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ABSTRACT
To enable smooth zooming, we propose a method to continuously

generalize buildings from a given start map to a smaller-scale goal

map, where there are only built-up area polygons instead of in-

dividual building polygons. We name the buildings on the start

map original buildings. For an intermediate scale, we aggregate the

original buildings that will become too close by adding bridges. We

grow (bridged) original buildings based on buffering, and simplify

the grown buildings. We take into account the shapes of the build-

ings both at the previous map and goal map to make sure that the

buildings are always growing. The running time of our method is in

O(n3), where n is the number of edges of all the original buildings.

The advantages of our method are as follows. First, the buildings

grow continuously and, at the same time, are simplified. Second,

right angles of buildings are preserved during growing: the merged

buildings still look like buildings. Third, the distances between

buildings are always larger than a specified threshold. We do a case

study to show the performances of our method.

CCS CONCEPTS
• Applied computing→ Cartography;
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1 INTRODUCTION
Digital multi-scale maps such as Google Maps and OpenStreetMap

support zooming by displaying maps at different levels. This dis-

crete strategy may results in sudden changes, which disturb user

navigation. To provide better zooming experience, we try to pro-

duce a sequence of maps with small incremental changes from a

level to another level. This process is known as continuous general-
ization.
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A way to achieve continuous generalization is to use morphing.

Often, a start map and a goal map, respectively at a larger scale and

a smaller scale, are used as input, then maps at intermediate scales

are produced while the start map is morphed to the goal map. In

order to morph, correspondences between two maps need to be

defined. For example, corresponding points between a pair of poly-

lines have been investigated based on dynamic programming [17],

Delaunay triangulations and binary line generalized tree (BLG-tree)

[8], and simulated annealing [14]. From a point to its corresponding

point, a straight-line trajectory is often used to interpolate. Peng

et al. [19] defined trajectories based on least-square adjustment

in order to obtain more reasonable intermediate-scale polylines.

Using morphing, Peng et al. [20] continuously generalized admin-

istrative boundaries based on compatible triangulations. When the

numbers of line features are different on the start and goal maps, a

continuous selection is required and Chimani et al. [5] proposed to

generate a selection sequence applicable for road network. They

removed one road at each step while keeping the remaining roads

connected.

These methods are interesting but only work on lines and our

problem of building polygon interpolation cannot be achieved by

similar morphings. Regarding the continuous generalization of

polygon features, Danciger et al. [7] proposed to grow polygons

when a map was zoomed out. Their method preserves polygons’

topology, area-ratios, and relative positions. In the case where the

goal map is an aggregated version of start land-cover map, Peng

et al. [21] computed optimal aggregation sequences for land-cover

areas.

Buildings are important elements on maps, many methods have

been proposed to generalize them but not necessarily in a continu-

ous way. For example, Haunert and Wolff [11] simplified a set of

buildings based an integer program. Their simplification minimizes

the number of edges of all the buildings and guarantees that the

errors are smaller than a user-defined tolerance. At the same time,

no topological conflict is introduced by the simplification. Buchin

et al. [2] simplified buildings based on edge-move operations. Their

method preserves orientations of edges.

When users zoom out on digital maps, buildings become smaller

and the distances between buildings decrease. So simplification

is not the only necessary operation, and buildings can also be ag-

gregated to legible enough [29]. Several methods were proposed

to aggregate buildings while preserving their shape (right angles

remain) [6, 23, 24]. These algorithms can be used as inspirations to

define a continuous transformation of buildings.

Algorithms were also proposed to create built-up area polygons

(that appear in our goal map) from individual building polygons

https://doi.org/10.1145/3152178.3152188
https://doi.org/10.1145/3152178.3152188
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(that appear in our start map). For instance, Chaudhry and Mack-

aness [4] identified the boundaries of urban settlement by calculat-

ing ‘citiness’ based on buildings. But the method cannot be adapted

to provide a continuous transformation from the buildings to the

built-up area.

Finally, some papers directly tackle the continuous transforma-

tion of buildings when scale is reduced. Li et al. [15] morphed be-

tween two buildings at different scales. They managed to preserve

the orthogonal characteristics of buildings, but their algorithm can-

not be used in our case as our goal map does not contain buildings

anymore. Touya and Dumont [27] proposed a progressive trans-

formation of buildings into a built-up area, where buildings are

progressively replaced by the shape of the block they belong to.

