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1 Introduction

The aim of this paper is to explain how recent results on transformation
groups [Gourieroux, Monfort, Zakoian (2019)] can be used in the framework
of stress test exercises for homogeneous pools of credit lines. For such a ho-
mogeneous pool, the total expected loss is conventionally decomposed along
the following formula [see e.g. BCBS (2001), EBA (2016)] :

Expected Loss = EAD× CCF× PD× (E)LGD, (1.1)

where EAD denotes the exposure-at-default, that is the total level of the
credit line, CCF is the credit conversion factor, that is the proportion of the
credit line really used at the default time, PD is the probability of default and
(E)LGD the (expected) loss given default defined as 1 minus the (expected)
recovery rate. Formula (1.1) involves variables that are value constrained.
The EAD is positive, whereas the three other variables are constrained to
lie between 0 and 1. When performing a stress exercise the EAD is usually
crystallized, i.e. kept fixed, but the three other characteristics depend on how
the borrowers react to the environment and are thus sensitive to local and/or
extreme shocks. In this paper we introduce semi-parametric transformation
models for variables in [0, 1], such as CCF, PD, or (E)LGD. We propose a
consistent estimation method minimizing the sensitivity of the risk variables
with respect to shocks, which we call the Least Impulse Response (LIR)
approach1. Moreover, we show that this method leads also to simple and
consistent estimate of the effect of the stresses on the risk variables.

The semi-parametric transformation model with values in (0, 1) is de-
scribed in Section 2. We provide different examples of transformation models
and explain how to introduce a notion of “intercept” parameter. The LIR
estimation approach is introduced in Section 3. We discuss its interpreta-
tion as a pseudo maximum likelihood approach, and show that this approach
provides consistent approximations of the effect of local as well as global
stresses on the error term. We also compare the LIR approach with existing
approaches in the credit risk literature such as the beta regression model, or
the transformed Gaussian regression. In Section 4 the approach is extended
to the joint treatment of PD and (E)LGD. In particular we introduce models

1See e.g. Lutkepohl (2008) for the definition and use of the notion of Impulse Response
Function in Economics.
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based on Moebius transformations. The properties of the new approach are
illustrated by simulation experiments in Section 6, as well as by a real loan
portfolio in Section 6. Section 7 concludes. Proofs of asymptotic results are
gathered in Appendices.

2 The Transformation Model

The objective of the new modelling is to extend to variables valued in [0, 1]
the standard linear model. This linear model can be written as:

yt = x′tβ + ut ⇐⇒ yt − x′tβ = ut,

depending on if either we want to understand how the output yt reacts to
the two types of inputs, that are x′tβ, the summary score function of the
explanatory variables, and the unobserved error term ut, or, if we focus
on the reconstitution of the unobserved error ut from observed data. This
extension is the following. We consider a semi-parametric transformation
model for variables valued in (0, 1). The model can be written as :

yt = c[a(xt, β), ut], t = 1, . . . , T, (2.1)

where:

• the observed endogenous variable yt and the unobserved error term
ut are valued in (0, 1), xt are observed explanatory variables that can
include exogenous as well as lagged endogenous variables;

• u→ c(a, u) is a one-to-one function2 mapping [0, 1] to itself, parametrized
by a ∈ A ⊂ RJ ;

• x→ a(x, β) is a score function from X to A, parametrized by β ∈ B ⊂
RK .

In applications to credit risk, the variable yt can be the observed PD on
a given segment, or the observed average loss given default (ELGD) on this

2Function u → c(a, u) is not necessarily monotonous. However, in many examples we
consider in the paper it is indeed increasing. In these cases u → c(a, u) maps (0, 1) to
itself and satisfies c(a, 0) = 0, c(a, 1) = 1.
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segment, and xt the macro risk factors. In this section, the model is described
for a single endogenous variable for expository purpose, but the results are
easily extended to several endogenous variables. Such a bivariate extension
is discussed in Section 4 for a joint analysis of PD and ELGD.

Due to the invertibility of function u 7→ ca(u) ≡ c(a, u), model (2.1) can
be equivalently written as :

ut = c−1a(xt,β)(yt), (2.2)

where the error is expressed in terms of the explanatory variables and the
endogenous variable.

Next, we assume that :

Assumption 1. The errors ut, t = 1, . . . , T are independent, identically dis-
tributed (i.i.d.). Their distribution is absolutely continuous with respect to the
Lebesgue measure on [0.1], with probability density function (p.d.f.) denoted
by f .

Assumption 2. The model (2.1) is well specified with true parameter value
β0 and true error distribution with p.d.f. f0.

Assumption 1 implies a continuous distribution on (0, 1) for the endoge-
nous variable y. This assumption has to be discussed in details for the LGD
variable. Up to recent years, the supervisors have not sufficiently distin-
guished the loss-given-default observed ex-post, that is, at the end of the
recovery process, from the expected loss-given-default measured ex-ante for
a credit (corporate) not yet entered in default. The first notion is now called
realized LGD3 [see e.g. EBA (2016)], whereas the second notion is called
ELGD for expected LGD in the recent academic literature. The distinction
between the two notions is important. Indeed, if the observations concern
the realized individual losses, the observed distributions of individual real-
ized LGD’s have significant point masses at 0 and 1,4 as well as a continuous
component on (0, 1). Therefore the assumption of continuous distribution

3or historical LGD [Gupton, Stein (2002)].
4In practice the loss can be larger than 1 for instance due to legal costs, or negative

due to penalties and interest on delayed payments. These data are truncated to follow
the supervision rules, see e.g. Altman et al. (2005). In other words the individual LGD
data are first computed without truncation, before being sent truncated to the prudential
authorities.
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on (0, 1) is not satisfied. However, if the observed data concerns homoge-
neous segments of individual risks, what is observed is the ELGD, which
is strictly between 0 and 1. Therefore Assumption 1 is satisfied when the
observations concern average LGDs with corporate segments defined for in-
stance by crossing the industrial sector, the country of domiciliation and
the corporate rating5. This corresponds to the demand of the supervisor
[BCBS (2001), paragraph 336]: ”A bank must estimate an LGD for each of
its internal grades... Each estimate of LGD must be grounded in historical
experience and empirical evidence.”

Assumption 1 is also satisfied for market values of the recovery rates,
obtained for instance by comparing the market value of the debt (i.e. corpo-
rate bonds) just before default and its value one-month after default. This
methodology [see e.g. Renault, Scaillet (2004), Bruche and Gonzalez-Aguado
(2010)] is used by Moody’s for firms with debt traded on an organized corpo-
rate bond market. These market-valued recovery rates are more sensitive to
cyclical effects than the averages computed directly from the recovery pro-
cesses. Note also that we consider a semi-parametric model with a vector
of parameter β measuring the effect of variables xt depending on time, and
a functional parameter, that is the unknown distribution of (ut). There-
fore our approach differs from the pure nonparametric approaches without
explanatory variables [Calabrese, Zenger (2010)], or applied on time indepen-
dent segments defined for instance by seniority, or industry [Renault, Scaillet
(2004)]. Indeed we are interested in the dynamic analysis of the ELGD and
its dependence on macro risk factors xt. This type of modelling is the basis
for stress tests and the determination of the additional capital to be hedged
against stressed situations.

2.1 Transformation Groups

Let us further assume that the set of transformations : C = {c(a, .), a ∈ A}
is a group for the composition of functions, so that equivalently the group
structure (C, o) can be transferred on set A:

Assumption 3. We have :

5These averages are either dollar weighted, or event weighted in practice. They typically
lie strictly between 0 and 1 even if the individual LGD have not been artificially truncated.
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c[a, c(b, u)] = c(a ∗ b, u), ∀a, b ∈ A, u ∈ [0, 1],

where (A, ∗) is a group and ∗ denotes the group operation.

