
A new implementation of Spat in Max

Thibaut Carpentier
STMS (UMR 9912) — IRCAM — CNRS — Sorbonne Université

1, place Igor Stravinsky, 75004 Paris
thibaut.carpentier@ircam.fr

ABSTRACT

Ircam spat⇠ is a real-time audio engine dedicated to
sound spatialization, artificial reverberation, and sound dif-
fusion. This paper introduces a new major revision of the
software package (spat⇠ 5), and its integration in the Max
environment. First, we present the newly adopted OSC in-
terface that is used throughout the library for controlling
the processors; we discuss the motivations for this choice,
the syntax in use, and the potential benefits in terms of us-
ability, performances, customization, etc. Then we give an
overview of new features introduced in this release, cov-
ering Higher Order Ambisonics processing, object-based
audio production, enhanced inter-operability with VR or
graphics frameworks, etc.

1. INTRODUCTION

Ircam’s Spatialisateur [1, 2], frequently dubbed spat⇠,
is a real-time audio engine dedicated to sound spatializa-
tion, artificial reverberation, and sound diffusion. It has
been developed at Ircam since the early 1990s, and it primi-
rarly operates in the Max [3] environment. It is packaged
as a large library of processors, and structured around a
feedback delay network reverberation unit [4], and pan-
ning modules. These processors can be parameterized by a
high-level control interface; this allows to specify and mod-
ulate the acoustical quality of the synthesized room effect
according to perceptually relevant criteria [5, 6]. spat⇠
has applications in various fields, such as concerts, mixing,
post-production, virtual reality, sonic installations, or sound
design.

The software suite is developed through Agile methods [7],
and it continuously integrates the research outcomes of the
Acoustics and Cognition Team (formerly Room Acoustics
Team). It has therefore evolved significantly over the years,
and the latest major revision, spat⇠ 4, was released in
2009 and presented in [8]. This paper introduces spat⇠ 5,
a new revision of the environment. As the application is
built as a long-term project, its development roadmap tack-
les multiple concerns: improvement of existing features,
implementation of new features, maintenance (adaptive,
corrective, and preventive), optimization, architecture refac-
toring (to improve the maintainability and extensibility of

Copyright: c� 2018 Thibaut Carpentier et al. This is an open-access article dis-

tributed under the terms of the Creative Commons Attribution 3.0 Unported License,

which permits unrestricted use, distribution, and reproduction in any medium, pro-

vided the original author and source are credited.

the code base), etc. This paper first discusses a major refac-
toring of the environment (sections 2 and 3), and then intro-
duces some of the newly added features (section 4).

Historically, spat⇠ relies on an object-based internal
model wherein the room effect consists of four temporal
sections that are filtered and panned independently: direct
sound, early reflections, late diffuse reflections, and rever-
beration tail (see section 3 in [8] for further details). This
framework has been found useful and relevant in many sit-
uations, and it is preserved in the newly presented version.
However, one significant change of spat⇠ 5 concerns the
software interface with its host environment.

2. OSC INTERFACE

2.1 Motivations

Released in 2008, Max 5 first introduces the concept of
“attributes”. Using the analogy of object-oriented program-
ming, one can say that each external object in Max is a
class instance, and attributes are member variables of this
class. The Max API provides functionalities to publicly (i.e.
to the end user) expose attributes, and to manipulate them
via getter and setter methods. spat⇠ 4 intensively uses
this mechanism, as most control parameters of spat⇠ are
exposed as attributes. Such design choice has several advan-
tages, and also, in retrospect, some drawbacks. The advan-
tages are clear: attributes are very well integrated in Max,
they can be easily accessed (attrui, getattr, inspec-
tor), and stored (pattr, pattrstorage); they provide
an explicit syntax (unlike arguments). From a developer
perspective, they are easy to integrate, through a comprehen-
sive API. For the very specific context of spat⇠, however,
it turns out that attributes are somewhat inappropriate:

• spat⇠ externals are inherently multichannel pro-
cessors, and they often come with a large number
of attributes (typically proportional to the number of
channels). This may lead to a slow or inconvenient
navigation throughout Max context menus. Further-
more, Max attributes are stored as arrays which is
inappropriate for spat⇠ parameters; a tree struc-
ture would be better suited so as to reflect the data
hierarchy 1 . Also, storing attributes as lists can lead
to poor performances: for instance, pattr (storage

1 It is theoretically possible to create attributes of attributes in order to
generate a hierarchical tree; however this does not really solve the problem,
and does not serve simplicity.

