
HAL Id: hal-02092955
https://hal.science/hal-02092955

Submitted on 8 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning to Adaptively Rank Document Retrieval
System Configurations

Romain Deveaud, Josiane Mothe, Md Zia Ullah, Jian-Yun Nie

To cite this version:
Romain Deveaud, Josiane Mothe, Md Zia Ullah, Jian-Yun Nie. Learning to Adaptively Rank Doc-
ument Retrieval System Configurations. ACM Transactions on Information Systems, 2018, 37 (1),
pp.1-41. �10.1145/3231937�. �hal-02092955�

https://hal.science/hal-02092955
https://hal.archives-ouvertes.fr

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/22661

To cite this version: Deveaud, Romain and Mothe, Josiane
and Ullah, Md Zia and Nie, Jian-Yun Learning to Adaptively
Rank Document Retrieval System Configurations. (2018) ACM
Transactions on Information Systems - TOIS, 37 (1). 1-41.
ISSN 1046-8188

Official URL

DOI : https://doi.org/10.1145/3231937

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

Learning to Adaptively Rank Document Retrieval System

Configurations

ROMAIN DEVEAUD, JOSIANE MOTHE, and MD ZIA ULLAH, IRIT, UMR5505 CNRS,

Université de Toulouse, France

JIAN-YUN NIE, Université de Montréal, Canada

Modern Information Retrieval (IR) systems have become more and more complex, involving a large number
of parameters. For example, a system may choose from a set of possible retrieval models (BM25, language
model, etc.), or various query expansion parameters, whose values greatly in"uence the overall retrieval ef-
fectiveness. Traditionally, these parameters are set at a system level based on training queries, and the same
parameters are then used for di#erent queries. We observe that i t may not be easy to set all these param-

eters separately, since they can be dependent. In addition, a global setting for all queries may not best $t
all individual queries with di#erent characteristics. The parameters should be set according to these char-
acteristics. In this article, we propose a novel approach to tackle this problem by dealing with the entire
system con!gurations (i.e., a set of parameters representing an IR system behaviour) instead of selecting a
single parameter at a time. The selection of the best con$guration i s cast as a problem of ranking di#er-
ent possible con$gurations given a query. We apply learning-to-rank approaches for this task. We exploit
both the query features and the system con$guration features in the learning-to-rank method so that the
selection of con$guration i s query dependent. The experiments we conducted on f our TREC ad hoc col-
lections show that this approach can signi$cantly outperform the traditional method to tune system con-
$guration globally (i.e., grid search) and l eads to higher e#ectiveness than the top performing systems of
the TREC tracks. We also perform an ablation analysis on the impact of di#erent f eatures on t he model
learning capability and show that query expansion features are among the most important for adaptive
systems.

Additional Key Words and Phrases:

Information systems, information retrieval, learning to rank, retrieval system parameters, adaptive
information retrieval, query features, data analytics

This article is supported by ANR Agence nationale de la recherche CAAS project, ANR-10-CORD-001 01.

Authors’ addresses:

R. Deveaud, J. Mothe, and Md Z. Ullah, IRIT, UMR5505 CNRS, Université de Toulouse, Institut de Recherche en
Informatique de Toulouse (IRIT), 118, Route de Narbonne, Toulouse, 31062, France;
emails: romain. deveaud@gmail.com, {Josiane.Mothe, mdzia.ullah}@irit.fr; J.-Y. Nie,

Université de Montréal, Département d’informatique et recherche opérationnelle, C.P. 6128, Succ Centre-Ville, Montréal,
Québec, Canada; emails: nie@iro.umontreal.ca.

https://doi.org/10.1145/3231937

1 INTRODUCTION

Modern Information Retrieval (IR) systems involve more and more complex operations, which re-
quire setting a large number of parameters. For example, at the very basic preprocessing level,
we have to choose among di#erent options of word stemming. Then a retrieval model should be
chosen. This latter often involves a set of parameters as well—language models require smoothing
parameters and BM25 has another set of parameters. Finally, the pseudo-relevance feedback step
requires yet another set of parameters: the number of expansion terms to be added to the query,
their weighting scheme, the number of feedback documents to consider, and so on [11, 13]. Over
the years, and through evaluation forums such as TREC,1 CLEF,2 and NTCIR,3 the IR community
has produced an abundant $eld of knowledge, however scattered in the literature, on setting the
appropriate values of these parameters to optimise the performance of the retrieval systems. For
example, we know that the number of pseudo-relevance feedback documents used in IR experi-
ments typically varies between 10 and 50, and the number of expansion terms is in the range of 10
to 20 [16, 36]. BM25 or a language model is often chosen, and they are believed to be e#ective on
most test collections. When a speci$c retrieval method involves some parameters (e.g., the param-
eters related to query expansion), one typically tunes them on a set of training queries to maximise
the global e#ectiveness. The typical method for parameter tuning is through grid search [73]: A
set of possible values is de$ned for each parameter, and grid search determines the best value for
each parameter to maximise the e#ectiveness of the retrieval system on a set of training queries.

To be more robust, one also test di#erent settings on several test collections. For example, Ref-
erence [80] analysed the in"uence of the smoothing function in Language Modelling (LM) on
several test collections, and some speci$c range of the smoothing parameter is recommended. Al-
ternatively, it is possible to optimize the studied parameter value using a collection and observe
its e#ects on other collections [35], which is a form of transfer learning.

These methodologies for parameter tuning assume that the same selected parameters would $t
all the queries. In practice, even if the selected system con$guration is the best for a set of queries,
it has been often observed that it behaves di#erently on di#erent queries: It may excel on some
queries while failing miserably on some others [1, 37, 60]. This fact indicates a critical problem
in the usual way to set system parameters: It is done once and for all queries. It is desirable that
we choose the appropriate parameters for each query at hand, thus avoiding the problem of the
one-size-$ts-all solution.

There is an abundant literature on the e#ects of individual system parameters on retrieval re-
sults. Indeed, for any new method proposed, it is required that an analysis is made in depth to
evaluate the e#ect of parameter setting [83], e.g., how the method behaves along with the changes
of its inherent parameters. However, there have been few studies trying to determine the param-
eters automatically for a given query.

There are also only a few descriptive analyses of cross parameter e#ects [9, 23, 29], which ex-
amine the results and the e#ects of various parameter settings. In Reference [23], the authors
analysed the in"uence of indexing and retrieval parameters on retrieval e#ectiveness; while the
authors of Reference [9] analysed an even larger set of parameters. The authors of Reference [29]
analysed the correlation between e#ectiveness measures and system parameters. However, none
of these studies attempted to determine automatically the best parameters at the query level for
new queries.

1Text REtrieval Conference; http://trec.nist.gov.
2Conference and Labs of the Evaluation Forum; http://www.clef-initiative.eu.
3NII Testbeds and Community for Information Access Research; http://research.nii.ac.jp/ntcir/index-en.html.

The study presented in this article is built on the results and conclusions of the previous descrip-
tive analysis studies but moves a step further by performing a predictive analysis: We investigate
how system parameters can be set to $t a given query, i.e., a query-dependent setting of system
parameters. We assume that some parameters of the system can be set on the "y at querying time,
and a retrieval system allows us to set di#erent values for the parameters easily. This is indeed
the case for most IR systems nowadays. Retrieval platforms such as Terrier4 [61], Lemur5 [70], or
Lucene6 [53] allow us to set parameters for the retrieval step. For example, one may choose be-
tween several retrieval models (e.g., BM25, language models), di#erent query expansion schemes,
and so on. We target this group of parameters that can be set at query time. In contrast, we assume
that an IR system has already built an index that cannot be changed easily. For example, it would
be di+cult to choose between di#erent stemmers at query time, unless we construct several in-
dexes using di#erent stemmers. We exclude these parameters that cannot be set at query time in
this study.
The problem we tackle in this article is query-dependent parameter setting. A complete set of

parameters of a system (that can be set at query time) forms a system con!guration. In theory,
some parameters such as the number of expansion terms can vary in a large range. However, the
existing studies provide su+cient evidence that there is a smaller preferred range for them. There-
fore, we only allow the parameters to vary in a much smaller range, based on our prior knowledge
of the literature to reduce the complexity. Having all the parameters grouped in system con$g-
urations, our problem then boils down to selecting the best system con$guration, among all the
possible ones, for a given query. This problem could be seen as a performance prediction problem:
Given a query, we predict the performance of a con$guration and we pick up the con$guration
corresponding to the highest predicted performance. However, the prediction of system perfor-
mance is known to be hard. Alternatively, the problem can be cast as a con$guration ranking
problem: We could rank the con$gurations according to their expected performance on a given
query and we choose to use the $rst con$guration for the query. This approach does not require
us to predict system performance explicitly. It could be solved using a learning-to-rank [48] ap-
proach. This is what we propose in this article. Our utilisation of learning-to-rank (LTR) in this
article is di#erent from its traditional utilisation for document ranking, where features are ex-
tracted for document–query pairs. In our case, for each query, we aim at ranking system con$g-
urations. Thus in our setting, features are extracted from query–con$guration pairs. Given the
number of parameters and their possible domains, our candidate space is formed of tens of thou-
sands of possible system con$gurations, each of which sets a speci$c value for each of the system
parameters.
In our approach, the LTR models are trained to rank con$gurations with respect to a target ef-

fectiveness metric (such as nDCG@k), thus emphasising the importance of ranking “good” system
con$gurations higher in the ranked list. Our $nal choice is the con$guration ranked at $rst. Com-
pared to tuning each parameter at a time, this approach has the advantage of taking all the system
parameters into account at the same time, which allows them to in"uence each other implicitly
within the same con$guration. However, we do not address the problem ofmutual in"uence among
parameters explicitly in this study. Our main focus is put on making a query-dependent setting of
the system con$guration using LTR. To our knowledge, this problem has not been studied exten-
sively before. In particular, no attempt has been made using LTR approaches.

4http://terrier.org/.
5https://www.lemurproject.org/indri.php.
6https://github.com/lucene4ir/lucene4ir.

The main contributions of this article are as follows:

• We propose a novel approach to set IR system parameters based on the learning-to-rank
technique by exploiting query and con$guration features,

• we develop a method that adaptively selects the best system parameters according to the
query, and show that this approach is e#ective and feasible in practice,

• we carry out extensive experiments on several standard test collections, which show the
superiority of our proposed method over the state-of-the-art methods.

2 RELATED WORK

We aim at solving the problem of automatic parameter selection by using learning-to-rank tech-
niques in an original way. Our work is thus at the intersection of several trending topics in IR
including parameter analysis, adaptive IR systems, and learning-to-rank.

2.1 Parameter Analysis
A few pieces of work performed descriptive analysis to understand better the results obtained with
various system con$gurations.
In Reference [6], the authors analysed past TREC results on the TREC-6 collection—the average

precision values and systems—on a per query basis. They carried out analysis of variance, cluster
analysis, rank correlation, beadplot, multidimensional scaling, and item response analysis. When
considering an analysis of variance, they focused on two factors only: topic and system, and one
performance measure (average precision). They also used cluster analysis to cluster systems ac-
cording to AP they obtained on the various queries. However, the authors stated that the results
were inconclusive and that none of these methods had yielded any substantial new insights.
Dinçer [27] compared performances of various search strategies by means of principal com-

ponent analysis (PCA). The authors showed the PCA method can reveal implicit performance
relations among retrieval systems across topics. They considered 100 topics from TREC 12 Robust
collection, the 44 submitted runs, and showed that PCA can highlight the peculiarities of some
runs and of some topics.
Some applications have also been suggested based on the results of such analysis. Mizzaro and

Robertson [56] used data analysis to distinguish good systems from bad systems by de$ning a
minimal subset of queries. Based on the analysis, the authors concluded that “easy” queries perform
the best in this task. Bigot et al. [8] used the results of the similar type of analysis as Dinçer but
using Benzecri’s χ 2 correspondence analysis to suggest a system fusion method.
In the above studies, the authors did not analyse system parameters nor query/topic features.

In the studies described below, these elements have been analysed.
Compaoré et al. [23] analysed indexing parameters and retrieval models to determine which

parameters signi$cantly a#ect search engine performance. They found that the retrieval model is
the most important parameter to be tuned to improve the performance. More interestingly, they
showed that the most signi$cant parameters depend on the topic di+culty. While the retrieval
model remains the most important parameter for easy queries, the query expansion model is the
most important for hard queries. The study in Reference [9] was signi$cantly enlarged with regard
to the number of parameters: Eighty thousand di#erent system con$gurations in total have been
tested, covering 4 di#erent stemming algorithms, 21 retrieval models, 7 topic $elds in queries, 6
query expansion models, and other query expansion parameters. These con$gurations have been
applied to the 100 topics from TREC7-8 adhoc collections. The authors concluded that the parame-
ters that have the largest impact on system effectiveness across queries are the retrieval model and

the expansion model. However, the best parameters change according to queries. This study pro-
vides clear experimental evidence that the parameters should be set in a query-dependent manner.
Also using various system con$gurations, Reference [29] analysed the correlation among the

e#ectiveness measures of systems con$gured by combining system parameters including 6 di#er-
ent stop lists, 6 types of stemmers, 7 "avours of n-grams, and 17 IR models. He considered the
correlation between di#erent evaluation measures and found that they change depending on the
system con$guration.
Fusi and Elibol tackled the problem of robustness of system setting: They suggested to use Prob-

abilistic Matrix Factorization to automatically identify high-performing pipelines across a wide
range of datasets [34].

All these studies are limited to the descriptive analysis: Given the parameters and results, these
studies focused on understanding the impact of parameters on system performance and their cor-
relations. In this article, we focus rather on a predictive analysis: We aim at constructing prediction
models from the relationships among query–system–performance triplets. These models can pre-
dict the best con$guration for a given query. Our study is a natural extension of the previous ones
and is built on the latter.

2.2 Adaptive Systems

Many factors a#ect system performance. These include factors related to the query. It is thus in-
tuitive to design adaptive systems that can $t the system to the characteristics of the query. The
characteristics of the user can also impact the speci$c choice of system parameters. The adaptation
to users has been implemented in most search engines. Typically, the past interactions with the
user are leveraged to build a user pro$le so that the retrieved documents or recommended items
can better $t the user [71]. In this study, we only consider system adaptation to the query.
Selective query expansion (QE) is probably the most studied topic among the adaptive tech-

niques. The motivation of selective QE stems from the observation that pseudo-relevance feedback
QE improves the e#ectiveness on some queries but deteriorates on some others. In selective QE,
the system decides whether QE should be applied or not [25]. This is based on feature analysis
and learning models: Queries are characterized by a set of features and the learning is based on a
set of examples for which the impact of query expansion decision is known. The system learns to
make a binary decision on the use of QE. It is shown that the trained model is able to selectively
apply QE to new queries [79].
In Reference [13], adaptive QE is cast as a problem of selecting appropriate expansion terms

from pseudo-relevant feedback documents. The features used to make the selection include query-
dependent features, making the selection query dependent. More recently, Xu et al. [77] proposed
a learning-to-rank based query expansion. It re-ranks a set of potential terms for expanding query
by exploiting the top retrieved documents and the collection statistics.
In the studies on selective QE mentioned above, one focused on determining the useful expan-

sion terms rather than a system con$guration. While the selection of appropriate expansion terms
is shown to be important, we believe that selecting the appropriate expansion parameters is equally
important, and it is complementary to the studies mentioned above.
A study that is related to ours is in Reference [9], in which, after a descriptive analysis on how

parameters a#ect e#ectiveness, the authors presented a method to automatically decide which
system con$guration should be used to process a query. The meta-system learns the best system
con$guration to use on a per query basis similar to what we intend to do. This method was devel-
oped for the case of repeated queries. In comparison, we investigate the problem of con$guration
selection for any query, including new queries that have never been seen before. Therefore, our
scope is larger, since the model learns from query features rather than from past queries.

