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Wavelet/PSO-Based Segmentation and Marker-Less
Tracking of the Gallbladder in Monocular
Calibration-free Laparoscopic Cholecystectomy

Haroun Djaghloul
University of Ferhat Abbes - Setif 1, Algeria

Mohamed Batouche
University of Constantine 2, Algeria

Abstract—This paper presents an automatic segmentation and
monocular marker-less tracking method of the gallbladder in
minimally invasive laparoscopic cholecystectomy intervention that
can be used for the construction of an adaptive calibration-
free medical augmented reality system. In particular, the pro-
posed method consists of three steps, namely, a segmentation
of 2D laparoscopic images using a combination of photomet-
ric population-based statistical approach and edge detection
techniques, a PSO-based detection of the targeted anatomical
structure (the gallbladder) and, finally, the 3D model wavelet-
based multi-resolution analysis and adaptive 2D/3D registration.
The proposed population-based statistical segmentation approach
of 2D laparoscopic images differs from classical approaches (his-
togram thresholding), in that we consider anatomical structures
and surgical instruments in terms of distributions of RGB color
triples. This allows an efficient handling, superior robustness
and to readily integrate current intervention information. The
result of this step consists in a set of point clouds with a
loosely gradient information that can cover various anatomical
structures. In order to enhance both sensitivity and specificity,
the detection of the targeted structure (the gallbladder) is based
on a modified PSO (particles swarm optimization) scheme which
maximizes both internal features density and the divergence with
neighboring structures such as, the liver. Finally, a multi-particles
based representation of the targeted structure is constructed,
thanks to a proposed wavelet-based multi-resolution analysis
of the 3D model of the targeted structure which is registered
adaptively with the 2D particles generated during the previous
step. Results are shown on both synthetic and real data.

Keywords—Medical image segmentation; monocular laparo-
scopic cholecystectomy; deformable structures tracking; gallbladder
segmentation and tracking; markerless augmented reality; wavelets;
particles swarm optimisation; minimally invasive surgery (MIS);
computer aided surgery (CAS)

[. INTRODUCTION

Medical augmented reality consists in a set of techniques
that allow the visualization in transparency of anatomical
and pathological structures reconstructed pre-operatively using
medical images (IRM, CT-Scan) in the surgeon’s field of
view. Augmented reality provides contextual information in
an intuitive and easily implemented display [1], [2]. However,
one of the major challenges remains in the limits augmented
reality use in clinical laparoscopic abdominal surgery is the
difficulty of marker-less immediate and precise registration
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of preoperative deformable 3D models of digestive organs
reconstructed using medical images such as MRI or CT-Scan
on the intra-operative laparoscopic view.

Augmented reality allows the enhancement of perceptual
capabilities of surgeons during the intervention directly on their
filed of view of the intervention or projected on the patient.
Because of the rigidity of manipulated anatomical structures,
many augmented reality systems have been integrated in the
operative rooms especially for orthopedic and neurosurgery.
However, in the case of highly deformable anatomical struc-
tures as in the case of abdominal surgery, many challenges have
been encountered due to the difficulty to precisely track and
register the targeted anatomical structures. On the other hand,
the massive adoption of minimally invasive surgery techniques
even with their advantages have introduced other drawbacks
such as the lack of tactile sensation, the limitation of the inter-
vention field of view and the inversion of surgical instruments
gesture orientations. These problems can be overcome, thanks
to the use of augmented reality.

A. Motivation and Proposition

In this study, we focus on the segmentation and marker-
less tacking of the gallblader during monocular minimally
invasive laparoscopic cholecystectomy intervention with no
camera calibration parameters available. Cholecystectomy is
the standard procedure for surgical treatment of gallbladder
diseases mainly for symptomatic cholelithiasis (gallstones). It
consists in the ablation of the gallbladder and its extraction
from the abdomen of the patient. In the case of minimally
invasive surgery or laparoscopic surgery, a set of special
surgical instruments are inserted into the abdominal cavity of
the patient through a small incisions.

