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An exponential inequality for suprema of
empirical processes with heavy tails on the left

Une inégalité exponentielle pour les suprema
de processus empiriques avec queues lourdes

sur la gauche

Antoine Marchina∗,†

April 12, 2019

Abstract

In this Note, we provide exponential inequalities for suprema of
empirical processes with heavy tails on the left. Our approach is based
on a martingale decomposition, associated with comparison inequali-
ties over a cone of convex functions originally introduced by Pinelis.
Furthermore, the constants in our inequalities are explicit.

Résumé

Dans cette Note, nous donnons des inégalités exponentielles pour
les suprema de processus empiriques avec queues lourdes sur la gauche.
Notre approche est basée sur une décomposition en martingale, asso-
ciée à des inégalités de comparaison sur un cône de fonctions convexes,
initialement introduit par Pinelis. Les constantes données sont expli-
cites.
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1 Introduction
Let X,X1, . . . , Xn be a sequence of independent random variables valued in
some measurable space (X ,F), and identically distributed according to a law
P . Let F be a countable class of measurable functions from X into ]−∞ , 1]
such that P (f) = 0 for all f ∈ F . Let 1 < p < 2. We suppose that for all
f ∈ F , f(X) satisfies the following behavior on the left:

P(f(X) ≤ −t) ≤
(
c

t

)p
for any t > 0, (1.1)

for some c > 0. Let Zn be the real-valued random variable defined by

Zn := sup
{ n∑
k=1

f(Xk) : f ∈ F
}
. (1.2)

The aim of this Note is to give an exponential bound for the probability
of deviation of Zn above its mean. Throughout the paper, we denote by η
a Pareto (on the left) random variable with parameters (c, p), that is, its
distribution function Fη is defined by

Fη(−t) =
(
c

t

)p
∧ 1 and Fη(t) = Fη(0) = 1, for any t > 0. (1.3)

The control of the random fluctuations of an empirical process has a central
role in mathematical statistics and machine learning. For general presenta-
tions of these connections between empirical process theory and statistics,
see, for instance, the books of Van der Vaart and Wellner [24], Massart [15]
or Koltchinskii [9]. For example, in the context of nonparametric estimation,
the calibration of adaptive methods is strongly related to the control of an
empirical process: see, for instance, [10] for the Empirical Risk Minimization
method, [2] for the Cross-Validation method and [7] for the Goldenshluger-
Lepski method.

Since Talagrand’s [23] and Ledoux’s [12] pioneering work, concentration
inequalities for suprema of empirical processes have been the subject of in-
tense research. Mainly, the aim is to reach optimal counterparts for Zn of
classical Hoeffding’s, Bernstein’s, and Bennett’s exponential inequalities for
sums of iid random variables, which correspond to classes F reduced to one
element. The reader is referred to Chapter 12 of the book of Boucheron, Lu-
gosi, and Massart [5] for an overview of this subject. Recently, some efforts
have been made to consider heavier tails by only assuming that supf∈F |f(X)|
is Lr-integrable for some r > 2: see, Boucheron, Bousquet, Lugosi, and Mas-
sart [4], Adamczak [1], van de Geer and Lederer [11], and Marchina [13].
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However, the common point of all these results is that supf∈F Var(f(X)) is
finite, which we do not want to assume in this work. Instead, we assume
(1.1) which states the first-order stochastic dominance of −η over −f(X),
for all f ∈ F . In other words, Fη is the extremal (in the sense of first-order
stochastic dominance) distribution that f(X) could have. The Pareto distri-
bution is the prototype of “power-tailed” distributions, which are important
particular cases of heavy-tailed distributions. More precisely, a distribution
is said power-tailed if its tail function is of the form x−α, α > 0, for large
x. It has the singular property that every moment greater than the α-th is
infinite (see, for instance, the book of Foss et al. [6]). Here, since we assume
1 < p < 2, the first moment of η is finite, and the second one is infinite. In
particular, combined with (1.1), it implies that Var(f(X)) could be infinite
for every f ∈ F . Moreover, we emphasize that heavy-tailed data are com-
monly encountered, for example, in the areas of computer science, finance,
biology, and astronomy, among others. Then the assumption (1.1) is also of
interest for applications.