Another related work to ours is Reference [59], which proposed a per-parameter learning (PPL)
method to predict the best value for a set of system parameters for optimal retrieval. It learns a
classi$cation model for each system parameter and uses this classi$er to predict the best value
of that parameter for an unseen query. However, the separate tuning for each parameter has the
potential drawback that it will fail to cope with the possible dependencies among the parameters. In
practice, many parameters are dependent. For example, the number of expansion terms to be used
may depend on the number of feedback documents considered. In our study, instead of learning
for each parameter separately, we learn to rank the complete con$gurations combining all system
parameters. The parameters may interact within the same con$guration. This is a way to implicitly
cope with the dependencies among parameters.

A key di#erence between our study and the previous ones is the technique used to make the
selection. We use LTR techniques, which have not been used before for this task. Our hypothesis
is that con$gurations can e#ectively be ranked according to their characteristics facing a given
user’s query and that we can train a model to rank con$gurations for any query.

We carried out a preliminary study on learning-to-rank system con$gurations in a short arti-
cle [26], in which the principle was laid down, and the $rst set of experiments were presented.
This article presents a substantial extension of our previous article.

2.3 Learning to Rank
Nowadays, commercial live search engines reportedly utilise ranking models that have been
learned over thousands of features. Learning-to-rank is a document ranking technique [48] that
surfaced when researchers started to use machine-learning algorithms to learn an appropriate
combination of features into e#ective ranking models. It is composed of a training phase and a
prediction phase. The training phase aims at learning a model that optimizes the document rank-
ing. The capability of the model to correctly rank documents for new queries is evaluated during
the prediction phase on test data. Interested readers can $nd more details about the techniques of
LTR for IR in Reference [49].
In learning-to-rank, the training data consist of query–document pairs represented by feature

vectors. These features include those that describe the query (e.g., TF and IDF of query terms,
query length), the document (e.g., TF and IDF of document terms, document length, PageRank
score), as well as the relationship between them (e.g., BM25 score). A relevance judgement between
the query and the document is given as the ground truth. For example, the Letor 3.0 and Letor
4.0 collections [63] provide around one hundred query–document pair features that have been
shown to be useful for learning the document ranking function [49]. An exhaustive list of these
features can be found at http://www.microsoft.com/en-us/research/project/mslr. However, the set
of features can be reduced for this purpose to about 10 features without losing too much accuracy,
depending on the collection [44, 45].

Di#erent approaches have been developed to solve the learning-to-rank problem in IR, includ-
ing pointwise, pairwise, and listwise approaches.
In the pointwise approach, each instance is a vector of features xi , which represents a query–

document pair. The ground truth can be either a relevance score s ∈ R or a class of relevance (e.g.,
“not relevant,” “partially relevant,” and “highly relevant”). In the former case, learning-to-rank
can be solved as a regression problem while in the latter case, it is considered as a classi$cation
problem or as an ordinal regression problem, depending on whether there is an ordinal relationship
between the classes of relevance [45].
In the pairwise approach or preference learning [33], each instance is a pair of feature vectors

(xi , x j) for a given query q. The ground truth is given as a preference y ∈ {−1, 1} between the
two documents and is also considered as a classification problem. Various algorithms have been

proposed such as RankNet [12] based on neural networks, RankBoost [31] based on boosting or
RankSVM-Primal [18], and RankSVM-Struct [42] based on SVM.
Finally, the listwise approach considers the whole ranked list of documents as the instance of

the algorithm and employs a listwise loss function to train the model. Several articles have sug-
gested that listwise learning-to-rank algorithms, including ListNet [14], ListMLE [76], and Lamb-
daMart [75] perform better than pairwise approach on the problem of document ranking.
In practice, learning-to-rank is often used to re-rank a list of top-ranked documents for a given

query to promote the documents that the ranking model learnt as relevant [52]. The list of docu-
ments to be re-ranked, from a few hundred to a few thousand [17, 52, 63], are initially ranked by
a standard retrieval model such as BM25 [66] or Language Modelling [41, 62].
A key advantage of LTR models, compared to the traditional models, is its ability to incorporate

any type of feature related to query–document pairs. In principle, the same methods can apply
to rank any objects, provided that similar features can be extracted. In other words, the frame-
work is "exible enough to be used to rank system con$gurations for a query. The di#erence is
that, for a given query, we rank a set of system con$gurations rather than documents. Another
di#erence with the traditional utilisations of LTR is that we are not interested in determining the
whole ranking of di#erent system con$gurations. We are only interested in selecting the $rst one.
It is thus possible that an LTR method that works well for document ranking works poorly for
con$guration ranking. Indeed, we will observe this phenomenon in our experiments.
The problem of selecting a good system con$guration for a query can be considered as a predic-

tion (or regression) problem: Given a candidate con$guration, we try to predict its e#ectiveness
on a query. It can also be cast as a ranking problem: We have a large set of choices, and we have to
rank them so that the best one can be selected. This forms a larger category of problem, to which
the principle of LTR naturally applies. An LTR approach to rank system con$guration is more
general than the selective QE that decides whether to use QE or not. In our case, we have much
more choices than just a binary one. Moreover, the binary decision of selective QE is included in
our approach as a special case, because “no expansion” is among the possible choices. Our LTR
approach is also more suitable to the problem of selecting system con$gurations than a selection
on the per parameter basis, because we do not assume independence between parameters.
The approach is also feasible in practice, because we can derive a large set of training examples

from assessed queries. For each query, it is possible to obtain a system performance measure using
each of the system con$gurations. Of course, the more assessed queries we have, the more we
could expect that the trained LTR model will be able to deal with new queries. However, in our
experiments, we will show that a small number of assessed queries (100) can already result in
highly e#ective models.
What is unknown is which features are useful for con$guration selection. Therefore, in our

study, we will extract all features that may deem useful and test their impact on the $nal results.
We also do not know if listwise models will be the best methods as for document ranking. So we
will test the three types of LTR models.

3 LEARNING-TO-RANK SYSTEM CONFIGURATIONS

In this section, we describe our proposed approach for ranking system con$gurations based on the
learning-to-rank techniques for IR [48]. We will $rst formulate the problem in the next subsection.
Then the features will be speci$ed. Finally, the training of LTR models will be described.

3.1 Model

We assume that an IR system involves a set P of parameters. Each parameter pi ∈ P can take a
value from its domain Di . Therefore, we have at most

∏
i |Di | possible con$gurations (without

Table 1. Description of the System Parameters That We Considered
When Constructing System Configurations

Parameter Description Values7

Retrieval model 21 di#erent retrieval models BB2, BM25, DFRee, DirichletLM,
HiemstraLM, InB2, InL2, JsKLs, PL2, DFI0,
XSqrAM, DLH13, DLH, DPH, IFB2, TFIDF,
InexpB2, DFRBM25, LGD, LemurTFIDF, and
InexpC2.

Expansion model 7 query expansion models nil8 , KL, Bo1, Bo2, KLCorrect, Information,
and KLComplete.

Expansion documents 6 variants of number of documents
used for query expansion

2, 5, 10, 20, 50, and 100.

Expansion terms 5 variants of number of expansion
terms

2, 5, 10, 15, and 20.

Expansion min-docs 5 variants of minimal number of
documents an expansion term
should appear in

2, 5, 10, 20, and 50.

Because of the enormous number of con$gurations, we selected the 7 retrieval models for which the results where

the best in average over the topics and collections when using the initial queries and we then combined these 7

retrieval models with the expansion variations. For the other 14 retrieval models (italic font in the table), we only

kept the con$guration with no expansion.

considering the fact that some con$gurations are impossible). This number could be very large,
given the quite large number of system parameters used in modern IR systems and their possible
values. Moreover, the large number of system parameters could be mutually inclusive [30], which
makes the problem of choosing a globally optimised set of parameters challenging.
We cast the problem of setting the optimal system parameter value as a con$guration ranking

problem using a learning-to-rank approach, where, for each query, we rank system con$gurations
to $nd the most appropriate one. Let us denote by C the set of all feasible con$gurations of

∏
i |Di |

system con$gurations. We also assume that we have a set Q of queries with corresponding rele-
vance judgements on a document collection, which can be used to generate training examples for
LTR models. Given a query qk ∈ Q and a con$guration c j ∈ C, we can run the IR system to obtain
the search resultR and generate ameasure of performance such as Average Precision.We hypothe-
size that a good con$guration is generalizable to queries with similar characteristics. Therefore, the
LTR model will be able to select a suitable con$guration for a query based on the characteristics.

In this work, we consider a set of common system parameters often used in IR studies
(see Table 1), mainly for query expansion, query di+culty prediction or learning-to-rank. As
we mentioned earlier, we only consider the parameters that can be set at query time and exclude
those related to indexing, as well as those that are not found to be in"uential on results [4]. We
considered one parameter for retrieval model and four parameters for pseudo-relevance feedback.
For each of the parameters, a set of possible values is de$ned. These values correspond to those

that are often used in IR experiments. The set of possible values can certainly be further extended
later; but this is beyond the scope of this study, whose primary goal is to demonstrate that
feasibility and e#ectiveness of a new method to set system parameters. In theory, we could have
22,050 (21 × 7 × 6 × 5 × 5) combinations of parameters, but some of the combinations are invalid.
For example, when “nil” is selected for Expansion model, the choices in Expansion documents,

7Details can be found at terrier.org/docs/v4.2/javadoc.
8nil means that no expansion has been used; in that case the other expansion parameters are set to 0.

Expansion terms, and Expansion min-docs become irrelevant. In the end, we have more than
10,000 valid system con$gurations, which form the set of candidate con$gurations C.
For a training query q, a run is made according to each con$guration c ∈ C to obtain the

search results. The search results are contrasted with the gold standard to obtain the performance
measure (e.g., AP). In this way, we obtain a large set of < qk , c j , performance > triples. In our
experiments, we used Terrier [61] as the retrieval system.
To train our con$guration ranking models, we extracted a set of features from the query qk and

the con$guration c j . Usually, in learning-to-rank approaches, the features are related to the query,
the document (and sometimes the document collection), as well as the relationships between
them. For example, LETOR associates many scores related to query–document pairs. In our case,
we de$ned features relating to the query qk and to the con$guration c j . It can be costly to de$ne
features on the relationships between the query and the con$guration, because this requires us
to run a retrieval operation for each system con$guration and to extract some features according
to the retrieved results. In a realistic setting, this would be prohibitively expensive. Therefore,
we do not include these features in this study and leave them to future work. However, we do
include some post-retrieval features (e.g., query di+culty) that are extracted from a standard
con$guration (standard BM25), which can be obtained at a reasonably low cost (only one run per
query). These features do not re"ect the relationships between a con$guration and a query but
are part of the features of the query.
The performance obtained for the query using the con$guration will be used as labels during

the training (see Section 3.3). Training examples are composed of features and a label to learn; we
describe both in the next subsections.
Our approach aims at training a ranking function f : Rn → R that minimises:

Remp[f] =
1

Q

Q∑

q=1

L (π (f ,Cq),yq), (1)

where π (f ,Cq) is the ranking of IR system con$gurations Cq by f for the query q. L is the
loss function, measuring the discrepancy between the predicted ranking π (f ,Cq) and the actual
ranking of con$gurations yq . In the experiments of this article, we will test several learning-
to-rank algorithms that employ di#erent types of loss functions: pointwise, pairwise, and
listwise.

3.2 Features for Each Combination of!ery-Configuration

As we explained earlier, it would be di+cult to extract features about the relation between con$g-
uration and query in a realistic context. Therefore, we only considered query features and con$g-
uration features.

The extracted features are further divided into four groups, two associated with queries and
two associated with con$gurations. More speci$cally, there are 46 features covering the statistical
characteristics of the query (=eryStats), 30 features describing the linguistic properties of the
query (=eryLing), 1 feature for the retrieval model (RetModel), and 4 features related to query
expansion parameters (Expansion). The last two groups of features are the same as shown in
Table 1.

3.2.1 Configuration Features. A con$guration possesses a set of parameters. The parameters
are considered as system con$guration features. We considered two types of con$guration fea-
tures: the retrieval model and four parameters related to query expansion (the expansion model,
the number of documents used during expansion, the number of terms used to expand the initial
query, and the minimum number of documents in which a term should occur to be a candidate for

query expansion). For example, one of the con$gurations c j ∈ C is as follows: Retrieval Model =
BM25, Expansion Model = KLComplete, Expansion documents = 50, Expansion terms = 20, and
Minimum docs = 10.

3.2.2 !ery Features. Query features have mainly been used in the literature for predicting
query di+culty [15]. In that context, these features are often categorized into pre-retrieval and
post-retrieval features; the former can be extracted from the query itself prior to any search on the
document collection, whereas the latter are both query and collection dependent. We extracted
both pre- and post-retrieval query features, where some of them convey statistical properties of
the query and others refer to linguistics features. Overall, we extracted a set of 76 query features
covering the statistical and linguistic properties of the query. The details about the features are
described in Reference [57]. For the sake of completeness, we also describe them in the Appendix
in Tables 15 and 16 at the end of this article; however, we describe them as =eryStats and
=eryLing features in the following.

We consider features that are extracted from queries by statistical means. In the IR literature,
these features take into account term weighting and document score. We group them into a cat-
egory named =eryStats. These features have often been used in IR for query and document
matching for automatic query expansion [16, 28], for learning-to-rank documents, and for query
di+culty prediction.
In addition to statistical features, natural language processing techniques have also been fre-

quently used in IR. Some linguistic cues have been proposed for di#erent purposes. For example,
semantic relationships between terms in WordNet have been used to expand users’ queries [50],
for term disambiguation [64], or for query di+culty prediction. We thus consider another group
of features named =eryLing that are based on these linguistic cues.

• =eryStats: these features are extracted using either pre- or post-retrieval approaches. As
pre-retrieval features, we extracted inverse document frequency (IDF) of the query term
and estimated two variants of IDF over the query terms using the mean and standard de-
viation aggregation functions. In addition, we also extracted the term frequency (TF) of
the query term in the corpus and estimated the same two variants over the query terms.
Post-retrieval query features are extracted from the query–document pairs after a $rst
retrieval. These features were previously used in both query di+culty prediction [15, 19,
38] and learning-to-rank [48, 52]. For example, the BM25 score has been used as a feature
on the query–document pair. The other post-retrieval features that we estimated are term
frequency (TF) in the top retrieved documents, TF-IDF, Language Modelling with Dirich-
let smoothing (µ = 1,000 and 2,500), Language Modelling with Jelinek-Mercer smoothing
(λ = 0.4), and document length (DI). Moreover, post-retrieval features are extracted sep-
arately from either the document title, body or whole document. We used the Terrier IR
platform9 to calculate the post-retrieval features using the FAT component,10 which facili-
tates to compute many post-retrieval features in a single run [51]. We used standard BM25
with no reformulation although any run implemented in the platform could have been used.
To make the post-retrieval features usable as query features, we aggregated them over the
retrieved documents for a given query. For example, we calculated the mean of the BM25
scores over the retrieved document list for the considered query. Similarly to pre-retrieval
statistical query features, we employed the same two aggregation functions namely mean

9http://terrier.org/docs/v4.0/learning.html.
10The Terrier FAT component calculates multiple query dependent features. It “is so-called because it ‘fattens’ the result
set from the initial ranking (known as the sample [48]) with the postings of matching terms from the inverted index” [51].

