenova, A. Collins, A. Kumar, A. Dhawan, V. Stone et al., Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles, Nanotoxicology, vol.8, pp.233-278, 2014.

L. De-marzi, L. Ottaviano, F. Perrozzi, M. Nardone, S. Santucci et al., Flake size-dependent cyto and genotoxic evaluation of graphene oxide on in vitro A549, CaCo2 and Vero cell lines, J. Biol. Regul. Homeost Agents, vol.28, pp.281-289, 2014.

C. L. Ursini, D. Cavallo, A. M. Fresegna, A. Ciervo, R. Maiello et al., Comparative cyto-genotoxicity assessment of functionalized and pristine multiwalled carbon nanotubes on human lung epithelial cells, Toxicol, vol.26, pp.831-840, 2012.

Z. Guo, C. Xie, P. Zhang, J. Zhang, G. Wang et al., Toxicity and transformation of graphene oxide and reduced graphene oxide in bacteria biofilm, Sci. Total Environ, vol.580, pp.1300-1308, 2017.

X. T. Liu, X. Y. Mu, X. L. Wu, L. X. Meng, W. B. Guan et al., Toxicity of multi-walled carbon nanotubes, graphene oxide, and reduced graphene oxide to zebrafish embryos, Biomed. Environ. Sci, vol.27, pp.676-683, 2014.

Q. Zhang, X. Liu, H. Meng, S. Liu, and C. Zhang, Reduction pathway-dependent cytotoxicity of reduced graphene oxide, Environ. Sci. Nano, vol.5, pp.1361-1371, 2018.

O. C. Compton and S. T. Nguyen, Graphene oxide, highly reduced graphene oxide, and graphene: Versatile building blocks for carbon-based materials, Small, vol.6, pp.711-723, 2010.

W. Xue and D. Warshawsky, Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: A review, Toxicol. Appl. Pharmacol, vol.206, pp.73-93, 2005.

M. Cobaleda-siles, A. P. Guillamon, C. Delpivo, S. Vázquez-campos, and V. F. Puntes, Safer by design strategies, 012016. © 2019 by the authors. Licensee MDPI, vol.838, 2017.