SMC2018 - 184



mechanism for attributes) needs to copy the whole
list as soon as one element is modified.

• spat⇠ objects are often polymorphic: the type and
number of exposed parameters may change over time.
One example is the spat.pan⇠ object which ex-
hibits different properties whether it operates in stereo,
binaural, Ambisonics, etc. Max attributes are some-
what inadequate to reflect this polymorphism 2 .

• Attributes are strictly specific to the Max API. The
spat⇠ software library is integrated in many envi-
ronments: Matlab 3 , Spat Revolution 4 , Ircam Tools
plugins 5 , Open Music [9], Pure Data 6 , etc. Each
binding requires some glue code to interoperate with
the host application. From a developer perspective,
it is important to minimize the workload and main-
tenance for such glue code; from a user perspective,
it is efficient to use a similar interface (e.g. same
syntax) in various hosts.

We have therefore shifted our ground, and adopted for
spat⇠ 5 a new protocol interface and syntax based on
Open Sound Control (OSC [10]). Attributes are no longer
used.

OSC was somehow an obvious choice: this protocol is
widely used and accepted in the audio community, it eases
inter-application communication, allows for interoperability
with remote devices (e.g. via UDP/IP), etc. It can be easily
implemented, and several libraries and language bindings
are available. Its URI-style symbolic naming scheme is
well suited for many computer music applications such as
spat⇠. In addition to conventional messages, the protocol
supports “bundles” which encapsulate several simultaneous
messages, simplifying the transmission of a large amount
of synchronous events. Finally it supports pattern matching
language in order to dispatch a single message to multiple
recipients.

2.2 Integration in Max

2.2.1 Syntax

spat⇠ 5 externals are controlled via OSC syntax. At
the Max interface level, messages are converted to/from
Max native format: atoms. Such conversion is trivial
as atoms and OSC arguments have very similar data type
(int, float, symbols, etc.). OSC bundles are transmitted
as FullPacket that only convey a pointer to a memory
address (similarly to Max dictionaries). This allows for the
very efficient transmission of large amount of data (the Max
scheduler service is triggered only once per bundle, and not
for each individual message contained in the bundle).

The syntax we have adopted is inspired from the REST
(Representational State Transfer) style [11], and it happens
to be quite close to the spat⇠ 4 syntax (with the addition

2 Again, it is possible, with the API, to create object attributes – as
opposed to class attributes – that can be dynamically added or removed,
but this does not serve simplicity.

3 Not publicly released at the time of writing this article.
4 www.spatrevolution.com
5 www.ircamtools.com
6 Not publicly released at the time of writing this article.

of the / separator). For instance, to control the Cartesian
position of a sound source in spat⇠ 5, one can use the
following message:
/source/1/xy [float][float]
External objects support pattern matching semantics, which
facilitate the grouping of multiple elements:
/source/*/mute [boolean]
/source/[2-5]/mute [boolean]
/source/{3,6,7}/mute [boolean]
Routing and dispatching OSC address patterns in Max may
require the manipulation of regular expressions (regexp),
which is usually inconvenient and inefficient; we have thus
developed a toolbox of handy objects (approximately 25
externals) to simplify usual operations (see Figure 1).

The most frequently used OSC address patterns are stored
in a hash table at compile-time. This avoids CPU-intensive
string operations during runtime, and guarantees efficient
dynamic lookup (similar to Max static symbol tables).

Figure 1. Examples of usual OSC manipulations. OSC
bundles are conveyed (as FullPacket) through the blue-
colored patchcords.

2.2.2 Inter-operability and compatibility

One potential advantage of the OSC interface is that users
can benefit from existing tools and libraries, such as:

• the odot package [12], which provides a powerful
expression language for the manipulation of OSC
bundles in a variety of programming paradigms. Typ-
ically, odot might be used for the algorithmic gener-
ation and transformation of spatialization data (trac-
jetories).

SMC2018 - 185



• ToscA [13], a DAW plugin that allows the trans-
mission of automation data over OSC. Although
ToscA is designed as a completely generic tool, it
has been thought, from its inception, for the remote
control of object-based spatialization processors such
as spat⇠.

• IanniX [14], Holo-Edit [15], o7 [16], Antescofo [17],
etc., are other examples of OSC-compatible software
tools with powerful features for generative composi-
tional processes.

