A. Varki, Biological roles of glycans, Glycobiology, vol.27, pp.3-49, 2017.

R. Schauer, Sialic acids as regulators of molecular and cellular interactions, Curr. Opin. Struct. Biol, vol.19, pp.507-514, 2009.

, Int. J. Mol. Sci, vol.20, p.622, 2019.

T. Angata and A. Varki, Chemical diversity in the sialic acids and related alpha-keto acids: An evolutionary perspective, Chem. Rev, vol.102, pp.439-469, 2002.

C. Sato, . Polysialic, and . Acid, Sialic Acid Glycoconjugates in Health and Diseases, Sialobiology: Structure, Biosynthesis and Function, pp.33-75, 2013.

J. Finne, T. Krusius, and H. Rauvala, Occurrence of disialosyl groups in glycoproteins, Biochem. Biophys. Res. Commun, vol.74, pp.405-410, 1977.

C. Sato, K. Kitajima, and . Disialic, oligosialic and polysialic acids: Distribution, functions and related disease, J. Biochem, vol.154, pp.115-136, 2013.

R. L. Schnaar, R. Gerardy-schahn, and H. Hildebrandt, Sialic acids in the brain: Gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration, Physiol. Rev, vol.94, pp.461-518, 2014.

C. Sato, H. Fukuoka, K. Ohta, T. Matsuda, R. Koshino et al., Frequent occurrence of pre-existing alpha 2->8-linked disialic and oligosialic acids with chain lengths up to 7 sia residues in mammalian brain glycoproteins. Prevalence revealed by highly sensitive chemical methods and anti-di-, oligo-, and poly-sia antibodies specific for defined chain lengths, J. Biol. Chem, vol.275, pp.15422-15431, 2000.

W. L. Kiang, T. Krusius, J. Finne, R. U. Margolis, and R. K. Margolis, Glycoproteins and proteoglycans of the chromaffin granule matrix, J. Biol. Chem, vol.257, pp.1651-1659, 1982.

S. H. Wang, C. M. Tsai, K. I. Lin, and K. H. Khoo, Advanced mass spectrometry and chemical analyses reveal the presence of terminal disialyl motif on mouse b-cell glycoproteins, Glycobiology, vol.23, pp.677-689, 2013.

M. Fukuda, A. Dell, and M. N. Fukuda, Structure of fetal lactosaminoglycan. The carbohydrate moiety of band 3 isolated from human umbilical cord erythrocytes, J. Biol. Chem, vol.259, pp.4782-4791, 1984.

K. Canis, T. A. Mckinnon, A. Nowak, M. Panico, H. R. Morris et al., The plasma von willebrand factor o-glycome comprises a surprising variety of structures including ABH antigens and disialosyl motifs, J. Thromb. Haemost, vol.8, pp.137-145, 2010.

S. J. Storr, L. Royle, C. J. Chapman, U. M. Hamid, J. F. Robertson et al., The o-linked glycosylation of secretory/shed muc1 from an advanced breast cancer patient's serum, Glycobiology, vol.18, pp.456-462, 2008.

Y. Inoue, Y. C. Lee, and F. A. Troy-ll, Sialobiology and Other Novel Forms of Glycosylation, p.307, 1999.

C. Sato, Z. Yasukawa, N. Honda, T. Matsuda, and K. Kitajima, Identification and adipocyte differentiation-dependent expression of the unique disialic acid residue in an adipose tissue-specific glycoprotein, adipo q, J. Biol. Chem, vol.276, pp.28849-28856, 2001.

S. Inoue and M. Iwasaki, Isolation of a novel glycoprotein from the eggs of rainbow trout: Occurrence of disialosyl groups on all carbohydrate chains, Biochem. Biophys. Res. Commun, vol.83, pp.1018-1023, 1978.

C. Sato, K. Kitajima, I. Tazawa, Y. Inoue, S. Inoue et al., Structural diversity in the alpha 2->8-linked polysialic acid chains in salmonid fish egg glycoproteins. Occurrence of poly(Neu5Ac), poly(Neu5Gc), poly(Neu5Ac, Neu5Gc), poly(KDN), and their partially acetylated forms, J. Biol. Chem, vol.268, pp.23675-23684, 1993.