The group operation ∗ combines two elements a, b ∈ A of the group to
form a third element a ∗ b ∈ A and satisfies the axioms of associativity,
identity and invertibility. We denote below by e the identity element such
that:
a ∗ e = e ∗ a = a,∀a ∈ A, and by a−1 the inverse of element a, such that
a ∗ a−1 = a−1 ∗ a = e. Under Assumption 3, model (2.2) can be also written
as :

ut = c[a−1(xt, β), yt]. (2.3)

Let us provide examples of transformation groups on [0, 1]. For each
example we explicit the transformation, the group (A, ∗), the identity element
and the form of the inverse.

Example 1 : Power transformation (single score)

We have : c(a, u) = ua, where a ∈ A = R+∗. The group operation is :
a ∗ b = ab, with identity element e = 1 and the inverse : a−1 = 1/a.

Example 2 : Homographic transformation (single score)

We have : c(a, u) =
au

1 + (a− 1)u
, where a ∈ A = R+∗. The group

transformation is : a ∗ b = ab, with identity element e = 1 and the inverse :
a−1 = 1/a.

Figure 1 plots examples of power and homographic transformations for
different values of parameters.
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Figure 1: Plot of power transformations (left panel) and homographic trans-
formations (right panel). In both cases, we plot the curves for two values of
the parameter a = 2 and a = 0.5.

Example 3 : Exp-log power transformation (two scores)

We have : c(a, u) = exp[−a1(− log u)a2 ], where a = (a1, a2)
′ ∈ A =

(R+∗)2. The group operation is : a ∗ b = (a1b
a2
1 , a2b2)

′. The identity element

is e = (1, 1)′ and the inverse is : a−1 = (a
−1/a2
1 , 1/a2)

′. Figure 2 plots
examples of Exp-log power transformations for various parameter values.
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Figure 2: Examples of Exp-log power transformations. In the left (resp.
right) panel, the three transformations share the same a1 = 0.5 (resp. a2 =
2), but have different a2. Thus the three curves pass through the same points
(0, 0), (1, 1), and (e−1, e−a1).

Other groups can be derived by introducing piecewise transformations.

Example 4 : Piecewise transformation (multi-score)

The above elementary transformations can also be “combined” to increase
the flexibility of the transformation. Let us for instance partition the interval
[0, 1] by deciles k/10, k = 1, . . . , 10. Then we consider 10 basic groups of
transformations ck(ak, u), k = 1, . . . , 10, on [0, 1], as well as ten monotonous
bijections6 Fk, each mapping [0, 1] to [k−1

10
, k
10

]. Then we construct the set of
transformations :

c(a, u) =
10∑
k=1

1(
k − 1

10
≤ u ≤ k

10
)Fk ◦ ck(ak, F−1k (u)). (2.4)

It is easily checked that c(a, ·) is one-to-one from [0, 1] to itself. It defines the
product group A = A1 × · · · × A10 with multi-score : a = (a′1, . . . , a

′
10)
′, and

the group operation, the identity and the inverse are all defined component-
wise. This example shows how to define “splines” based on simple transfor-
mation groups. As a special case, one can set the transformations ck to be

6For instance, we can choose the affine transformation: Fk(u) = k−1+u
10 ,∀u ∈ [0, 1].
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identical:
ck(ak, ·) = c1(ak, ·), ∀k = 1, ..., 10, ak ∈ A1.

In other words A1 = A2 = · · · = A10 and the product group becomes
A = (A1)

10.

Example 5 : Exogenous switching regime

One shortcoming of the above spline group is that it maps an interval
[k−1
10
, k
10

[ to itself. In other words, it does not allow the probability P[k−1
10
≤

Yt ≤ k
10
|a] to depend on a. Let us now construct a two-layer “hierarchical

group”. For expository purpose, let us first divide [0, 1] into two subintervals
[0, 1

2
] and [1

2
, 1] only7.

First, remark that any u ∈ [0, 1] can be alternatively represented by the
couple: [

J(u) = 12u>1,
φ(u) = 2(u− 1

2
J(u))

]
∈ {0, 1} × [0, 1], (2.5)

where J(u) is the integer part of 2u, that is the quotient of the Euclidean
division of u by 1

2
, whereas φ(u) is twice the remainder in the division. As

this division is unique, function u 7→ (J(u), φ(u)) is one-to-one from [0, 1] to
{0, 1} × [0, 1] and its inverse function is:

u =
φ(u) + J(u)

2
. (2.6)

In the following we will use alternately these two representations of a pro-
portion value.

Let us now consider the group of permutations S2 on {0, 1}. It is com-
posed of two elements that are the identity function Id, and the permutation
p mapping 0 to 1. The group operation is the standard composition ◦ of
functions. These permutations can be equivalently represented by the func-
tions:

u 7→ bu+ (1− b)(1− u) := b(u).

If b = 1, we get the identity; if b = 0, we get permutation p. Moreover, the
composition b′ ◦ b can be represented by:

b′ ◦ b = b′b+ (1− b′)(1− b), (2.7)

7The extension to a model with 10 subintervals, say, is straightforward and omitted.
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where b′, b on the RHS should be regarded as elements of {0, 1}. Thus when
there is no ambiguity we can write Id = 1, p = 0, that is, {0, 1} is isomorphic
to S2.

We also assume a “baseline” group of transformations c(a, ·) on [0, 1],
where a belongs to a certain group (A, ∗). Then we construct a transforma-
tion c̃ parameterized by S2 × A2 as follows: for any b ∈ S2, a0, a1 ∈ A, we
have, for any u equivalently reparameterized as (J(u), φ(u))′:

c̃(

 ba0
a1

 , [J(u)
φ(u)

]
) =

[
b(J(u))

c(ab(J(u)), φ(u))

]
, (2.8)

or equivalently, by applying (2.6), (2.8), in terms of u, this transformation
defined on [0, 1] can be written as:

˜̃c(

 ba0
a1

 , u) = b
{
12u<1

1

2
c(a0, 2u) + 12u>1

[1
2

+
1

2
c(a1, 2u− 1)

]}
+ (1− b)

{
12u<1

[1
2

+
1

2
c(a1, 2u)

]
+ 12u>1

1

2
c(a0, 2u− 1)]

}
. (2.9)

In other words, the integer part J(u) is transformed into another element
of b(J(u)) of {0, 1}, whereas the remainder φ(u) is transformed into a new
“remainder”, by applying the transformation c(ab(J(u))). In Appendix 1 we

prove that the family of transformations ˜̃c, indexed by θ =

 ba0
a1

, defines a

group for the operation: b′a′0
a′1

 ∗̃
 ba0
a1

 =

 bb′ + (1− b)(1− b)′
a′0 ∗ [b′a0 + (1− b′)a1]
a′1 ∗ [b′a1 + (1− b′)a0]

 =

b′ ◦ bab′(0)
ab′(1)

 . (2.10)

Finally, in all the examples above, the econometric model is deduced by
substituting a parametrized score function a(xt, β) to parameter a indexing
the set of transformations.
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As an illustration, we plot the histogram of yt, in a transformation model
where ut follows the beta distribution B(3.5, 2.5). We consider three trans-
formations: the identity, a spline (Example 4), as well as a hierarchical trans-
formation (Example 5).
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Figure 3: Histogram of simulated yt, when ut follows the B(3.5, 2.5) distri-
bution. Upper panel: the transformation c is identity; middle panel: the
transformation is a spline with 9 knots; lower panel: the transformation is
a two-layer hierarchical transformation. In particular, in the latter case, the
simulated histogram has three modes, two near the boundaries, one near 0.4.