Cholecystectomy is the first surgical intervention in the
United States with more than a half million operations done
each year. Since the first cholecystectomy of Langenbuch [3],
[4]. Indeed, cholelithiasis is an extremely common gallblad-
der condition, generally reaching the quart of the population
beyond 50 years with one of three women and one of five
men that have or will have it. Cholecystectomy consists in the
complete removal of the gallbladder with different techniques
such as open, laparoscopic [3], SILS or NOTES [5], [6]
procedures. The video-assisted laparoscopic cholecystectomy



is currently the gold standard technique with more than 98%
of performed interventions [7]-[10].

Digestive organs are highly deformable leading to certain
displacement of any physical radio opaque markers between
preoperative and intra-operative acquisitions. Moreover, inter
and intra-patient geometric and anatomical variability and
the great complexity of intra-abdominal surgical environment
caused by dissection and bleeding. The preoperative patient
specific 3D model can only be used as initial solution for
anatomical and pathological structures detection and tracking.
Therefore, the surgical intervention cannot be safe and precise
in this such complex context of monocular laparoscopic chole-
cystectomy without handling and tracking the deformation of
the primary manipulated anatomical structure which is the
gallbladder.

Here, we propose a method for tracking digestive organs
on the view of previous medical augmented reality systems in
laparoscopic cholecystectomy. Thus, the proposed method can
be used as a priori step to markers-based registration systems
to align coarsely the patient CT/MRI model reconstructed
before the surgical intervention. In other side, the method can
be used intra operatively to track targeted organs or surgical
instruments with partially occluded or totally invisible markers.
Therefore, we propose a new nearly-automatic statistical color
model construction method and its application to the pixel-wise
anatomical structures detection and tracking in the context of
the laparoscopic cholecystectomy.

B. Paper Organisation

The rest of the paper is organized as follows. In Section
2, we outline the fundamentals of a standard laparoscopic
cholecystectomy procedure and its operative workflow. Then,
we review state of the art of the methods used to han-
dle deformable objects detection and tracking mainly used
in laparoscopic medical augmented reality systems and dis-
cussing their capabilities and limitations. In Section 4, we
describe materials and provide the mathematical formula and
the necessary background and implementation of the proposed
method. In Section 5, we present experimental results and the
overall characteristics of the method. Section 6 presents our
conclusions, potential applications of the proposed methods
and perspectives.

II. MEDICAL BACKGROUND

According to the common and standard ports installa-
tion and intervention workflow providing optimal results [3],
[11], [12], the basic laparoscopic cholecystectomy intervention
according to the European operating technique begins with
achieving a perfect exposure of the right sub-hepatic region.
Then, the surgeon uses the inserted laparoscopic camera to
detect and identify all anatomical structures in the abdominal
cavity. The next major steps are mainly the dissection of
Callot’s triangle, dissection/clipping and division of the cystic
artery and duct. Finally, a complete removal of the gallbladder
is achieved by dissecting the gallbladder bed with the liver. In
most cases, computer-assisted surgery workflow models are
created manually, which is a time consuming process that
might suffer from a personal bias. In their work [13], Blum et
al. presented a graphical user interface based on an approach

for automatic workflow mining using ten process logs, each de-
scribing a single instance of a laparoscopic cholecystectomy, to
build a Hidden Markov Model (HMM) with embody statistical
information concerning aspects like duration of actions or tool
usage during the surgery. In Fig. 1, we outline our proposition
for standard laparoscopic cholecystectomy workflow model
based on six coarse main steps.

From a topographical anatomy point of view, the principal
anatomical structures of the right upper quadrant that have to
be explored, during the intra-operative detection and identifi-
cation step, in the operating field of view are the liver, the
gallbladder, the round ligament, the stomach, the duodenum,
the transverse colon, the lesser omentum, the hepatic flexure
and the greater omentum. In our context, the most important
anatomical structure is the gallbladder and its vascular supply.
The major gallbladder anatomical structures are the fundus, the
body, the infundibulum, the cystic duct, the common hepatic
duct and the common bile duct. The vascular supply elements
are mainly the cystic artery, the Mascagni lymph node, the
proper hepatic artery, the abdominal aorta, the portal vein
and gastro-duodenal artery. More details about sub-hepatic
anatomical structures can be found in medical literature. In
this paper we base our work on the Foundational Model of
Anatomy (FMA) ontology to guide the anatomical structures
modeling and recognition.