Table 2. The Four Groups of Features for a!ery–Configuration Pair:
QueryStats, QueryLing, RetModel, and Expansion

Group Variants Features

=eryStats

3 Pre-retrieval features with mean and
standard deviation variants of IDF

IDF [38, 40], and CLARITY [24].

40 Letor features with mean and
standard deviation variants (0 stands
for Title, 1 for Body and 2 for both)

SFM(DL,0/1/2), SFM(TF,0/1/2), SFM(IDF,0/1/2),
SFM(SUM_TF,0/1/2), SFM(MEAN_TF,0/1/2),
SFM(TF_IDF,0/1/2), SFM(BM25,0/1/2),
SFM(LMIR.DIR,0/1/2), SFM(LMIR.JM.λ-C-0.4,0/1/2),
Pagerank_prior, Pagerank_rank

3 Query di+culty predictors WIG [82], QF [82], and NQC [68].

=eryLing

12 WordNet features with mean and
standard deviation variants

SYNONYMS, HYPONYMS, MERONYMS, HOLONYMS,
HYPERNYMS, and SISTER- TERMS [57].

18 Linguistic query features No variant NBWORDS, INTERR, NP, ACRO, NUM, PREP, CC, PP,
VBCONJ, UNKNOWN, AVGSIZE, AVGMORPH, %CONSTR,
AVGSYNSETS, SYNTDEPTHAVG, SYNTDEPTHMAX,
SYNTDISTANCEAVG, and SYNTDISTANCEMAX [58].

RetModel 1 feature representing retrieval model Retrieval model such as HiemstraLM, BM25, and so on (see
Table 1)

Expansion 4 features for query expansion Expansion model, number of expansion documents, number of
expansion terms, and minimum number of documents (see
Table 1).

Mean and standard deviation are used as aggregation functions. LETOR feature notations are consistent with the ones

Terrier give and details are provided in References [51, 57, 63].

and standard deviation. Moreover, one of the post-retrieval features is PageRank, which
can be calculated for linked documents only. Furthermore, we estimated some state-of-the-
art query di+culty predictors, including Query Feedback [82] features using various num-
bers of feedback documents, WIG [82], and a variant of the Normalized query commitment
(NQC), which is based on the standard deviation of retrieved documents scores [69].

• =eryLing: These are collection-independent pre-retrieval query features and focus on
modelling the linguistic properties of the query. We extracted some linguistic features by
exploiting di#erent types of relationship in WordNet [55], including Synonym, Hyponym,
Hypernym, Meronym, Holonym, and Sister-terms. Given a query, we counted the related
terms of each relationship type of a query term and employed the same two aggregation
functions over the set of terms in a query (mean and standard deviation). Moreover, we
also extracted the features de$ned in Reference [58], such as the number of WordNet
synsets for a query term, average number of morphemes per word, and so on (see Table 2).

Note that all the training examples of a given query share the same query features but have dif-
ferent con$guration features. Query features aim to inform the learning-to-rank technique about
the characteristics of the query, thus allowing us to select di#erent system con$gurations on a
per-query basis.

3.3 Labels for Each Example

For each example, we calculated a label that corresponds to the e#ectiveness of the con$guration
c j ∈ C when treating a query, qk . This label is used for the training. More speci$cally, various
e#ectiveness measures for each example (including AP, P@10, P@100, nDCG@10, nDCG, and
R-Prec) will be used for di#erent experiments. When one of the measures is used, the con$gu-
rations will be ranked according to it for the given query. This will be further detailed in the
experiments.

3.4 Training

As our goal of this study is to investigate if the LTR approach for con$guration selection is e#ective,
we use all the reasonable features at our disposal without performing any feature selection, leaving
this aspect to future work.
In principle, any LTR approach could be used for our task: It would rank system con$gurations

in such away that the best con$gurationwill be ranked $rst. This is the con$guration that wewant
to select. Notice, however, that the relative positions of the elements at lower positions are also
important in learning-to-rank models (for document ranking). The optimisation of an LTR model
takes into account all the elements in the ranked list to some depth. The ranking of con$gurations
at lower positions seems intuitively less critical for our task. Therefore, our learning objective
could be di#erent. Intuitively, for our task, we should use nDCG@1 as the objective function to
optimize in the training process, because we are only interested in selecting the $rst con$guration.
However, optimising for a very short result list (1 con$guration) may make the model unstable

and subject to the variation in the features of the query. Therefore, we also consider nDCG@k
(k > 1) to keep the best top ranked con$gurations rather than a single one. Details are provided
in the evaluation sections.

3.4.1 Learning-to-Rank Techniques. Since this is the $rst time LTR is used for selecting the sys-
tem con$guration for a given query, we have no clear idea on which LTR method $ts best to the
problem. We know that with LTR for document ranking, the pointwise methods perform slightly
lower than the pairwise and listwise methods. However, the situation in ranking system con$g-
urations could be di#erent. Thus, we consider the three types of methods for this new task. We
experimented with a large selection of the existing learning-to-rank techniques made available in
the RankLib11 and the SVMrank 12 toolkits. For linear regression, we used the linear model in scikit-
learn.13 Our goal was to experiment the three types of LTR models, namely, pointwise (of which
the standard linear regression can be considered as a special form), pairwise, and listwise. We
will see that the performance varies largely among the models. We $rst performed a preliminary
analysis (see Table 4 Section 4.3.1) to make a $rst selection of the most promising LTR models
for further experiments: Standard linear regression, Random Forests [10], Gradient Boosted Re-
gression Trees (GBRT) [32], Coordinate Ascent [54], SVMrank [42], RankNet [12], RankBoost [31],
AdaRank [78], ListNet [14], and LambdaMART [75]. From these initial results, in the evaluation
section, we kept $ve of these algorithms. These selected techniques cover all three categories of
approaches of learning-to-rank: Linear regression, GBRT, and Random Forests are pointwise tech-
niques, SVMrank is pairwise, and LambdaMART uses both pairwise and listwise criteria.14

LTR algorithms use positive and negative examples during training. To help convergence, we
used 10% of the best con$gurations as positive examples and 10% of the least performing con$g-
urations as negative examples.

3.4.2 Optimization Criteria. It refers to the criterion that is optimized for a ranked list when
training the model. This criterion re"ects how well the ranked list ranks the most performing
con$gurations (measured by an evaluation metric) on top. As stated previously, the normalized

11sourceforge.net/p/lemur/wiki/RankLib/ as for the label which needs to be integer, we discretise the metric by x 10,000 to
make it integer.
12www.cs.cornell.edu/people/tj/svm_light/svm_rank.html.
13http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.
LinearRegression.
14The implementation of LambdaMART we used is listwise; https://sourceforge.net/p/lemur/wiki/RankLib%20How%20to%
20use/.

Table 3. Statistics of the Collections Used in the Experiments

Collection Number of documents Number of topics (Range)
TREC7-8 528,918 100 (350–450)
WT10G 1,692,096 100 (451–550)
GOV2 25,205,179 150 (701–850)
Clueweb12B 52,343,021 100 (201–300)

discounted cumulative gain at the cut-o# rank 1 (nDCG@1), which optimizes the top 1 con$gura-
tion, appears the most intuitive option. However, we will also examine several other choices and
consider deeper ranked lists.
In the experiments, we mainly focus on nDCG@1 to train the ranking algorithms but we will

also show the results with other alternative optimization criteria: nDCG@k (k ∈ {1, 2, . . . , 10}),
expected reciprocal rank at n (err@n), and precision at n (P@n) (see Section 4.4.4 and Figure 8).
The optimization criterion should not be confused with the evaluation metric that measures the

retrieval e#ectiveness.

3.4.3 Evaluation Metric. The evaluation metric is used to measure the retrieval e#ectiveness
for a query with a speci$c con$guration. This measure is used to label the con$gurations for each
training query and to evaluate the retrieval e#ectiveness one can obtain for test queries using a
trained LTR model to select con$gurations. We considered several common evaluation metrics
including mean average precision (MAP), precision at the cut-o# “n” (P@n and we chose P@10
and P@100), nDCG@10, nDCG, and precision after “R” documents have been retrieved (RPrec).
We chose these measures, since these measures combine both (1) widely used measures in IR and
(2) complementary measures in the sense that they are weakly correlated [5].

4 EXPERIMENTS AND EVALUATION

In this section, we describe the collections, experimental setup, and results that we obtained by
running our proposed approach on the collections and comparing with the baselines.

4.1 TREC Collections

The experiments carried out in this article are on four Text REtrieval Conference (TREC)15 test
collections listed in Table 3: TREC7-8, WT10G, GOV2, and Clueweb12. The TREC7-8 collection
is an aggregation of two ad hoc test collections (TREC7 and TREC8) with approximately 500,000
newspaper articles like the Financial Times, the Federal Register, the Foreign Broadcast Information

Service, and the LA Times [74]. The WT10G collection is composed of approximately 1.6 million
Web/Blog page documents [39]. The GOV2 collection includes 25 million web pages, which is the
crawl of the .gov domain [20]. For Clueweb12, we opted to the smaller subset Clueweb12-B13,16

which contains approximately 50 million web pages [21, 22].
Each of the TREC collections consists of di#erent numbers of representative topics. The “stan-

dard” format of a TREC topic statement comprises a topic ID, a title, a description, and a narrative.
The title contains two or three words that represent the keywords a user could have used to submit
a query to a search engine. In our experiments, a query is composed of the topic title only. In the
rest of the article, we will use term “query” to refer to the title part of the topic. TREC7-8 collec-
tion is composed of 100 topics (i.e., merged of queries 351–400 for TREC07 and queries 401–450
for TREC-8). Similarly, we have 100 topics for WT10G, 150 topics for GOV2, and 100 topics for

15trec.nist.gov.
16https://lemurproject.org/clueweb12/index.php.

Fig. 1. Density plots of AP for four illustrative queries using the all set of configurations. In each sub-figure,
the X-axis corresponds to AP while the Y-axis corresponds to the number of configurations that got the
corresponding AP value. From le? to right, queries are 400, 403, 438, and 447 from the TREC7-8 collection.
Dash lines represent the value of grid search for the considered query.

Clueweb12 (i.e., 50 from TREC web track 2013 [21] and 50 from 2014 [22]). Moreover, each of the
test collections provides a qrels $le, which contains the relevance judgments for each query on a
document collection. This qrels $le is used by the evaluation program trec_eval to calculate the
system e#ectiveness (e.g., MAP, P@100, etc.).

4.2 Insights about Configuration Selection Importance

Before using an LTR model to select a system con$guration, we show how important it is to select a
good con$guration. Figure 1 reports the density of AP for four individual queries from TREC7-8. In
each of the sub-$gures, the X-axis corresponds to the e#ectiveness measurement (in bins from 0 to
1), while the Y-axis corresponds to the number of con$gurations that obtained the corresponding
e#ectiveness. We used the con$gurations as depicted in Section 3.

The four queries we show have very di#erent distributions, but we can see that for each of them
the selection of one con$guration has a huge impact on AP. For example, for the $rst query on the
left side, most of the con$gurations get AP between 0.3 and 0.6, but it is possible to $nd a con$gu-
ration for which the AP is as high as 0.8136. Automatically picking up that specific configuration

Fig. 2. Density plots of AP for hard and easy queries using the whole set of configurations. In each sub-
figure, the X-axis corresponds to AP, while the Y-axis corresponds to the number of configurations that yield
the corresponding AP value. Hard queries from the TREC7-8 collection are displayed on the le? side of the
figure while easy queries from the same collection are displayed on the right side. The dashed line is the
mean AP value. Results are from five hard and five easy queries where queries were first sorted in ascending
or descending order based on the third quartile values.

would be tremendously interesting. The same holds for the last query, on the right side of the
$gure: While most of the con$gurations get low performance, a few get high AP (e.g., the highest
AP for the query 447 is 0.9676). The selection is probably easier for query 403 for which most of
the con$gurations get high AP. In this $gure, we also report the AP obtained using the grid search
method, which selects a con$guration for the whole set of queries. Obviously, for some queries,
this method fails to generate an e#ectiveness score close to the best (e.g., 447 on the right side part
of the $gure).
The above examples show the large impact of selecting a system con$guration for di#erent

queries. We also know from past evaluation campaigns that there is not a single con$guration
that is the best for all the queries, and this is indeed the case in Figure 1: The best con$guration for
the four queries is not the same. Therefore, the selection of system con$guration should be query
dependent, which is what we intend to do: selecting for each query the best con$guration.
To go a step further, we also had a look at two groups of queries for which it is easy or hard to

pick a good con$guration. Let us consider a set of $ve queries for which most of the con$gurations
performed well (75% of con$gurations got AP higher than 0.74 across these queries) and a set of
$ve queries for which most of the con$gurations performed poorly (75% of con$gurations got AP
lower than 0.01). We can see that (see Figure 2) con$gurations do not make a big di#erence in
results for hard queries while they can make a huge di#erence for easy queries. These results are
consistent with previous $ndings [56].
We also had a look at the relationship between query features and con$guration features. Fig-

ure 3 illustrates this relationship when considering nDCG@10 measure. This $gure visualizes a
matrix where a column (X-axis) corresponds to a query feature, while a row (Y-axis) corresponds
to a con$guration. Each value in the matrix corresponds to the canonical correlation when consid-
ering nDCG@10 as the measure of the e#ectiveness for a given con$guration for all the queries.

Fig. 3. Visualizing the canonical correlation between the system configurations and query features for eval-
uation metric nDCG@10 on TREC7-8 collection. The X-axis represents the query features and the Y-axis
represents the system configurations. Here, a configuration “1_5_2_5_20_18” refers to “Param free expan-
sion,” “!ery expansion model,” “Number of Expansion documents,” “Number of expansion terms,” “Mini-
mum number of expansion documents,” ”Retrieval model,” respectively. While we provide the values of the
features and seBings, this figure is intended to show their overall correlations.

Columns and rows have been ordered to display the strongest correlations. To make the $gure
more readable, we did not plot all the features but rather a selection of them. The highest correla-
tions (either positive in red or negative in blue) show that some query features are closely related
to the e#ectiveness of the con$gurations. We also see redundancy either in terms of con$gurations
(similar rows) or in terms of query features (similar columns). The fact that there are complemen-
tary query features and complementary con$gurations which can be clearly seen in di#erent rows
or di#erent columns.

4.3 Experimental System Architecture
We depicted the schematic diagram of our proposed approach in Figure 4, which is composed of
four main components: pre-processing, training, ranking, and evaluation. Each of the components
is described as follows:

Fig. 4. The four steps of our approach for learning-to-rank system configurations. Steps 1 and 2 are only
performed once. Step 1 is covered in this article by Section 3.1; Step 2 is covered by Sections 3.2, 3.3, and 3.4.
Steps 3 and 4 are parts of the experiments we detail in the subsequent sections.

