
HAL Id: hal-02095355
https://hal.science/hal-02095355

Submitted on 10 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Personalized Posture and Fall Classification with
Shallow Gated Recurrent Units

Paul Compagnon, Grégoire Lefebvre, Stefan Duffner, Christophe Garcia

To cite this version:
Paul Compagnon, Grégoire Lefebvre, Stefan Duffner, Christophe Garcia. Personalized Posture and
Fall Classification with Shallow Gated Recurrent Units. 32nd IEEE CBMS International Symposium
on Computer-Based Medical Systems, Jun 2019, Cordoue, Spain. �10.1109/CBMS.2019.00034�. �hal-
02095355�

https://hal.science/hal-02095355
https://hal.archives-ouvertes.fr


Personalized Posture and Fall Classification
with Shallow Gated Recurrent Units

Paul Compagnon∗†, Grégoire Lefebvre∗, Stefan Duffner† and Christophe Garcia†
∗Orange Labs, Grenoble, France

{paul.compagnon, gregoire.lefebvre}@orange.com
†LIRIS, UMR 5205 CNRS, INSA Lyon, France
{stefan.duffner, christophe.garcia}@liris.cnrs.fr

Abstract—Activities of Daily Living (ADL) classification is
a key part of assisted living systems as it can be used to
assess a person autonomy. We present in this paper an activity
classification pipeline using Gated Recurrent Units (GRU) and
inertial sequences. We aim to take advantage of the feature
extraction properties of neural networks to free ourselves
from defining rules or manually choosing features. We also
investigate the advantages of resampling input sequences and
personalizing GRU models to improve the performances. We
evaluate our models on two datasets: a dataset containing five
common postures: sitting, lying, standing, walking and transfer
and a dataset named MobiAct V2 providing ADL and falls.
Results show that the proposed approach could benefit eHealth
services and particularly activity monitoring.

Keywords-Gated Recurrent Units, Posture Detection, Fall
Detection, eHealth, Inertial Measurement Unit

I. INTRODUCTION

As life expectancy increases, more and more elderly
people show difficulties in their every day life, and allowing
them to stay at home is a social and public health issue1.
Many people even struggle performing basic need activities.
They are also particularly exposed to chronic diseases:
diabetes, cancer, psychological and cognitive disorders, heart
diseases, Parkinson and Alzheimer, etc. They are finally
vulnerable in simple daily life activities where they could
fall, make a wrong move or lose attention. Furthermore,
15% of the world population lives with a form of handicap,
between 2 and 4% live with severe disabilities2. All these
persons could benefit from eHealth services and particu-
larly activity monitoring [1]. Actigraphy is the process of
recording the every day life activities of a subject using
sensors (inertial sensors, for instance). Instead of organizing
regular visits at the hospital, the patient can be monitored in
his/her house with several upsides: it improves the quality
of life of the patient and shorten hospital stays while
facilitating the diagnosis as important data are collected in
the usual environment of the patient. Off course, clinical
visits are indispensable but can only take a snapshot of the

1www.who.int/ageing/publications/world-report-2015
2www.who.int/disabilities/world report/2011/report

patient’s condition and may occur too late during the disease
development [2].

Inertial data are particularly interesting as they are nowa-
days easily available from smartphone sensors (or smart
watches, etc.) which can be carried without stigmatizing the
person and are judged less intrusive at home. These data
can then be used to provide eHealth services regarding the
recorded level of activity and the distribution of those ac-
tivities during the day. Traditionnaly, the level of autonomy
has been evaluated thanks to several criteria related to the
Activities of Daily Living (ADL). This evaluation appears as
a pertinent factor for the clinical evaluation of elderly people
[3]. Nowadays, it is possible to observe, with the help of
actigraphy systems, changes in a person behavior and so the
possible loss of autonomy. When processed through machine
learning algorithms, data obtained with actigraphy systems
allow to perform activity classification and prediction and
to automatically detect changes. To be able to eventually
equip people with such systems, it requires high prediction
accuracy, particularly on critical events such as falls.