III. RELATED WORKS

Tracking real objects is an important topic in computer
vision. Many methods for tracking real objects have been
proposed in the literature. In this paper, we are mainly in-
terested to the visual tracking of non-rigid objects. Several
methods have been proposed with applications to different
domains [14]. However, few clinical results exist for de-
formable abdominal organs tracking in laparoscopic cholecys-
tectomy. Medical tracking systems for digestive surgery can
be classified into two categories, namely, optical and hybrid
systems. In their work [15], Nicolau et al. proposed a low
cost and accurate guiding system for laparoscopic surgery
with validation on abdominal phantom. The system allows
real time tracking of surgical tools and registration at 10
Hz of the preoperative patient CT/MRI reconstructed model
with accuracy tracking of instrument tip close to 1.5 mm and
endoscopic overlay error under 1.0 mm. The system is totally
based on the AR-Toolkit [16], [17] markers and patterns use
for both patient model registration and surgery instruments
tracking. To register abdominal markers the method minimize
the Extended Projective Points Criterion (EPPC) instead of
the Standard Projective Points Criterion (SPPC) because of its
error support either of 2D image or 3D CT-Scan data [18],
[19]. Validation of the criterion has mainly been made for
radio-frequency surgery without abdominal gas insufflation.
Accurate tracking and registration of such markers in real intra-
abdominal laparoscopic surgery is very difficult because of
the digestive organs deformation and the pneumoperitoneum
establishment [3], [20]. Feuerstin et al. [21] use multiple
optical and electromagnetic tracking systems to determine the
position and orientation of intra-operative imaging devices
(mobile C-arm, laparoscopic camera and flexible ultrasound)
allowing direct superimposition of acquired patient data in
minimally invasive liver resection. To our knowledge, there is
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Fig. 1. Standard laparoscopic cholecystectomy procedure.

no clinically approved automatic marker-less tracking systems
of the gallbladder during laparoscopic cholecystectomy.

IV. PROPOSED METHOD

In this section, we describe the proposed method for the
segmentation and tracking of the gallbladder using photometric
features. Therefore, we need to build a color model of gall-
bladder as well as the other neighboring anatomical structures.
To achieve this goal with minimal user interaction, we propose
the following straightforward method that can take into account
the patient anatomy variability and the standard intervention
workflow according to the European operative room set-up and
common standard installation of the patient in the operative
room during the intervention.

In Fig. 2, we show the global architecture of the proposed
system for the application of the pre-operative statistical color
model in anatomical and pathological structures detection and
tracking tasks. Indeed, the system allows on-line enhance-
ment of the initial pre-operative color model using the intra-
operative laparoscopic intervention video.

In the following sub-sections we describe the off-line
statistical anatomical color model construction. We first build a
general histogram density using a set of high quality captured

videos and photos of standard laparoscopic cholecystectomy
interventions available at the World Wide Web. The images
have 240 x 320 RGB coded pixels with 256 bins per channel
(24 bits per pixel). Each video sequence is acquired at a frame
rate of 30 Hz. We remove manually from the video training
dataset all frames that are not relevant, such as tutorial text and
operative room presentation, focusing only on inner abdominal
laparoscopic camera photos. We have a final set of 16735
colored laparoscopic images, resulting in a training dataset
containing more than one billion pixels.

A. Pre-operative Anatomical Color Model

This first step allows to automatically extract both im-
portant anatomical structures and surgical instruments blobs
that are directly visible using the laparoscope camera. The
first laparoscopic image of each training intervention video is
captured and segmented manually into four main regions (liver,
gallbladder, surgical instruments and other). Other region
contains the pixels of remaining anatomical or pathological
structures that are not segmented manually and with no impact
on the following 3D model registration step. According to the
cholecystectomy intervention workflow step (t), we construct
for each anatomical region (i) a statistical color model using a
histogram with 256 bins per channel in the RGB color space.
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Fig. 2. A schematic illustration of the proposed method.