However, this last algorithm is not continuous enough, as each iter-

ation directly transforms a set of buildings in a block into a polygon

that covers the whole block. So there is no existing solution for the

continuous generalization of building polygons into built-up area

polygons.

Our contributions are as follows. In Section 2, we continuously

generalize a start map, of buildings, to a smaller-scale goal map. The

generalization consists of aggregating, growing, and simplifying.

We aggregate original buildings which will be too close at an output

scale by adding bridges. We grow (bridged) original buildings by

buffering, where we use so-called miter joins to keep the right

angles of buildings. Because of using this kind of joins instead of

round ones, we have more problems. We show how to solve these

problems. We also simplify the buildings at the output scale. Finally,

an analysis of running time is presented at the end of this section.

We carry out a case study and discuss the performances of our

method in Section 3. We conclude our paper in Section 4.

2 METHODOLOGY
The input map is our start map. We denote the scale of the start

map by 1 : Ms. We generate a goal map at scale 1 : Mg (Mg > Ms)

by generalizing the start map. We use time t ∈ [0, 1] to define the

continuous generalization process. We require that the general-

ization yields exactly the start map when t = 0 and the goal map

when t = 1. The start map should be continuously changed to the

goal map when t increases from 0 to 1. For the sake of convenience,

we define parameterMt = Ms + t · (Mg −Ms).

The continuous generalization is carried by dilating the original

buildings. If dilated buildings become too close at time t , we aggre-
gate the original buildings by adding bridges. We grow the (bridged)

original buildings by buffering with miter joins. At any time t , the
grown buildings need to be simplified to look like buildings. This

simplification is carried out in two steps: the first one is to use

dilation and erosion to remove “dents” and “bumps”; the second

step is to remove vertices using Imai–Iri algorithm [12]. To make

sure that buildings never shrink when t is increasing, we merge

the shape of a building at time t and its shape at the immediately

previous step (before t ). Also, we clip the building using the shape

on goal map to ensure some continuity.

The operators of the proposed method are presented in the fol-

lowing subsections:

(a) rectangle (d) square(b) round (c) miter

Figure 1: Buffering a polygon using round,miter, and square
joins.

(a) bu�ering using miter joins, with distance dG,t

(b) squaring if spikes are too long

dG,t

dG,t

dG,t

dG,t

Figure 2: Using square joins instead of miter joins to avoid
long spikes.

2.1 Growing buildings by buffering
We denote by dG the growth for goal map. At time t , the growth is

dG,t = t · dG. (1)

There are three typical joinswhen buffering a polygon, i.e., round,

miter, and square joins (see Figure 1). We choose the miter joins to

grow buildings in order to preserve the right angles. If an angle is

acute, however, an excessively long spike will be produced. This
spike may go across other buildings (see for example Figure 2a). To

avoid this kind of interruptions, we require that if the tip of a spike

is more than αdG,t (α ≥ 1) away from the original vertex, a square
join is applied (see Figure 2b). To keep right angles of buildings, we

must have α ≥
√
2. We set α = 1.5. In this case, a square join will

be applied when an angle is smaller (more acute) than 83.6°.

2.2 Simplifying grown buildings based on
dilation and erosion

As mentioned earlier, building simplification methods have already

been proposed. Damen et al. [6] generalized buildings using mor-

phological operators. A drawback of this method is that the orien-

tation of the buildings have to be identified. Meijers [16] simplified

buildings using offset curves generated based on straight skeletons.

Our method is similar to Meijers [16]. We dilate and erode the build-

ings to remove dents and bumps that can occur when buildings

grow (see Figure 3).
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(a) polygon (b) dilate with d

(c) erode with 2d (d) dilate with d

d

Figure 3: Removing a dent by dilating and then removing
a bump by eroding. (a) A polygon with a dent and a bump.
(b) Dilating the polygon in (a) with distance d to remove the
dent. (c) Eroding the polygon in (b) with 2d to remove the
bump. (d) Dilating the polygon in (c) with d so that the result
has the same size as the polygon in (a).

(a) (b)

d1 d2

Figure 4: Dilating the gray polygon, then eroding the dilated
polygon. (a) Dilating and eroding with distance d1. (b) Dilat-
ing and eroding with d2, where d2 > d1. In (a) the result of di-
lation and erosion is the same as the original polygon, while
in (b) the result consists of two parts.