Y. Guerardel, L. Y. Chang, E. Maes, C. J. Huang, and K. H. Khoo, Glycomic survey mapping of zebrafish identifies unique sialylation pattern, Glycobiology, vol.16, pp.244-257, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00085583

K. Hanzawa, N. Suzuki, and S. Natsuka, Structures and developmental alterations of n-glycans of zebrafish embryos, Glycobiology, vol.27, pp.228-245, 2017.

L. Y. Chang, A. Harduin-lepers, K. Kitajima, C. Sato, C. J. Huang et al., Developmental regulation of oligosialylation in zebrafish, Glycoconj. J, vol.26, pp.247-261, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00642030

N. Yamakawa, J. Vanbeselaere, L. Chang, S. Yu, L. Ducrocq et al., Systems glycomics of adult zebrafish identifies organ-specific sialylation and glycosylation patterns, Nat. Commun, vol.9, p.4647, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01931174

V. Lombard, H. Golaconda-ramulu, E. Drula, P. M. Coutinho, and B. Henrissat, The carbohydrate-active enzymes database (cazy) in 2013, Nucleic Acids Res, vol.42, pp.490-495, 2014.

D. Petit, E. Teppa, U. Cenci, and S. Ball, Harduin-Lepers, A. Reconstruction of the sialylation pathway in the ancestor of eukaryotes, Sci. Rep, 2018.

, Int. J. Mol. Sci, vol.20, pp.622-641, 2019.

A. K. Datta and J. C. Paulson, The sialyltransferase "sialylmotif" participates in binding the donor substrate CMP-NeuAc, J. Biol. Chem, vol.270, pp.1497-1500, 1995.

A. K. Datta and J. C. Paulson, Sialylmotifs of sialyltransferases, Indian J. Biochem. Biophys, vol.34, pp.157-165, 1997.

K. Drickamer, A conserved disulphide bond in sialyltransferases, Glycobiology, vol.3, issue.2-3, 1993.

R. A. Geremia, A. Harduin-lepers, and P. Delannoy, Identification of two novel conserved amino acid residues in eukaryotic sialyltransferases: Implications for their mechanism of action, Glycobiology, vol.7, pp.5-7, 1997.
URL : https://hal.archives-ouvertes.fr/hal-00309885

C. Jeanneau, V. Chazalet, C. Auge, D. M. Soumpasis, A. Harduin-lepers et al., Structure-function analysis of the human sialyltransferase ST3Gal I: Role of N-glycosylation and a novel conserved sialylmotif, J. Biol. Chem, vol.279, pp.13461-13468, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00086299

A. Harduin-lepers, Comprehensive analysis of sialyltransferases in vertebrate genomes, Glycobiol. Insights, vol.2, pp.29-61, 2010.

A. Harduin-lepers, Sialic Acid Glycoconjugates in Health and Diseases, Sialobiology: Structure, Biosynthesis and Function, pp.139-187, 2013.

A. Harduin-lepers, R. Mollicone, P. Delannoy, and R. Oriol, The animal sialyltransferases and sialyltransferase-related genes: A phylogenetic approach, Glycobiology, vol.15, pp.805-817, 2005.
DOI : 10.1093/glycob/cwi063

URL : https://hal.archives-ouvertes.fr/hal-00085761

D. Petit, R. E. Teppa, and J. M. Petit, Harduin-Lepers, A. A practical approach to reconstruct evolutionary history of animal sialyltransferases and gain insights into the sequence-function relationships of golgi-glycosyltransferases, Glycosyltransferases: Methods and Protocols, vol.1022, pp.73-97, 2013.

A. Harduin-lepers, V. Vallejo-ruiz, M. A. Krzewinski-recchi, B. Samyn-petit, S. Julien et al., The human sialyltransferase family, Biochimie, vol.83, pp.727-737, 2001.
DOI : 10.1016/s0300-9084(01)01301-3

R. Y. Patel and P. V. Balaji, Identification of linkage-specific sequence motifs in sialyltransferases, Glycobiology, vol.16, pp.108-116, 2006.