In this paper, we improve ADL and fall classification
from inertial data sequences. Our aim is to use as little
as possible outside expertise because we design our system
to easily adapt to a new user or a new activity. Thus, we
prefer not to define expert rules and not to extract explicit
features from input sequences in order to benefit as much as
possible from the model’s capability to extract and learn au-
tomatically saillant features. We then propose personnalized
shallow Gated Recurrent Unit (GRU) [4] models as they
hold the right properties to train and embed the samples
of each individual (i.e. close to real actigraphy systems).
We will show that resampling sequences during the training
phase can allow to better recognize classes, notably when
a category is represented by short and rare sequences (e.g.
fall detection).

The paper is organized as follows. We give in section II an
overview of the human activity recognition by focusing on
inertial data and machine learning. We then introduce GRU
networks in section III-A and explain inertial sequential data
specificities in section III-B. The section IV is dedicated to
the description of the experimental datasets and setups and
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exposes our results. Finally, conclusions and perspectives are
drawn in Section V.

II. RELATED WORK

Human Activity Recognition is a very broad computer
science field which aims to recognize what a person is
doing by exploiting data. It has numerous applications:
from crime detection on video surveillance images to
gesture recognition when performing a physical activity.
It can be performed in several contexts (Lara et al. [5]
listed seven types: ambulation, transportation, phone usage,
exercise/fitness, military, upper body), using different types
of data (e.g. photos, videos, sounds but also smart home
data, smart phone communications data or inertial data)
and with different approaches (i.e. time series analyzing,
rule-based models, statistical models, machine learning and
especially neural networks). We focus our state of the art
on papers performing ADL recognition on inertial data with
machine learning algorithms. The approaches can be divided
into two categories: those using handcrafted features from
the data such mean or maximum amplitude, energy, entropy,
etc. and those automatically extracting discriminant features.

Firstly, we mention papers exploiting feature vectors from
the signal. Bao et al. [6] used a decision tree to classify
20 activities including daily household activities with data
coming from five accelerometers placed at different body
locations. They classified vectors composed of several ex-
tracted features such as mean, energy, etc. They observed
that user-specific models could lead to better results.

Another paper by Yang et al. [7] presents a system which
can exploit the data of a triaxial accelerometer to recognize
eight common daily activities. They divide the classification
into two subtasks: separate dynamic and static activities
with a preclassifier using two features: average energy and
signal magnitude area. The system then performs activity
classification using a feed forward neural network trained
on feature vectors extracted from the signal. The system
has the drawback of comprising many parameters and of
using a cascade of classifications. This requires very good
performances at each step in order to not affect the overall
performances.

Likewise, Jafari et al. [8] conceived a system to distin-
guish the fall of a human from its normal behavior with
data coming from a three-axial accelerometer. The data
first pass through several preprocessing operations, then
some possibilities are eliminated with statistical rules (static,
walking, etc.). Finally, 4 features are extracted (e.g. postural
orientation, singular value decomposition, skewness and
maximum amplitude change) from the signal and classified
into 4 movement transitions with a neural network. The
transition from standing to lying corresponding to a fall.
The neural network is only used for classification whereas

it can be trained to also extract the pertinent features for
classification.

Chatzaki et al. [9] proposed a dataset called MobiAct
V2 of 12 ADL and 4 falls. They performed activity and
fall recognition on it with the goal to develop the most
effective pipeline in terms of accuracy. To do so, the authors
conducted an exhaustive study to find the best features (for
example, they found that the spectral centroid was quite
essential). They achieved their best accuracy score using
decision trees and k-nearest neighbors. We remark that the
accuracy was lower for fall categories.

Secondly, we present some papers employing automatic
feature extraction algorithms. Zeng et al. [10] used a Con-
volutional Neural Network to automatically extract features
from sequences of accelerometer data coming from a mobile
phone and performed activity classification using k-nearest
neighbors. Their approach outperformed common feature
extraction approaches such as principal component analysis.