At time t , we should grow buildings with distance dG,t . We dilate

with distance dD,t (dD,t > 0), erode with dD,t +dE,t (dE,t > 0), and

dilate back with dE,t . A problem of this process is that a building

may be split into several parts by erosion (see Figure 4 for example).

The reason is that some parts of a building may be increased (by

growing and dilating) with distancedG,t+dD,t , but can be decreased
(by eroding) as much as α(dD,t +dE,t ). IfdG,t +dD,t < α(dD,t +dE,t )
and the building is not thick enough, a thin part may disappear. In

order to avoid this problem, we require that

dG,t + dD,t ≥ α(dD,t + dE,t ),

which means

dD,t ≤
dG,t − dE,t

α − 1

. (2)

We would like to use dE,t =
l
2
·Mt so that any dents and bumps

narrower than l will be removed. We set l = 0.3mm in the map,

which was used as a length threshold by, for example, Regnauld

[23]. Unfortunately, distance dG,t can be arbitrarily small according

to Equation 1, but dE,t is at least
l
2
Ms. In this case, dG,t − dE,t ≤ 0

when t is small, which violates Equation 2, where dD,t > 0. As a

dG,t
dG,t + dD,t

(b) (c)(a) (d)

dG,t

Figure 5: Removing a bay by dilating and eroding. (a) An
aggregated building by adding bridges (see Section 2.3). (b)
Growing the aggregated building with distance dG,t , where
the region marked by the dashed circle is a bay. (c) Dilating
the grown building with dD,t . (d) Eroding the dilated build-
ing with dD,t .

compromise, we set erosion distance

dE,t = t ·
l

2

Mg. (3)

Still, we have to make sure that dG,t − dE,t > 0, which means

t · dG − t · l
2
Mg > 0. As a result, we need to make sure that

Mg <
2dG
l
. (4)

when we grow a bridged building, A “bay” may appear (see

Figure 5b). We remove such a bay by dilating (see Figure 5c) and

then eroding (see Figure 5d) with distancedD,t . We define the width

of a bay as the diameter of the largest circle that can be placed in

the bay. If the width of a bay is smaller than 2dD,t , then the bay

can be removed by dilating with distance dD,t . We wish to remove

bays which have widths less than 2r
h
. Variable r

h
= 2

√
a
h
/π is the

radius of a hole which is just large enough to be presented on map.

Following [4], we set area a
h
= 8mm

2
on map. Sometimes, our

dD,t is not large enough to remove a bay with width r
h
because of

the limitation from Equation 2. We define

dD,t = min(
dG,t − dE,t

α − 1

, r
h
Mt ). (5)

2.3 Iteratively aggregating close buildings by
adding bridges

We grow each original building and, as illustrated in Section 2.2,

simplify the grown building. If some buildings become too close

after these operations, we aggregate them by adding bridges (see

for example Figure 6). Following Stoter et al. [25], we define that

two buildings are too close if their distance is less than ε = 0.2mm

on map. The real separation threshold at time t is

dε,t = ε ·Mt . (6)

Our way of detecting close buildings is simple. We buffer build-

ings with distance dε,t /2 using round joins (see Figure 1b). We

merge the buffers that overlap each other. The original buildings

intersecting the same merged buffer are identified as a group of

close buildings. For each pair of the original buildings in the same

group, we connect them by adding a line segment linking the near-

est points. The line segments may cross each other or even intersect

buildings. To make the topology simple, we only select some of
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t = 0 t = 0.4

t = 0.6 t = 1

bridge grow

bridge groworiginal buildings

bridge grow

Figure 6: Aggregating original buildings in the same group
by adding bridges. Then grow the bridged buildings.

the line segments as bridges. We consider each building as a node

and each line segment as an edge, then we have a graph. Using

Prim’s algorithm [22], we find a minimum spanning tree (MST) in

the graph, taking the lengths of the line segments as the weights.

As a result, the line segments corresponding to the edges in the

MST are identified as bridges. We aggregate the group of original

buildings by adding these bridges.

Aggregated buildings may become too close because of the addi-

tional bridges. Therefore we have to iterate the aggregation process.

Figure 7 shows such an example. For example, we grow and buffer

buildings p, q, and r . As the buffers of q and r overlap (see Figure 7c),
we aggregate buildings q and r by adding a bridge (see Figure 7d).

