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1 Summary

Background. Atrial fibrillation (AF) is an identified
risk factor for ischemic strokes (IS). AF causes a loss
in atrial contractile function that favors the formation
of thrombi, and thus increases the risk of stroke. Also,
AF produces highly irregular and complex temporal
dynamics in ventricular response RR intervals. Thus,
it is hypothesized that the analysis of RR dynamics
could provide predictors for IS. However, these complex
and nonlinear dynamics call for the use of advanced
multiscale nonlinear signal processing tools.

Objectives. The global aim is to investigate the per-
formance of a recently-proposed multiscale and nonlin-
ear signal processing tool, the scattering transform, in
predicting IS for patients suffering from AF.

Methods. The heart rate of a cohort of 173 patients
from Fujita Health University Hospital in Japan was
analyzed with the scattering transform. First, p-values
of Wilcoxon rank sum tests were used to identify scat-
tering coefficients achieving significant (univariate) dis-
crimination between patients with and without IS. Sec-
ond, a multivariate procedure for feature selection and
classification, the Sparse Support Vector Machine (S-
SVM), was applied to predict IS.

Results. Groups of scattering coefficients, located
at several time-scales, were identified as significantly
higher (p-value < 0.05) in patients who developed IS
than in those who did not. Though the overall predic-
tive power of these indices remained moderate (around
60%), it was found to be much higher when analysis
was restricted to patients not taking antithrombotic
treatment (around 80%). Further, S-SVM showed that
multivariate classification improves IS prediction, and

also indicated that coefficients involved in classifica-
tion differ for patients with and without antithrombotic
treatment.
Conclusions. Scattering coefficients were found to
play a significant role in predicting IS, notably for
patients not receiving antithrombotic treatment. S-
SVM improves IS detection performance and also pro-
vides insight on which features are important. Notably,
it shows that AF patients not taking antithrombotic
treatment are characterized by a slow modulation of
RR dynamics in the ULF range and a faster modula-
tion in the HF range. These modulations are signifi-
cantly decreased in patients with IS, and hence have a
good discriminant ability.
Keywords. Atrial fibrillation, ischemic stroke, heart
rate variability, nonlinear multiscale analysis, scatter-
ing transform, wavelet transform.

2 Introduction

Atrial fibrillation. AF is a supraventricular tach-
yarrythmia with uncoordinated atrial activation [1]:
The sinus node loses its ability to govern ventricular
response [2] and the atrium is depolarized by a chaotic
pattern of rapid and random impulses, with two main
consequences. First, the atrial tissue contracts in an
erratic way, causing the atrial wall to quiver rather
than contract [1]. Second, random and high-frequency
impulses reaching the AV node cause highly disorga-
nized concealed conduction which results in irregular
penetrating impulses [3]. The irregular ventricular re-
sponse intervals thus generated resemble white-noise
fluctuations in the high and low frequency bands (2.5s
to 25s), but with more complex dynamics in the very-



and ultra-low bands (from 25s to above 300 s), reflect-
ing circadian rhythms and AV node properties medi-
ated by the autonomous nervous system [1, 2].

Ischemic stroke. The impaired mechanical function
of the atrium decreases blood flow rates within, and fa-
vors thrombi formation and embolic events [1]. Thus,
AF is identified as an important risk factor for ischemic
strokes (IS) [4], and treatment of AF patients with
oral anticoagulants is a mainstay of clinical practice
[4]. In consequence, a robust risk stratification scheme
of stroke likelihood in AF patients would be of great
clinical value, aiding in prophylactic decisions to reduce
the exposure of low-risk patients to bleeding complica-
tions.

Related work. A standard metric to guide an-
tithrombotic therapy in AF patients has been the
CHA2DS2-VASc score, which adds scores obtained
from several different risk factors [5]. Also, irregular-
ity measurements from RR dynamics have been pro-
posed, since they share a common origin with atrial
mechanisms that favor thrombogenesis and, more im-
portantly, are easy to acquire. However, the complex
dynamics of RR series during AF have precluded the
application of standard tools —with the notable ex-
ception of [6] where time-domain statistical measures
were shown to be associated with an increased risk of
mortality. More recently, with the advent of finer sta-
tistical tools for the analysis of time series, an explicit
connection between irregular RR dynamics and IS was
explored, e.g. by using multiscale entropy in [7].

3 Objectives

Our goal is to investigate the potential benefits of using
the scattering transform to characterize the dynamics
of RR intervals in AF patients and predict ischemic
strokes. This recently-introduced tool, which performs
a nonlinear multiscale analysis and provides an infor-
mative characterization of time series with complex
multiscale dynamics [8, 9], has been successfully used,
e.g., for audio classification [9] and acidosis detection
in intrapartum fetal heart rate [10].