Each color vector (x) is converted into a discrete probability
distribution in the manner:

cii(z)

NY
>j=1 Cit(T;)

where ¢; +(x) gives the count in the histogram bin repre-
senting the rgb color triplet (x) and N;; is the total count
of the rgb histogram entries returned by the histogram bins
number of the structure region (i) during the intervention
step (t). the number of structures (anatomical, pathological
or surgical instruments) S; varies according to the procedure
step and the priori knowledge-based patient-specific data. To
ensure a generic color model construction, it is important to
fix the steps and structures number for the whole training
data set. In this study and according to the European standard
and common laparoscopic cholecystectomy installation and
intervention workflow described in section 2, the number of
structures classes is limited to four (S; = 4) and surgical
steps to six (t1 = ‘exploration...”). The class structure
¢t = 0 contains the histogram bins with corresponding rgb

P;i(x) = t=t1...t5,i=0...9. (1)

triples which are not included in construction of the previous
color model. In practice, the step (t) denotes a time interval
represented by the sequence of laparoscopic images of the
same intervention ¢ = [I{ ... I} ] in the different videos

(v) that compose the training data set.

Several mathematical morphological operators are used
to eliminate even noise small regions. The determination of
major blobs can be performed thanks to the application of
connected component labeling. For each anatomical blob we
compute statistics such as centroids coordinates, blob area and
probabilities of each RGB triple associated to each anatomical
structure.

Once the laparoscopic images of the intervention were pre-
pared, different statistical features and properties are extracted.
First, we scan each image in the training dataset for all color
model features. In Table I, we give some statistical properties
of one the laparoscopic cholecystectomy intervention videos
used in our study.

Fig. 3 shows the evolution of the RGB histogram bins
count over the 16735 frames of the video training dataset.



TABLE 1. GLOBAL TRAINING DATASET HISTOGRAM BINS STATISTICS

Feature RGBTriplet Red  Green Blue
Mean 1997 31 63 31
Median 2024 32 64 32
Min 61 21 41 20
Max 3245 32 64 32
Standard deviation 499 0 1 0
Total count 10017 32 64 32

We can observe that each laparoscopic image can contains at
most 10017 RGB color triplets over all the video sequence.
therefore, the RGB histogram is mostly empty with 99,94%
of the RGB triples that are not used.
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2000
1500
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0

Fig. 3. Evolution of RGB bins count in video training dataset.

In Fig. 4, we can see the spatial distribution of a given color
model feature within the laparoscopic image of the gallbladder.
One can observe that the same is located over different regions
that can belong to different anatomical structures or surgical
instruments.

Fig. 4.
image.

Spatial distribution of an RGB color triplet in a single laparoscopic

The only application of the anatomical color and spatial
model using the criteria given above can lead to a course
segmentation of the laparoscopic image with a considerable
number of artifacts as shown in Fig. 5.
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Fig. 5. Detection of anatomical structures using the proposed color model.

The result shown in Fig. 5 confirms the need of additional
steps to enhance the segmentation and thus detection result of
the gallbladder and surrounding anatomical structures such as
the liver. These necessary steps are described in the following
subsections given below.

B. Proposed Wavelet for Multi-resolution Tree of Spheres
Modeling of Anatomical Structures

In this section, we propose a new multi-resolution analysis
of 3D objects modeled as a set of elementary non intersected
particles defined by their centers and rays. The virtual model
of the anatomical structure is subdivided into a set of spheres.
We call this representation the tree of spheres (TOS) model.
Here, the closest greatest sphere to the preoperative 3D model
gravity center represents the TOS model root or simply the
TOS root. The TOS root is used during the first step of
the 2D/3D registration between the preoperative reconstructed
TOS model and the PSO-based gallbladder detection particles
(PSO-DP). The establishment of a correspondence between the
TOS root and the PSO-DPs allows to maintain a certain level
of stability during deformable registration along the whole
laparoscopic intervention video. The TOS root represents the
coarsest resolution level of the virtual model of the tracked
anatomical structure (the gallbladder).