2.2 Model with intercept

It is usual in linear models to consider a regression with intercept, that is to
separate the intercept λ from the sensitivity parameters θ corresponding to
the non-constant explanatory variables:

yt = x′tθ + λ+ ut = λ ∗ x′tθ + ut, say, (2.11)

where the group operation ∗ = + is the addition. This notion of intercept
can be extended to any transformation group model by considering a speci-
fication :
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yt = c[a(xt, θ) ∗ λ, ut], t = 1, . . . , T, (2.12)

where the intercept λ ∈ A has the same dimension as the index, is not
constrained, and θ belongs to some appropriate parameter space Θ. From
now on we assume that:

Assumption 4. i) The data generating process (DGP) is a model with in-
tercept, the true value of (λ, θ) being (λ0, θ0).

ii) The parameter (λ, θ) is identifiable from a(x, θ) ∗ λ, that is,

a(x, θ) ∗ λ = a(x, θ0) ∗ λ0, ∀x ∈ X ,

implies λ = λ0, θ = θ0, if λ ∈ A, θ ∈ Θ.

Due to the group structure, the true model with intercept can also be
written as a model without intercept :

vt = c[a−1(xt, θ0), yt], t = 1, . . . , T, (2.13)

where vt = c(λ0, ut) is another i.i.d. error term with values in (0, 1). This
transformation will be shown to be more useful for stress testing, whereas
the representation (2.12) is more convenient for estimation purpose.

3 Least Impulse Response Estimator

Let us now introduce a smoothness condition on function c(a, .), necessary
to define the effect on y of a small shock on error u.

Assumption 5. The function u → c(a, u) is continuous and differentiable
except at a finite number of points.

For a model with intercept, the local impact on yt of a small shock on ut
is measured by :

IRt =
∂yt
∂ut

=
∂

∂ut
c[a(xt, θ0) ∗ λ0, ut] (3.1)

=1/
∂c

∂u
[(a(xt, θ0) ∗ λ0)−1, yt], (3.2)

12



where from equations (3.1) to (3.2) we have used the derivative formula of
an inverse function.

Note that any transformation model is uniquely characterized by the form
of its Impulse Response Function (IRF), since the function c(a, .) satisfies
the boundary conditions c(a, 0) = 0, c(a, 1) = 1. Let us explicit the form of
impulse response functions.

Example 1 : Power transformation (cont.)

We have :
∂c

∂u
(a, u) = aua−1, and log

∂c

∂u
(a, u) = log a+ (a− 1) log u.

Example 2 : Homographic transformation (cont.)

We have :
∂c

∂u
(a, u) =

a

[1 + (a− 1)u]2
and log

∂c

∂u
(a, u) = log a−2 log(1 +

(a− 1)u).

Example 3 : Exp-log power transformation (cont.)

We have :
∂c

∂u
(a, u) =

a1a2
u

(− log u)a2−1c(a, u), and

log
∂c

∂u
(a, u) = log(a1a2)− log u+ (a2 − 1) log(− log u)− a1(− log u)a2 .

Thus, we get different patterns of the IRF, and the possibility to interpret
the components of a as IRF or log IRF shape parameters. Figure 4 (resp. 5)
plots the IRF of the transformations displayed in Figures 1 and 2 (resp. 3).
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Figure 4: The IRF of the power transformations (left panel) and homographic
transformations (right panel) considered in Figures 1 and 2, respectively.

a1=0.5, a2=0.5 a1=0.5, a2=1 a1=0.5, a2=2

0.2 0.4 0.6 0.8 1.0

1

2

3

4

5

a1=2, a2=0.5 a1=2, a2=1 a1=2, a2=2

0.2 0.4 0.6 0.8 1.0

2

4

6

8

Figure 5: The IRF of the Exp-log power transformations considered in Figure
3.

3.1 The LIR estimator

We can estimate the parameter (λ, θ) by a pseudo maximum likelihood
(PML) method, in which we assume a (misspecified) distribution for the
error ut. In this paper we suggest the uniform distribution, which has the
advantage of leading to the interpretable Least Impulse Response estimator
(LIR). More precisely, under this distributional assumption, the conditional
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density of yt given xt is:

∂ut
∂yt

= c′[a(xt, β)−1, yt],

by (2.2) and the Jacobian formula. Thus the pseudo log-likelihood function
is :

LT (λ, θ) =
T∑
t=1

log
∂

∂u
[(a(xt, θ) ∗ λ)−1, yt] =

T∑
t=1

log
∂

∂u
[λ−1 ∗ a(xt, θ)

−1, yt].

(3.3)
By (3.2), this objective function can also be written as :

LT (λ, θ) = −
T∑
t=1

log IRt(λ, θ). (3.4)

Thus the PML estimator minimizes the historical geometric average of
the impulse responses. This motivates the terminology of LIR estimator.

3.2 Consistency

To analyze the consistency of the LIR estimator, we need regularity con-
ditions (RC) to ensure the existence of a limiting criterion : L̃∞(λ, θ) =
limT→∞ LT (λ, θ)/T . These RC are standard and not explicitly written here
[see e.g. Basawa et al. (1976), White (1994), Gourieroux, Monfort, Zakoian
(2019)]. Then we also need additional assumptions ensuring a simple form
of L̃∞ and that it admits a unique maximum.

Assumption 6. i) The process of explanatory variables (xt) is strongly sta-
tionary.

ii) The variables ut and xt are independent.
iii) The function :

l̃∞(λ) = E0[log
∂c

∂u
(λ, u)] =

∫ 1

0

log
∂c

∂u
(λ, u)f0(u)du,

has a unique maximum on A, attained at λ = ẽ0, say, where f0 is the true
p.d.f. of U .
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Then we get the following consistency result :

Proposition 1. Under Assumptions 1-6, the LIR estimator λ̂T , θ̂T is such
that :

lim
T→∞

λ̂T = λ0 ∗ (ẽ0)
−1, and lim

T→∞
θ̂T = θ0.

Proof. See Appendix 2.

In other words, consistent estimators are obtained by minimizing the
consequences of local stress on error u, i.e. the sensitivity of the reserves
with respect to (local) shocks on u. This surprising result is due to the
independence assumption8 between ut and xt, that allows to treat separately
the local stress on x, measured via θ, and the local stress on u.

This result is the analogue of what is usually noted for Ordinary Least
Squares (OLS) in a linear regression model yt = x′tθ + ut, say. When an
estimator of θ is selected, the quality of the estimated model is usually mea-
sured by the sum of square residuals (SSR) : Σtû

2
t = Σt(yt−x′tθ̂T )2. The OLS

approach selects an estimate minimizing the SSR to give the impression of
a good accuracy of the estimated model. Nevertheless, this a priori ”unfair”
strategy provides a consistent estimator of the regression coefficient.

The LIR estimator of the intercept λ̂T is in general not consistent. Since ẽ0
is independent of the true value of the intercept, we know that the theoretical
asymptotic bias is equal to ẽ0, which is generically unrecoverable. In fact
the intercept estimator captures all the necessary adjustments needed to
balance the misspecification of the error distribution. In particular, if the
initial econometric model contains no intercept parameters, they have to be
artificially introduced during the estimation to ensure the consistency of θ̂T .

Example 4 (cont.) : spline group.
As a special case, consider the spline transformation as in Example 4:

c(a, u) =
10∑
k=1

c∗k(ak, u)1l k−1
10

<u≤ k
10
,

8Only the independence between variables xt and ut is required, but not the indepen-
dence between processes (xt) and (ut). This is a weak exogeneity assumption.
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with c∗k(ak, u) =
k − 1

10
+

1

10
c1(ak, 10u − (k − 1)). Then we introduce the

covariates, and make the following econometric specification:

ak(xt) = a(xt, βk) ∗ λ0,k, ∀k = 1, ..., 10.