4 Methods

4.1 Scattering Transform

Scattering transform. Let X(t) denote the signal
to analyze. Let ψ(t) denote a complex analytic mother
wavelet, that is, a band-pass filter supported over posi-
tive frequencies. Let ψj(t) = {2−jψ(2−jt) , j ∈ N} de-
note the collection of templates of ψ dilated at scales 2j .
The first-order (or linear) scattering coefficients S1(j1)
are defined as the average amplitude of the modulus of

wavelet coefficients X ⋆ ψj1(t):

S1(j1) = 2−j1

2
j1∑

k=1

|X ⋆ ψj1(2
j1k)|, 1 ≤ j1 ≤ J. (1)

The second-order (or nonlinear) scattering coefficients
are defined as the average amplitude of the modulus of
a second level of wavelet coefficients:

S2(j1, j2) =
2−j2

S1(j1)

2
j2∑

k=0

||X⋆ψj1 |⋆ψj2(2
j2k)|, j1 ≤ j2 ≤ J.

(2)
Higher-order scattering coefficients could be defined,
accordingly, by further cascading wavelet and modulus
operations. We will use only scattering coefficients of
first and second orders, as they carry most of the energy
in X [8, 10].

First-order coefficients S1(j1) convey information re-
lated to the second-order statistics (correlation, spec-
trum) of X, and hence provide a linear analysis.
Second-order coefficients S2(j1, j2) quantify, as a func-
tion of scale 2j2 , the temporal dynamics of the non-
linearly transformed wavelet coefficients at scale j1,
|X ⋆ ψj1(t)|. They can hence be read as a nonlinear
and multiscale representation of the temporal dynam-
ics of X [8, 10, 11].

4.2 Machine learning

A Sparse Support Vector Machine (S-SVM) produces
a linear decision d from features x as d = sgn (wTx),
by finding optimal weights w that perform a good
classification and only have few nonzero entries. It
optimizes a nondifferentiable yet convex functional
that balances sparsity in w and classification per-
formance (see [12, 13]): ŵ ∈ argmin

w∈RP ‖w‖1 +

C
∑

n max
(
0, 1− yn(w

⊤xn)
)2
. The regularization pa-

rameter was tuned by cross-validation and grid search
to the value C = 2−3 for all classification tasks.

4.3 Database

Data collection. We analyzed 24-hour-long Holter
records from patients suffering from permanent AF
(i.e., of more than one year of duration, with no ev-
idence of sinus rhythm, and with no planned sinus
rhythm restoration). We excluded patients with com-
plete AV block, sustained ventricular tachycardia, ven-
tricular ectopy > 5%, cardiac pacemakers, paroxysmal
AF, heart valves, with more than 5% of the Holter
record corrupted by artifacts or noise, taking rhythm-
control drugs, or that had acute coronary syndrome,
strokes, hemodynamic instability or undergone surgery
in the preceding 6 months. This led to a total of 173
subjects, for each of which the CHA2DS2-VASc score
was recorded as a measure of stroke risk [5]. 22 pa-
tients, hereafter the IS patients, were diagnosed IS by
a neurosurgeon during a follow-up period of 47 ± 35



months, as opposed to the 151 remaining NoIS pa-

tients. Further, 109 (AT) patients received an an-
tithrombotic treatment, while 64 (NoAT) patients did
not.
Ethical considerations. The study was approved by
the ethics committee of Fujita Health University, and
conformed to the principles outlined in the declara-
tion of Helsinki. All patients provided written informed
consent at the time of Holter recording.
Recordings. The Holter ECGs were recorded with a
2-channel digital recorder (Fukuda Denshi, Tokyo) and
digitized at a 125 Hz sampling frequency and 12 bit
resolution. RR intervals were detected automatically,
with manual review and editing by experts.
Preprocessing. First, outliers were removed: RR in-
tervals were excluded according to the following rules:
(i) interval smaller than 350 ms, or ii) interval larger
than 3500 ms, or iii) interval 2.5 times larger than the
local 90% percentile. The resulting time series were
visually inspected to verify the absence of outliers. Fi-
nally, the filtered RR series was uniformly resampled
at 2 Hz using linear interpolation.

5 Results and discussion

Scattering coefficients. Fig. 1 shows coefficients
log

2
S1 (left), log

2
S2(j1 = 4, j2) (middle), and

log
2
S2(j1 = 10, j2) (right) for IS (red crosses) and

NoIS (blue circles) patients. As expected, log
2
S1 re-

produces the power spectrum of the data and matches
the behavior documented in [2]: Two scaling regimes,
for j ∈ [2, 8] (≈ [2, 120] s) and j ∈ [9, 13] (≈ [4, 70]
min), with a cutoff scale jc = 8 ≈ 2 min, are in agree-
ment with [2, 7]. However, it can also be seen that
log