We suppose that S7 is the TOS at the resolution level ().
We have:

ST =[8182- - Sji- - Sjm, ]’ @

where S;; is the i'" sphere of the virtual model at the
resolution (j) and n; is the length of the spheres chain at the
resolution level (j) denoting its number of spheres. The initial
resolution level is SY and the coarsest one is S” corresponding
to the sphere chain root.

The relation between two successive resolution levels is
given by:
Qitl — pitlgy
pDitl — gitlgi 3)



with D7 represents the wavelet detail coefficients of the
resolution level (j):
; t
The A’ and B7 matrices are called the analysis filters of
the resolution level j.

To reconstruct the superior resolution level we use two
matrices P and Q called synthesis filters. The initial resolution
level is given by:

) — pitlgi+l + Qj+1Dj+1 5)

The relation between the analysis and synthesis filters is
formulated by:

[A|B]' = [P|Q] ™" then [A|B]' [P|Q] = T (©)

In order to make a multi-resolution analysis of the spheres
based subdivision of the anatomical structure virtual model,
we have to compute the filters A7, B7, P7 and ()’ for each
resolution level (j). In the simplest case, the transformation
to an inferior resolution level (j) of the 3D decomposition of
the volumetric model consists in replacing two spheres of the
resolution level (j-7) by a representative one containing both
of them.

The A7 filter is used to select elements of the next inferior
resolution level and B’ to extract wavelet coefficients of each
level. Hence, the analysis process is formulated by:

S’l“ _ ATST71 _ ArArfl .A2A150
D' = pB'S”~'=p'B"'... B?*B'S’ (7
Assuming

that the initial spheres based decomyosr
tion is composed of (2") spheres. We have, S(=0
[S0,2090,21 ...SOJ'...SO’ZT‘]t with ngj—gy = 2" and r gives
the number of levels to reach the coarsest representation
corresponding to the spherlet root.

In the case where » = 3 (23 spheres), we have the TOS
approximation and detail vectors given in Table II.

TABLE II. ANALYSIS PROCESS OF A 8 = 23 SPHERES CHAIN

SY, D=0 ST, Dt 52, D? S3 = root, D?
w1 w1 w1 w1
w3 w3 w2 de = w2 — w1
w3 w3 d3 = w3 — w1 dz =w3 — w
w4 w4 dy = wq — w2 dy =Wy — w2
w5 ds =ws —w1  ds =ws —w1 ds = w5 — w1
w6 de = we — w2 d¢ =we — w2 deg = W — W2
w7 d7 =w7 —ws  dr =wr —ws d7 =w7 — w3
ws ds = ws —wq4  ds =ws —wy dg = wg — w4

C. Deformable Structures Detection

As in our previous work [22], the first step of the method
consists in the precise detection of the gallbladder in the
laparoscopic view. First, a deformable particles based model is
constructed for each anatomical structure. This is performed by
using pre-operative surfacic model of the anatomical structures
concerned with the surgical intervention of the gallbladder
ablation that have been generated from pre-operative medical
image of the gallbladder and surrounding structures. Then, a

registration scheme begins with a coarse 2D TOS root detec-
tion in the laparoscopic image using the color (C) and spatial
(S) models that we have described above. The C-model is
used to segment the laparoscopic cholecystectomy images and
build the points cloud associated to the anatomical structure
(i) which is visible in the step (t) according the surgical
workflow of a standard laparoscopic intervention procedure
as described in Section 2. The result is the construction of
world frame using the relationship between the greatest and
most stable parts of anatomical structures such as the liver
and the gallbladder. “(1)” gives a pixel wise segmentation
of the different structures visible according to the intervention
step:

PC(i,t) (xrgb) > 6rgb (8)

Therefore, we have an initial segmentation of initial of
surgical instruments and anatomical structures. However, we
observe generally a high correlation between organs RGB col-
ors in the case of abdominal laparoscopic surgery. As already
described above, an RGB triplet can be found in different
regions with low spatial concentration and connectivity. Thus,
we propose to use particles swarming to detect and track
anatomical structures using the color as well as the spatial
distribution.