• Pre-processing: Given a collection, $rst, we determine all feasible system con$gurations C.
Second, we index the documents corresponding to the collection using a Terrier retrieval
system with default parameters including the stop word removal. Third, given the title of
a TREC topic, we obtain a run based on each of the system con$gurations c j ∈ C. Finally,
we estimate the evaluation metrics using trec_eval tool for each run. The metric value is
considered as the relevance label of the training example for the underlying run generated
by a query and a con$guration.

• Training: This step makes use of the training examples constructed from the query features,
system con$guration features, and relevance labels measured by the respective evaluation
metric (see the part in grey in Figure 4) and a learning-to-rank algorithm using an optimiza-
tion criterion (e.g., nDCG@1). Once the training is done, a learned model is generated.

• Document Ranking: In the ranking (testing) step, we consider a new query that has not been
seen during training and apply our trained model to rank the system con$gurations for the
current query.

• Evaluation: The $nal step is the evaluation of our method in which we calculate the system
performance measure by applying the top con$guration predicted by the learning-to-rank
model for each query using an evaluation metric (e.g., AP).

Following our architecture depicted in Figure 4, we use a $vefold cross validation for all experi-
ments, where each fold has separate training (3/5), validation (1/5), and test sets (1/5). The training

Table 4. Preliminary Results (Nine Di\erent LTR Models of Di\erent Types)
Considering nDCG@1 Objective Function Using Six Di\erent Evaluation

Measures MAP, P@10, NDCG@10, NDCG, P@100, and RPREC

MAP P@10 NDCG@10 NDCG P@100 RPREC
Grid search 0.262 0.469 0.498 0.546 0.243 0.299

nDCG@1
Linear Regression 0.319△ 0.579△ 0.612△ 0.619△ 0.275△ 0.349△

Pointwise Random Forests 0.335△ 0.575△ 0.614△ 0.634△ 0.289△ 0.371△

GBRT 0.334△ 0.546△ 0.565△ 0.616△ 0.289△ 0.359△

SVMrank 0.315△ 0.542 0.533 0.606△ 0.268△ 0.346△

Pairwise RankNet 0.311△ 0.447 0.443 0.479▽ 0.274△ 0.298
RankBoost 0.198▽ 0.395 0.401▽ 0.559 0.243 0.195▽

LambdaMART 0.310△ 0.539 0.338▽ 0.592△ 0.228 0.329
Listwise Coordasc 0.200▽ 0.316▽ 0.366▽ 0.479 0.269△ 0.199▽

ListNet 0.195▽ 0.386 0.343▽ 0.353▽ 0.110▽ 0.221▽

Oracle 0.4117 0.7700 0.8022 0.7073 0.3449 0.4484

TREC7-8 collection is used with $vefold cross-validation.

queries are used to train the learning-to-rank models, the validation queries are used to minimise
the over-$tting, and the test queries are used to evaluate the learned models.
Since a quite large number of LTR algorithms exist, we performed a preliminary evaluation on

TREC7-8 to select the most interesting models for further investigation.

4.3.1 Preliminary Results. Table 4 presents our preliminary results on TREC7-8 collection with
$vefold cross-validation. In this table, we considered di#erent LTR algorithms of each type for a
total of nine algorithms, nDCG@1 optimization functions used to learn the model on the training
queries, and six di#erent I R s ystem e#ectiveness measures. These re sults ar e ob tained fo r test
queries where each query is run using the con$guration our trained model predicts.

Table 4 shows that when considering nDCG@1 as the optimization function, thus considering
the $rst r anked c on$guration, po intwise Ra ndom fo rests al gorithm co nsistently pe rforms the
best across performance measures. Linear regression and GBRT, other pointwise algorithms also
consistently perform well across performance measures. Also quite close in terms of performance
are SVMr ank and RankNet for pairwise and LambdaMART for listwise.

Based on these preliminary results, we kept three pointwise (linear regression, Random forests,
and GBRT), one pairwise (SVMr ank), and one listwise (LambdaMART) LTR algorithms for further
evaluations in this article.
These preliminary results also show that our LTR methods can highly improve the results

with grid search. These preliminary results need to be con$rmed and the next section details the
experiment design we set up for that.

4.3.2 Experiment Design. To evaluate our approach to select system con$guration, we examine
$ve research questions (R1–R6):
RQ1: How e"ective is our proposed approach using learning-to-rank to select system con!guration?

Is it able to select the best con!guration for a query or a con!guration close to it?
We compare our proposed learning-to-rank system with the BM25 and parameter tuning with

the grid search as baselines. The grid search is a well-known technique for optimal parameter

search, which selects the best con$guration on a set of training queries and uses it on the test
queries. In this experiment, we use all the 81 features related to Linguistic (=eryLing), Statistical
(=eryStats), Retrieval (RetModel), and Query expansion (Expansion) aspects. We also report
Oracle result where for each query the best con$guration is systematically selected. Finally, we go
deep into the results to understand better the results.

RQ2:What LTR model is the most e"ective for the task?

We have di#erent classes of LTR approaches: pointwise, pairwise, and listwise approaches. We
intend to determine which class of approaches is the most suitable for our task.

RQ3: Are the di"erent groups of features deem necessary in the learning-to-rank system con!gu-

ration?

To evaluate the e#ect of di#erent groups of features on the trainedmodel, we conducted a feature
ablation study. We removed one group of features to see how this a#ects the system performance.

RQ4:What is the impact of the optimization criteria at di"erent rank positions?

Learning to rank algorithms use di#erent optimization criteria while in our case nDCG@1 is
used as a natural choice. The optimization criteria may have an impact on the trained model. We
studied the impact of the di#erent optimization criteria and at di#erent rank depths.

RQ5: How in#uential are the query expansion parameters?

Query expansion parameters are the most crucial part of system con$gurations in C, because
they lead to varying di#erent system performances. We evaluate the in"uence of expansion
features only on the learned model by conducting an ablation study of the expansion parameters.
It is thus a more detailed analysis compared to RQ2 that looked at the whole set of expansion
features together.

RQ6:What would be the cost of implementing the method in a commercial search engine?

Our model considers several query features and several con$gurations. We discuss the cost of
implementing our model on the training phase and on using the trained model or running phase.

4.4 Experimental Results

To address the research questions de$ned in the previous section, we conducted several experi-
ments and reported the outcome in this section.

4.4.1 E"ectiveness of the Learning to Rank System Configurations. While in learning-to-rank
documents, the pointwise methods usually yield lower e#ectiveness than the pairwise and listwise
methods, we need to compare the three approaches, since we are dealing with a di#erent task.
There are two major di#erences: (1) We are interested in the $rst ranked system con$guration
while the standard LTR is interested in the full document list; (2) our labels are continuous variables
while document ranking uses discrete ratings. It is thus worth comparing the results from the
three categories of LTR methods. We compared the performance of our proposed learning-to-
rank system con$guration approach to two baselines. One baseline is the grid search method,
which selects the best con$guration of a set of training queries (we used both the training and the
validation queries here) and uses it on the test queries. This corresponds to the common practice in
IR for setting multiple parameters. Notice that this con$guration is query independent. A second
baseline is Random search [7]. It has been recently introduced as an alternative to manual and
grid searches for hyper-parameter optimization. Random search has been shown to be e#ective
even when using 64 trials only [7]. In the experiments, we considered 1,000 trials and report the

Table 5. Comparative Performance of Our Proposed Learning-to-Rank System
Configuration Approach Using Five Di\erent Learning to Rank Models on

TREC7-8 Collection to Three Baselines: BM25, Grid Search, and Random Search

MAP nDCG@10 P@10 RPrec
BM25 (Baseline) 0.211 0.465 0.431 0.255
Grid search (Baseline) 0.262 0.498 0.469 0.299
Random search (Iter: 1000) 0.263 0.507 0.441 0.301

Linear Regression 0.319△↑ 0.612△↑ 0.579△↑ 0.349△↑

Random Forests 0.335△↑ 0.614△↑ 0.575△↑ 0.371△↑

GBRT 0.334△↑ 0.565△ 0.546△↑ 0.359△↑

SVMrank 0.315△↑ 0.533 0.542↑ 0.346△↑

LambdaMART 0.310△↑ 0.338▽↓ 0.539↑ 0.329
Oracle performance 0.412 0.802 0.770 0.448

Oracle performance (upper bound) is also reported when the best con$guration for any

individual query is used. △ indicates statistically signi$cant improvement over the grid

search baseline, whereas ↑ indicates statistically signi$cant improvement over the Random

search baseline, according to a paired t-test (p < 0.05). We used nDCG@1 as optimization

function and four di#erent e#ectiveness measures.

Table 6. Comparative Performance of Our Proposed Learning to Rank
System Configuration Approach on WT10G Collection

MAP nDCG@10 P@10 RPrec
BM25 (Baseline) 0.199 0.364 0.340 0.243
Grid search (Baseline) 0.245 0.396 0.361 0.273
Random search (Iter: 1000) 0.244 0.367 0.384 0.273

Linear Regression 0.260 0.453△↑ 0.416△↑ 0.301

Random Forests 0.319△↑ 0.452△↑ 0.437△↑ 0.325△↑

GBRT 0.303△↑ 0.400 0.401↑ 0.214▽↓

SVMrank 0.228 0.447△↑ 0.410↑ 0.296

LambdaMART 0.210 0.321▽ 0.285▽ 0.200▽↓

Oracle performance 0.406 0.657 0.638 0.443

Legend and settings are identical to Table 5.

result for the most e#ective con$guration. Moreover, for an easy comparison, we also provided the
performance of a standard BM25 run (without query expansion), using the default con$guration
provided by Terrier.
The training step makes use of many query features as presented in Table 2. The models

have been learned using the full set of 81 features related to Linguistic (=eryLing), Statistical
(=eryStats), Retrieval (RetModel), and Query expansion (Expansion).
Given a test query, we used the system con$guration that has been ranked $rst by the learned

models. We report the average performance on the test queries in Tables 5, 6, 7, and 8 for all four
collections TREC7-8, WT10G, GOV2, and Clueweb12, respectively. We also report in Tables 5 to 8
the upper bound of our method, which used the best possible system con$guration for each query
in the test set (i.e., the Oracle performance).
From Tables 5 to 8, we see that all learning-to-rank techniques can reasonably learn to rank

system con$gurations for most evaluation measures and test collections. The results are generally
better than with grid search or random search. These results clearly indicate the bene$t of using

ACM Transactions on Information Systems, Vol. 37, No. 1, Article 3. Publication date: October 2018.

Table 7. Comparative Performance of Our Proposed Learning to Rank
System Configuration Approach on GOV2 Collection

MAP nDCG@10 P@10 RPrec
BM25 (Baseline) 0.279 0.477 0.542 0.345
Grid search (Baseline) 0.357 0.535 0.629 0.390
Random search (Iter: 1000) 0.353 0.519 0.624 0.384

Linear Regression 0.410△↑ 0.651△↑ 0.770△↑ 0.441△↑

Random Forests 0.411△↑ 0.659△↑ 0.767△↑ 0.446△↑

GBRT 0.396△↑ 0.642△↑ 0.760△↑ 0.448△↑

SVMrank 0.363 0.634△↑ 0.741△↑ 0.433△↑

LambdaMART 0.324▽ 0.312▽↓ 0.618 0.280▽↓

Oracle performance 0.478 0.813 0.910 0.515

Legend and settings are identical to the Table 5.

Table 8. Comparative Performance of Our Proposed Learning to Rank System
Configuration Approach on Clueweb12 Collection

MAP nDCG@10 P@10 RPrec
BM25 (Baseline) 0.026 0.151 0.210 0.068
Grid search (Baseline) 0.032 0.167 0.259 0.071
Random search (Iter: 1000) 0.031 0.156 0.223 0.066

Linear Regression 0.042△↑ 0.232△↑ 0.313△↑ 0.080△↑

Random Forests 0.043△↑ 0.235△↑ 0.336△↑ 0.076↑

GBRT 0.040△↑ 0.227△↑ 0.349△↑ 0.079△↑

SVMrank 0.040△↑ 0.235△↑ 0.324△↑ 0.078△↑

LambdaMART 0.025▽ 0.175 0.278↑ 0.072
Oracle performance 0.059 0.321 0.420 0.096

Legend and settings are identical to the Table 5.

a learning-to-rank model to select an appropriate system con$guration for a query rather than
setting a unique con$guration globally.
Among the learning-to-rank models, the pointwise models, especially Random Forests, produce

the best results. The second best is the standard linear regression, another pointwise algorithm.
The pairwise SVMrank follows. The listwise LambdaMART performs the worst. The performances
obtained with the con$guration selected by LambdaMART are sometimes lower than that deter-
mined by grid search.
This observation di#ers from the traditional use of learning-to-rank models for document rank-

ing, where pairwise and listwise models are found to perform better than pointwise models [48].
A possible explanation of this is in the di#erence of the optimization process used in learning-to-
rank and our $nal goal. In pairwise and listwise learning-to-rank methods, the optimization takes
into account the relative positions of con$gurations at lower ranks, while this is not important for
our task, which only selects the best con$guration. Thus, the changes of other con$gurations at
lower positions do not a#ect our $nal choice but will impact the objective functions used in these
learning-to-rank algorithms.
The learning-to-rank models also compared favourably to the best-performing systems of the

TREC-7 and TREC-8 AdHoc Tracks, TREC-9 Web Track (WT10G), TREC-2004, TREC-2005, and
TREC-2006 Terabyte Tracks (GOV2).

The best system that uses the title only at TREC-7 (“ok7as”) [65] and TREC-8 (“pir9At0”) [43]
obtained 0.2614 and 0.3063, respectively, while the Random Forests model can produce 0.3121 and
0.3809 in MAP on the two separate sets of queries.
The best performance from the participants of TREC-9 Web Track was 0.2011 in MAP, while the

Random Forests model can produce 0.3371, which is signi$cantly better. The best systems at TREC
2004, 2005, and 2006 Terabyte Tracks obtained 0.2840, 0.3885, and 0.3392 in MAP, respectively. Our
Random Forests model achieves 0.3786, 0.4464, and 0.4076 in MAP in the respective Tracks, which
is statistically signi$cantly better than the best participants’ method (the MAP is 0.4109 when AP
is averaged over the three sets of queries).

4.4.2 Di"erences between Good and Bad Configurations. To understand what distinguishes a
good con$guration from a bad con$guration, we analyse the parameter values in the best 10% and
worst 10% con$gurations, which have been used as positive and negative examples to train our
LTR models. In this analysis, we focused on GOV2 collection.