In other words, the different score functions on different subintervals [k−1
10
, k
10

[
belong to the same parametric family. Then, by the above proposition, we
can consistently estimate β1, ..., β10. This suggests that it is also possible to
construct statistical tests of the equality of these coefficients.

3.3 Nonlocal stress

The transformation model is also convenient to perform nonlocal stress test
on error u. At first sight this is rendered difficult by the fact that ut =
c(λ−10 ∗ a(xt, θ0)

−1, yt) depends on the intercept λ0, for which we do not have
a consistent estimator. The solution is to use equation (2.7), which rewrites
the initial model with intercept and error u into an equivalent model without
intercept and with transformed error:

vt = c(λ0, ut) = c[a(xt, θ0)
−1, yt].

This suggests to approximate vt by its empirical counterpart:

v̂t,T = c[a(xt, θ̂T )−1, yt], t = 1, . . . , T. (3.5)

Proposition 2. Under Assumptions 1-6, the empirical c.d.f. of the v̂t,T , t =
1, . . . , T , converges pointwise to the true c.d.f. G0 of v.

From now on we assume, for expository purpose, that the transformation
c(a, ·) is increasing9. Then the c.d.f. G0 of v is equal to:

G0(v) = P (vt < v) = P0[c(λ0, ut) < v]

= P0[ut < c(λ−10 , v)] = F0[c(λ
−1
0 , v)], v ∈ [0, 1],

where F0 denotes the true c.d.f. of ut. Thus although λ0 and the distribution
F0 of (ut) are not identified, the composite function G0(·) = F0[c(λ

−1
0 , ·)]

9This assumption is satisfied by all the examples given in Section 2, except Example
5. The treatment of non-monotonous transformation follows the same principle and is
omitted.

17



is identified. This is sufficient for a large variety of exercises, such as the
simulation of yt given xt, as well as nonlocal stress exercises. In particular
it is possible to estimate the quantiles of the ELGD distribution before and
after stress, and then to deduce the additional capital to be hedged against
stressed situation (see below).

Remark 1. The difficulty of identifying separately λ0 and F0 is not due to
the LIR estimation approach, but is intrinsic to the transformation model.
Indeed the two transformation models :

yt = c[a(xt, θ0) ∗ λ0, ut], ut ∼ F0,

and yt = c[a(x, θ0), vt], vt ∼ G0,

lead to the same conditional distribution of yt given xt. Therefore we can-
not disentangle the triples (λ0, θ0, F0) and (e, θ0, G0). This is the reflection
problem mentioned by Manski (1993) for linear models.

Let us now explain how to derive the effect of a nonlocal stress on u.
These stresses are usually defined by comparing the values of y (i.e. ELGD)
corresponding to two quantiles of the distribution of u for given x, such as a
quantile at p1 = 95%, say, and the median quantile at p2 = 50%. However
since v is obtained from u by an increasing transformation, the two values
of y to compare are also associated with the p1 and p2 quantiles of v. More
precisely, these two values of y are:

ysj = c[a(x, θ0), G
−1
0 (pj)], j = 1, 2.

These values can be consistently approximated by replacingG−10 (p1), G
−1
0 (p2)

and θ0 with their empirical counterparts Ĝ−1T (p1), Ĝ
−1
T (p2) and θ̂T .

Remark 2. Another consistent estimation method of θ is based on the co-
variance restrictions :

Cov(α(xt), γ{c[a(xt, θ)
−1, yt]}) = 0,

valid for any pairs of (square integrable) functions α, γ. This set of covari-
ance restrictions, where the α(xt) plays the role of instrumental variables, is
equivalent to the independence between xt and ut when θ = θ0. We explain
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in Appendix 3 that the LIR approach asymptotically selects an appropriate
subset of such covariance restrictions10.

3.4 Comparison with the credit risk literature

As seen in Section 2.1, the LIR estimation approach can be applied to a class
of semi-parametric econometric models with a number of underlying scores
equal to the dimension of parameter a. As a consequence this modelling is
much more flexible than the parametric models currently considered in either
the theoretical, or applied credit risk literature developed for the analysis of
ELGD [see e.g. Qi, Zhao (2011), Yashkir, Yashkir (2013), Li et al. (2016),
for the comparison of parametric modeling approaches for ELGD].

3.4.1 Beta Regression

The benchmark distribution for continuous variables with value in (0,1) is
the beta family [see e.g. Ferrari, Cribari-Neto (2008), Calabrese (2014a),
Huang, Oosterlee (2011), Hartman-Wendels et al. (2014) for its application
to ELGD data11]. This is a two parameter family with density :

f(y;α, β) =
yα−1(1− y)β−1

B(α, β)
,

where the shape parameters α, β are positive and the beta function B(α, β)
is defined by :

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
, with Γ(α) =

∫ ∞
0

exp(−y)yα−1dy, ∀α > 0.

This family allows for densities with bell shape, U-shape, J-shape, or
inverted J-shape. Figure 6 plots examples of beta densities for different
values of the parameters α, β.

10see Gourieroux, Jasiak (2017), Section 4 and Appendix C, for the analysis of the class
of generalized covariance estimators.

11So also Gupten, Stein (2002) for the LossCalc procedure developed by Moody’s KMV.
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Figure 6: Density of a beta distribution.

The associated econometric model is deduced by letting parameters α, β
depend on explanatory variables, such as : α = exp(x′θ1), β = exp(x′θ2),
say [see e.g. Bruche, Gonzalez-Aguado (2010)], or another link function [see
e.g. Calabrese (2014a), Section 3.1]. This parametric model is usually esti-
mated by either a moment estimation method12, or by maximum likelihood.
Compared to the new approach developed in the present paper, the beta
modelling has the following drawbacks :

i) It is less flexible than a semi-parametric model, and the estimation
approach can lead to inconsistent estimator if the true underlying conditional
distribution of yt given xt is not beta.

ii) The derivation of the estimates can be computationally demanding
since it requires the numerical computation of the gamma function and of its
derivative (the digamma function).

iii) Finally, in order to derive the effect of a shock on the “error”, it is
necessary to rewrite the model as a transformation model. This is usually
done by defining ut = F (yt|xt), where F is the conditional c.d.f. of yt given

12Usually the calibration is based on the conditional moments of order 1 and 2, using
the relation between the shape parameters and the mean µ and variance σ2 of the beta

distribution : µ =
α

α+ β
, σ2 =

αβ

(α+ β)2(α+ β + 1)
.
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xt. Then the transformation model is :

yt = F−1(ut|xt) = F̃−1(ut|α(xt), β(xt)), (3.6)

where F̃−1(.|α, β) is the quantile function of the beta distribution B(α, β).
However this quantile function has no closed-form expression, which makes it
numerically difficult to analyze the effect of shocks on u, even by simulation.

3.4.2 Transformed Gaussian regression

An alternative modelling leads to a semi-parametric model. The variable
with value in (0, 1) is first transformed13 into a variable with domain (−∞,∞).
Then a linear regression model is applied [see e.g. Atkinson (1985), p. 60].
A typical example is the logit regression :

log
yt

1− yt
= x′tθ + εt, (3.7)

where parameter θ is estimated by OLS. This approach involves only one
score and is not flexible enough for the analysis of the ELGD. It can be ex-
tended by considering a regression model including conditional heteroskedas-
ticity, leading to an analysis with two scores :

logityt = log
yt

1− yt
= a1(xt, θ) + a2(xt, θ)εt, (3.8)

and is usually estimated by Gaussian PML, that is, by applying a maximum
likelihood approach based on the misspecified Gaussian assumption of εt.