Particles Swarm Optimization (PSO) is a global search
strategy for optimization problems. The first version has been
proposed by Kennedy and Eberhart [23] in 1995 and it
is based on the social evolution simulation of an arbitrary
swarm of particles based on the rules of Newtonian physic.
Assuming that we have an N-dimensional problem, the basic
PSO algorithm is formulated by position z,,(¢) and velocity
um (t) vectors representing the time evolution of M particles
with random affected initial positions. Hence, we have:

T (t) = [21() 22(2) . .. 2n (8)]T 9)
O (t) = [v1(B) va(t) ... on ()] (10)

The evolution of the swarm particles in the classical
algorithm is done by the following equations:

’UTYL (t + 1) - foLi U’"L (t) + f’"LC [ ] (xTTL(tC) ’UT)'L( ))
+fm. [Ds]n (@opt(ts) — vm (1)) (11)
Thus, the new position of the particle m is given by:
m(t+1) = 2 (t) + v (t +1) (12)

Where vy, (t) and v, (t + 1) are, respectively, the past and
the new velocity vectors of the particle m. f,,, is the inertia
factor of the particle m, f,,_ is its the cognitive factor and f,,,
is the social factor. [D.]ny and [Dg]y are the N-dimensional
diagonal matrices composed of statistically independent nor-
malized random variables uniformly distributed between 0 and
1. t. is the iteration where the particle m has reached its best
position given by x,,. ¢, is the iteration where the population
has found its best global value given by the coordinates of the
particle x,,;. It is obvious that particles reach their best local
values before that one of them becomes the global best.

The particles swarm optimization method is a meta-
heuristic used in combinatorial optimization problems. Its inde-
pendence from the continuity and gradient information allows



it superior behavior especially in cases where it is impossible
to rely on the gradient descent because of discontinuity or hard
gradient changes. For this reason, we base our method on the
PSO method for the segmentation and tracking of the point
clouds generated by the first step of the segmentation process
based primarily on knowledge based pixel wise anatomical
geometric and color model. As the result of the first step
presented previously is a set of disconnected point clouds, it is
very difficult if not impossible to apply traditional method such
as histogram thresholding, edge detection and even deformable
models based segmentation and tracking. In particular, the
proposed method is used for the detection of the gallbladder in
the video-based laparoscopic cholecystectomy intervention. In
the laparoscopic cholecystectomy intervention, the endoscope
is focused on the gallbladder so that it is always at the center
of the laparoscopic endoscopic image.

The proposed scheme is inspired from the behavior of a
swarm of predating eagles. In nature, social eagles swarm
construct a circle in the sky around their prey. This is due
to the anatomy of their eyes which are symmetric to the axis
of the head allowing simultaneous visualization of the prey and
the environment around it. In our PSO scheme, each particle
in fact represents the left and the right eye of an eagle. For
segmentation purposes, we can describe them as the in-eye and
out-eye. the In-eye maximizes a set of features concerning the
segmented and tracked organ and the Out eye represents the
outer organs such as the liver in the case of the laparoscopic
cholecystectomy. The In-Eye maximizes the density of ACM
color bins defined in the previous of the targeted organ which
is in our case the gallbladder. On the other hand, the Out-
Eye maximizes the density of the bounding organ which is in
this case the liver. Each of the In-Eye and Out-Eye particle
are represented by a circle or a square delimiting coarsely
the pixels of the respective organs in the endoscopic image.
Thus, the two particles are defined using the upper left and
the down right pixels in the images. The fitness function
has the role of maximizing the density of the targeted organ
(gallbladder), minimizing the density of the bounding organ
(liver) and reducing the distance between the two particles
(In-eye, Out-Eye) all without allowing any collision between
them. Thus, this fitness function for the gallbladder as it is the
targeted organ becomes

SRSy

13)

Fyaupladder =
with

In—FE enst
H = 2 Cdensity (14)
Out — Eyedensity

where the density of each particle is given by the ratio
between the number of ACM rgb bins and the surface of the
particle for each organ (gallbladder, liver). and

_ ||InEyecenter - OUtEyecenteT”

) (15)
InEyeradius + OUtEyeradius

Here, (||.]) denotes the Euclidean distance between the
centers of the In-Eye and the Out-Eye particles. This allows to

maximize the minimal variance between the targeted structure
(gallbladder) and the surrounding structures such as the liver
and the covering surgical instruments parts.

