G. Aresta, T. Araújo, and K. , Bach: Grand challenge on breast cancer histology images, 2018.

V. Badrinarayanan and . Kendall, Segnet: A deep convolutional encoder-decoder architecture for image segmentation, 2017.

A. H. Beck, A. R. Sangoi, and L. , Systematic analysis of breast cancer morphology uncovers stromal features associated with survival. Science translational medicine, 2011.

H. Chen, X. Qi, L. Yu, and P. Heng, Dcan: Deep contour-aware networks for accurate gland segmentation, Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp.2487-2496, 2016.

L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, Y. et al., Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, 2016.

A. Cruz-roa and H. Gilmore, Accurate and reproducible invasive breast cancer detection in wholeslide images: A deep learning approach for quantifying tumor extent

L. Hou, D. Samaras, T. M. Kurc, Y. Gao, J. E. Davis et al., Patch-based convolutional neural network for whole slide tissue image classification, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.

A. Janowczyk and A. Madabhushi, Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases, Journal of Pathology Informatics, 2016.

D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2014.

, Ground truth U-Net SegNet FCN DeepLab Invasive carsinoma Carsinoma In situ Begnin epithelum Simple stroma Complex stroma Adipose tissue Background Figure 5: From left to right, two test ground truth masks, U-Net, SegNet, FCN and DeepLab multi-classes segmentation results using optimal parameters

Y. Lecun, Y. Bengio, and G. Hinton, Deep learning. nature

J. Long, E. Shelhamer, D. , and T. , Fully convolutional networks for semantic segmentation, Proceedings of the IEEE conference on computer vision and pattern recognition, pp.3431-3440, 2015.

C. Loukas and K. , Breast cancer characterization based on image classification of tissue sections visualized under low magnification. Computational and mathematical methods in medicine, 2013.

M. Macenko, M. Niethammer, and J. S. Marron, A method for normalizing histology slides for quantitative analysis, Biomedical Imaging: From Nano to Macro, 2009. ISBI'09. IEEE International Symposium on

O. Ronneberger, P. Fischer, and T. Brox, U-net: Convolutional networks for biomedical image segmentation, International Conference on Medical image computing and computer-assisted intervention

A. Sethi, L. Sha, and . Vahadane, Empirical comparison of color normalization methods for epithelial-stromal classification in h and e images, Journal of pathology informatics

P. Y. Simard, D. Steinkraus, and J. C. Platt, Best practices for convolutional neural networks applied to visual document analysis, 2003.

F. A. Spanhol, L. S. Oliveira, C. Petitjean, and L. Heutte, A dataset for breast cancer histopathological image classification, IEEE Transactions on Biomedical Engineering
URL : https://hal.archives-ouvertes.fr/hal-02113843

A. Vahadane, T. Peng, A. Sethi, and . Albarqouni, Structure-preserving color normalization and sparse stain separation for histological images, IEEE transactions on medical imaging, 2016.

D. Wang, A. Khosla, R. Gargeya, H. Irshad, and A. H. Beck, Deep learning for identifying metastatic breast cancer, 2016.