Now we remark that the inverse function of the logit function is the
logistic function: x 7→ 1

1+exp(−x) mapping R to ]0, 1[. Then we define the

transformed error ut by ut = 1
1+exp(−εt) so that equation (3.8) becomes:

logityt = a1 + a2 logitut.

The above equation defines a group of transformations on [0, 1] :

yt = c(a, ut) =
1

1 + exp
(
− a1 − a2 log

ut
1− ut

) , (3.9)

13Sometimes the regression is defined from the recovery rate or the log-recovery rate
without really taking into account the domain restrictions [see e.g. Altman et al. (2005b)].
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with group operation: (b1, b2) ∗ (a1, a2) = (b1 + b2a1, a2b2), for all (b1, b2),
(a1, a2) belonging to R2.

Thus the LIR approach developed in the present paper extends the regres-
sion approach on a transformed y. However, our estimation approach differs.
Instead of applying a PML approach in which ut has the distribution14 of

1

1 + exp(−ε)
, where ε ∈ N (0, 1), we assume a uniform pseudo-distribution, or

equivalently replace the logit regression model by a probit regression model.
A common drawback of the beta regression and the transformed Gaussian

regression is that the number of scores (two) is insufficient to capture the
multimodalities of the ELGD distribution. Different extensions of the beta
regression model have been introduced to solve this issue, but are rather
ad-hoc as they require a preliminary treatment of the data to replace some
modes by point masses. Typically, the observed ELGDs close to 0 (resp. to
1) are assigned to 0 (resp. 1), in order to create artificial point masses at 0
(resp. 1). Then the model is defined in two steps : first the modelling of the
position of the ELGD, that is 0, 1, or value strictly between 0 and 1. Second
a beta regression, when the observations are strictly between 0 and 1. Such
an approach proposed in Ospina, Ferrari (2010), (2012) leads to the inflated
beta regression.15

4 Joint Analysis of PD and LGD

In practice the stresses impact both the PD’s and the ELGD’s. These im-
pacts cannot be evaluated separately, since the PD’s and ELGD’s are linked
[see e.g. the discussions in Altman et al. (2015b)]. They can depend on
common macro-factors, but also on the more or less severe definition of de-
fault followed by the financial institution. Typically, a severe institution will
declare in default some borrowers, that just have minor delinquencies, and
for such borrowers the LGD will be small (often equal to zero). This can
create a negative link between PD and LGD, even after the aggregation on
homogeneous segments.

Thus there is a need for a joint modelling capable of capturing the multin-

14This distribution is called logit normal distribution.
15It has also been proposed to apply Tobit type models with two underlying latent

variables to such preliminarily treated data [see e.g. Sigrist, Stahel (2011)].
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odality of the joint distribution, and its relationship with the modes that can
be observed on the univariate distribution of PD (resp. ELGD). This can be
easily achieved by extending the above transformation model. More precisely,
the transformation groups are first defined for endogenous variables and er-
rors with values in R2; then both of them are transformed into variables in
(0, 1) by applying, componentwise, either a probit, or a logit function, or any
other given quantile function. Examples of basic bidimensional transforma-
tion groups include affine functions, rotations and the Moebius transform,
some of which admit up to 6 scores. Moreover, further flexibility can be
accommodated for by considering bivariate piecewise transformations, in a
similar way as their univariate counterparts introduced in Examples 3 and
4. Such an enlarged number of scores is desirable to account for the depen-
dencies between PD and ELGD variables.

Example 5 : Bivariate affine model (6 scores)
For any u ∈ R2, we define: c(a,A, u) = a+Au, where a ∈ R2, A belongs

to the group of (2, 2) invertible matrices. The group operation is :

(a,A) ∗ (b, B) = (a+ Ab,AB).

The identity element is : e = (0, Id) and the inverse is : (a,A)−1 = (−A−1a,A−1).

After a logit transformation this model becomes :

c̃(a,B, u) =


ψ

(
a1 + A1

[
ψ−1(u1)
ψ−1(u2)

])

ψ

(
a2 + A2

[
ψ−1(u1)
ψ−1(u2)

])
 ,

where a1, a2 (resp. u1, u2;A1, A2) are the components of a (resp. components
of u; rows of A) and ψ denotes the c.d.f. of the logistic distribution. This is
the extension of the model discussed in 3.4.2.

Example 6 : Moebius transformation16

A bidimensional real vector

(
y1
y2

)
[resp.

(
u1
u2

)
] can be equivalently

represented by a complex number y = y1 + iy2 (resp. u = u1 + iu2), where

16See e.g. Arnold, Rogness (2008).
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i =
√
−1. Moebius transformations are transformations in C ∪ {∞}, that

is on the set of complex numbers augmented by a point at infinity. For our
application this additional infinite element has no real impact, since it has
zero mass both for the errors and endogenous variables. More precisely, the
Moebius transform is :

c(a, b, c;u) =
au+ b

cu+ 1
, (4.1)

where a, b, c are complex numbers, and with the following standard conven-
tions apply :

c(a, b, c;∞) = a/c, (4.2)

c(a, b, c;−1/c) = ∞. (4.3)

This is a model with 6 scores corresponding to the real and imaginary
parts of a, b, c. The Moebius transformations form a group for the compo-
sition of functions, that can be transferred into a group on [C ∪ {∞}]3 ∼
(R2 ∪ {∞})3. The associated operation is :

(a, b, c) ∗ (ã, b̃, c̃) =

(
aã+ bc̃

cb̃+ 1
,
ab̃+ b

cb̃+ 1
,
cã+ c̃

cb̃+ 1

)
. (4.4)

The identity element is : e = (1, 0, 0) and the inverse element is :

(a, b, c)−1 = (1/a,−b/a,−c/a).

The complex Moebius transformation (4.1) can be rewritten to highlight
the transformation of real arguments (u1, u2) into (y1, y2). Simple, but te-
dious, computations lead to the formulas :

y1 =
(a1u1 − a2u2 + b1)(c1u1 − c2u2 + 1) + (a2u1 + a1u2 + b2)(c2u1 + c1u2)

(c1u1 − c2u2 + 1)2 + (c2u1 + c1u2)2
,

y2 =
(a2u1 + a1u2 + b2)(c1u1 − c2u2 + 1)− (a1u1 − a2u2 + b1)(c2u1 + c1u2)

(c1u1 − c2u2 + 1)2 + (c2u1 + c1u2)2
.

Thus the transformation from (u1, u2) to (y1, y2), as well as its inverse are
rational functions with quadratic numerator and denominator.
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Other models can be derived by considering subgroups of the group of
affine models, or of the group of Moebius transformations.

To illustrate the flexibility of this transformation group, we simulate i.i.d.
samples of (y1, y2), using three different Moebius transformations and inde-
pendent, uniformly distributed u1t, u2t. Figure 7 plots the joint isocontours
of these three samples along with the marginal densities, obtained using a
kernel estimator. The parameter values are set to:

a1 = −0.1, a2 = 0.3, b1 = 10, b2 = 0.3, c1 = 0.5, c2 = 2, in the upper panel,

a1 = −10, a2 = 10, b1 = −3, b2 = 3, c1 = −2, c2 = −5, in the middle panel,

a1 = 1, a2 = −3, b1 = −10, b2 = −3, c1 = −5, c2 = 2, in the lower panel.

We can observe that these samples are such that y1t and y2t are not inde-
pendent. Indeed, we observe several modes in each marginal distribution
whereas the joint distribution admits only one mode, so that the Cartesian
product of a pair of modes of the two marginal distributions is generically
not a mode of the joint distribution. In particular, the first simulation shows
that two modes close to 0 and 1, which are typically observed on real LGD
data, can exist on the marginal distributions, whereas the joint distribution
has a single mode away from 0 and 1.
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Figure 7: Joint isocontours (first column) and marginal histograms (sec-
ond and third columns) for simulated couples of (y1t, y2t), obtained from
Moebius transformations of (u1t, u2t) which are independent and uniformly
distributed. Figures of the same model are plotted in the same row.