Figure 5 shows the distribution of the parameter values used for each query: (a) among the
10% best con$gurations and (b) among 10% worst con$gurations for GOV2. The top part of the
$gure reports the number of con$gurations that use a speci$c retrieval model. They are ordered
according to the number of times they are in the 10% best con$gurations for a query. Only the
$rst 7 retrieval models have been used for query expansion, that is why the 14 others have smaller
bars. We can see that the $rst model “DFRee” appears twice more in best con$gurations than in
the worst ones. This is clearly the overall best retrieval model.
With regard to expansion models, “Bo2” is more frequent in the best con$gurations than the

worst while, except “KL complete” and “Information” expansion models. On the number of ex-
pansion terms, the number of expansion documents, and the minimal number of documents the
expansion terms should appear in, we see more mixed pictures: There is not a clear winner. In
fact, these numbers strongly depend on the retrieval model and the expansion model used. It is
impossible to select a good number independently from the models.
It is also interesting to compare the parameter values between the selected con$gurations and

the Oracle con$gurations t o s ee how c lose t he s elections a re t o t he b est. F igure 6 r eports the
distribution of the parameters on GOV2 testing set (from the $vefold cross-validation) both for
the Oracle and for our trained model when using Random Forests LTR algorithm with nDCG@1
as the objective function and AP as e#ectiveness measure. We can see that for retrieval model, the
distributions of the Oracle and of our model are very close to each other. This suggests that our
LTR model is able to select good retrieval models. However, we observe more di#erences on the
other parameters. These results indicate that it is more di+cult to determine the good parameters
for expansion than the retrieval model.
In the next section, we will carry out further analysis on the impact of each parameter through

ablation.

4.4.3 Ablation Analysis of Di"erent Group of Features. Not all the features are of the same im-
portance. Since we de$ned several groups of f eatures, i t i s worth knowing which ones are the
most important. This may have an impact on costs. To evaluate the e#ect of each group of features
presented in Section 3.2 (=eryStats, =eryLing, RetModel, and Expansion) for selecting the
con$guration, we performed the feature ablation analysis. We removed one group of features at
each time, performed again the training, and testing steps as before. If we observe a large decrease
in retrieval e#ectiveness, then this would indicate that the ablated features are very important for
the learner, while an increase in results would suggest that the features confuse the learner.
We $rst report the main $ndings in Figure 7 to make a fast and easy read. In that $gure, we re-

ported the performance of feature ablation for Random Forests on TREC7-8 collection. The shape

Fig. 5. Distribution of the configurations for a given value of the various parameters of the configurations
for GOV2: retrieval model on the top part, then the four expansion parameters when considering the 10%
best configurations (black bars) and when considering the 10% worst (grey bars) for each query.

for the other collections is similar. We can clearly see that expansion features are the most im-
portant con$guration features, since when removing them from the model, the results decrease
drastically.
To provide more details, we also report the average performance on the test queries of the

features ablation study in Tables 9, 10, 11, and 12 for collections TREC7-8, WT10G, GOV2, and
Clueweb12, respectively.

Table 9 should be read as follows: When considering the MAP, for example, the model trained
using all the features and Random Forests achieves 0.335. When training the model without the
linguistic features associatedwith the query, MAP increases by 3% to 0.345. Thus linguistic features
seem to penalise the e#ectiveness. Reversely, when training the model without expansion features,
MAP decreases of more than 31.9% to 0.228, thus expansion features are very useful in the model.

Fig. 6. Distribution of the configurations for a given value of the various parameters of the configurations
for GOV2: retrieval model on the top part, then the four expansion parameters; both for the Oracle (black
bars) and for our trained model (grey bars) using Random Forests, nDCG@1 as the objective function, and
AP as e\ectiveness measure.

When analysing Table 9, we can make the following observations.
First, we observe that ablating the Expansion group of features always signi$cantly decreases

the performance of the learned models, hinting the huge importance of these features for learning
an e#ectivemodel. This observation is in agreement withwhat we observed in the previous section
(Section 4.4.2): The best values for query expansion parameters vary a lot across queries. So, when
the expansion features are removed, the $nal selection will pick a random value among them,
leading to large variations in retrieval e#ectiveness.
The ablation of the other groups of features has less marked impact. When we remove the

RetModel feature, the performances can increase or decrease slightly. This may seem surprising.
However, comparing with Figure 5, this observation can be explained by the following facts: (1) The

Fig. 7. The performance of feature ablation for Random Forests on TREC7-8 collection. We can observe
degradation of the results when removing expansion features and increase when removing !eryStat
features.

seven models that are used in combination with expansion parameters (thus can be selected) are
all good models that can produce quite high retrieval e#ectiveness; therefore, any of them could
be a reasonable choice, and (2) it is possible that the other features may provide some information
to determine the appropriate retrieval model. To con$rm this, it would be necessary to examine
the correlation between di#erent features. We leave this to future work.

We also observe that the ablation of query-dependent features, namely =eryStats and
=eryLing (=eryAll means both =eryStats and =eryLing), produces variable e#ects. In
some cases, we can observe that removing some groups of features leads to even better perfor-
mance than using the full set of 81 features ($rst line named (All) for each LTR model). Therefore,
it would be desirable to perform a feature selection to keep a subset of useful features. This will
be part of our future work.

Table 9. Results with the Five Di\erent Learning-to-Rank Models and Feature Ablations on TREC7-8

MAP nDCG@10 P@10 RPrec
Grid search (Baseline) 0.262 0.498 0.469 0.299
Random search (Iter: 1000) 0.263 0.507 0.441 0.301

Linear Regression (All) 0.319△↑ 0.612△↑ 0.579△↑ 0.349△↑

- =eryLing 0.321△↑ +0.6% 0.612△↑ 0.0% 0.560△↑ −3.3% 0.349△↑ 0.0%

- =eryStats 0.312△↑ −2.2% 0.622△↑ +1.6% 0.581△↑ +0.3% 0.334△ −4.3%

- RetModel 0.308△↑ −3.5% 0.511H −16.5% 0.538↑ −7.1% 0.340△↑ −2.6%

- Expansion 0.152H▽↓ −52.4% 0.289H▽↓ −52.8% 0.303H▽↓ −47.7% 0.200H▽↓ −42.7%

- =eryAll 0.338△↑ +6.0% 0.632△↑ +3.3% 0.554△↑ −4.3% 0.345△↑ −1.1%

Random Forests (All) 0.335△↑ 0.614△↑ 0.575△↑ 0.371△↑

- =eryLing 0.345△↑ +3.0% 0.595△↑ −3.1% 0.585△↑ +1.7% 0.357△↑ −3.8%

- =eryStats 0.325△↑ −3.0% 0.599△↑ −2.4% 0.572△↑ −0.5% 0.379△↑ +2.2%

- RetModel 0.326△↑ −2.7% 0.561 −8.6% 0.564△↑ −1.9% 0.350△↑ −5.7%

- Expansion 0.228H −31.9% 0.407H▽↓ −33.7% 0.364H▽ −36.7% 0.223H▽↓ −39.9%

- =eryAll 0.330△↑ −1.5% 0.611△↑ −0.5% 0.600△↑ +4.3% 0.358△↑ −3.5%

GBRT (All) 0.334△↑ 0.565△ 0.546△↑ 0.359△↑

- =eryLing 0.321△↑ −3.9% 0.596△↑ +5.5% 0.564△↑ +3.3% 0.353△↑ −1.7%

- =eryStats 0.311△↑ −6.9% 0.601△↑ +6.4% 0.561△↑ +2.8% 0.345△↑ −3.9%

- RetModel 0.316△↑ −5.4% 0.577△ +2.1% 0.559△↑ +2.4% 0.333H△↑ −7.2%

- Expansion 0.223H −33.2% 0.330H▽↓ −41.6% 0.348H▽↓ −36.3% 0.212H▽↓ −41.0%

- =eryAll 0.320△↑ −4.2% 0.618△↑ +9.4% 0.616N△↑ +12.8% 0.361△↑ +0.6%

SVMrank (All) 0.315△↑ 0.533 0.542↑ 0.346△↑

- =eryLing 0.314△↑ −0.3% 0.582△↑ +9.2% 0.545↑ +0.6% 0.344△↑ −0.6%

- =eryStats 0.308△↑ −2.2% 0.524 −1.7% 0.533△↑ −1.7% 0.322 −6.9%

- RetModel 0.313△↑ −0.6% 0.563 +5.6% 0.557△↑ +2.8% 0.332 −4.0%

- Expansion 0.152H▽↓ −51.8% 0.272H▽↓ −49.0% 0.280H▽↓ −48.3% 0.200H▽↓ −42.2%

- =eryAll 0.299△↑ −5.1% 0.577△ +8.3% 0.537↑ −0.9% 0.329 −4.9%

LambdaMART (All) 0.310△↑ 0.338▽↓ 0.539↑ 0.329

- =eryLing 0.333△↑ +7.4% 0.383▽↓ +13.3% 0.498 −7.6% 0.371N△↑ +12.8%

- =eryStats 0.271 −12.6% 0.344▽↓ +1.8% 0.372H▽ −31.0% 0.316 −4.0%

- RetModel 0.257H −17.1% 0.363▽↓ +7.4% 0.470 −12.8% 0.338△↑ +2.7%

- Expansion 0.152H▽↓ −51.0% 0.340▽↓ +0.6% 0.305H▽↓ −43.4% 0.196H▽↓ −40.4%

- =eryAll 0.279H −10.0% 0.381▽↓ +12.7% 0.488 −9.5% 0.245H▽↓ −25.5%
Oracle performance 0.410 0.801 0.775 0.449

nDCG@1 as optimization function (for all but SVM, which uses Kendall’s τ as optimization function).

△ and ↑ indicate statistically signi$cant improvements over the Grid search and Random search baselines respectively,

according to a paired t -test (p < 0.05).

H indicates statistically signi$cant decreases induced by a feature ablation with respect to the corresponding (All) models.

4.4.4 Impact of the Optimisation Criteria in Learning to Rank Technique. Learning to rank algo-
rithms use di#erent optimization criteria such as ERR@n, nDCG@n, and so on, to train a model. On
the intuition that optimisation criteria may have an impact on the trained model, we experimented
with di#erent optimization criteria at the di#erent rank position in training the learning-to-rank
models.
In the $rst set of experiments that we carried in Section 4.4.1 and 4.4.3, the models learned by

Random Forests, LambdaMART, and GBRT all used nDCG@1 optimisation criterion. This choice

Table 10. Results with the Five Di\erent Learning-to-Rank Models and Feature Ablations on WT10G

MAP nDCG@10 P@10 RPrec
Grid search (Baseline) 0.245 0.396 0.361 0.273
Random search (Iter: 1000) 0.244 0.367 0.348 0.273

Linear Regression (All) 0.260 0.453△↑ 0.416△↑ 0.301

- =eryLing 0.272 +4.6% 0.453△↑ 0.0% 0.409↑ −1.7% 0.310△↑ +3.0%

- =eryStats 0.280△↑ +7.7% 0.453△↑ 0.0% 0.411△↑ −1.2% 0.303↑ +0.7%
- RetModel 0.250 −3.9% 0.377H −16.8% 0.354 −14.9% 0.255H −15.3%

- Expansion 0.159H▽↓ −38.9% 0.355H −21.6% 0.321H −22.8% 0.207H▽↓ −31.2%

- =eryAll 0.252 −3.1% 0.441 −2.6% 0.410↑ −1.4% 0.302△↑ +0.3%

Random Forests (All) 0.319△↑ 0.452△↑ 0.437△↑ 0.325△↑

- =eryLing 0.308△↑ −3.5% 0.477△↑ +5.5% 0.399 −8.7% 0.336△↑ +3.4%

- =eryStats 0.301H△↑ −5.6% 0.438 −3.1% 0.421△↑ −3.7% 0.316△↑ −2.8%

- RetModel 0.282H△↑ −11.6% 0.338H −25.2% 0.345H −21.1% 0.264H −18.8%

- Expansion 0.133H▽↓ −58.3% 0.356H −21.2% 0.291H▽ −33.4% 0.216H▽↓ −33.5%

- =eryAll 0.295H△↑ −7.5% 0.421 −6.9% 0.431△↑ −1.4% 0.320△↑ −1.5%

GBRT (All) 0.303△↑ 0.400 0.401↑ 0.214▽↓

- =eryLing 0.285△↑ −5.9% 0.420 +5.0% 0.436△↑ +8.7% 0.286N +33.6%

- =eryStats 0.247H −18.5% 0.451△↑ +12.8% 0.397 −1.0% 0.264 +23.4%

- RetModel 0.252H −16.8% 0.329▽ −17.8% 0.359 −10.5% 0.209▽↓ −2.3%

- Expansion 0.158H▽↓ −47.9% 0.371 −7.2% 0.302H −24.7% 0.210▽↓ −1.9%

- =eryAll 0.290△↑ −4.3% 0.468N△↑ +17.0% 0.429△↑ +7.0% 0.314N△↑ +46.7%

SVMrank (All 0.228 0.447△↑ 0.410↑ 0.296

- =eryLing 0.237 +4.0% 0.438 −2.0% 0.415△↑ +1.2% 0.285 −3.7%

- =eryStats 0.253 +11.0% 0.440 −1.6% 0.412↑ +0.5% 0.293 −1.0%
- RetModel 0.247 +8.3% 0.381H −14.8% 0.372 −9.3% 0.248H −16.2%

- Expansion 0.159H▽↓ −30.3% 0.355H −20.6% 0.321H −21.7% 0.207H▽↓ −30.1%

- =eryAll 0.237 +4.0% 0.413 −7.6% 0.437△↑ +6.6% 0.304△↑ +2.7%

LambdaMART (All) 0.210 0.321▽ 0.285▽ 0.200▽↓

- =eryLing 0.147H▽↓ −30.0% 0.364 +13.4% 0.334 +17.2% 0.229 +14.5%

- =eryStats 0.200 −4.8% 0.263▽↓ −18.1% 0.296 +3.9% 0.173▽↓ −13.5%

- RetModel 0.230 +9.5% 0.228H▽↓ −29.0% 0.311 +9.1% 0.232 +16.0%

- Expansion 0.135H▽↓ −35.7% 0.241▽↓ −24.9% 0.347 +21.8% 0.200▽↓ 0.0%

- =eryAll 0.296N△↑ +41.0% 0.310▽ −3.4% 0.300 +5.3% 0.202▽↓ +1.0%
Oracle performance 0.406 0.657 0.638 0.443

Legend and settings are identical to Table 9.

makes sense, since we always choose the top-ranked system con$guration. However, we also ex-
perimented with several other optimisation criteria to see whether they impact the quality of the
learned models. In addition to nDCG with di#erent depths, we also experimented with expected
reciprocal rank (ERR) and Precision and varied the di#erent cut-o# ranks from 1 to 10. Apart from
this change, the experimental set-up is identical to what we described in Section 4.4.1, and the
results are reported in Figure 8 (SVM is excluded from this analysis, since it uses Kendall’s tau as
optimisation criteria or loss function).