To the best of our knowledge, the only result without the assumption of
square integrability of f(X), f ∈ F , is provided in Rio [20, Theorem 2].
The author gives an upper bound of the log-Laplace transform of Zn−E[Zn]
involving squares of positive parts and truncated negative parts of f(X) for
all f ∈ F . His proof relies on a martingale decomposition of Zn − E[Zn] as-
sociated with an exponential inequality for positive self-bounding functions
(based on Ledoux’s entropy method) proved in Rio [21]. Our approach uses
the same martingale decomposition used by Rio. However, the difference lies
in the control of the martingale increments. To give an upper bound on their
log-Laplace transform, we resort to convex comparison inequalities, similar
to those of Hoeffding [8] for bounded random variables. To our knowledge,
this result has no counterpart in the existing literature. Then it is not that
easy to study the optimality of the constants appearing in our inequalities.
Nevertheless, we think that the method used may be encouraging for further
works. Actually, it seems beyond the scope of traditional functional analysis
tools to handle the case of nonfiniteness of supf∈F Var(f(X)). Furthermore,
we have recently shown that martingale methods can be used to relax clas-
sical hypotheses (as the uniform boundedness conditions) in concentration
inequalities for separately convex functions of independent random variables,
especially for suprema of empirical processes (see [14, 13]).
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2 Result
Let us first give some notation. For any real-valued random variable X, FX
and F−1

X denote respectively the distribution function of X and the càdlàg
inverse of FX . For all reals x and α, x+ := max(0, x) and xα+ := (x+)α. We
denote by Γ(.) the usual gamma function.

For sake of clarity, let us recall the setting we work with. LetX,X1, . . . , Xn

be a sequence of iid random variables valued in (X ,F) with common distri-
bution P . Let 1 < p < 2. Let η be a random variable with distribution
function Fη defined by (1.3). We recall that Fη depends on c > 0 and p. Let
F be a countable class of measurable functions from X into R. We make the
following assumptions.

Assumption 2.1. For all f ∈ F and all x ∈ X ,

f(x) ≤ 1 and P (f) := E[f(X)] = 0. (2.1)

Assumption 2.2. The parameter c is such that

c ≥
(
p− 1
2p− 1

)1/p
. (2.2)

This condition on c is purely technical. Note that the function h : p 7→(
p−1
2p−1

)1/p
is increasing on [1 , 2]. Since h(2) =

√
1/3, if c ≥

√
1/3, then the

condition (2.2) is satisfied.

Assumption 2.3. For any t > 0,

E[(−t− f(X))+] ≤ E[(−t− η)+]. (2.3)

This assumption corresponds to the (usual) second-order stochastic dom-
inance of −η over −f(X), for all f ∈ F . It is weaker than the condition
(1.1), which corresponds to the (usual) first-order stochastic dominance, and
is sufficient for our result.

The following result then holds.

Theorem 2.1. Let Zn be defined by (1.2). Let q0 be the real in ]0 , 1[ such
that

q0 − c
p

p− 1(1− q0)1−1/p = 0. (2.4)

Under Assumptions 2.1, 2.2 and 2.3, for any x ≤ q0 Γ(2− p),

P(Zn − E[Zn] ≥ nx) ≤ exp
(
−nγp xp/(p−1)(1− εp(x))

)
, (a)
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where

γp = (pαp)−1/(p−1)p− 1
p

, αp = cp

p− 1Γ(2− p), (2.5)

and εp(x) = p

p− 1

∞∑
k=2

q0

k!x
(k−p)/(p−1)(pαp)−(k−1)/(p−1). (2.6)

Moreover, for any x > q0 Γ(2− p),

P(Zn − E[Zn] ≥ nx) ≤ exp
(
− n(x(1− q0)1/pc−1 − βp)

)
, (b)

where

βp = −Γ(2− p)
p− 1

− q0

(
−Γ(2− p)

p− 1 − 1 + exp((1− q0)1/pc−1)− (1− q0)1/pc−1
)
. (2.7)

Roughly speaking, Inequality (a) states that for small enough x > 0,

P(Zn − E[Zn] ≥ n1/px) ≤ exp
(
−Kp x

q
(
1 +O

(
x(2−p)/(p−1)n−2/p

)))
, (2.8)

where q = p/(p−1) is the Hölder exponent conjugate of p andKp is a constant
depending only on p. Under Assumptions 2.1 and supf∈F Var(f(X)) < ∞,
it is known that Zn satisfies a Bennett-type inequality (see, for instance,
Rio [22, Theorem 1.1]). It leads to the following inequality for small enough
x > 0:

P(Zn − E[Zn] ≥
√
nx) ≤ exp

(
− x2

2v
(
1 +O

(
xn−1/2

)))
, (2.9)

where v := σ2 +2n−1E[Z] and σ2 := supf∈F P (f 2). Thus, Inequality (a) may
be regarded as an extension of (2.9).