In another work, Lefebvre et al. [11] used Bidirectionnal
Long-Short Term Memory (LSTM) to recognize symbolic
gestures from raw inertial data (accelerometer and gyro-
scope). They compared their approach to a Hidden Markov
Model (HMM) and Dynamic Time Warping on 3 experimen-
tal paradigms including personalized models. They achieved
better performances on two of those but not on personalized
models on which HMM performed best.

Likewise, Di Pietro et al. [12] proposed a new neural
network model called MIxed hiSTory Recurrent Neural
Networks (MIST) which they tested on MobiAct V2,
among others. They did not select features and learn
directly from the raw data. They separated users into fixed
train, validation and test groups and repeated the same
experiment 50 times and kept the 5 best results. Their
approach both requires less computation and produce better
results than LSTM.

All the previous works tested their approach on different
datasets and the lack of reference datasets is a known issue
among the activity recognition community. It is due to
the variety of contexts in which it can be performed and
also the variety of data that can be used. We chose to
concentrate on two datasets on which results have already
been published so we can make comparisons. We trained
our GRU models on a dataset called Postures used by the
authors of [13]. Unlike this article, we trained personalized
neural network models and so did not define expert rules
to classify the postures. The second dataset is MobiAct V2
[9]. Our approach is different from the path followed in the
original article as we do not select features and learn directly
from the raw resampled data with neural network approaches
instead of decision trees. In [12], the authors trained also
RNN architectures on the raw sequences of MobiAct v2.
Our approach differentiates itself as we used shallow GRU



(two or three layers) instead of deep LSTM/ MIST RNN and
we propose a resampled version of the dataset to predict not
only ADL but exclusively falls.

III. RECURRENT MODELS FOR ADL
CLASSIFICATION

In the following, we will present our ADL classification
pipeline which does not require to extract explicit features
from the signal or to define expert rules. For those reasons,
we chose to investigate GRU RNN.

A. Gated Recurrent Units

Recurrent Neural Networks are similar to feedforward
networks but possess recurrent connections which give the
ability to map an input sequence to an output sequence
while at each step taking the information of previous steps
into account. This enables the network to not only extract
inter-signal correlations but also intra-signal ones and thus
to detect more complex patterns. Let x be the sequence
of inputs of the network and xi be the input at time i.
A recurrent network computes ŷ, the sequence of outputs
following this equation:

ŷt = f (Wxxt +Whht−1 +bh) (1)

Where Wx and Wh designate synaptic weights matrices, b the
bias and h the recurrent connection, the hidden state coming
from the previous step. f is an activation function, generally
tanh. It is a well-known issue that these networks struggle
with long-term dependencies, that is to say when they need
to learn to retain information during a long time [14]. This
is the so-called vanishing gradient problem which has been
partly solved by LSTM [15]. GRU [4] can be viewed as
a simplified version of the classic LSTM approach, while
showing similar performances on some classical recurrent
models tasks [16], namely speech and music modeling. A
GRU will modify the way the vector ht is computed (i.e. it
modifies the hidden layer):

ht = (1− zt)h̃t + ztht−1 (2)

Similarly to the cell of the LSTM, ht is updated by
forgetting old content and directly adding some new. zt is
called the update gate and is computed according to the
following equation:

zt = σ(Wizxt +biz +Whzht−1 +bhz) (3)

where σ is the logistic sigmoid function. We have the
following relation for h̃t named the new gate:

h̃t = tanh(Wih̃xt +bih̃ + rt(Whh̃ht−1 +bhh̃)) (4)

where finally rt is the reset gate computed similarly as zt :

rt = σ(Wirxt +bir +Whrht−1 +bhr) (5)

To perform classification, this model is trained with the
negative log likelihood loss. The size of the output vector
is equal to the number of classes to predict and this loss
will make the output a probability distribution over the dif-
ferent classes (softmax). RNN are trained using an adapted
version of the back propagation called the Back Propagation
Through Time (BPTT). In fact, when a RNN is unrolled, it
behaves nearly as a feedforward network and the BPTT just
takes into account the activations of the network for each
time step.