However, it must be noted that OSC syntax breaks back-
ward compatibility with previous version spat⇠ 4. This
is an important point as several hundreds of musical pieces
currently rely on spat⇠ 4. At the moment, there is no auto-
matic way to “port” a patcher from spat⇠ 4 to spat⇠ 5;
however, we believe that in most cases the transition should
be fairly smooth as it mostly consists in minor syntactic ad-
justments. The package also provides examples for porting
canonical patchers.
Finally, it should be noted that spat⇠ 4 and spat⇠ 5 can
run simultaneously without conflict, as all spat⇠ 5 exter-
nals are located in a dedicated namespace (prefix spat5.*).
This also allows to progressively and iteratively port exist-
ing work.

3. REFACTORING THE ENVIRONMENT

The refactoring of the spat⇠ 5 environment not only im-
pacts the control syntax of the objects, but it also affects
other aspects of the software library: overall usability, audio
processors, and graphical user interfaces.

3.1 Usability

As mentioned in section 2, spat⇠ 5 external objects no
longer use attributes. As a consequence, they can not benefit
from Max built-in features such as the inspector or au-
tomatic documentation hints. We have thus introduced new
mechanisms that serve as a replacement: each object has its
own status and help window (see Figure 2). The status
window displays the current state of the object, similar to
the Max inspector; it comes with a search filter, and one can
copy/paste messages from this window to the patcher. The
help window displays a text description of all supported
OSC messages. Reference pages are also proposed and can
be accessed via the standard Max documentation browser.

One can grasp the benefit of this new infrastructure by
comparing against the attribute inspector in spat⇠ 4 (Fig-
ure 3): the status window offers a hierarchical view of
the parameters that is more readable than the list array
of values in the inspector; furthermore, this allows to op-
erate on the parameter with a finer granularity: for in-
stance, the sourceseditable [boolean] attribute
in spat⇠ 4 (that enables the edition of source elements) is
applied globally to all sources; in spat⇠ 5, each element
can be accessed independently:
/source/i/editable [boolean]

Figure 2. Status window (left) and help window (right) for
spat5.viewer.

Figure 3. spat.viewer inspector in spat⇠ 4.

3.2 Scheduling and thread-safety

Compared to attributes, the encapsulation of events in-
side OSC messages greatly simplified the programming
of thread-safe queues for the synchronization of data shared
in the various Max threads (audio thread, message thread,
high-priority events thread, etc.). This provides better code
hygiene, and significantly reduces the risk of bugs: incom-
ing events (OSC messages or bundles) are stored in a thread-
safe non-blocking FIFO queue, and later processed, in due
time and in the appropriate thread (in spat⇠ 4, only a few
objects were guaranteed to be thread-safe).
For DSP objects, the FIFO is dequeued in the audio thread,
at the beginning of the processing callback (see Figure 4).
Such behavior is similar to the Max scheduler in audio in-
terrupt mechanism. By default, all spat⇠ 5 audio objects
operate as such, regardless of the overdrive or interrupt
settings of the host application.

3.3 Control interfaces

The spat⇠ package contains more than twenty graphical
user interface (GUI) control objects (e.g., see Figure 5).
All these GUIs have been revamped for improved clarity
and usability, and many new tweaking options have been
added. A number of keyboard shortcuts have also been
implemented for fast access to the most usual operations;
these shortcuts can further be customized (Figure 6).

These GUI externals also benefit from the efficient thread-
safe queue discussed in the previous section. This allowed
to implement the GUI without the need for deferlow (defer-
ring execution to the low priority thread), thus providing
improved reactivity compared to spat⇠ 4 (wherein defer-

SMC2018 - 186



Figure 4. Scheduling of events according to the scheduler
in audio interrupt procedure.

low was used, resulting in poor performances and backlog
of the scheduler service, especially when the event rate is
high).

The complete status of a GUI external is represented as
an OSC bundle (see for instance Figure 2). This bundle can
be loaded from and exported to a text file (human-editable).
This provides a simple mechanism for creating and handling
presets. The bundle can also be stored (embedded) into
the patcher, or via the Max snapshots window (“Parameter
Enable Mode”); in these cases, the OSC bundle is converted
to a binary blob, and saved within the patcher file.

Figure 5. Graphical user interface for spat5.oper (high-
level perceptual control for spat⇠). Perceptual factors for
controlling room effect (left); filtering (centre); 2D view of
the sound scene (right).