The determination of the the points number of the PSO
tracking particle of the gallbladder in the laparoscopic view
(without calibration) is given with the same manner given in
our previous work [22]. Here, we present it for more clarity. the
difference is in that, here, we are using a couple of bi-particles
one for the inside and other for the outside in extension to our
previous work which lies on only one internal particle for hte
tracked structure. The number of pixels in each particle is given
from the preoperative 3D model based on our previous method
[22]. Here, we use the surfacic 3d model of the gallbladder
reconstructed using pre-operative images such as ct scan or
mri. Assuming the distance between the laparoscope tip (Lyip)
and the pic of the gallbladder surface (G;.) and assuming that
the silouhette of the gallbladder is completely visible in the
laparoscopic image, we propose to approximate the gallbladder
point cloud by considering the ratio between the half of the
surfaci corporal model area (£244;) and that of an elementary
surface projected into a camera CCD pixel sensor (w). This
ratio is given thus by,

o= oot (16)
2% w
with,
- Q ire
W = LtipGpic pf lv (17)

where (Qpizer) is the area of the pixel in the camera ccd
matrix and (f) is the focal length which is the distance between
the central point and the image place.

Now, if we consider that the gallbladder is modeled by a
set of polygons P;, we get

Qgar = > _Qp,, (18)

By combining “(17)” and “(18)” in “(16)”, « is given
so that:

o =

fe2.8n (19)

2% LtipGpic * Qpizel

By taking P; as small as a millimetric surfacic unit, we
obtain:

f
s
Ltip Gpic

o =

* U, (20)
2% p2 x

where v is the number of elementary surfaces (surfels) and
p2 is the metric area of ccd pixel. Here, we consider it constant
during the intervention.



From “(20)”, the only measure that is varying during the
—

intervention is |L;;,G .| This is due to the cardiac and the

respiratory activities. However, is is generally maintained by
the surgical staff as constant and invariant as possible during
the whole intervention.

By considering the preoperative medical images (MRI or
CT-Scan) exist with millimetric precision, the parameter v is
computed as the length of the segmented gallbladder contour
in each tomographic medical image. Assuming that for each
preoperative image (i), the gallbladder contour length is given
by (I';). Then, “(20)” becomes:

f
N
Ltip Gpic

T, @1

o=
2% p2 %

with
I = Z T, (22)

Here, The principal wavelet sphere S is projected on the
gallbladder area in the 2D laparoscopic image which has the
same perimeter as that of the contour of the gallbladder (I';)
in the slide (i). Then:

7;:2*77'*7’1;, (23)

Given (n) medical imaging slides that cover the target organ
and by replacing I'; in “(22)” from “(23)”, we have:

n
1“:2*n>s<7r*27*,,;, (24)
i=1

By replacing I" from “(24)” in “(21)”, we get:

n

nxTxf
o= — * Z Ti, (25)
P2 * LtipGp'i,C i=1
By putting
o n*xmxf 7 26)
. —
pz * LLipGpic
and

n

P=3"r, @7

=1

Then, « is given by:

a=rx*P (28)

The internal parameters of the laparoscopic camera are
assumed to be invariant during the intervention. the distance
between the laparoscope tip and the gallbladder pic can be
determined using distance estimation techniques and devices.

V. EXPERIMENTAL RESULTS

To assess the performance of the proposed PSO-based
gallbladder detection method in laparoscopic images, we first
conduct an experiment on the synthetic image using the
method defined in the previous section. Our first synthetic
image (Fig. 6) consists of a set of point clouds differing in
volume and density. These point clouds represent the possible
result of the photometric and textural segmentation step of
the gallbladder during the laparoscopic cholecystectomy in-
tervention. Here, the true positive points are those belonging
to the greatest cloud positioned in the middle of the image.
The points belonging to smaller point clouds or simply black
areas around the primary targeted greatest point cloud are
either false positive points or true negatives which represent in
fact anatomical structures other than the targeted deformable
structure which is the gallbladder in our case.

Fig. 6. Synthetic images representing a set of point clouds as the result of
photometric and textural segmentation step used to test the PSO-based method.