B. Making Predictions from Sequential Inertial Data

Postures, ADL or falls exhibit a dynamic characteristic
signature (e.g. walking, running, going upstairs but also
falls) or are, on the contrary, completely static (i.e. lying,
sitting, standing, etc). Considering the whole sequence of
raw data to classify a posture is thus pertinent [11]. A
classical approach when working with sequences is to extract
several signal feature vectors from subsequences of the
signal in order to build a classifier. This approach is efficient
in numerous cases but, as the window size is short, it
cannot exploit long term dependencies. Moreover, some
pattern recognition algorithms require the full sequence to be
performed. In practice, postures vary in length: some signal
are recorded over long periods of time, such as walking or
lying, and others are by nature very short, such as getting up,
going upstairs and falling. These differences of length could
lead to two side effects when working with GRU, which
could limit their capacity to learn and to generalize this
learning. Firstly, sometimes, the sequence is too short to be
learned properly as it does not contain enough information.
Secondly, when back propagating the error through time the
error, longer sequences have more influence in the learning
process. The BPTT takes indeed into account every step of
the sequence and it is thus performed more often for longer
ones.

Therefore, we propose to resample each sensor signal
of each activity sequence using a polynomial resampling
setting them to equal length. We make the hypothesis that
resampling the dataset could lead to better results and
accelerate the learning phase (H1). Improvements could
especially be observed for classes with few examples and
short sequences (for instance, falls). This operation presents
the disadvantage that the dataset needs to be segmented into
activity sequences whereas GRU could normally classify
activities on the full sequence without segmentation (i.e. it
produces an output at each time step). Another aspect of
the ADL prediction from sequences is that, considering an
activity, the associated sequence can be very user specific.
For example, when sleeping, every body tends to prefer
different positions and move according to personal patterns.
Likewise, the gait can already be used to recognize a person
[17]. GRU can learn to detect these patterns and we assume
that it can produce more accurate predictions when trained



only with data coming from one user (H2). Defining rules for
each user is indeed time consuming and requires updating
rules for each new user or each new posture category. In
comparison, data-driven models are directly built without a
priori knowledge.

IV. EXPERIMENTS

A. Datasets

1) Postures Dataset: The first dataset we used is the so
called Postures dataset created by Quach [18]. The data
has been acquired using a 9-axis Inertial Measurement Unit
(accelerometer, gyroscopes and magnetometer, IMU) on 9
subjects executing the same sequence several times. Each
user produced 5 sequences apart from user 2 who did 10.
The sequences are composed of five activities or postures:
walking, sitting, laying, standing and transfer and have been
conceived to reflect daily routine of 24h on 24 minutes.
Transfer represents the transition between two postures.
Overall, there are about 358k labelled 9D vectors and 250
subsequences of vectors related to one activity. The sampling
frequency is about 10 Hz. The sensor is a Shake SK6 [19]
with the following range and precision for each sensor. The
range of the triple axis accelerometer is at most ±6g with a
precision of 1mg. The range of the triple axis gyroscope is
of ±500 ◦/s with a precision of 0.1 deg/second. The triple
axis magnetometer has a range of ±2 Gauss and a precision
of 1 mGauss.

2) MobiAct Dataset: The MobiAct dataset [9] is an iner-
tial dataset created to support research in ADL recognition.
It includes 15 different types of labels: 4 falls and 11
ADL. The activities were recorded following a realistic
scenario: a typical day of work by 67 subjects. In total,
the scenario was performed around 3200 times. Data were
acquired using a smartphone which the user could place
anywhere. The IMU is composed of a LSM330DLC itself
composed of a triaxis gyroscope and a triaxis accelerometer.
The measurement range of the accelerometer can be selected
between ±2g, ±4g, ±8g or ±16g. The measurement range
of the gyroscope can be selected between ±250◦/s, ±500◦/s
or ±2000◦/s. The orientation sensor combines data from the
accelerometer and the magnetometer.