There are two buildings left in Figure 7d. We then grow and buffer

the buildings in Figure 7d, the buffer of building p overlap the buffer

of the bridge for q and r (see Figure 7f). Finally, building p is aggre-

gated with bridged q and r (see Figure 7g), and there is only one

building left in Figure 7g. Then we grow and buffer again to get

the final geometry of the group. As the number of buildings does

not decrease comparing to last process (one building before, one

building after), the iteration stops.

When buildings are grown and aggregated iteratively, bridges are

added, and these bridges have a width of 2dG,t at time t . This setting
guarantees that no bridge is thin when t = 1. As we aggregated all

buildings that will be too close, we are able to guarantee that there

is no pair of buildings which has separation distance less than dε,t .

2.4 Simplifying aggregated buildings using
Imai–Iri algorithm

As the scale is decreasing (Mt increases), we should remove more

and more details. So, the aggregated and grown buildings are sim-

plified using Imai–Iri algorithm [12]. First, this algorithm finds all

the valid shortcuts of a polyline. A shortcut is valid for a segment

if the distance between the segment and the shortcut is at most a

specified value (see Figure 8). We set the value also as l . That is, at
time t , the threshold distance is

dl,t = l ·Mt . (7)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

dG,t dG,t + dε,t /2

p

q r

Figure 7: Iteratively aggregating close buildings by adding
bridges. (a) Original buildings p, q, and r . (b) Growing the
original buildingswith distancedG,t . (c) Buffering the grown
buildings with distance dε,t /2 using round joins. (d) Aggre-
gating buildings q and r by adding a bridge, as their buffer
overlap each other in (c). (e) Growing the buildings in (d)
with distance dG,t . (f) Buffering the grown buildings in (e)
with distance dε,t /2 using round joins. (g) Aggregating build-
ings p, q and r by adding bridges. (h) Growing the buildings
in (g) with distance dG,t . (i) Buffering the grown buildings in
(h) with distance dε,t /2 using round joins.

≤ l
> l

valid

invalid

l

Figure 8: Valid and invalid shortcuts for Imai–Iri algorithm.

Second, the algorithm finds a sequence of valid shortcuts, from the

beginning of a polyline to the end, using breadth-first search. The

sequence of valid shortcuts is an approximation of the polyline and

has the least number of line segments, with error smaller than dl,t .
We add two more constraints for a shortcut to be valid. First, a

shortcut must be completely inside the grown building. If a shortcut

is outside, we may be not able to arrive at the shortcut by grow-

ing. Second, a shortcut is not allowed to intersect the aggregated

building. If we allow this intersection, the building will have to be

shrunk, which should be avoided.
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dG,t1 + dD,t1
dG,t1 − dE,t1 dG,t1

dG,t2 + dD,t2
dG,t2 − dE,t2 dG,t2

dG,t3

(a) (b) (c) (d)

(e) (g)(f)

Figure 9: A building shrinks because of dilation and erosion,
where t1 = 0.6, t2 = 0.7, and t3 = 1. The gray polygons rep-
resent the original building. (a) Growing and Dilating the
building with distances dG,t1 and dD,t1 , respectively; (b) Erod-
ing the polygon in (a) with dD,t1 + dE,t1 ; (c) Dilating the poly-
gon in (b) with dE,t1 . (d) The goal shape. The process of (e),
(f), and (g) is the same as the process of (a), (b), and (c). The
darker gray piece in (g) shows the part which is included in
the polygon of (c), but not in the polygon of (g).

The classical way to filter points in a polyline or polygon is the

Douglas–Peucker algorithm [9], but it did not filter enough the

geometry, or damaged too much the shapes when the threshold

was bigger, so the Imai–Iri algorithm was chosen as a better fit.

2.5 Generating buildings on intermediate-scale
maps

Both the erosion and line simplification may result in shrinking a

building. Figure 9 and Figure 10 show such examples respectively.

To avoid these kinds of shrinking, for a building, we merge its

shape at time t and its shape at the immediately previous step

(before t ). For example, we generate a sequence of 10 maps, which

means t ∈ {0.1, 0.2, . . . , 1}. Figure 9c shows the result at t = 0.6. In

Figure 9g, the dark-gray part included in the result at t = 0.6, but not

in the result at t = 0.7. In other words, the result at t = 0.7 shrinks

at the dark-gray part. To prevent the shrinking at t = 0.7, we merge

the result at t = 0.7 with the result of the immediate previous step,

i.e., t = 0.6. The merged result is shown in Figure 11a. Similarly,

Figure 11b shows the merged result of buildings in Figure 10c

and Figure 10h. This merge also avoids bridges’ shrinking. Figure 12

shows such an example.