When analysing the Figure 8, we observe di#erent patterns for di#erent learning-to-rank tech-
niques. In Figure 8(a), we see very little variation in the performance of Random Forests, for all

Table 11. Results with the Five Di\erent Learning to Rank Models and Feature Ablations on GOV2

MAP nDCG@10 P@10 RPrec
Grid search (Baseline) 0.357 0.535 0.629 0.390
Random search (Iter: 1000) 0.353 0.519 0.624 0.384

Linear Regression (All) 0.410△↑ 0.651△↑ 0.770△↑ 0.441△↑

- =eryLing 0.390△↑ −4.9% 0.627△↑ −3.7% 0.779△↑ +1.2% 0.427△↑ −3.2%

- =eryStats 0.384H△↑ −6.3% 0.650△↑ −0.1% 0.759△↑ −1.4% 0.433△↑ −1.8%

- RetModel 0.382H△↑ −6.8% 0.512H −21.4% 0.613H −20.4% 0.374H −15.2%

- Expansion 0.127H▽↓ −69.0% 0.378H▽↓ −41.9% 0.528H▽↓ −31.4% 0.212H▽↓ −51.9%

- =eryAll 0.398△↑ −2.9% 0.626△↑ −3.8% 0.762△↑ −1.0% 0.423△↑ −4.1%

Random Forests (All) 0.411△↑ 0.659△↑ 0.767△↑ 0.446△↑

- =eryLing 0.418△↑ +1.7% 0.650△↑ −1.4% 0.799N△↑ +4.2% 0.449△↑ +0.7%

- =eryStats 0.407△↑ −1.0% 0.653△↑ −0.9% 0.766△↑ −0.1% 0.447△↑ +0.2%
- RetModel 0.356H −13.4% 0.493H −25.2% 0.581H −24.2% 0.382H −14.3%

- Expansion 0.213H▽↓ −48.2% 0.528H −19.9% 0.578H −24.6% 0.247H▽↓ −44.6%

- =eryAll 0.411△↑ 0.0% 0.649△↑ −1.5% 0.771△↑ +0.5% 0.447△↑ +0.2%

GBRT All) 0.396△↑ 0.642△↑ 0.760△↑ 0.448△↑

- =eryLing 0.412△↑ +4.0% 0.627△↑ −2.3% 0.777△↑ +2.2% 0.439△↑ −2.0%

- =eryStats 0.396△↑ 0.0% 0.629△↑ −2.0% 0.758△↑ −0.3% 0.440△↑ −1.8%
- RetModel 0.352H −11.1% 0.493H −23.2% 0.573H −24.6% 0.357H▽ −20.3%

- Expansion 0.180H▽↓ −54.5% 0.456H▽ −29.0% 0.580H −23.7% 0.271H▽↓ −39.5%

- =eryAll 0.409△↑ +3.3% 0.658△↑ +2.5% 0.788△↑ +3.7% 0.447△↑ −0.2%

SVMrank (All) 0.363 0.634△↑ 0.741△↑ 0.433△↑

- =eryLing 0.345 −5.0% 0.617△↑ −2.7% 0.762△↑ +2.8% 0.414△↑ −4.4%

- =eryStats 0.336 −7.4% 0.626△↑ −1.3% 0.756△↑ +2.0% 0.405 −6.5%
- RetModel 0.375 +3.3% 0.516H −18.6% 0.610H −17.7% 0.372H −14.1%

- Expansion 0.127H▽↓ −65.0% 0.378H▽↓ −40.4% 0.528H▽↓ −28.7% 0.212H▽↓ −51.0%

- =eryAll 0.342 −5.8% 0.599△↑ −5.5% 0.746△↑ +0.7% 0.393H −9.2%

LambdaMART (All) 0.324▽ 0.312▽↓ 0.618 0.280▽↓

- =eryLing 0.362 +11.7% 0.365▽↓ +17.0% 0.573 −7.3% 0.296▽↓ +5.7%

- =eryStats 0.300▽↓ −7.4% 0.394N▽↓ +26.3% 0.384H▽↓ −37.9% 0.269▽↓ −3.9%

- RetModel 0.362N +11.7% 0.445N▽↓ +42.6% 0.577 −6.6% 0.358N +27.9%

- Expansion 0.149H▽↓ −54.0% 0.408N▽↓ +30.8% 0.444H▽↓ −28.2% 0.205H▽↓ −26.8%

- =eryAll 0.376N +16.1% 0.389▽↓ +24.7% 0.485H▽↓ −21.5% 0.407N +45.4%
Oracle performance 0.478 0.813 0.910 0.515

Legend and settings are identical to Table 9.

collections and all optimisation criteria, which suggests that this LTR model is very stable and can
achieve strong results regardless of the optimisation method. These results also make sense in the
light of the results of Section 4.4.1 and 4.4.3, which show that Random Forests achieves the best
results overall. These strong performances seem to be linked to the adaptability of this learner.
When analysing the Figure 8(b), we observe the same stability for GBRT, except on the WT10G

collection for the nDCG@n and P@n metrics. Finally, we see on Figure 8(c) that the performance
"uctuates more for LambdaMART for both nDCG@n and P@n criteria, suggesting that this LTR
model is unstable and might not be the most suitable for our speci$c task. These observations con-
firm the results in Section 4.4.1 and 4.4.3, where LambdaMART achieved the lowest performance

Table 12. Results with the Five Di\erent Learning to Rank Models and Feature
Ablations on Clueweb12 Collection

MAP nDCG@10 P@10 RPrec
Grid search (Baseline) 0.032 0.167 0.259 0.071
Random search (Iter: 1000) 0.031 0.156 0.223 0.066

Linear Regression (All) 0.042△↑ 0.232△↑ 0.313△↑ 0.080△↑

- =eryLing 0.044△↑ +4.8% 0.229△↑ −1.3% 0.318△↑ +1.6% 0.079△↑ −1.2%

- =eryStats 0.043△↑ +2.4% 0.214H△↑ −7.8% 0.319△↑ +1.9% 0.079△↑ −1.2%

- RetModel 0.041△↑ −2.4% 0.157H −32.3% 0.214H▽ −31.6% 0.071H −11.2%

- Expansion 0.020H▽↓ −52.4% 0.190H −18.1% 0.249H −20.4% 0.041H▽↓ −48.8%

- =eryAll 0.044△↑ +4.8% 0.210H△↑ −9.5% 0.301△↑ −3.8% 0.081△↑ +1.2%

Random Forests (All) 0.043△↑ 0.235△↑ 0.336△↑ 0.076↑

- =eryLing 0.042△↑ −2.3% 0.235△↑ 0.0% 0.325△↑ −3.3% 0.080△↑ +5.3%

- =eryStats 0.043△↑ 0.0% 0.239△↑ +1.7% 0.317△↑ −5.7% 0.078↑ +2.6%

- RetModel 0.038△↑ −11.6% 0.162H −31.1% 0.216H −35.7% 0.059H▽ −22.4%

- Expansion 0.025H▽↓ −41.9% 0.203H△↑ −13.6% 0.278H↑ −17.3% 0.061H −19.7%

- =eryAll 0.043△↑ 0.0% 0.234△↑ −0.4% 0.337△↑ +0.3% 0.079△↑ +4.0%

GBRT (All) 0.040△↑ 0.227△↑ 0.349△↑ 0.079△↑

- =eryLing 0.041△↑ +2.5% 0.232△↑ +2.2% 0.322H△↑ −7.7% 0.073 −7.6%

- =eryStats 0.044N△↑ +10.0% 0.231△↑ +1.8% 0.316H△↑ −9.5% 0.076↑ −3.8%

- RetModel 0.040△↑ 0.0% 0.149H −34.4% 0.216H −38.1% 0.061H▽ −22.8%

- Expansion 0.032H −20.0% 0.203△↑ −10.6% 0.292H↑ −16.3% 0.051H▽↓ −35.4%

- =eryAll 0.042△↑ +5.0% 0.233△↑ +2.6% 0.331H△↑ −5.2% 0.080△↑ +1.3%

SVMrank (All) 0.040△↑ 0.235△↑ 0.324△↑ 0.078△↑

- =eryLing 0.042△↑ +5.0% 0.234△↑ −0.4% 0.326△↑ +0.6% 0.079△↑ +1.3%

- =eryStats 0.042△↑ +5.0% 0.231△↑ −1.7% 0.308△↑ −4.9% 0.076↑ −2.6%

- RetModel 0.038△↑ −5.0% 0.155H −34.0% 0.227H −29.9% 0.073 −6.4%

- Expansion 0.010H▽↓ −75.0% 0.190H −19.1% 0.249H −23.1% 0.041H▽↓ −47.4%

- =eryAll 0.043△↑ +7.5% 0.227△↑ −3.4% 0.321△↑ −0.9% 0.078↑ 0.0%

LambdaMART (All) 0.025▽ 0.175 0.278↑ 0.072
- =eryLing 0.026 +4.0% 0.181 +3.4% 0.246 −11.5% 0.055H▽ −23.6%

- =eryStats 0.038N△↑ +52.0% 0.189↑ +8.0% 0.280↑ +0.7% 0.051H▽↓ −29.2%

- RetModel 0.039N△↑ +56.0% 0.143 −18.3% 0.159H▽↓ −42.8% 0.063 −12.5%

- Expansion 0.021▽↓ −16.0% 0.177 +1.1% 0.246 −11.5% 0.047H▽↓ −34.7%

- =eryAll 0.026 +4.0% 0.210N△↑ +20.0% 0.274↑ −1.4% 0.067 −6.9%
Oracle performance 0.059 0.321 0.420 0.096

Legend and settings are identical to Table 9.

in comparison to the other LTR models. The "uctuation of the performance with di#erent depths
can again explain by the fact that LambdaMART takes into account the whole ranked list to de-
termine the quality of the list. The depth of the ranked list will have some impact on the model. In
particular, it will take into account the relative positions of con$gurations at lower ranks, which
are not important for our task.

4.4.5 Influence of !ery Expansion Features. Since the query expansion parameters exhibit
the largest impact on the retrieval e#ectiveness, we conducted a more detailed feature ablation

Fig. 8. MAP results when varying the optimisation criteria of Random Forests, GBRT, and LambdaMART.
The X-axis represents di\erent ranks of the optimisation criterium (i.e., ERR@1, ERR@2, etc.). S VMRank is
not included in this analysis, since the implementation we used does not allow such seBings.

experiment on some individual features of this group, with the aim of identifying the single
features that have the highest impact on the quality of the learned model.
In this experiment, we compared the performance of the models that have been learned with all

features to those of the models that have been learned after removing each of the four Expansion
features (see Table 1) individually.

Fig. 9. Absolute changes in MAP when removing individual Expansion features, with respect to models that
use all features. This plot is best viewed in colour. Bars above 0.00 line mean that results decreased.

More speci$cally, we calculate the ∆µ , where µ ∈ {MAP , P@10,nDGC@10,RPrec}, which rep-
resents the di#erence between the µ metric after and before ablation. Hence, a positive ∆µ means
that removing the feature has improved the quality of the learned model (i.e., the feature is harm-
ful) and a negative ∆µ means that removing the feature harms performance (i.e., the feature is
bene$cial).

We reported the results of µ = MAP in Figure 9. The results with other evaluation metrics are
similar. When analysing this $gure, we see that the largest changes in results occur for Lamb-
daMART (highest bars either with a positive or a negative change), which con$rms our observa-
tions in previous experiments that this LTR model appears to be more sensitive to features than
others on this speci$c task. However, the SVMrank , GBRT, and Random Forests techniques are less
sensitive to the variation, which highlights their stability and their e#ectiveness for this task.

Furthermore, we see that the expansion model (ExpModel) appears to be a strong feature for
SVMr ank , GBRT, and Random Forests on the four collections. When this feature is removed,
the e#ectiveness generally decreases (except LambdaMART). This observation sounds intuitive:
Without specifying the expansion model, the choice of other expansion parameters may not be
meaningful.

However, the other features like the number of expansion documents or the number of expan-
sion terms seem to be less important and have more variable e#ects, as seen on Figure 9. We see
that removing the number of expansion documents from the features can even lead to improve-
ments on WT10G and GOV2 for LambdaMART and GBRT, respectively.

4.4.6 Cost Aspect. Two main factors in"uence the cost of the proposed method: (1) the number
of candidate con$gurations and (2) the number of features. Moreover, cost should be distinguished
between o#-line and on-line. O#-line cost is for training while on-line is for processing a new user’s
query. The latter is more critical. Most of the costs of our method are o#-line costs as we detail
below.

O"-line cost: Since the trained system can predict the best system con$guration for the given
query without going through all the con$gurations, the number of con$gurations only a#ects the
cost of the training phase.
The more con$gurations the meta system can choose among, the higher the probability to have

a con$guration that is e#ective for a given query, since we have an enlarged con$guration space.
The o#-line cost can, in turn, be decomposed into two parts: pre-processing and training. In the
pre-processing step, we have to design the set of con$gurations, run the queries with each con$g-
uration, evaluate the runs to generate e#ectiveness metrics, and, $nally, prepare the features for
the training stage. Therefore, the more con$gurations we have in pre-processing stage, the higher
the cost to build the runs.
Suppose that we have to build runs in C con$guration s ettings f or each query, evaluate the

e#ectiveness, and prepare the features for the training stage. Given a collection with a set Q of
queries, the cost to build all the runs isC × cost (run, Q, ci), where cost (run, Q, ci) is a function that
returns the cost of retrieving a batch run for the set of Q queries under a particular con$guration
ci ∈ C . At training stage, as we explore a large number of con$gurations (which could probably
be reduced) with varying degree of e#ectiveness, we used a sampling process to reduce it to 20%,
which helps to train a LTR model quickly and leads to a set of globally e#ective con$gurations.

During the training process of a LTR model (e.g., Random Forests), the time complexity is O
(Nt × N f × Nc × log(Nc)), where Nt is the number of trees, N f is the number of features at each
node, and Nc is the number of training samples. In our case with default parameters, Nc = C ×
20% and Nt = 300, N f = 23 (since the feature sampling rate is 30% and the total number of features
is 78). Thus, in the worst-case scenario, the cost to train a Random Forest would be O (300 × 23 ×
Nc × log(Nc)). This is a training cost which only occurs at an o#-line stage.

On-line cost: The cost that matters the most at the on-line stage is related to the selection of a
con$guration, which has a complexity of O (Nt × N f × log(N f)) ≈ O (N f) (since N f ≫ N t and
N f ≫ log(N f)), a linear time complexity. We can further lower the cost of training and predic-
tion by sampling the training examples (i.e., a smaller N f) while maintaining a good predictive
performance.

However, the number of query features a#ects both the training phase (o#-line) and the running
phase (on-line). In principle, the more features we have, the better the trained model could be.
However, experimentally we found that ablating some features helps the training and improves

Table 13. Availability of the O\-the-Self Parameters in the Open-Source IR Systems
Such as LEMUR and TERRIER

Parameter LEMUR TERRIER

Retrieval model

BM25, TF· IDF, VSM,
Language model (Dirichlet,
Jelinek-mercer, Two-stage),
KL-divergence, and so on.

BB2, BM25, DFRee,
DirichletLM, HiemstraLM,
XSqrAM, DPH, IFB2, TFIDF,
and InexpC2, and so on.17

Pseudo relevance feedback Yes Yes

Expansion model
RMExpander,
PonteExpander,
TFIDFExpander

KL, Bo1, Bo2, KLCorrect,
Information, and
KLComplete18

Expansion documents Yes Yes
Expansion terms Yes Yes
Minimum documents No Yes

the performance of the model. In this article, we only ablated groups of features, a $ner study
would be needed to detect which are the most important features of each group and which ones
are common across collections.
Notice also that the cost of feature extraction is not the same for all features. It depends on the

type of feature: pre-retrieval features are less costly than post-retrieval features, since the latter
need to process the query to be calculated. For example, the cost of extracting id f features is fairly
low, as the system only needs to retrieve statistics from the inverted-index for each query term
and to aggregate the values. However, the post-retrieval QF (query feedback) feature, which is
the percentage of overlap at some rank between the documents retrieved for the original query
and the expanded query, requires a costly two-stage processing. Some other post-retrieval features
and query performance predictors (QPP) such as those used in Letor, e.g., BM25 or NQC, are ob-
tained from the documents retrieved at the $rst stage. They require less computation than QF . It
is possible to make the feature extraction faster. For example, we could replace QF predictors by
another QPP such as the weighted product model (WPM) [67], which was shown to be e#ective
and requires only the documents from the $rst retrieval stage. In addition, given that the average
length of the queries is small, 4.1 words [3], the cost of estimating the considered query features
is not prohibitively high in practice.
We see in the above analysis that the cost depends on the number of features we use. As we

showed earlier in Figure 3, the features could be redundant (i.e., rows or columns that are similar).
We could limit the number of features without degrading the overall performance of our method.
We will leave investigation on this aspect to future studies.