3.4 Software development

The code of the underlying C++ libraries has been con-
siderably modernized, now utilizing new programmation
idioms as proposed by the C++11 and C++17 standards 7 :
compile-time constant expressions (constexpr), auto-
matic type deduction (auto), lambda functions, range-
based for loop, etc. These new paradigms helped sanitizing
the code, reducing bug probability, and incidentally shrink-
ing the size of the code base; for instance, the glue code
required for binding to the Max API (see section 2) has
been reduced by 80%.
Signal processing algorithms, previously optimized and vec-

7 ISO International Standard ISO/IEC 14882:2017(E) – Programming
Language C++

Figure 6. Key-mapping window for the customization of
keyboard shortcuts spat5.oper.

torized with the Accelerate 8 framework, have further
been enhanced by using the Intel R� Integrated Performance
Primitives (IPP) 9 .

4. NEW FEATURES

This section presents a few significant new features of the
spat⇠ 5 package.

4.1 Higher Order Ambisonics

All audio processors for the analysis/synthesis of spatial
sound scenes have been improved, in many ways, and sev-
eral new features have been added to the spat⇠ 5 libraries.
It would be cumbersome to enumerate all enhancements.
Nonetheless, research in the last few years has particularly
focused on the Higher Order Ambisonics (HOA [18]) tech-
nique, and we list below some of the related new features
added to spat⇠ 5:

• The various normalization schemes used for HOA
(FuMa, MaxN, SN3D, N3D, etc.) are a frequent
source of confusion for the users, and they may lead
to compatibility issues between rendering tools. A
formalization effort has been proposed [19], and the
spat⇠ documentation has been significantly im-
proved in order to clarify the impact of normalization
schemes in the Ambisonics production workflow, and
to ease inter-operability.

• Several decoding strategies are proposed in spat⇠
(see [8]). In spat⇠ 5, we have further added the so-
called “all-rad” (All-Round Ambisonic Panning and
Decoding [20]) and the Constant Angular Spread [21]

8 http://developer.apple.com
9 http://software.intel.com

SMC2018 - 187



decoders. They are based on regular HOA decod-
ing over a virtual t-design sphere, later projected via
VBAP or MDIP onto the physical loudspeaker layout.

• The different available HOA decoders (sampling de-
coder, mode-matching [18], energy-preserving [22],
all-rad [20], constant-spread [21]) may generate
sound fields with significantly different loudness (up
to a dozen dB, depending on the configuration). This
prevents any comparative listening/study of the de-
coding strategies; we have thus introduced an energy
compensation technique which allows to calibrate all
decoders, according to an arbitrary reference. The
method is based on the estimation of the delivered
energy, under diffuse-field condition (see for instance
section 4.4 in [22]).

• spat5.hoa.blur⇠ is a new tool for manipulat-
ing the “spatial resolution” of an encoded HOA field.
It allows to continuously vary the order of the HOA
stream (i.e. simulating fractional orders), while pre-
serving the overall energy [23]. It can be used to
adapt the order of existing content, or as a creative
FX (typically by varying the “blur” factor dynami-
cally).

• spat5.hoa.focus⇠ is another effect operating
in the HOA domain. Inspired from [24], it allows to
synthesize virtual directivity patterns and apply them
to a HOA stream. Orientation and selectivity of the
pattern(s) can be edited in an intuitive graphical user
interface (Figure 7). The tool is most useful during
post-production stage, i.e. when applied to recorded
HOA fields, as it allows to directionally “zoom” into
the sound scene.

Figure 7. spat5.hoa.focus interface for synthesizing
virtual patterns in the HOA domain.

4.2 Object-based audio

In recent years, there has been renewed interest in the object-
based paradigm for producing and broadcasting multichan-
nel audio. Several inter-exchange formats have been pro-
posed; in particular, the Audio Definition Model (ADM [25])

is an open standard, published by the ITU and EBU 10 , for
the description of object-oriented media encapsulated in a
Broadcast Wave Format (BWF) container. ADM prescribes
a set of metadata (such as time-varying position and gain of
audio objects) encoded in a XML chunk. spat⇠ is one of
the first toolbox offering a complete production chain for
BWF-ADM files: spat5.adm.record⇠ allows for the
creation of BWF file with embedded spatialization metadata,
and spat5.adm.renderer⇠ copes with the real-time
rendering of ADM media over an arbitrary reproduction
setup (headphones or loudspeaker layout); other externals
also allow to handle objects’ interactivity. These externals
are presented in greater details in [26]. Note however that
only a subset of the ADM specifications is currently sup-
ported (although covering most typical usages), and a tighter
integration of the format within the spat⇠ architecture re-
mains to be done (e.g. direct import/export of ADM files
from processors such as spat5.spat⇠). This is part of
on-going development work.