Added to this shrinking problem, a building aggregate on an

intermediate map should never exceed the goal shape of the aggre-

gated building. Otherwise, the building will need to be shrunk to

ensure continuity with the goal built-up polygon. To guarantee this

dG,t1 + dD,t1
dG,t1 − dE,t1 dG,t1

dG,t3

dG,t2 + dD,t2
dG,t2 − dE,t2 dG,t2

(a) (b) (c) (d)

(e) (g)(f) (h)

dG,t2

Figure 10: A building shrinks because of line simplification,
where t1 = 0.7, t2 = 0.8, and t3 = 1. The gray polygons repre-
sent the original building. The process of (a), (b), and (c), and
the process of (e), (f), and (g) are the same as the processes
in Figure 9. (d) The goal shape. (h) Simplifying the polygon
in (g) using the Imai–Iri algorithm. Note that dl,t1 < dl,t2 (see
Equation 7), which is why the Imai–Iri algorithm does not
remove any vertex of the polygon in (c), but removes two
vertices of the polygon in (g). The darker gray pieces in (h)
show the parts which are included in the polygon of (c), but
not in the polygon of (h).

(a) (b)

Figure 11: Merging a polygon with the polygon at the imme-
diately previous step. (a) Merging the polygons of Figure 9c
and Figure 9g. (b) Merging the polygons of Figure 10c and
Figure 10h.

consistency, we clip the building using the goal shape and remove

the outside parts.

2.6 Eliminating small buildings
Following the previous steps of continuous generalization may

result in the creation of small isolated building aggregates that

do not belong to the goal map polygon because of their isolation.

That is why we eliminate a building aggregate if its area is smaller

than a threshold. Following Stoter et al. [25] and Chaudhry and
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dG,t1 + dε,t1/2

dG,t2dG,t2 + dε,t2/2

(a)

dG,t1

dG,t2

p

q
r

(b) (c) (d)

(e)(f) (g) (h)

Figure 12: Avoiding shrinking resulted by moved bridges,
where t1 = 0.5 and t2 = 0.6. (a) Original buildings. (b) Growing
buildings with distance dG,t1 and dilating with dε,t1/2; build-
ings p and q are identified as in the same group. (c) Aggre-
gating p and q by adding a bridge. (d) Growing the (bridged)
buildings in (c) with distance dG,t1 . (f) Growing original
buildings with distance dG,t2 and dilating with dε,t2/2; all
the three buildings are in the same group (g) Aggregating
by adding bridges according to the MST. (h) Growing the
bridged building in (g) with distance dG,t2 . The bridge in (d)
shrinks comparing to (h). (e) Avoiding this shrinking at
time t2 by merging buildings of (d) and (h).

Mackaness [4], we set this threshold as a = 0.16mm
2
on map. The

real threshold at time t is

at = a ·M2

t .

For a group of buildings that will be aggregated into one built-up

area at time t = 1, we consider the area sum of all the buildings at

any time t , instead of considering each building individually.

As mentioned in Section 2.2, we remove holes that have area

less than a
h
= 8mm

2
on map. The real area threshold for a hole at

time t is
a
h,t = a

h
·M2

t .

2.7 Running time
Suppose that our input has n edges in total. Operations like grow-

ing, dilation, erosion, merge, and clip cost time O(n2) [10, 18]. We

iteratively aggregate in Section 2.3. In the worst case, we need to

repeat O(n) times, which increases our running time to O(n3). It is
unlikely that we need to repeat the aggregation more than twice,

though. Simplifying polygons using Imai–Iri algorithm needs time

O(n3). The improved version of Imai–Iri algorithm by Chan and

Chin [3] does not help in our case because we havemore constraints

when simplifying (see Section 2.4). As a result, the running time of

our method is in O(n3).

3 CASE STUDY
We have implemented our method based on C# (Microsoft Visual

Studio 2015) and ArcObjects SDK 10.4.1. The code is available in

open source on Github
1
. The offsetting function and clipping func-

tion are available from library Clipper of Johnson [13], which is

1
https://github.com/IGNF/Continuous-Generalisation

400m

Figure 13: Data. There are 2,590 buildings,which in total have
19,255 edges and have area 448,996.8m2.

based on the clipping algorithm of Vatti [28]. The offsetting function

is used for the buffering, dilation, erosion, and merge operations.