The additional cost of implementing a strategy as we proposed in this article in the existing
Lemur and Terrier platforms is relatively small if we consider a limited number of features and a
limited number of con$gurations. With regard to query features, Terrier has already implemented
in its FAT [51] component a number of post-retrieval features that could be easily used. Lemur
provides the clarity feature.

With regard to con$guration parameters as stated in Table 13, Lemur has several con$gurations
of language modelling and non-language modelling based retrieval models, with various strategies
of reformulation made possible by the λ parameter [46]. In Terrier, con$guration parameters could
be easily set, since it has already implemented an extensive list of retrieval models, expansionmod-
els, and so on. Therefore, our method can be directly implemented on top of the existing platforms.

Table 14. Transfer Learning Using Random Forests

Training on WT10G and GOV2 collections; testing on TREC7-8 collection
MAP nDCG@10 P@10 RPrec

BM25 0.211 0.464 0.431 0.255
Random search 0.174 0.406 0.391 0.234

RF 5-fold CV 0.329↑ 0.612↑ 0.604↑ 0.367↑

RF transfer 0.249↑ 0.492 0.474 0.298↑

Oracle 0.412 0.802 0.770 0.448
Training on TREC7-8 and GOV2; testing on WT10G collection

MAP nDCG@10 P@10 RPrec
BM25 0.199 0.363 0.340 0.243
Random search 0.227 0.341 0.342 0.251

RF 5-fold CV 0.307↑ 0.443↑ 0.427↑ 0.333↑

RF transfer 0.269 0.441↑ 0.420 0.265
Oracle 0.406 0.657 0.638 0.443

Training on TREC7-8 and WT10G; testing on GOV2 collection
MAP nDCG@10 P@10 RPrec

BM25 0.279 0.476 0.542 0.345
Random search 0.321 0.456 0.540 0.353

RF 5-fold CV 0.411↑ 0.652↑ 0.788↑ 0.452↑

RF transfer 0.366 0.601↑ 0.722↑ 0.390
Oracle 0.478 0.813 0.909 0.515

We compare the initial results when learning is made on the same collection as testing (using

$vefold cross-validation on queries) and when using transfer learning from two collections to

the third one. BM25 and Random search, as well as Oracle performance (upper bound) are also

reported. ↑ indicates statistically signi$cant improvement over the Random search baseline,

according to a paired t-test (p < 0.05). We used nDCG@1 as optimization function and four

di#erent e#ectiveness measures.

4.5 Transfer Learning
Transfer learning refers to the principle of training a model on one dataset and using it on other
datasets.
In our case, transfer learning can be applied as follows: learning on one collection and testing on

the others. Since the collections di#er both in terms of queries and in terms of document collection,
the result of transfer learning will give a good cue on how generalisable the model is. If transfer
learning works well, then it would mean that the model does not need to be trained again for new
document collections (or when new documents are added), and thus there is no training cost apart
from the initial one. Reversely, if the model should be trained for any new document collection
before being applicable, then its implies additional o#-line cost for training.
In Table 14, we report the results for Random Forests, since it performed best in our previous

experiments. We consider three of the four collections, because these three collections shared
exactly the same features once we removed page rank features. We train on two collections and
tested on the third one. For each combination, we report the BM25 and Random search baselines as
well as Oracle which uses the best con$guration, as in the previous experiments. We then report
the initial results using Random Forests when the model is trained on the current collection using
fivefold cross-validation and when using transfer learning.

In Table 14, we can see that transfer learning is better than the Random search baseline, which
is the best of our three baselines. However, cross-validation on the same collection works better
than transfer learning.
This result shows that while transfer learning could help choosing better con$gurations com-

pared to Random search, the document and query collections are very di#erent in nature so that
a model learned from one collection could be hardly transferred to another collection. A better
solution is to train a model using a set of training queries on the same collection. This result in-
dicates that transfer learning for choosing system con$gurations are di+cult because of the large
di#erences between collections.

5 CONCLUSIONS AND DISCUSSIONS

Main results. In this article, we proposed a new approach to set system con$guration using
learning-to-rank methods. This work is motivated by the intuition that selecting a good system
con$guration boils down to rank the candidate con$gurations. Thus, LTR methods can be used.
In this article, we showed that this approach is feasible, and it can produce performance superior
to the state of the art, speci$cally to the traditional grid search method and to the best results
submitted to TREC. Our approach can be seen as a generalisation of selective query expansion
(SQE) that implements a binary decision: A model decides whether the query should be expanded
or not [2, 25, 81]. In SQE, the state-of-the-art models use quite simple features and methods to
make the decision.
The method we proposed in this article uses much more complex features and learning algo-

rithms to make the decision. In addition, our decision is also more complex: We have to decide not
only the number of feedback documents and terms to use but also several other system setting
parameters.
Globally, our study proposes to see a search system no longer as a system with pre-set param-

eters, but as a system with parameters settable according to the query. Thus, this study paves the
way to a new research direction—IR as an adaptive service. Depending on the characteristics of
the query, di#erent con$gurations can be used.
Among the three families of LTR approaches, the best and most stable (across collections and

measures) are the pointwise approaches, in particular Random Forests. The two other families of
approaches tend to be less e#ective. The worst ones are the listwise methods. This observation
is di#erent from that on document ranking, where listwise approaches produce the best results.
This di#erence could be explained by the di#erence between our task and that of document rank-
ing: In our case, we are interested in selecting one best con$guration (and indeed we optimized
the model on ndcg@1), while in document ranking, one aims to rank a list of documents. In the
latter case, the relative positions of documents at lower ranks matter, but not in our case of con-
$guration selection. Therefore, a pointwise approach (or, similarly, a regression approach) is more
suitable.
Our experiments also showed the importance and bene$ts to make query-dependent con$gu-

ration setting. Using any LTR method, we were able to select a better con$guration than the Grid
or Random search methods, which make query-independent selections.
The feature ablation analysis demonstrated various impacts of di#erent features. In particular,

the features of query exhibited lower impact than we initially thought. More investigations are
needed to fully understand the reasons.

17http://terrier.org/docs/v4.2/javadoc/org/terrier/matching/models/package-summary.html.
18http://terrier.org/docs/v4.2/javadoc/org/terrier/matching/models/queryexpansion/package-summary.html.

Selection and costs. This is the $rst study on utilising LTR to select system con$gurations and
we have limited its scope to several aspects. For example, we did not make a selection of the
features to be used and simply used all the features proposed in the literature that sound relevant.
However, we observed that the relevance of some of the features to our task may be low. The
features can also be redundant, providing similar or even contradictory information. We think
that we should apply some feature selection to help the algorithms focusing on the most important
features. It is also useful to carry out an analysis of the correlation between features to understand
their interactions. This aspect will be very important for real computational cost. Indeed, feature
extraction may incur a signi$cant cost that should not be neglected for concrete use of our method
in a search engine. A more extensive investigation is needed to select the most in"uential features
of each type and the ones that are common across collections. The tradeo# between e#ectiveness
and feature calculation needs to be investigated in future studies.

Impact of LTR algorithms. The main application of learning-to-rank in IR is to rank documents.
The literature of the domain has shown that listwise algorithms are the best [47, 72]. In this arti-
cle, however, our observation is di#erent. Overall, pointwise approaches, and speci$cally, Random
Forests, performs the best. This result is based on global performance on the set of queries, which
as usual hide some epiphenomenon or speci$c behaviour. It is necessary to carry out a detailed
analysis to understand why there is such a di#erence between leaning to rank system con$gura-
tions and learning-to-rank documents.

The focus in optimising system performance. The need for a careful selection of con$guration
is di#erent from one query to another.
As we reported in this article, queries that have a broad range of e#ectiveness values require

more a careful selection than queries that have a limited range of performance values. Indeed,
when there is a limited range of e#ectiveness values, any con$guration can be picked up, even
randomly, without decreasing user’s satisfaction; while with a large range of e#ectiveness values,
the selection is more di+cult and should be done more carefully.
This observation suggests that in trying to optimise system performance, we should focus on

queries for which the range of e#ectiveness value i s l arge f or which i t i s c rucial t o s elect the
appropriate con$guration. This is di#erent from the previous studies which suggested to focus on
“hard” queries [23] that have low e#ectiveness values.

Other research directions. Although we included the most relevant features available, the fea-
ture set can be further enlarged. In particular, the features re"ecting the relationships between a
query and a speci$c con$guration could be very informative. However, we need to $nd a tractable
way to extract such features. Considering the number of con$gurations we used, these speci$c
features would have been costly to obtain.
We created a quite large set of candidate con$gurations based on the results of previous studies.

It may be more appropriate to design a way to determine the values of parameters dynamically
rather than choosing among the $xed candidate set.
Another open question is the e#ectiveness of our method when considering d iversity as for

Clueweb12 TREC task, for example. In that speci$c task, the idea is that the relevance of docu-
ments may depend on the aspects or sub-queries underlying the general query. Intuitively, di#er-
ent con$gurations could answer di#erent sub-queries and thus their combination could be helpful
in diversity task.

APPENDIX

A DETAILS ON THE QUERY FEATURES

Table 15. QueryStats Features

From Reference [63], calculated using Terrier module [51]
Name Detail
SFM(DL,0) or 1 or 2 The score for the language model with

Dirichlet smoothing for the query and the
document title or body or both.

SFM(TF,0) or 1 or 2 The value of the TF for the query and
the document title or body or both.

SFM(TF_IDF,0) or 1 or 2 The value of the TF· IDF score for
the query and the document title or body or both.

sum_tf_idf_full
mean_tf_idf_full

The sum or mean of TF· IDF values for the
query terms

sum_tf_full mean_tf_full The sum or mean of TF values for the
query terms

JM.colλ0.4.docλ0.0 and .1 The score value for the language model with
Jelinek-Mercer smoothing, with a collection
lambda of 0.4.

SFM(BM25,0) or 1 or 2 The value of BM25 model for the query and
the document title or body or both.

From Reference [63], calculated using Lemur

pagerank_rank and The the pagerank score and
log probability of it (Inlink count within the retrieved

pagerank_prior document set).
Query di+culty predictors

Name Detail
IDF Query terms IDF (inverse document frequency).
Clarity [24] The entropy between a query and the collection language models.
WIG [82] Weighted information gain
QF [82] Query feedback
NQC [69] Normalized query commitment

Table 16. QueryLing Features

Name Detail (from Reference [58])
NBWORDS Number of words (terms) in the query
INTERR Number of interrogative words (terms) in the query
PN Number of proper nouns (according to CoreNLP’s POS tagger)
ACRO Number of acronyms
NUM Number of numeral values (dates, quantities, and so on.)
PREP Number of prepositions (idem)
CC
PP Number of personal pronouns (idem)
CONJ Number of conjunctions (according to CoreNLP’s POS tagger)
UNKNOWN Number of unknown tokens (based on WordNet)
AVGSIZE Word length in number of characters
AVGMORPH Average number of morphemes per word (according to CELEX)
%CONSTR
AVGSYNSETS Average number of query term sense in WordNet
SYNTDEPTH Syntactic depth (max depth of the syntactic tree,

according to CoreNLP parser)
SYNTDIST Syntactic links span (average distance between words linked

by a dependency syntactic relation)
Name Detail (from Reference [57])
SYNONYMS Number of terms denoted as synonyms (same sense) to the query

terms in WordNet
HYPONYMS Number of terms denoted as hyponyms (generic relationship) to

the query terms in WordNet
MERONYM Number of terms denoted as meronyms (part-whole relationship)

to the query terms in WordNet
SISTER-TERMS Number of terms denoted as sister-term in WordNet (share

the same hypernym) for the query terms

ACKNOWLEDGMENT

The authors thank the anonymous reviewers for their valuable comments that helped in improving
the quality of this article.

REFERENCES

[1] Nega Alemayehu. 2003. Analysis of performance variation using query expansion. J. Assoc. Inf. Sci. Technol. 54, 5

(2003), 379–391.

[2] Giambattista Amati, Claudio Carpineto, and Giovanni Romano. 2004. Query di+culty, robustness, and selective ap-

plication of query expansion. In European Conference on Information Retrieval. Springer, 127–137.

[3] Avi Arampatzis and Jaap Kamps. 2008. A study of query length. In Proceedings of the 31st Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval (SIGIR’08). ACM, New York, NY, 811–812.

DOI:https://doi.org/10.1145/1390334.1390517

[4] Julie Ayter, Adrian Chifu, Sébastien Déjean, Cecile Desclaux, and Josiane Mothe. 2015. Statistical analysis to establish

the importance of information retrieval parameters. J. Univ. Comput. Sci. Inf. Retriev. Recommend. 21, 13 (2015) (2015),

1767–1789.

[5] Alain Baccini, Sébastien Déjean, Laetitia Lafage, and Josiane Mothe. 2012. How many performance measures to eval-

uate information retrieval systems? Knowl. Inf. Syst. 30, 3 (2012).

[6] David Banks, Paul Over, and Nien-Fan Zhang. 1999. Blind men and elephants: Six approaches to TREC data. Inf.

Retriev. 1, 1–2 (May 1999), 7–34. DOI:https://doi.org/10.1023/A:1009984519381

[7] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13

(Feb. 2012), 281–305.

[8] Anthony Bigot, Claude Chrisment, Taou$q Dkaki, Gilles Hubert, and Josiane Mothe. 2011. Fusing di#erent informa-

tion retrieval systems according to query-topics: A study based on correlation in information retrieval systems and

TREC topics. Inf. Retriev. 14, 6 (2011), 617.

[9] Anthony Bigot, Sébastien Déjean, and Josiane Mothe. 2015. Learning to choose the best system con$guration in

information retrieval: The case of repeated queries. J. Univ. Comput. Sci. 21, 13 (2015), 1726–1745.

[10] Leo Breiman. 2001. Random forests. Mach. Learn. 45, 1 (Oct. 2001), 5–32.

[11] Chris Buckley and Gerard Salton. 1995. Optimization of relevance feedback weights. In Proceedings of the 18th Annual

International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, New York, NY, 351–

357.

[12] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton, andGregHullender. 2005. Learning

to rank using gradient descent. In Proceedings of the 22nd International Conference on Machine Learning. ACM, New

York, NY, 89–96.

[13] Guihong Cao, Jian-Yun Nie, Jianfeng Gao, and Stephen Robertson. 2008. Selecting good expansion terms for pseudo-

relevance feedback. In Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development

in Information Retrieval (SIGIR’08). ACM, New York, NY, 243–250. DOI:https://doi.org/10.1145/1390334.1390377

[14] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning to rank: From pairwise approach to

listwise approach. In Proceedings of the 24th International Conference on Machine Learning. ACM, New York, NY,

129–136.