A. Harduin-lepers, D. Petit, R. Mollicone, P. Delannoy, J. M. Petit et al., Evolutionary history of the alpha2,8-sialyltransferase (ST8Sia) gene family: Tandem duplications in early deuterostomes explain most of the diversity found in the vertebrate ST8Sia genes, BMC Evol. Biol, vol.8, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00328132

S. Onho, Gene duplication and the uniqueness of vertebrate genomes circa 1970-1999, Semin. Cell Dev. Biol, vol.10, pp.517-522, 1999.

D. Petit, A. M. Mir, J. M. Petit, C. Thisse, P. Delannoy et al., Harduin-Lepers, A. Molecular phylogeny and functional genomics of ?-galactoside ?2,6-sialyltransferases that explain ubiquitous expression of st6gal1 gene in amniotes, J. Biol. Chem, vol.285, pp.38399-38414, 2010.

D. Petit, E. Teppa, A. M. Mir, D. Vicogne, C. Thisse et al., Harduin-Lepers, A. Integrative view of ?2,3-sialyltransferases (ST3Gal) molecular and functional evolution in deuterostomes: Significance of lineage-specific losses, Mol. Biol. Evol, vol.32, pp.906-927, 2015.

R. E. Teppa, D. Petit, O. Plechakova, and V. Cogez, Harduin-Lepers, A. Phylogenetic-derived insights into the evolution of sialylation in eukaryotes: Comprehensive analysis of vertebrate beta-galactoside ?2,3/6-sialyltransferases (St3Gal and St6Gal), Int. J. Mol. Sci, vol.17, 1286.

J. Vanbeselaere, L. Y. Chang, A. Harduin-lepers, E. Fabre, N. Yamakawa et al., Mapping the expressed glycome and glycosyltransferases of zebrafish liver cells as a relevant model system for glycosylation studies, J. Proteome Res, vol.11, pp.2164-2177, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01224143

M. Teintenier-lelievre, S. Julien, S. Juliant, Y. Guerardel, M. Duonor-cerutti et al., Harduin-Lepers, A. Molecular cloning and expression of a human hST8Sia VI (?2,8-sialyltransferase) responsible for the synthesis of the disia motif on O-glycosylproteins, Biochem. J, vol.392, pp.665-674, 2005.

S. Takashima, H. K. Ishida, T. Inazu, T. Ando, H. Ishida et al., Molecular cloning and expression of a sixth type of ?2,8-sialyltransferase (ST8Sia VI) that sialylates O-glycans, J. Biol. Chem, vol.277, pp.24030-24038, 2002.

P. A. Gilormini, C. Lion, M. Noel, M. A. Krzewinski-recchi, A. Harduin-lepers et al., Improved workflow for the efficient preparation of ready to use cmp-activated sialic acids, Glycobiology, vol.26, pp.1151-1156, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01741256

, Int. J. Mol. Sci, 2019.

M. Noel, P. A. Gilormini, V. Cogez, N. Yamakawa, D. Vicogne et al., Harduin-Lepers, A. Probing the cmp-sialic acid donor specificity of two human ?-D-galactoside sialyltransferases (St3Gal I and ST6Gal I) selectively acting on O-and N-glycosylproteins, vol.18, pp.1251-1259, 2017.

M. Noel, P. A. Gilormini, V. Cogez, C. Lion, C. Biot et al., Microplate sialyltransferase assay (MPSA): A rapid and sensitive assay based on an unnatural sialic acid donor and bioorthogonal chemistry, Bioconj. Chem, vol.29, pp.3377-3384, 2018.

S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang et al., Gapped blast and psi-blast: A new generation of protein database search programs, Nucleic Acids Res, vol.25, pp.3389-3402, 1997.

J. Pasquier, I. Braasch, P. Batzel, C. Cabau, J. Montfort et al., Evolution of gene expression after whole-genome duplication: New insights from the spotted gar genome, J. Exp. Zool. B Mol. Dev. Evol, vol.328, pp.709-721, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01788671

J. Bentrop, M. Marx, S. Schattschneider, E. Rivera-milla, and M. Bastmeyer, Molecular evolution and expression of zebrafish ST8SiaIII, an ?-2,8-sialyltransferase involved in myotome development, Dev. Dyn, vol.237, pp.808-818, 2008.