B. Experimental Setups

1) Model parameters: In our experiments, only GRU
with few a few layers and neurons have been used. We
defined two specific architectures based on preliminary
experiences. We use the log likelihood loss and tuned our
networks by using dropout and weight decay to improve the
generalization. Dropout [20] randomly drops units with a
probability 0.5. Weight decay adds a small penalty to the
loss function for the magnitude of the weights, improving
generalization [21]. Finally, during personalized training, we
do not perform a validation phase as not enough data are
available to constitute a validation set. Instead, we chose

a model architecture which gave reasonable results on the
complete dataset and fixed the number of epochs (i.e. 150
epochs). Finally, each training starts with a learning rate of
0.01 which decreases by a factor 10 if the loss does not
diminish during 10 epochs.

2) Training details: On the Postures Dataset, we pro-
duced personalized models for each user. The models were
trained on 4 sequences (i.e. 9 for user 2) during 150 epochs
and were tested on 1 randomly chosen sequence. Based,
on preliminary experiments on the full dataset, we use
personalized GRU models with two hidden layers of size 8.
The process was reproduced excluding a different sequence
each time (5 times for each user except for user 2, 10
times). We so perform a k-folds leave-one-out test of our
architecture where k is the number of sequences associated
to one user.

On MobiAct, we followed the same protocol as in [12]
and trained our network on users 1 to 47 for training,
48 to 57 for validation and 58 to 67 for test. We let the
training continue until the performance on the validation
set did not increase any more during 150 epochs and then
performed a test using the best parameters obtained. We use
a network of 2 hidden layers of 10 units. We performed
fall detection which is a binary classification (i.e. all classes
of ADL against the 4 falls). We treat each trial as one
activity, the one mentioned in the file name, and labeled the
resampled sequence. For the personalized models, we split
the sequences of each user randomly into two groups which
was alternatively used as training and testing sets. Only a
few dozens of sequences are available per user.

C. Results

1) Personalized Posture Classification on Postures
Dataset: Makni et al. [13] compared two attitude device
estimation algorithms and used expert rules in order to
estimate the individual postures. Our first experiment
consists in reproducing these experiments using only
machine learning and no expert a priori rules. We chose
also to train our models for one specific user each time. The
dataset contains continuous sequences of several activities
and we do not perform resampling as we cannot segment
it, even on the training set. We present in the Figure 1.a
the distribution of the averages of the accuracy scores
obtained for all users. The boxplot shows a minimal value
of 0.669, a median value of 0.732 and a maximal value
of 0.874. The results are challenging for machine learning
algorithms because each model is build on few inertial data
sequences. This corresponds to our paradigm, where target
users provide only some examples.

A comparison is presented in Table I. On average, the
GRU accuracy of 0.742 is lower than the 0.807 achieved in
[13]. Nevertheless, our model is not tuned for each user and
no specific expert rule is applied. We used only one GRU
architecture, learn on few examples and generalize well on



unknown user sequences. This is particularly encouraging
when we focus on the user 2 performances which achieved
the best accuracy of 0.874. This is mainly due to the fact
that the user provides twice as much data as other users.
Consequently, asking people to collect only 10 sequences
for building a shallow GRU model is promising in practice.
As a reminder, these good posture classifications would
provide robustness for a eHealth actigraphy system and less
parameter calibrations.

2) Falls Detection on MobiAct: We first remarked in [9]
that falls were not as well classified as other ADL classes.
Consequently, we sought to improve the performances with
shallow GRU architectures, resampling data sequences and
building personalized models. First, we built a generic GRU
model for all users and it is thus not personalized. In Table II
and Table III, we compare the GRU performances obtained
with and without resampling strategy for 5 sequence sizes on
the validation and test set respectively. The best validation
results (i.e. F-measure=0.901, Accuracy=0.911) are achieved
when input sequences are resampled with a length of 50.
We observe a deterioration of the results when increasing
the sequence length. According to us, this is due to the
shallow architecture which is more adequate for compact
sequences. On the test set (cf. Table III), the resampling 50
outperformed by 14% the GRU model without resampling,
improving the F-measure value of 0.779 with 0.919. The
difference is less significant with the accuracy results due
to the class imbalance which affects this performance. Con-
sequently, we conclude that resampling effectively allows
better recognition of falls which validates the first part of
our H1 assumption about better performances.