[15] David Carmel and Elad Yom-Tov. 2010. Estimating the query di+culty for information retrieval. Synth. Lect. Inf.

Concepts Retriev. Serv. 2, 1 (2010), 1–89.

[16] Claudio Carpineto and Giovanni Romano. 2012. A survey of automatic query expansion in information retrieval.

ACM Comput. Surv. 44, 1 (2012), 1.

[17] Olivier Chapelle, Yi Chang, and Tie-Yan Liu. 2011. Future directions in learning to rank. In Yahoo! Learning to Rank

Challenge (Proceedings of Machine Learning Research), Olivier Chapelle, Yi Chang, and Tie-Yan Liu (Eds.). Vol. 14.

PMLR, Haifa, Israel, 91–100.

[18] Olivier Chapelle and S. Sathiya Keerthi. 2010. E+cient algorithms for ranking with SVMs. Inf. Retriev. 13, 3 (2010),

201–215.

[19] Adrian Chifu, Lá Laporte, Josiane Mothe, and Zia Ullah Md. 2018. Query performance prediction focused on sum-

marized letor features. In Proceedings of the 41th International ACM SIGIR Conference on Research and Development in

Information Retrieval (SIGIR’18). ACM.

[20] Charles L. A. Clarke, Nick Craswell, and Ian Soboro#. 2004. Overview of the TREC 2004 terabyte track. In Proceedings

of the Text REtrieval Conference (TREC’04), Vol. 4. 74.

[21] Kevyn Collins-Thompson, Paul Bennett, Charles L. A. Clarke, Fernando Diaz, and Ellen M. Voorhees. 2014. TREC 2013

Web Track Overview. Technical Report. University of Michingan at Ann Arbor.

[22] Kevyn Collins-Thompson, Craig Macdonald, Paul Bennett, Fernando Diaz, and Ellen M. Voorhees. 2015. TREC 2014

Web Track Overview. Technical Report. University of Michigan at Ann Arbor.

[23] Jonathan Compaoré, Sébastien Déjean, Adji Maŕram Gueye, Josiane Mothe, and Joelson Randriamparany. 2011. Min-

ing information retrieval results: Signi$cant IR parameters. Adv. Inf. Min. Manage. (Oct. 2011).

[24] Steve Cronen-Townsend, Yun Zhou, and W. Bruce Croft. 2002. Predicting query performance. In Proceedings of the

25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’02).

ACM, New York, NY, 299–306. DOI:https://doi.org/10.1145/564376.564429

[25] Steve Cronen-Townsend, Yun Zhou, and W. Bruce Croft. 2004. A framework for selective query expansion. In Pro-

ceedings of the 13th ACM International Conference on Information and Knowledge Management. ACM, New York, NY,

236–237.

[26] Romain Deveaud, JosianeMothe, and Jian-YunNie. 2016. Learning to rank system con$gurations. In Proceedings of the

25th ACM International on Conference on Information and Knowledge Management. ACM, New York, NY, 2001–2004.

[27] Bekir Taner Dinçer. 2007. Statistical principal components analysis for retrieval experiments: Research articles. J.

Assoc. Inf. Sci. Technol. 58, 4 (Feb. 2007), 560–574. DOI:https://doi.org/10.1002/asi.v58:4

[28] Francis C. Fernández-Reyes, Jorge Hermosillo-Valadez, and Manuel Montes-y Gómez. 2018. A prospect-guided global

query expansion strategy using word embeddings. Inf. Process. Manage. 54, 1 (2018), 1–13.

[29] Nicola Ferro. 2017. What does a#ect the correlation among evaluation measures? ACM Trans. Inf. Syst. 36, 2 (2017),

19:1–19:40. DOI:https://doi.org/10.1145/3106371

[30] Nicola Ferro and Gianmaria Silvello. 2016. The CLEF monolingual grid of points. In International Conference of the

Cross-Language Evaluation Forum for European Languages. Springer, 16–27.

[31] Yoav Freund, Raj Iyer, Robert E. Schapire, and Yoram Singer. 2003. An e+cient boosting algorithm for combining

preferences. J. Mach. Learn. Res. 4 (Nov. 2003), 933–969.

[32] Jerome H. Friedman. 2000. Greedy function approximation: A gradient boosting machine. Ann. Stat. 29 (2000),

1189–1232.

[33] Johannes Fürnkranz and Eyke Hüllermeier. 2011. Preference Learning. Springer.

[34] Nicolo Fusi and Huseyn Melih Elibol. 2017. Probabilistic matrix factorization for automated machine learning.

arXiv preprint arXiv:1705.05355 (2017).

[35] Parantapa Goswami, Eric Gaussier, and Massih-Reza Amini. 2017. Exploring the space of information retrieval term

scoring functions. Inf. Process. Manage. 53, 2 (2017), 454–472.

[36] Donna Harman. 1992. Relevance feedback revisited. In Proceedings of the 15th Annual International ACM SIGIR Con-

ference on Research and Development in Information Retrieval. ACM, New York, NY, 1–10.

[37] Donna Harman and Chris Buckley. 2009. Overview of the reliable information access workshop. Inf. Retriev. 12, 6 (18

Jul. 2009), 615. DOI:https://doi.org/10.1007/s10791-009-9101-4

[38] Claudia Hau#, Djoerd Hiemstra, and Franciska de Jong. 2008. A survey of pre-retrieval query performance predictors.

In Proceedings of the 17th ACM Conference on Information and Knowledge Management (CIKM’08). ACM, New York,

NY, 1419–1420. DOI:https://doi.org/10.1145/1458082.1458311

[39] David Hawking. 2000. Overview of the TREC-9 web track. In Proceedings of the Text REtrieval Conference (TREC’00).

National Institute of Standards and Technology.

[40] Ben He and Iadh Ounis. 2006. Query performance prediction. Inf. Syst. 31, 7 (2006), 585–594.

[41] Djoerd Hiemstra. 2001. Using Language Models for Information Retrieval. Univ. Twente. I–VIII, 1–163 pages.

[42] Thorsten Joachims. 2002. Optimizing search engines using clickthrough data. In Proceedings of the 18th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining. 133–142.

[43] K. L. Kwok, Laszlo Grunfeld, and M. Chan. 1999. TREC-8 Ad-Hoc, query and $ltering track experiments using PIRCS.

In Proceedings of the Text REtrieval Conference (TREC’99).

[44] Hanjiang Lai, Yan Pan, Cong Liu, Liang Lin, and Jie Wu. 2013. Sparse learning-to-rank via an e+cient primal-dual

algorithm. IEEE Trans. Comput. 62, 6 (2013), 1221–1233.

[45] Léa Laporte, Rémi Flamary, Stéphane Canu, Sébastien Déjean, and Josiane Mothe. 2014. Nonconvex regularizations

for feature selection in ranking with sparse svm. IEEE Trans. Neur. Netw. Learn. Syst. 25, 6 (2014), 1118–1130.

[46] Victor Lavrenko and W. Bruce Croft. 2001. Relevance based language models. In Proceedings of the 24th Annual In-

ternational ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’01). ACM, New York,

NY, 120–127. DOI:https://doi.org/10.1145/383952.383972

[47] Yuan Lin, Jiajin Wu, Bo Xu, Kan Xu, and Hongfei Lin. 2017. Learning to rank using multiple loss functions. Int. J.

Mach. Learn. Cybernet. (2017), 1–10. DOI:https://doi.org/10.1007/s13042-017-0730-4

[48] Tie-Yan Liu. 2009. Learning to rank for information retrieval. Found. Trends Inf. Retriev. 3, 3 (2009), 225–331.

[49] Tie-Yan Liu. 2011. Learning to Rank for Information Retrieval. Springer Science & Business Media.

[50] Meili Lu, Xiaobing Sun, Shaowei Wang, David Lo, and Yucong Duan. 2015. Query expansion via wordnet for e#ec-

tive code search. In Proceedings of the 2015 IEEE 22nd International Conference on Software Analysis, Evolution and

Reengineering (SANER’15). IEEE, 545–549.

[51] Craig Macdonald, Rodrygo L. T. Santos, Iadh Ounis, and Ben He. 2013. About learning models with multiple query-

dependent features. ACM Trans. Inf. Syst. 31, 3 (2013), 11.

[52] Craig Macdonald, Rodrygo L. T. Santos, and Iadh Ounis. 2013. The whens and hows of learning to rank for web

search. Inf. Retriev. 16, 5 (2013), 584–628.

[53] Michael McCandless, Erik Hatcher, and Otis Gospodnetic. 2010. Lucene in Action: Covers Apache Lucene 3.0. Manning

Publications Co.

[54] Donald Metzler and W. Bruce Croft. 2007. Linear feature-based models for information retrieval. Inf. Retriev. 10, 3

(2007), 257–274.

[55] George A. Miller. 1995. WordNet: A lexical database for english. Commun. ACM 38, 11 (1995), 39–41.

[56] Stefano Mizzaro and Stephen Robertson. 2007. Hits hits TREC: Exploring IR evaluation results with network analysis.

In Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information

Retrieval. ACM, 479–486. DOI:http://doi.acm.org/10.1145/1277741.1277824

[57] Serge Molina, Josiane Mothe, Dorian Roques, Ludovic Tanguy, and Md Zia Ullah. 2017. IRIT-QFR: IRIT query feature

resource. In International Conference of the Cross-Language Evaluation Forum for European Languages. Springer, 69–81.

[58] JosianeMothe and Ludovic Tanguy. 2005. Linguistic features to predict query di+culty. In Proceedings of theWorkshop

in ACM SIGIR Conference on Research and Development in Information Retrieval.

[59] Josiane Mothe and Mahdi Washha. 2017. Predicting the best system parameter con$guration: The (per parameter

learning) PPL method. In Proceedings of the 21st International Conference on Knowledge-Based and Intelligent Informa-

tion & Engineering Systems.

[60] Paul Ogilvie, Ellen Voorhees, and Jamie Callan. 2009. On the number of terms used in automatic query expansion.

Inf. Retriev. 12, 6 (26 Jul. 2009), 666. DOI:https://doi.org/10.1007/s10791-009-9104-1

[61] Iadh Ounis, Giambattista Amati, Vassilis Plachouras, B. He, C. Macdonald, and C. Lioma. 2006. Terrier: A high per-

formance and scalable information retrieval platform. SIGR Workshop on Open Source Information Retrieval.

[62] Jay M. Ponte and W. Bruce Croft. 1998. A language modeling approach to information retrieval. In Proceedings of

the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’98).

ACM, New York, NY, 275–281.

[63] Tao Qin, Tie-Yan Liu, Jun Xu, and Hang Li. 2010. LETOR: A benchmark collection for research on learning to rank

for information retrieval. Inf. Retriev. 13, 4 (2010), 346–374.

[64] Alessandro Raganato, Jose Camacho-Collados, and Roberto Navigli. 2017. Word sense disambiguation: A uni$ed

evaluation framework and empirical comparison. In Proceedings of the 15th Conference of the European Chapter of the

Association for Computational Linguistics, Vol. 1. 99–110.

[65] Stephen E. Robertson, SteveWalker, Micheline Beaulieu, and PeterWillett. 1999. Okapi at TREC-7: Automatic ad hoc,

$ltering, VLC and interactive track. NIST Special Publication SP500 (1999), 253–264.

[66] Stephen E. Robertson, Steve Walker, Micheline Hancock-Beaulieu, Aarron Gull, and Marianna Lau. 1992. Okapi at

TREC. In Proceedings of The 1st Text REtrieval Conference (TREC 1992), Donna K. Harman (Ed.). 500-207. National

Institute of Standards and Technology, 21–30.

[67] Haggai Roitman, Shai Erera, Oren Sar Shalom, and Bar Weiner. 2017. Enhanced mean retrieval score estimation for

query performance prediction. In Proceedings of the ACM SIGIR International Conference on Theory of Information

Retrieval (ICTIR’17). 35–42. DOI:https://doi.org/10.1145/3121050.3121051

[68] Anna Shtok, Oren Kurland, and David Carmel. 2009. Predicting query performance by query-drift estimation. In

Proceedings of the Conference on the Theory of Information Retrieval. Springer, 305–312.

[69] Anna Shtok, Oren Kurland, David Carmel, Fiana Raiber, and Gad Markovits. 2012. Predicting query performance by

query-drift estimation. ACM Trans. Inf. Syst. 30, 2, Article 11 (2012), 35 pages.

[70] Trevor Strohman, Donald Metzler, Howard Turtle, and W. Bruce Croft. 2005. Indri: A language model-based search

engine for complex queries. In Proceedings of the International Conference on Intelligent Analysis, Vol. 2. 2–6.

[71] Kazunari Sugiyama, Kenji Hatano, and Masatoshi Yoshikawa. 2004. Adaptive web search based on user pro$le con-

structed without any e#ort from users. In Proceedings of the 13th International Conference on World Wide Web. ACM,

675–684.

[72] Niek Tax, Sander Bockting, and Djoerd Hiemstra. 2015. A cross-benchmark comparison of 87 learning to rank meth-

ods. Inf. Process. Manage. 51, 6 (2015), 757–772.

[73] Michael Taylor, Hugo Zaragoza, Nick Craswell, Stephen Robertson, and Chris Burges. 2006. Optimisationmethods for

ranking functions with multiple parameters. In Proceedings of the 15th ACM International Conference on Information

and Knowledge Management. ACM, 585–593.

[74] Ellen M. Voorhees. 2005. The TREC robust retrieval track. In ACM SIGIR Forum, Vol. 39. ACM, 11–20.

[75] Qiang Wu, Christopher J. Burges, Krysta M. Svore, and Jianfeng Gao. 2010. Adapting boosting for information re-

trieval measures. Inf. Retriev. 13, 3 (2010), 254–270.

[76] Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. 2008. Listwise approach to learning to rank: Theory

and algorithm. In Proceedings of the 25th International Conference on Machine Learning. ACM, 1192–1199.

[77] Bo Xu, Hongfei Lin, and Yuan Lin. 2016. Assessment of learning to rank methods for query expansion. J. Assoc. Inf.

Sci. Technol. 67, 6 (2016), 1345–1357.

[78] Jun Xu and Hang Li. 2007. Adarank: A boosting algorithm for information retrieval. In Proceedings of the 30th Annual

International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 391–398.

[79] Elad Yom-Tov, Shai Fine, David Carmel, and Adam Darlow. 2005. Learning to estimate query di+culty: Including

applications to missing content detection and distributed information retrieval. In Proceedings of the 28th Annual

International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’05). ACM, New

York, NY, 512–519. DOI:https://doi.org/10.1145/1076034.1076121

[80] Chengxiang Zhai and John La#erty. 2001. A study of smoothing methods for language models applied to ad hoc infor-

mation retrieval. In Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development

in Information Retrieval. ACM, 334–342.

[81] Le Zhao and Jamie Callan. 2012. Automatic term mismatch diagnosis for selective query expansion. In Proceedings of

the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 515–524.

[82] Yun Zhou and W. Bruce Croft. 2007. Query performance prediction in web search environments. In Proceedings of

the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’07).

ACM, New York, NY, USA, 543–550. DOI:https://doi.org/10.1145/1277741.1277835

[83] Justin Zobel. 2004. Writing up. In Writing for Computer Science. Springer, 137–156.