M. Marx, E. Rivera-milla, K. Stummeyer, R. Gerardy-schahn, and M. Bastmeyer, Divergent evolution of the vertebrate polysialyltransferase stx and pst genes revealed by fish-to-mammal comparison, Dev. Biol, vol.306, pp.560-571, 2007.

M. Marx, U. Rutishauser, and M. Bastmeyer, Dual function of polysialic acid during zebrafish central nervous system development, vol.128, pp.4949-4958, 2001.

K. Yanagisawa, Role of gangliosides in Alzheimer's disease, Biochim. Biophys. Acta, vol.1768, pp.1943-1951, 2007.

L. Y. Chang, A. M. Mir, C. Thisse, Y. Guerardel, P. Delannoy et al., Harduin-Lepers, A. Molecular cloning and characterization of the expression pattern of the zebrafish ?2, 8-sialyltransferases (ST8Sia) in the developing nervous system, Glycoconj. J, vol.26, pp.263-275, 2009.

G. Garaffo, P. Provero, I. Molineris, P. Pinciroli, C. Peano et al., Profiling, bioinformatic, and functional data on the developing olfactory/GnRH system reveal cellular and molecular pathways essential for this process and potentially relevant for the kallmann syndrome

K. W. Moremen, A. Ramiah, M. Stuart, J. Steel, L. Meng et al., Expression system for structural and functional studies of human glycosylation enzymes, Nat. Chem. Biol, vol.14, pp.156-162, 2018.

A. El-battari, M. Prorok, K. Angata, S. Mathieu, M. Zerfaoui et al., Different glycosyltransferases are differentially processed for secretion, dimerization, and autoglycosylation, Glycobiology, vol.13, pp.941-953, 2003.

S. Kellokumpu, A. Hassinen, and T. Glumoff, Glycosyltransferase complexes in eukaryotes: Long-known, prevalent but still unrecognized, Cell Mol. Life Sci, vol.73, pp.305-325, 2016.

A. Harduin-lepers, D. C. Stokes, W. F. Steelant, B. Samyn-petit, M. A. Krzewinski-recchi et al., Cloning, expression and gene organization of a human Neu5Ac ?2-3Gal?1-3GalNAc-?2,6-sialyltransferase: HST6GalNAc IV, Biochem. J, vol.352, issue.1, pp.37-48, 2000.

P. F. Rohfritsch, J. A. Joosten, M. A. Krzewinski-recchi, A. Harduin-lepers, B. Laporte et al., Probing the substrate specificity of four different sialyltransferases using synthetic ?-D-galp-(1->4)-?-D-glcpnac-(1->2)-?-D-Manp-(1->O) (ch(2))7CH3 analogues general activating effect of replacing N-acetylglucosamine by n-propionylglucosamine, Biochim. Biophys. Acta, vol.1760, pp.685-692, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00085751

R. G. Spiro and V. D. Bhoyroo, Structure of the O-glycosidically linked carbohydrate units of fetuin, J. Biol. Chem, vol.249, pp.5704-5717, 1974.

S. Takasaki and A. Kobata, Asparagine-linked sugar chains of fetuin: Occurrence of tetrasialyl triantennary sugar chains containing the Gal ? 1-3GlcNAc sequence, Biochemistry, vol.25, pp.5709-5715, 1986.

V. V. Rostovtsev, L. G. Green, V. V. Fokin, and K. B. Sharpless, A stepwise huisgen cycloaddition process: Copper(i)-catalyzed regioselective "ligation" of azides and terminal alkynes, Angew. Chem. Int. Ed. Engl, vol.41, pp.2596-2599, 2002.

C. W. Tornoe, C. Christensen, and M. Meldal, Peptidotriazoles on solid phase: (1,2,3)-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides, J. Org. Chem, vol.67, pp.3057-3064, 2002.