Remark 2.2 (Explanation of (2.4)). For any bounded random variable a ≤
Y ≤ b, a, b ∈ R, Hoeffding [8] shows that Y is more concentrate for the
convex functions than the two-valued random variable θ taking the values
a and b and such that E[θ] = E[Y ] (see his inequalities (4.1) and (4.2)). It
means that E[ϕ(Y )] ≤ E[ϕ(θ)] for all convex functions ϕ. This result has been
extended to unbounded random variables: the reals a, b are replaced by some
random variables α, β and a ≤ Y ≤ b is replaced by α 4 Y 4 β for some
stochastic order 4 (see Bentkus [3] and Marchina [14]). Here, one has η 42
f(X) ≤ 1 where 42 denotes the usual second-order stochastic dominance.
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Then, with respect to a class of convex functions, the distribution of f(X) is
more concentrate than the distribution µ[q0] defined by

µ[q0](A) = µ(A ∩ ]F−1
η (1− q0) ,+∞[ ) + q0 δ1(A), (2.10)

where µ denotes the distribution of η, A ⊂ R (measurable), δ1 stands for
the Dirac measure centered on 1 and q0 ∈ [0 , 1] is such that

∫
tµ[q0](dt) =

E[f(X)] = 0. This last equation is equivalent to (2.4).

By (2.4), q0 depends on c. The impact of c on the window [0 , q0 Γ(2−p)],
in which (a) is valid, is shown in Figure 1 below. The function p 7→ q0 Γ(2−p)
for the values c = 3, c = 1, c =

√
1/3 and c = 0.3 is represented.

Figure 1 – Impact of the value of c on the function p 7→ q0Γ(2− p).

3 Proof
We start in the same way as in the proof of main results in [13], that is by
a martingale decomposition of Zn − E[Zn]. Let us recall the main points.
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For more details the reader is referred to [13]. First, by virtue of the mono-
tone convergence theorem, we can suppose that F is a finite class of func-
tions. Set F0 := {∅,Ω} and for all k = 1, . . . , n, Fk := σ(X1, . . . , Xk),
and Fkn := σ(X1, . . . , Xk−1, Xk+1, . . . , Xn). Let Ek (respectively Ekn) denote
the conditional expectation operator associated with Fk (resp. Fkn). Set also
Z(k)
n := supf∈F

∑
j 6=k f(Xj) and Zk := Ek[Zn]. Let us number the functions

of the class F and consider the random indices

τ := inf
{
i > 0 :

n∑
k=1

fi(Xk) = Zn

}

τk := inf

i > 0 :
n∑
j=1
j 6=k

fi(Xj)− fi(Xk) = Z(k)
n

 .
Define ξk := Ek[fτk

(Xk)] and rk := (Zk − Ek[Z(k)
n ]) − ξk ≥ 0. Note that we

have
ξk ≤ ξk + rk ≤ Ek[fτ (Xk)]. (3.1)

By the centering assumption on the elements of F , Ek−1[ξk] = 0, leading to

Zn − E[Zn] =
n∑
k=1

∆k where ∆k := ξk + rk − Ek−1[rk]. (3.2)

The proof is made in three steps:

1. Using results of Section 3 in Marchina [14], we compare generalized
(conditional) moments of ∆k with those of a random variable ζq0 with
distribution µ[q0] given in (2.10). In particular, the class of generalized
moments on which we obtain a comparison inequality contains increas-
ing exponential functions x 7→ etx for every t ≥ 0.

2. We give an upper bound on the exponential moments of ζq0 .

3. We conclude the proof by the usual Cramér-Chernoff calculation.

Step 1: Comparison inequality.
Let us denote by ζq, for any q ∈ [0 , 1], a random variable with distribution
function given by

Fq(x) :=


Fη(x) if x < aq,
1− q if aq ≤ x < 1,

1 if x ≥ 1,
(3.3)
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where aq := F−1
η (1− q). Notice that

E[ζq] = q − c p

p− 1 (1− q)1−1/p, (3.4)

which ensures that (2.4) is equivalent to E[ζq0 ] = 0. Let us also define

H2
+ :=

{
ϕ ∈ C1(R) : ϕ′ is convex, and lim

x→−∞
ϕ(x) = lim

x→−∞
ϕ′(x) = 0

}
This part is devoted to prove the following lemma:

Lemma 3.1. For any ϕ ∈ H2
+ and any k = 1, . . . , n,

Ek−1[ϕ(∆k)] ≤ E[ϕ(ζq0)]. (a)

Consequently, for any t ≥ 0,

logE[exp(t(Zn − E[Zn]))] ≤ n logE[exp(t ζq0)]. (b)

Remark 3.2. Comparison inequalities with respect to the class of functions
H2

+ (or more generally Hα
+, α > 0) have been widely studied by Pinelis (these

include, among others, [16, 17, 18, 19], and we refer the reader to these papers
for more details). We only recall that we have the following equivalence:

(i) E[ϕ(X)] ≤ E[ϕ(Y )] for any ϕ ∈ H2
+

(ii) E[(X − t)2
+] ≤ E[(Y − t)2

+] for any t ∈ R.