Example 7 : A subgroup of Moebius transformations (4 scores)
We define a transformation17 on C ∪ {∞} by :

17It is easily checked the set (Imu ≥ 0) ∪ {∞} is invariant by these transformations.
Therefore they also define a group on (Imu ≥ 0)∪{∞}, or equivalently on R×R+∪{∞}.
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c(a, b;u) =
au− b
b̄u+ ā

,

where ā (resp. b̄) denotes the complex conjugate of a (resp. b). The group
operation is : (a, b) ∗ (a∗, b∗) = (aa∗ − bb̄∗,−ab∗ − ā∗b). The identity element
is : e = (1, 0) and the inverse is :

(a, b)−1 = (−ā, b).

Example 8 : Rotation on the square [0, 1]2

The rotation on R2 can be represented by orthogonal matrices :

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
. They can be used to define rotations on the

square by considering the transformation :

C(θ;u) =
max(|u1|; |u2|)

max(|u1 cos θ − u2 sin θ|, |u1 sin θ + u2 cos θ|)
R(θ)u.

This is a one-parameter group of transformations on [0, 1]2, that can be
combined with other transformations to increase the number of underlying
scores.

After the transformations, the introduction of explanatory variables and
intercept, we get a model analogue to (2.5), except that ut, yt are now with
values in [0, 1]2 :

yt = c[a(xt; θ) ∗ λ, ut], t = 1, . . . , T. (4.5)

The pseudo log-likelihood function with pseudo uniform distribution on
[0, 1]2 for the errors is:

LT (λ, θ) =
T∑
t=1

log

∣∣∣∣det
∂c

∂u
[(a(xt; θ) ∗ λ)−1, yt]

∣∣∣∣
= −

T∑
t=1

log IRt(λ, θ), (4.6)
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where now IRt is a bivariate measure of the effects on both components of
y of local shocks on both components of u. Formula (4.6) extends formula
(3.4). From Gourieroux, Monfort, Zakoian (2019), the consistency property
of these PML estimators remains valid in this extended case.

5 Simulation experiments

In this section we conduct two simulation experiments to illustrate the finite
sample properties of the LIR estimator.18 We first consider a model in which
the distribution of ut is multi-modal, and then propose a model in which the
distribution of yt is multi-modal. The common point of these two models
is that the distribution of ut (and hence that of yt) is a mixture of simpler
distributions. While mixture distributions have already been used in the
LGD literature [see Calabrese (2014b)], existing models usually do not allow
the mixture distribution to depend on the covariates.

5.1 A model with multi-modal distribution for ut

The design of the first simulation is the following. For each replication, we
simulate T = 5000 i.i.d. observations of (xt, yt), t = 1, ..., T , where xt has a
dimension of 8 and has independent components. Its first four components
are Gaussian N (0, 0.5) distributed, the next four components are Bernoulli
distributed with probability 0.8. Then yt is defined by:

yt = c[a(xt, θ), ut],

where:

• c is the homographic transformation (see Example 2).

• (ut) is an i.i.d. sequence, and has a mixture distribution with three
components. The first component is the beta distribution B(12, 1),
with weight 0.2, the second component is B(15, 20), with weight 0.56,
and the third component is B(1, 12), with weight 0.24. Figure 8 plots
the density function of ut. This distribution has three modes and is very

18An R program allowing to replicate these experiments is available from the authors
upon request.
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different from the uniform distribution, which is the pseudo distribution
used in the LIR estimation approach.

• the score function a(xt, θ) = exp(θ′xt), where parameter θ = (θ1, ..., θ8)
is set to be: θ = (−1,−2,−1,+2,−1,+1,−2,+2).

Figure 8: Density function of ut.

We also plot, in Figure 9, the histogram of 5000 observations of yt.
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Figure 9: Histogram of yt.

29



We see that the nonlinear transformation from ut to yt significantly dwarfs
the intermediate mode of the distribution of ut.

Then we use the LIR approach to estimate the parameter θ on the simu-
lated data (xt, yt)t=1,...,5000. Note that the DGP corresponds to an economet-
ric model without intercept, but as explained in Section 3 below Proposition
1, in order to ensure the consistency of the LIR estimator, an intercept λ0
has to be artificially added to the set of parameters to estimate. In other
words, the LIR approach consists in maximizing the pseudo-likelihood of the
model: yt = c[a(xt, θ)a0, ut], where θ and a0 = exp(λ0) are to be estimated
jointly, and the error (ut) is mis-specified to follow the uniformly distribution
on [0, 1].

This simulation exercise is repeated for a total of 400 replications, lead-
ing to 400 estimates of parameter θ̂

(i)
T , i = 1, ..., 400. Figure 10 plots the

histogram of each of the eight components of θ̂
(i)
T , for i = 1, ..., 400.
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Figure 10: Histogram of the empirical distribution of the LIR estimator of
θ, with a sample size of 400, where each θ̂T is estimated using a hypothetical
dataset of T = 5000 observations. To facilitate comparison, in each of the
eight histograms, we have plotted in red vertical line the theoretical values
of the corresponding component of θ.

We see that the empirical distribution of each component of θ̂T is rather
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concentrated around its theoretical value. This echoes the consistency prop-
erty of the LIR estimator when T goes to infinity.

Once the value of θ estimated, we can use equation:

ût,T = c(a(xt, θ̂T )−1, yt) (4.7)

to recover the empirical distribution of the error term ut. Note that in equa-
tion (4.7), we have not used the estimate of the intercept â0. This latter is
generically biased by Proposition 1, but by Proposition 2, the sample dis-
tribution of (ût,T ) converges to the true distribution of vt = c(a(xt, θ)

−1, yt)
regardless of the inconsistency of â0. Moreover since the initial econometric
model does not contain any intercept, we have ut = vt. In Figure 11, we plot
the histogram of ût,T for eight randomly selected Monte-Carlo replications,
and check that as expected, in all these replications, the recovered histogram
has a similar three-mode form as the true density displayed in Figure 8.
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Figure 11: Histogram of the recovered errors in eight different Monte-Carlo
replications.

5.2 A model with multi-modal distribution for LGD yt

In the DGP of subsection 5.1, we have intentionally considered a multi-modal
distribution for ut, to demonstrate that even for this complicated model, the
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LIR approach allows to recover consistently the parameter θ, as well as the
distribution of vt (or equivalently that of ut if original model does not have
intercept parameter). In credit risk applications, it is not uncommon to
observe a multi-modal distribution for yt, with additional modes besides the
two modes close to 0 and 1. To this end we consider T = 5000 i.i.d. samples
of (ut, xt), where ut is drawn from a mixture of beta distribution. The two
components of the mixture are B(6, 1) and B(1, 6) distributions, respectively,
with equal weights. Then we assume that xt = (x1t, x2t) is independent
from ut, and both components are mutually independent, Gaussian N (0, 1)
distributed. The transformation model is set to yt = c[a(xt, θ)∗a0, ut], where
c is a piecewise spline transformation (see Example 4) with scores:

c(a, u) = 1u< 1
3

c0(a1, 3u)

3
+1 1

3
<u< 2

3

c0(a2, 3u− 1) + 1

3
+1 2

3
<u

c0(a3, 3u− 2) + 2

3
,

where transformation c0 is defined by:

c0(a, u) =
1

1 + exp(−a log u
1−u)

,

that is a constraint logistic transformation obtained by omitted the term a1
in equation (3.9). Finally, the score functions are specified as follows:

a(xt, θ) = (a1(xt, θ), a2(xt, θ), a3(xt, θ)) ∈ R3,

where a1(xt, θ) = exp(θ1x1 + θ2x2 + λ1),

a2(xt, θ) = exp(θ1x1 + θ2x2 + λ2),

a3(xt, θ) = exp(θ5x1 + θ6x2 + λ3),

and parameter value is set to:

θ = (−0.1,−0.2,−0.1, 0.1,−0.1, 0.1).