We ran our case study under 64-bit Windows 7 on a 3.3GHz dual

core CPU with 8GB RAM. We measured processing time by the

built-in C# class Stopwatch. Our testing data is extracted from a

dataset produced by the French Mapping Agency (IGN); see Fig-

ure 13. The data is at scal 1 : 15,000, which means Ms = 15,000.

It represents the buildings of four towns, i.e., Aussevielle, Den-

guin, Poey-de-Lescar, and Siros, in the Pyrénées-Atlantiques county,

south-western France. IGN also stores a dataset at scale 1 : 50,000.

This dataset was basically obtained from the data at scale 1 : 15,000

by buffering with distance 25m, where sometimes distance 50m

was also used in order to identify towns. A restriction for the town

from Boffet [1] is that the longest edge in an MST of the buildings

should be shorter than 100m.

We set our goal scale at 1 : 50,000, which means Mg = 50,000,

and dG = 25m so that we can compare our result with the existing

data. Also, this setting makes Equation 4 hold, where l = 0.3mm.

In Equation 5, the first part is always smaller than the second part

according to our settings. As a result dD,t = t · 35m, where dE,t =
t · 7.5m according to Equation 3 and α = 1.5.

Our program took 93.6 s to compute the goal shapes of the built-

up areas. The 56 built-up areas have 2,095 edges before line simpli-

fication. Using the Imai–Iri algorithm, we have 1,102 edges left. In

comparison, there are 1,597 edges left when we simplified using

the Douglas–Peucker algorithm.

Figure 14 shows the bridged original buildings as well as our

result of built-up areas at time t = 1 (almost the same as the goal

shapes). The transparent polygons in Figure 14 are the data of

built-up areas at scale 1 : 50,000 from IGN. No small building

was removed in our result or the IGN data. The boundaries of

our built-up areas are more straight than that of IGN data, where

we have 1,135 edges while the data has 4,968 edges. From this

perspective, we would say that our result is more reasonable than

the existing data. A questionnaire, however, is needed to make a

more convincing comparison.

We produced a sequence of 10 maps, i.e., t ∈ {0.1, 0.2, . . . , 1}.

This production costs 668.2 s in total. We show such a sequence of

maps in Figure 15 for the marked region in Figure 14. We counted

https://github.com/IGNF/Continuous-Generalisation
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400m

Figure 14: Bridged original buildings, goal shapes at scale 1 : 50,000 (darker polygons), and the built-up areas at scale 1 : 50,000
from IGN (transparent polygons). Some built-up areas from IGN are split because of streets’ crossing. There are 56 goal shapes,
which have 1,135 edges in total. We show a sequence of maps in Figure 15 for the region marked by the dashed circle.

the numbers of buildings in our results, and compared them to the

numbers calculated by Töpfer’s radical law (see Figure 16) and our

areal law. We have unexaggerated-area symbols, so for Equation 2

of Töpfer and Pillewizer [26] we used C
b2

and Cz3. As a result, we

computed the numbers according to

nt = ns
Ms

Mt
,

where ns = 2,590 is the number of buildings on start map and nt
is the number of buildings on a map at scale 1 : Mt . For the areal

law, we argue that the number of buildings in a unit area on map

should be fixed, which leads to

n′t = ns

(
Ms

Mt

)
2

.

According to Figure 16, our numbers decrease faster than the num-

bers of both the radical law and the areal law.

4 CONCLUSION
We proposed a method to continuously generalize buildings to built-

up areas by aggregating and growing. We managed to produce a

sequence of maps in which the buildings are always growing and,

at the same time, are simplified. For the goal map at scale 1 : 50,000,

the shapes of our built-up areas are more reasonable than the data

from IGN.

It is always interesting to know the quantity we should keep

on a map. We compared the numbers of buildings, and it is more

consistent with the areal law than Töpfer’s radical law. Another in-

teresting problem is to compare the area of the buildings. Eventually,

our result is a set of settlement boundaries. An interesting problem

is to compare our method with Chaudhry and Mackaness [4]. Our

method is supposed to provide a smooth transition between repre-

sentations with individual buildings and representations with built-

up areas, but the only way to verify that smoothness is achieved is

to carry out a user survey where our approach is compared to non

continuous generalization approaches.
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