4.3 Panoramix

panoramix is a workstation for sound spatialization and
artificial reverberation (Figure 8), intended for 3D mix-
ing and post-production scenarios. The tool has been pre-
sented in previous publications [27, 28]. It builds on the
spat⇠ C++ librairies, and its rapid development was possi-
ble thanks to the in-depth refactoring discussed in sections 2
and 3. panoramix offers essentially the same function-
alities as spat5.oper and spat5.spat⇠, however
with an ad-hoc front-end, especially designed for mixing
heterogenous multichannel content (seamlessly combin-
ing object-, scene-, and channel-based paradigms). So
far distributed independently as a standalone application,
panoramix is now also included as external objects part
of the spat⇠ 5 package; this will ease the integration of the
tool in larger Max projects, coping with non-conventional
mixing scenarios. The interested reader can refer to [27,28]
for further details about the design and usage ofpanoramix.

Figure 8. Overview of the spat5.panoramix mixing
workstation.

10 International Telecommunication Union and European Broadcasting
Union

SMC2018 - 188



4.4 Quaternions

With the democratization of VR devices, spat⇠ is more
and more used for rendering audio scenes in immersive mul-
timedia applications, typically presented with binaural over
headphones. These virtual environments require the manip-
ulation of 3D geometrical data. In particular, controlling the
orientation of entities (either audio objects or the listener in
the scene) is a frequent source of confusion for the users, as
various conventions are being used (and they are not inter-
compatible). To solve this problem, we have developed a li-
brary of externals for the manipulation of quaternions, Euler
angles, and 3D rotation matrices. These tools allows for con-
verting between the different representations. The spat⇠
audio engines (for instance spat5.binaural⇠) can be
controlled by either quaternions or Euler angles, therefore
facilitating the cross-operability with VR SDKs.

4.5 Time Code

spat⇠ is also frequently used for audio-visual produc-
tions; in such contexts, it is necessary to synchronize the
audio and video streams. One of the most popular tech-
nique to do so, is to use a Linear Timecode (LTC [29])
which encodes SMPTE frames, and is transmitted as a lon-
gitudinal audio signal. Unfortunately, this standard is not
natively supported in Max. We have therefore developed
tools for receiving (spat5.ltc.decode⇠) and gener-
ating (spat5.ltc.encode⇠) linear time codes. Fur-
thermore, the spat5.ltc.trigger⇠ external can be
used as a cue manager as it triggers actions at specific (user-
defined) time stamps; the temporal granularity is rather low
(typically 30 fps ⇡ 33 milliseconds), but sufficient for most
spatialization use cases.

4.6 Integration in Open Music

Sound spatialization is not only involved during live per-
formance of a musical piece, but it should also be grasped
during the early compositional phases. It is thus meaningful
to bind the spat⇠ library with computer-aided composi-
tion frameworks. As discussed in section 2, one motiva-
tion for adopting an OSC interface is to encourage host-
independency (i.e. not be tied to Max), and to foster and
accelerate the integration of spat⇠ in other environments,
while sharing a similar syntax. Thanks to the new OSC-
based architecture, several spat⇠ modules have been suc-
cessfully inserted into the Open Music [30] and o7 [16]
frameworks. The first results of this integration have been
presented in [9, 16, 31], and they open the door to new spa-
tialization effects and workflows, that are currently being
investigated as part of artistic residencies at Ircam.

5. CONCLUSIONS AND PERSPECTIVES

We have presented spat⇠ 5, a new major revision of the
spat⇠ framework for sound spatialization and reverbera-
tion, implemented in the Max environment. The library con-
tains more than 200 external objects, covering a broad range
of multichannel activities, as well as comprehensive doc-
umentation and tutorials. Compared to previous versions,

this implementation offers a new interface and syntax, based
on the OSC protocol. Besides syntactic considerations, the
new OSC-based architecture comes with an in-depth refac-
toring of the library, aiming at improved usability, stability,
performance, and inter-operability. The spat⇠ 5 package
also includes many new objects (control, DSP, and GUI)
which further widen the scope of possibilities. Note also
that several “subsets” of the software package (e.g. OSC
tools, LTC, quaternions, etc.) are completely independent
of the spat⇠ paradigm, and could be useful to the broader
computer music community.