Figure 12 plots the histogram of both ut and yt. While the distribution of ut
possesses two modes close to 0 and 1, respectively, that of yt has one extra
mode at around 0.5.
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Figure 12: Left panel: histogram of ut. Right panel: histogram of yt.

Again, to evaluate the finite sample properties of the LIR estimator, we
repeat the above simulation experiments for a total of 400 times. Figure 13
is the analogue of Figure 11, in which we plot the histogram of the 400 LIR
estimators of θ1, θ2, ..., θ6, componentwise.
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Figure 13: Histogram of the empirical distribution of the LIR estimator of
θ, with a sample size of 400, where each θ̂T is estimated using a hypothetical
dataset of T = 5000 observations. To facilitate comparison, in each of the
eight histograms, we have plotted in red vertical line the theoretical values
of the corresponding component of θ.
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6 A real data application

In this section we analyse a personal loan portfolio. The data is downloaded
freely from the website of Lending Club, which is an on-line, peer-to-peer
(P2P) lending platform,19 and concerns a total of T = 5600 loans that are
issued on this platform between 2007 and 2011 and have already been charged
off. These loans are typically of a small amount (up to 40,000 USD), and
could be issued for various purposes such as house improvement, medical
expenses, or credit card refinancing. Borrowers with low credit score have
difficulty securing loans from usual banks and P2P lending is an alternative
solution, with likely a rather high interest rate. From the lenders’ perspective,
it allows a large number of retail investors to earn a higher return than bank
saving, without being a credit expert20. It is quickly gaining popularity,
generating a greater than 100% year over year growth rate in the US in
recent years. As the largest P2P lending company in the US, Lending Club
has issued a total of 1.6 billion USD of loans from its inception in 2006 till
2015. Its dataset has previously also been used by Guo et al. (2016).

Lending Club’s dataset does not provide LGD, but allows to compute
another relevant proportion variable which we call the total loss ratio (TLR)
of each defaulted loan. It is defined as one minus the repayment rate21 of the
balance (principal) at issuing. This ratio is important for the lender, which
are retail investors. It differs from the LGD of the loan, but is linked to the
latter through:

TLR = LGD × τ,

where τ is the ratio of the remaining balance at default event by the bal-
ance at issuing. We have checked that among the 5600 defaulted loans, the
proportion of loans whose TLR is equal to 0 is negligible (about 1 percent),
and they are discarded in the analysis. Moreover, there are no loans whose
TLR is equal to or larger than 1. Figure 14 plots the histogram of the TLR
variable, in which we see several local modes and in particular two modes
near 1.

19See their website: www.lendingclub.com/info/download-data.action.
20For instance, on Lending Club, the typical interest rate of the loans lies between 6 %

and 30%, with a loan period of 3 or 5 years.
21That is the ratio between the principal received today from the borrower and the total

amount committed to that loan.
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Figure 14: Histogram of the TLR.

Table 1 provides a summary of the explanatory variables we will use in
the analysis.

Name of variable type of variable domain
Year of issuance of loan categorical 2011, 2010, 2009, or before 2009

funded loan amount continuous [0,∞[
Term of the loan categorical 3 years or 5 years

Length of employment categorical {0, 1, ..., 10}
Delinquency binary 0 or 1

Home ownership categorical “Rent”, “mortgage”, or “own”
Annual income continuous [0,∞[

Debt ratio continuous [0, 1]

Table 1: Description of the covariates. The variable “delinquency” records
whether the borrower has failed to make a regular debt payment during the
past two years, with 0 corresponding to absence of delinquency, whereas the
variable “Debt ratio” computes the ratio between the annual debt payment
and the annual income.

Thus the regressors we use in the estimation includes the funded loan
amount, the term of the loan, the length of the employment, the annual
income and the debt ratio; two dummy variables characterizing the home
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ownership, corresponding to the alternatives “mortgage” and “own”; three
dummy variables defining the year of issuance, corresponding to years 2009,
2010 and 2011. Table 2 provides a breakdown of the defaulted loans by the
values of the categorical explanatory variables as well as the corresponding
average TLR.

Variable =Year of Issuance
Value of variable Number of observations Average TLR

Before 2009 291 0.604
2009 582 0.627
2010 1464 0.620
2011 3259 0.647

Variable =Home ownership
Value of variable Number of observations Average TLR

Mortgage 2335 0.634
Own 441 0.644
Rent 2820 0.636

Variable =Presence of delinquency in the past two years
Value of variable Number of observations Average TLR

0 4910 0.635
1 686 0.817

Variable =Term of the loan
Value of variable Number of observations Average TLR

3 years 3172 0.595
5 years 2424 0.689

Table 2: Breakdown of the defaulted loans by different values of the categor-
ical variables

The pattern of the distribution of the TLR on the P2P platform clearly
differs from patterns discussed in the previous sections. This is a consequence
of the definition of variable of interest TLR, which is smaller than LGD, but
also of the creditworthiness of the borrowers, with almost 50 % paying a
huge interest rate of between 18 % and 25 %. In other words, these loans are
similar to “junk bonds”, the expected return being based on the payment of
interest rates, when alive and on the recovery strategy.

Let us denote by xt the set of all regressors (including the constant 1),
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Year 2009 0.14
Year 2010 -0.19
Year 2011 -0.007
short term -0.61

Employment duration -0.016
House ownership 0.09
No Delinquency -0.05

log income -0.05

Table 3: Least Impulse Response parameter estimates

where t is the index of the borrower. Then we consider the homographic
transformation model yt = c[a(xt, θ), ut] where a(xt, θ) = exp(θ′xt+λ). Then
we estimate (θ, λ) using the LIR Estimator.

Let us comment on the sign of these estimates. From the right panel
of Figure 1, we know that when parameter a increases, function c(a, u) is
increasing. On the other hand, if a covariate Xi whose corresponding regres-
sion coefficient θi is positive (resp. negative), then exp(θiXi) is increasing in
Xi. Thus, for instance, loans issued in 2010 tend to have a lower TLR than
those issued in 2011 since −0.05 < 0.23, ceteris paribus. This phenomenon
can be interpreted by the fact that borrowers are increasingly riskier in the
aftermath of the financial crisis. Similarly, a shorter term or the absence of
repayment delinquency are associated with a lower TLR. Note also that the
sign in Table 3 are roughly consistent with the average TLR computed in
Table 2. The only exception seems to be the dummy variable of Year 2011.
Indeed, Table 2 indicates that loans issued in 2011 have a significantly higher
TLR, whereas its corresponding estimate in Table 3 is close to zero. This
can be explained by the fact that the correlation coefficient between this
dummy variable and the short term dummy is −0.27, which is significantly
negative.22 In other words, in 2011, Lending Club has issued much more
longer term loans than in previous years.

Finally, using the estimated parameter value, we recover the distribution
of vt. Figure 15 plots the histogram of v̂tT = c[a(xt, θ̂T )−1, yt].

22This correlation coefficient becomes 0 and 0.27, respectively, if we replace the year
dummy of 2011 by that of 2009 and 2010, respectively.
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Figure 15: Histogram of the recovered error variable V .

We see that the recovered distribution of error variable yt resembles more
that of a beta distribution than the distribution of the TLR yt. This echoes
Remark 5.