The proof of Lemma 3.1 lies on the following results which are established
in Marchina [14]:

Lemma 3.3 (Lemmas 4.3 and 4.6 (i) in [14]). Let η be defined by (1.3).

(i) Let X be an integrable random variable such that X ≤ 1 and for any
real t, E[(t−X)+] ≤ E[(t− η)+]. Then for any convex function ϕ,

E[ϕ(X − E[X])] ≤ E[ϕ(ζq − E[ζq])],

where q ∈ [0 , 1] is such that E[ζq] = E[X].

(ii) Let q̃ := inf{q ≥ 1/2 : 1 + F−1
η (1 − q) ≤ 2E[ζq]}. For all t ∈ R, the

function
q 7→ E[(ζq − E[ζq]− t)2

+]

is nonincreasing on [q̃ , 1].

8



Proof of Lemma 3.1. Since H2
+ contains all increasing exponential functions,

taking ϕ(x) = etx with t ≥ 0 in (a) leads to (b) by an induction on n.
Moreover, in view of Remark 3.2, we only have to prove (a) for the functions
ϕ(x) = (x − t)2

+, with t ∈ R. Let t > 0. Since rk ≥ 0, Jensen’s inequality
implies that

Ek−1[(−t− (ξk + rk))+] ≤ Ek−1[(−t− ξk)+]
≤ Ek−1[(−t− fτk

(Xk))+]
≤ E[(−t− η)+], (3.5)

where the last inequality follows from Assumption 2.3. Furthermore, we can
directly verify that (3.5) holds for t ≤ 0. Since f ≤ 1 for any f ∈ F , (3.1)
implies that ξk + rk ≤ 1. Hence, applying Lemma 3.3 (i) conditionally to
Fk−1, with X = ξk + rk, yields that

Ek−1[ϕ(∆k)] ≤ Ek−1[ϕ(ζq̂ − E[ζq̂])], (3.6)
for any convex function ϕ, where q̂ ∈ [0 , 1] is such that Ek−1[ξk + rk] =
Ek−1[rk] = Ek−1[ζq̂].

Now, we show that an upper bound of the right-hand side of (3.6) can
be obtained by the use of Lemma 3.3 (ii). Let us recall the notation q̃ :=
inf{q ≥ 1/2 : 1 + F−1

η (1− q) ≤ 2E[ζq]}. We shall prove the following:
Lemma 3.4. We have
(i) 1 + F−1

η (1− q0) ≤ 0 = 2E[ζq0 ]. Consequently, q̃ ≤ q0.

(ii) q0 ≤ q̂.
Remark 3.5. Note that q 7→ 1 + F−1

η (1 − q) is nonincreasing and tends to
−∞ as q tends to 1 and q 7→ E[ζq] is nondecreasing and tends to 1 as q tends
to 1. Moreover, a calculation shows that 1 + F−1

η (1/2) > 2E[ζ1/2]. Thus q̃
exists and if q is such that 1 + F−1

η (1− q) ≤ 2E[ζq], then q̃ ≤ q.

Proof of Lemma 3.4. Let us first prove (i). Define q1 := 1−min(cp, 1). Start-
ing from (3.4), one can verify that condition (2.2) on c implies E[ζq1 ] ≤ 0.
Then, since E[ζq0 ] = 0, one has q1 ≤ q0 by the monotonicity of q 7→ E[ζq].
Next, since Fη(−1) = 1− q1, it implies F−1

η (1− q1) ≤ −1. Therefrom, since
F−1
η is nondecreasing,

1 + F−1
η (1− q0) ≤ 1 + F−1

η (1− q1) ≤ 0.
Thus, since 2E[ζq0 ] = E[ζq0 ] = 0, one has q̃ ≤ q0 which ends the proof of (i).
The point (ii) follows directly from the monotonicity of q 7→ E[ζq] since

Ek−1[ζq̂] = Ek−1[rk] ≥ 0 = E[ζq0 ].
This concludes the proof of Lemma 3.4.
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Now, Lemma 3.3 (ii) associated to Lemma 3.4 and (3.6) applied to ϕ(x) =
(x− t)2

+, yield that, for any t ∈ R,

Ek−1[(∆k − t)2
+] ≤ Ek−1[(ζq̂ − E[ζq̂]− t)2

+] ≤ E[(ζq0 − E[ζq0 ]− t)2
+],

which then implies Inequality (a) of Lemma 3.1 and finishes the proof.