Driven by research outcomes, technological innovations,
and artistic challenges, spat⇠ remains an ever-changing
environment. The short-term prospects concern:

• the compatibility with OSC discovery and reflection
protocol. A number of proposals have been made
for querying an OSC namespace (OSC Query [32],
Minuit 11 , libmapper 12 , OSNIP 13 , OSCQueryPro-
posal 14 ), however there is yet no consensus in the
community. The integration of such protocol in spat⇠
will be investigated.

• the tighter integration of object-based formats, es-
pecially ADM, in external objets, as discussed in
paragraph 4.2.

• the compatibility with Max multichannel signals mc.
Still in beta version at the time of writing this article,
mc is a new type of patchcord in Max, which carries
multichannel audio signals in a single connection.
Such feature will tremendously simplify and improve
the spat⇠ workflow.

• continuing the integration of spat⇠ modules in the
o7 computer-aided composition environment, for ex-
tended spatial sound synthesis applications.

6. REFERENCES

[1] J.-M. Jot, “Real-time spatial processing of sounds for
music, multimedia and interactive human-computer in-
terfaces,” ACM Multimedia Systems Journal (Special
issue on Audio and Multimedia), vol. 7, no. 1, pp. 55 –
69, 1999.

[2] J.-M. Jot and O. Warusfel, “A real-time spatial sound
processor for music and virtual reality applications,” in
Proc. of the International Computer Music Conference
(ICMC), Banff, Canada, 1995, pp. 294 – 295.

[3] M. Puckette, “The Patcher,” in Proc. of the Interna-
tional Computer Music Conference (ICMC), San Fran-
cisco, CA, USA, 1988, pp. 420 – 429.

[4] J.-M. Jot and A. Chaigne, “Digital delay networks for
designing artificial reverberators,” in Proc. of the 90th

Convention of the Audio Engineering Society (AES),
Paris, France, Feb 1991.

11 https://github.com/Minuit
12 http://libmapper.github.io
13 https://github.com/jamoma/osnip/wiki
14 https://github.com/mrRay/OSCQueryProposal

SMC2018 - 189



[5] J.-P. Jullien, “Structured model for the representation
and the control of room acoustic quality,” in Proc. of the
15th International Congress on Acoustics (ICA), Trond-
heim, Norway, June 1995, pp. 517 – 520.

[6] E. Kahle and J.-P. Jullien, “Subjective listening tests
in concert halls: Methodology and results,” in Proc.
of the 15th International Congress on Acoustics (ICA),
Trondheim, Norway, June 1995, pp. 521 – 524.

[7] C. Larman, Agile and Iterative Development: A Man-
ager’s Guide. Addison Wesley, 2003.

[8] T. Carpentier, M. Noisternig, and O. Warusfel, “Twenty
Years of Ircam Spat: Looking Back, Looking Forward,”
in Proc. of the 41st International Computer Music Con-
ference (ICMC), Denton, TX, USA, Sept. 2015, pp.
270 – 277.

[9] J. Garcia, T. Carpentier, and J. Bresson, “Interactive-
compositional authoring of sound spatialization,” Jour-
nal of New Music Research – Special Issue on Interac-
tive Composition, vol. 46, no. 1, pp. 74 – 86, 2017.

[10] M. Wright, “Open Sound Control: an enabling technol-
ogy for musical networking,” Organised Sound, vol. 10,
no. 3, pp. 193 – 200, Dec 2005.

[11] A. Schmeder, A. Freed, and D. Wessel, “Best Practices
for Open Sound Control,” in Proc. of the Linux Audio
Conference (LAC), Utrecht, Netherlands, May 2010.

[12] A. Freed, J. MacCallum, and A. Schmeder, “Dy-
namic, instance-based, object-oriented programming
in Max/MSP using Open Sound Control message del-
egation,” in Proc. of the 37th International Computer
Music Conference (ICMC), Huddersfield, Aug. 2011,
pp. 491 – 498.

[13] T. Carpentier, “ToscA: An OSC Communication Plugin
for Object-Oriented Spatialization Authoring,” in Proc.
of the 41st International Computer Music Conference
(ICMC), Denton, TX, USA, Sept. 2015, pp. 368 – 371.