T. Sun, S. H. Yu, P. Zhao, L. Meng, K. W. Moremen et al., One-step selective exoenzymatic labeling (seel) strategy for the biotinylation and identification of glycoproteins of living cells, J. Am. Chem. Soc, vol.138, pp.11575-11582, 2016.

S. Asahina, C. Sato, M. Matsuno, T. Matsuda, K. Colley et al., Involvement of the ?2,8-polysialyltransferases II/STX and IV/PST in the biosynthesis of polysialic acid chains on the o-linked glycoproteins in rainbow trout ovary, J. Biochem, vol.140, pp.687-701, 2006.

F. Lehmann, S. Kelm, F. Dietz, M. Von-itzstein, and J. Tiralongo, The evolution of galactose alpha2,3-sialyltransferase: Ciona intestinalis St3Gal I/II and takifugu rubripes St3Gal II sialylate galbeta1,3galnac structures on glycoproteins but not glycolipids, Glycoconj. J, vol.25, pp.323-334, 2008.

S. Kumar, G. Stecher, K. Tamura, and . Mega7, Molecular evolutionary genetics analysis version 7.0 for bigger datasets, Mol. Biol. Evol, vol.33, pp.1870-1874, 2016.

B. G. Hall, Building phylogenetic trees from molecular data with mega, Mol. Biol. Evol, vol.30, pp.1229-1235, 2013.

H. J. Atkinson, J. H. Morris, T. E. Ferrin, and P. Babbitt, Using sequence similarity networks for visualization of relationships across diverse protein superfamilies, PLoS ONE, vol.4, p.4345, 2009.

S. Ohno, Evolution by Gene Duplication, 1970.

I. Braasch, A. R. Gehrke, J. J. Smith, K. Kawasaki, T. Manousaki et al., The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons, Nat. Genet, vol.48, pp.427-437, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01594468

Y. Nakatani, H. Takeda, Y. Kohara, and S. Morishita, Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates, Genome Res, vol.17, pp.1254-1265, 2007.

N. H. Putnam, T. Butts, D. E. Ferrier, R. F. Furlong, U. Hellsten et al., The amphioxus genome and the evolution of the chordate karyotype, Nature, vol.453, pp.1064-1071, 2008.

M. Muffato, A. Louis, C. E. Poisnel, and H. Roest-crollius, Genomicus: A database and a browser to study gene synteny in modern and ancestral genomes, Bioinformatics, vol.26, pp.1119-1121, 2010.

M. Kasahara, K. Naruse, S. Sasaki, Y. Nakatani, W. Qu et al., The medaka draft genome and insights into vertebrate genome evolution, Nature, vol.447, pp.714-719, 2007.

A. Lopez-aguilar, J. G. Briard, L. Yang, B. Ovryn, M. S. Macauley et al., Tools for studying glycans: Recent advances in chemoenzymatic glycan labeling, ACS Chem. Biol, vol.12, pp.611-621, 2017.

P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang et al., Cytoscape: A software environment for integrated models of biomolecular interaction networks, Genome Res, vol.13, pp.2498-2504, 2003.

S. Yegorov and S. Good, Using paleogenomics to study the evolution of gene families: Origin and duplication history of the relaxin family hormones and their receptors, PLoS ONE, vol.7, 2012.

M. Westerfield, . The-zebrafish, and . Book, A Guide for Laboratory Use of Zebrafish (Danio rerio), p.385, 1995.

C. B. Kimmel, W. W. Ballard, S. R. Kimmel, B. Ullmann, and T. F. Schilling, Stages of embryonic development of the zebrafish, Dev. Dyn, vol.203, pp.253-310, 1995.

P. A. Gilormini, C. Lion, D. Vicogne, T. Levade, S. Potelle et al., A sequential bioorthogonal dual strategy: Mannal and sianal as distinct tools to unravel sialic acid metabolic pathways, Chem. Commun, vol.52, pp.2318-2321, 2016.

C. Thisse and B. Thisse, High resolution whole-mount in situ hybridization, In Zebrafish Science Monitor, vol.5, pp.97403-5274, 1998.