Step 2: Upper bound of exponential moments of ζq0.
In this part, we give an upper bound of E[exp(tζq0)] for any t ≥ 0. First
recall the notation aq = F−1

η (1− q) ≤ 0. The aim of this part is to prove the
following lemma:

Lemma 3.6. Let t ≥ 0 such that −taq0 ≤ 1. Then

logE[etζq0 ] ≤ q0(et − t− 1) + αpt
p.

Proof of Lemma 3.6. Let t > 0. Starting from the definition of the random
variable ζq, one has

E[etζq0 ] = q0e
t + p(tc)p

∫ ∞
−taq0

e−uu−(p+1)du

= q0e
t + p(tc)p

( ∫ ∞
0

u−(p+1)(e−u − 1 + u)du

+
∫ ∞
−taq0

u−(p+1)(1− u)du−
∫ −taq0

0
u−(p+1)(e−u − 1 + u)du

)
.

(3.7)

Now, for any 1 < p < 2,∫ ∞
0

u−(p+1)(e−u − 1 + u)du = Γ(−p), (3.8)

where Γ(−p) = 1
p(p−1)Γ(2−p). Moreover, the expansion e−u = ∑∞

k=0(−u)k/k!
yields that∫ ∞

−taq0

u−(p+1)(1− u)du−
∫ −taq0

0
u−(p+1)(e−u − 1 + u)du

= −
∞∑
k=0

(−1)k
k!

(−taq0)k−p
k − p

. (3.9)

Thus, since q0 = 1− (c/− aq0)p, (3.7) becomes

E[etζq0 ] = q0e
t + p(tc)pΓ(−p)

+ (1− q0)
(

1− taq0

p

1− p +
∞∑
k=2

(−1)k+1 (−taq0)k
k!

p

k − p

)
. (3.10)
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Next, we observe that under the assumption −taq0 ≤ 1, the sum in (3.10) is
an alternating series whose absolute value of the general term decreases to
0. Thus, the sum is of the sign of the term corresponding to k = 2, which is
negative. Hence,

E[etζq0 ] ≤ q0e
t + p(tc)pΓ(−p) + (1− q0)

(
1− taq0

p

1− p

)
≤ 1 + q0(et − t− 1) + p(tc)pΓ(−p) + t

(
q0 − (1− q0)aq0

p

1− p

)
.

(3.11)

Observe now that the last term in the right-hand side is equal to zero. Indeed,
since aq0 = −c (1− q0)−1/p,

q0 − (1− q0)aq0

p

1− p = q0 − c
p

p− 1 (1− q0)1−1/p = E[ζq0 ] = 0.

Hence, taking the logarithm and using the inequality log(1 + x) ≤ x for any
x > 0, conclude the proof of Lemma 3.6.

Step 3 : Conclusion by the Cramér-Chernoff calculation.
We now complete the proof of Theorem 2.1. From Lemma 3.1 (b) and Lemma
3.6, by the usual Cramér-Chernoff calculation, we get

P(Zn − E[Zn] ≥ nx) ≤ exp
(
−nφ∗ζq0

(x)
)
, (3.12)

where
φ∗ζq0

(x) = sup
t∈]0,−1/aq0 ]

{
tx− αptp − q0(et − t− 1)

}
. (3.13)

In order to prove (a), we give a lower bound of φ∗ζq0
(x) by taking the real

tx ∈ ]0 ,−1/aq0 ] which maximizes t 7→ tx−αptp. A straightforward calculation
yields

tx = x1/(p−1)(pαp)−1/(p−1), (3.14)
and −txaq0 ≤ 1 is equivalent to x ≤ q0 Γ(2− p). We then have

txx− αptpx = γp x
p/(p−1) and q0(etx − tx − 1) = γp εp(x)xp/(p−1), (3.15)

which concludes the proof of (a). Inequality (b) follows directly by putting t =
−a−1

q0 in the right-hand side of (3.13). This concludes the proof of Theorem
2.1.
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