Secondly, we train personalized GRU models with se-
quences of size 50 and the same architecture [10,10], which
is more realistic for building an actigraphy system, because
we learn an actigraphy system only with the final user
examples. Training in this configuration is very fast with
around 15 seconds needed to train one model on a Quadro
P6000 Nvidia GPU, which validates the second part of our
H1 assumption about the learning phase acceleration. We
compare, on the Figure 1.b, our GRU personalized models
on the original dataset and on the resampled dataset. We
observed that for 38 users out of 67, the F-measure is
above 0.8, when testing personalized GRU models with
resampling sequences. The F-measure is above 0.8, when
testing personalized GRU models without resampling input
sequences, for 32 users out of 67. Then, on average, the
resampling version outperformed by 4% the GRU model
without resampling, improving the F-measure value of 0.768
with 0.808 (cf. Table IV). Moreover, we note less variability
for the resampling version and no users below 0.5. Our
results are unfortunately hard to compare with those obtained
in [9], as they performed their classification on the 16
classes and not only on fall detection. Nevertheless, the
authors obtained with a IBk classifier the respective F-

Figure 1. Average result dispersion per user for personalized models
trained with our GRU architectures on Postures (a) and Mobiact V2 (b).

Table I
RESULTS FOR POSTURE CLASSIFICATION ON POSTURES WITH GRU.

(SD: STANDARD DEVIATION)

Method F-measure SD Accuracy SD
Makni et al [13] - - 0.807 0.024

GRU [8,8] (all users) 0.553 0.068 0.742 0.056
GRU [8,8] (user 2) 0.705 0.059 0.874 0.049

Table II
VALIDATION RESULTS FOR FALL DETECTION ON MOBIACT V2 WITH

AND WITHOUT RESAMPLING WITH GRU [10,10].

Method F-measure SD Accuracy SD
without resampling 0.786 0.051 0.894 0.027
with resampling 50 0.901 0.022 0.911 0.003
with resampling 100 0.899 0.032 0.899 0.032
with resampling 200 0.889 0.033 0.889 0.033
with resampling 300 0.863 0.053 0.863 0.060
with resampling 500 0.880 0.024 0.880 0.025

Table III
TEST RESULTS FOR FALL DETECTION ON MOBIACT V2 WITH AND

WITHOUT RESAMPLING WITH GRU [10,10].

Method F-measure SD Accuracy SD
without resampling 0.779 0.035 0.894 0.027
with resampling 50 0.919 0.020 0.905 0.017

Table IV
TEST RESULTS FOR PERSONALIZED FALL DETECTION ON MOBIACT V2

WITH AND WITHOUT RESAMPLING WITH GRU [10,10].

Method F-measure SD Accuracy SD
without resampling 0.768 0.161 0.883 0.135
with resampling 50 0.808 0.114 0.878 0.073



measure values 0.832, 0.760, 0.709 and 0.757 for classifying
the classes ”BSC”, ”FKL”, ”FOL” and ”STU”. By contrast,
their proposal requires a lot of signal processing methods to
extract high dimensional feature vectors based on human
expertise. Thus, our proposed method is very promising
as it uses only data with 50 samples and shallow GRU
personalized models and gets the F-measure score of 0.808.

V. CONCLUSIONS AND PERSPECTIVES

We presented in this paper a new scheme based on
GRU neural networks for posture and fall classification
from resampled sequential data. This novel strategy relies
on no predefined rules and does not need any handcrafted
features. Then, we showed the potential of personalized
models to improve the global performance and to accelerate
the deployment of the system as GRU models require only
few data sequences to train.

Our perspectives are to train personalized models on
MobiAct for ADL classification. Unfortunately, this dataset
does not provide enough sequences to effectively train GRU
models. Consequently, we will investigate how to learn from
few examples (i.e. one-shot learning [22]) and how to build
a generic model first and then use fine-tuning strategies for
the final user customization.
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