[14] T. Coduys and G. Ferry, “Iannix – Aesthetical/Symbolic
visualisations for hypermedia composition,” in Proc. of
the of the 1st Sound and Music Computing Conference
(SMC), Paris, France, Oct 2004.

[15] C. Bascou, “Adaptive spatialization and scripting ca-
pabilities in the spatial trajectory editor Holo-Edit,” in
Proc. of the 7th Sound and Music Computing Confer-
ence (SMC), Barcelona, Spain, July 2010, pp. 21 – 24.

[16] J. Bresson, D. Bouche, T. Carpentier, D. Schwarz, and
J. Garcia, “Next-generation Computer-aided Compo-
sition Environment: A New Implementation of Open-
Music,” in Proc. of the International Computer Music
Conference (ICMC), Shanghai, China, Oct 2017.

[17] A. Cont, “Antescofo: Anticipatory Synchronization and
Control of Interactive Parameters in Computer Music,”
in Proc. of the 34th International Computer Music Con-
ference (ICMC), Belfast, Ireland, Aug 2008, pp. 33 –
40.

[18] J. Daniel, “Représentation de champs acoustiques, ap-
plication à la transmission et à la reproduction de scènes
sonores complexes dans un contexte multimédia,” Ph.D.
dissertation, Université de Paris VI, 2001.

[19] T. Carpentier, “Normalization schemes in Ambisonic:
does it matter?” in Proc of the 142nd Convention of
the Audio Engineering Society (AES), Berlin, Germany,
May 2017.

[20] F. Zotter and M. Frank, “All-round ambisonic panning
and decoding,” Journal of the Audio Engineering Soci-
ety, vol. 60, no. 10, pp. 807 – 820, 2012.

[21] N. Epain, C. Jin, and F. Zotter, “Ambisonic Decoding
With Constant Angular Spread,” Acta Acustica united
with Acustica, vol. 100, pp. 928 — 936, 2014.

[22] F. Zotter, H. Pomberger, and M. Noisternig, “Energy-
preserving ambisonic decoding,” Acta Acustica united
with Acustica, vol. 98, pp. 37 – 47, 2012.

[23] T. Carpentier, “Ambisonic spatial blur,” in Proc of the
142nd Convention of the Audio Engineering Society
(AES), Berlin, Germany, May 2017.

[24] M. Kronlachner and F. Zotter, “Spatial transformations
for the enhancement of Ambisonic recordings,” in 2nd

International Conference on Spatial Audio (ICSA), Er-
langen, Germany, February 2014.

[25] ITU, “ITU-R BS.2076 (ADM Audio Definition Model),”
www.itu.int/rec/R-REC-BS.2076, Tech. Rep., 2015.
[Online]. Available: https://www.itu.int/rec/R-REC-BS.
2076/

[26] M. Geier, T. Carpentier, M. Noisternig, and O. Warusfel,
“Software tools for object-based audio production using
the Audio Definition Model,” in Proc. of the 4th In-
ternational Conference on Spatial Audio (ICSA), Graz,
Austria, Sept 2017.

[27] T. Carpentier, “Panoramix: 3D mixing and post-
production workstation,” in Proc. 42nd International
Computer Music Conference (ICMC), Utrecht, Nether-
lands, Sept 2016, pp. 122 – 127.

[28] ——, “A versatile workstation for the diffusion, mixing,
and post-production of spatial audio,” in Proc. of the
Linux Audio Conference (LAC), Saint-Etienne, France,
May 2017.

[29] J. Ratcliff, Timecode: A user’s guide, 3rd Edition. Focal
Press, 1999.

[30] J. Bresson, C. Agon, and G. Assayag, “OpenMusic –
Visual Programming Environment for Music Composi-
tion, Analysis and Research,” in Proc. of the 19th ACM
International Conference on Multimedia (OpenSource
Software Competition), Scottsdale, USA, 2011.

[31] S. Agger, J. Bresson, and T. Carpentier, “Landschaften –
Visualization, Control and Processing of Sounds in 3D
Spaces,” in Proc. of the International Computer Music
Conference (ICMC), Shanghai, China, Oct 2017.

SMC2018 - 190



[32] A. W. Schmeder and M. Wright, “A Query System for
Open Sound Control (Draft Proposal),” Center for New
Music and Audio Technology (CNMAT), UC Berkeley,
Tech. Rep., 2004.

SMC2018 - 191