7 Concluding Remarks

The standard models, based on beta or logistic regressions, are not sufficiently
flexible to capture some features of the distribution of PD and ELGD, es-
pecially their (multiple) modes and how they depend on covariates. In this
paper we have introduced a new class of semi-parametric models called group
transformation models. This new family has several advantages. First, it is
rather flexible, and includes several existing models such as logistic regres-
sion. Second, the group transformation models are associated with a con-
sistent semi-parametric estimator called the Least Impulse Response (LIR)
estimator. The LIR estimator is robust to mis-specification of the distribu-
tion of the error ut, and has a nice interpretation in terms of local and/or
global stresses. Thirdly, the model is especially convenient for stress testing
exercises. Fourthly, while the existing reduced form models usually do not
take into account the dependencies between PD and ELGD, our transfor-
mation model is easily extended to the analysis of the (joint) behaviour of
variables with values in (0,1).
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Finally, our approach has been illustrated through simulation studies and
total loss ratio in P2P lending portfolio. However, both of these two exer-
cises have focused on one response variable only, and the versatility of our
approach in modelling bivariate rate/proportion variables remains empiri-
cally unexplored. In the future, it would be interesting to investigate the
empirical performance of our framework, for a joint analysis of PD, ELGD,
or PD, ELGD, CCF, as needed for the supervision of credit risk.
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Appendix 1

The group operation in Example 5

First, function ˜̃c is clearly one-to-one on [0, 1]. Let us now check that we

have a group of transformations. For θ =

 ba0
a1

 and θ′ =

 b′a′0
a′1

, we have:

˜̃c(θ′, ˜̃c(θ, y)) =
b′

2
12˜̃c(θ,y)>1 +

1− b′

2
12˜̃c(θ,y)<1

+
b′

2
c(a′0, 2˜̃c(θ, y))12˜̃c(θ,y)<1 +

b′

2
c(a′1, 2˜̃c(θ, y)− 1)12˜̃c(θ,y)>1

+
1− b′

2
c(a′1, 2˜̃c(θ, y))12˜̃c(θ,y)<1 +

1− b′

2
c(a′0, 2˜̃c(θ, y)− 1)12˜̃c(θ,y)>1.

Combining with equation (2.9), we get:

˜̃c(θ′, ˜̃c(θ, y))

=
1

2
[bb′ + (1− b)(1− b)′]12y<1c(a

′
0 ∗ [b′a0 + (1− b′)a1], 2y)

+
1

2
[bb′ + (1− b)(1− b)′]12y>1

{
c(a′1 ∗ [b′a1 + (1− b′)a0], 2y − 1) + 1

}
+

1

2
[b′(1− b) + b(1− b)′]12y<1

{
c(a′1 ∗ [b′a1 + (1− b′)a0], 2y) + 1

}
+

1

2
[b′(1− b) + b(1− b)′]12y>1c(a

′
0 ∗ [b′a0 + (1− b′)a1], 2y − 1), 2y)

Then we remark that bb′+(1− b)(1− b)′ and b′(1− b)+ b(1− b)′ are equal
to b′ ◦b and 1−b′ ◦b, respectively, and b′a0 +(1−b′)a1, b′a1 +(1−b′)a0 can be
equivalently written as ab′(0), ab′(1), respectively. Thus the group operation
on S2 ×A2 is: b′a′0

a′1

 ∗̃
 ba0
a1

 =

 bb′ + (1− b)(1− b)′
a′0 ∗ [b′a0 + (1− b′)a1]
a′1 ∗ [b′a1 + (1− b′)a0]

 =

b′ ◦ bab′(0)
ab′(1)

 . (4.8)

Appendix 2

Proof of Proposition 1
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Let us follow the proof in Gourieroux, Monfort, Zakoian (2019). Under
the assumptions of Proposition 1, the limiting objective function is :

L̃∞(λ, θ) = ExE0 log
∂c

∂u
[λ−1 ∗ a(x, θ)−1, y]

= ExE0 log
∂c

∂u
[λ−1 ∗ a(x, θ)−1, c[a(x, θ0) ∗ λ0, u]],

where Ex denotes the expectation with respect to the stationary distribution
of xt and E0 with respect to the true p.d.f. f0 for the error.

By the group structure, we get :

L̃∞(λ, θ) = ExE0 log
∂c

∂u
[λ−1 ∗ a(x, θ)−1 ∗ a(x, θ0) ∗ λ0, u]

= Exl̃∞[λ−1 ∗ a(x, θ)−1 ∗ a(x, θ0) ∗ λ0, u],

which is smaller than maxλ l̃∞(λ) = l̃∞(λ̃0) [see Gourieroux et al. (2019)].
Moreover this upper bound is reached for :

θ∗0 = θ0, λ
∗
0 = λ0 ∗ (ẽ0)

−1.

The consistency result follows by using the identification assumption A.4
ii).
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Appendix 3

An Interpretation of Asymptotic First-Order Conditions

To get this interpretation, we first rewrite the limiting objective function
L̃∞(λ, θ) with a change of index function : A(x, θ) = a(x, θ)−1 ∗ a(x, θ0), and
of error term : v = c(λ−10 , u). Then we have :

L̃∞(λ, θ) = ExE0 log
∂c

∂u
[A(x, θ) ∗ λ, v],

where E0 denotes the expectation with respect to the true distribution of v.
Note that, for θ = θ0, we get A(x, θ0) = e, independent of x. The group
operation can be equivalently written as a function :

a ∗ b ≡ h(a, b),

and later on we denote
∂h

∂a
(resp.

∂h

∂b
) the partial derivative of h with respect

to the first (resp. second) component of function h.

Let us now differentiate L̃∞(λ, θ) = ExE0 log
∂c

∂u
{h[λ,A(x, θ)], v} with

respect to parameters λ, θ. We get :


ExE0

(
∂

∂a′
log

∂c

∂u
[h(λ,A(x, θ)), v]

∂h

∂a′
[λ,A(x, θ)]

)
= 0,

ExE0

(
∂

∂a′
log

∂c

∂u
[h(λ,A(x, θ)), v]

∂h

∂b′
[λ,A(x, θ)]

∂A

∂θ′
(x, θ)

)
= 0.

When θ = θ0, these First-Order Conditions (FOC) become :
ExE0

(
∂

∂a′
log

∂c

∂u
(λ, v)

∂h

∂a′
(λ, e)

)
= 0,

ExE0

(
∂

∂a′
log

∂c

∂u
(λ, v)

∂h

∂b′
(λ, e)

∂A

∂θ′
(x, θ0)

)
= 0,

since : h(λ,A(x, θ0)) = h(λ, e) = λ ∗ e = λ.
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Moreover, since :
∂h

∂a′
(λ, e) =

∂

∂λ′
(λ ∗ e) =

∂λ

∂λ′
= Id, we get :

E0

[
∂

∂a′
log

∂c

∂u
(λ, v)

]
= 0,

E0

[
∂

∂a′
log

∂c

∂u
(λ, v)

]
Ex

[
∂h

∂b′
(λ, e)

∂A

∂θ′
(x, θ0)

]
= 0,

or : E0

[
∂

∂a′
log

∂c

∂u
(λ, v)

]
= 0,

since the second subset of conditions is automatically satisfied.

In fact the consistency result is a consequence of the covariance restric-
tion :

Covx,0

(
∂

∂a
log

∂c

∂u
(λ, v), vec

[
∂h

∂b′
(λ, e)

∂A

∂θ′
(x, θ0)

])
= 0,

that is satisfied due to the independence between x and v.

This interpretation in terms of covariance restrictions is asymptotic. In
finite sample the first-order conditions admit also interpretations in terms of
empirical autocovariance restrictions for commutative (Abelian) groups.
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