The PSO-based method is applied to this synthetic image
to detect a deformable point cloud representing a gallbladder
with no need of explicit initialization of the position of tracking
PSO swarm of particles. Initially, the particles are distributed
randomly over all the original image. According to the used
tracking shapes of the PSO particles (circular or rectangular for
instance), each particle is characterized by either the particle’s
center and radius of the circle or the two points defining the
rectangle, namely, the upper left and the lower right corners.
In the following experiments, we have used tracking particles
with rectangular shapes as this allows to compute efficiently
their density by simply comparing the coordinates of the
belonging feature points to the rectangle two corners. Next, the
intermediate tracking swarm for the synthetic image obtained
by applying the PSO-based scheme are shown in Fig. 7 and
8, corresponding to the PSO process application after 10 and
20 iterations, respectively.

The detection result of the major point cloud in the
synthetic image using the PSO-based particles is shown in Fig.
9. As expected, we observe that the resulting global particle
detects always the major point cloud regardless of the presence
of discontinuities due to the large variations of gradient and
the existence of neighboring sub-major point clouds of false
positives belonging to hypothetically surrounding anatomical
structures in the case of a real laparoscopic cholecystectomy
image. However, we can observe at this first generation there
are some false positives and negatives. this can be heavily



Fig. 7. Intermediate PSO-based tracking swarm of rectangular particles: after
10 iterations.

Fig. 8. Intermediate PSO-based tracking swarm of rectangular particles: after
20 iterations.

enhanced by applying a second and third generation detection
passes along the boundaries of the first root detection particle.

Fig. 9. The detection result of the synthetic image of a deformable structure
points’ cloud.

The different terms of the PSO-based evolution scheme
must be weighted properly to guide the evolving tracking
swarm under different image conditions such as those encoun-
tered during a laparoscopic cholecystectomy intervention. In
the previous experiment on the synthetic image of the points

cloud, we have considered the following parameters specific
to the PSO-based detection scheme, namely, the size of the
tracking swarm expressed by the number of the particles in
the population (N=10); The number of the corners of the
particle’s shape (C=2) as it is a rectangular; the inertial pa-
rameters preventing the particles swarm from early collapsing
(Winin = 0.3) and divergence (W4, = 0.9); the number of
iterations of the PSO-based evolution scheme (/t,,,: = 50);
local (c1 = 0.4) and global (c2 = 0.4) PSO parameters which
govern the influence of the individual and social terms on the
evolution scheme, respectively. In addition, we consider the
parameter () that gives the ratio between the surface of the
visible corporal surface of the tacked deformable structure and
the size of the image in terms of pixels. Thus, the number of
pixels that constraints the size of the particles of the population
is given by (o, = a, * ||| = 2273) where ||I|| = I, * I
is the resolution of the image in terms of pixels and I,
Iy are the length and the width of the laparoscopic image,
respectively. The graphs represent the position, size and density
of the global best particle of the population to segment and
detect the deformable structure point cloud along time (PSO
evolution iterations, It,,,, = 50). As it can be seen (Fig. 10),
the tracking swarm stabilizes after only 20 iterations.

Fig. 10. Evolution of the best global particle of the population over time.

VI. CONCLUSION

In this paper, we have proposed a new automatic seg-
mentation and tracking method of deformable structures in a
minimally invasive surgery intervention such as laparoscopic
cholecystectomy. The segmentation of anatomical structures is
performed thanks to a modified PSO scheme to segment and
track the deformable structure during the intervention, namely,
the gallbladder in the case of laparoscopic cholecystectomy.
The reconstructed 3D model is analyzed using a wavelet based
method to perform the registration task. Therefore the system
is able to track surgical instruments with possible interactive
update of the color model guided by a priori anatomical
knowledge. The only drawback of the proposed system is the
need of the determination of a precise distance between the
endoscope tip and the closest point of the corporal surface
of the tracked anatomical structure. We are working on the
development of such device to estimate precisely this distance.
We intend to verify the effectiveness of the proposed method
first on 3d printed deformable phantoms corresponding to real
patients before testing the performance of the system intra-
operatively.
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