2
S1 is remarkably similar for both classes and thus

unsuitable for discrimination.
In contrast, log

2
S2 shows significant differences for

several pairs of octaves (j1, j2): Fig. 1 (right) shows
that log

2
S2(j1 = 10, j2) is clearly able to discriminate

between the two classes; and slight differences are seen
for j2 ∈ [5, 8] in Fig. 1 (middle). Notably, IS patients

show lower log
2
S2, indicating that their HR dynamics

are characterized by less nonlinear variability.
Univariate classification performance. To assess
discriminatory power, Wilcoxon ranksum tests were
performed independently on log

2
S1(j1) for each j1,

and on log
2
S2(j1, j2), for each (j1, j2). No linear scat-

tering coefficients log
2
S1(j1) yielded significant differ-

ences, while the log
2
S2(j1, j2) were found significant

for several pairs (j1, j2).
First, coefficients log

2
S2(j1, j2) that were found

to be significant were tracked. Second, significant
log

2
S2(j1, j2) that share the same main scale 2j1 and

contiguous secondary scales 2j2 were grouped together
as a single feature, since they correspond to tempo-
ral dynamics in the same frequency ranges. This
resulted in four groups, as indicated in Table 1.
Wilcoxon ranksum tests were performed on averaged

log
2
S2(j1, j2) in each group, yielding significant differ-

ences between classes (p-values reported in Table 1),
for a wide range of time scales 2j1 (ranging from ≈ 2
s to ≈ 512 s). Coefficients SG4 quantify a slow modu-
lation (from 17min to 1h) of the HR dynamics in the
ultra low frequency (ULF) range (scales larger than 8.5
min), while SG1, SG2 and SG3 indicate an intermedi-
ate modulation (from 16 s to 1 or 2 min) of the HR
dynamics at the finest time scales (from ≈ 2 to ≈ 8
s, HF range). Notably, no scattering coefficients yield
significant differences for primary scale 2j1 in the very
low frequency (VLF) range, where multiscale entropy
was found to be significant in [7], but the modulation
scales 2j2 correspond largely to the VLF region for the
first three groups.

S-SVM multivariate classification was applied to fea-
tures consisting of the 4 groups of scattering coeffi-
cients, to which EN and the CHA2DS2-VASc score
(CHA) were added for comparison. Fig. 2 displays
the weights assigned by the S-SVM to each feature.
First, it shows that the analysis of All subjects leads
to a nonsparse decision rule that involves all features.
On the contrary, classification is much sparser when
analyzing AT and NoAT patients independently, with
very different features selected in each case. For NoAT
patients, scattering coefficients are predominantly se-
lected, while for AT patients, CHA and EN are essen-
tially selected. Scattering coefficients are hence quan-
tifying HR temporal dynamics that have a direct in-
cidence on the formation of thrombi and thus in the
outcome. On the contrary, when AT drugs are used,
the CHA2DS2-VASc score rises as the main predictor,
associated with outcomes that do not depend on atrial
thrombosis. Second, while classification performance
quantified by the Area under ROC Curve (AUC) re-
mains modest for All and AT patients (≈ 0.65), it is
much improved for NoAT patients (≈ 0.85).

Univariate versus multivariate classification

performance. Univariate performances for each fea-
ture (including EN and CHA) are compared against S-
SVM performance in Fig. 3. For all patients, features
EN, SG1, SG2, SG3 and SG4 all perform individually
better than the standard CHA, and S-SVM classifica-
tion does not improve performance. When analysis is
restricted to AT patients, predictive power is poor, and
CHA shows the best performance, while nonlinear fea-
tures EN, SG1, SG2, SG3 and SG4 perform poorly.
While S-SVM improves on all nonlinear features, it
does not outperform CHA. On the contrary, for NoAT
patients, performance is high —notably for SG4 reach-
ing almost 80%. S-SVM further increases performance
significantly –above 85%– by selecting mostly SG3 and
SG4. This shows that the slow modulations of the
RR dynamics in the ULF range (SG4), and HF range
(SG3), play a significant role in predicting IS for NoAT
patients.



Figure 1: Coefficients log
2
S1(j1) (left), log

2
S2(j1 = 4, j2) (middle), and log

2
S2(j1 = 10, j2) (right), as a

function of log
2
j, for the RR time series of patients that did (red crosses) and did not (blue crosses) develop

ischemic strokes (median and 95% confidence intervals).

Table 1: Definition of groups and p-values.
Group j1 j2 p-value
SG1 2 (2 s, HF) [5, 7] ([16 s , 1 min ], LF-VLF) 0.039
SG2 3 (4 s, HF) [5, 8] ([16 s , 2 min ], LF-VLF) 0.048
SG3 4 (8 s, HF) [5, 8] ([16 s , 2 min ], LF-VLF) 0.005
SG4 10 (8.5 m, ULF) [11, 13] ([17 min , 1 h ], ULF) 0.022

Figure 2: S-SVM classification: Weights w for all patients (left), and those with antithrombotic treatment (AT,
middle) and without it (NoAT, right). For ease of comparison, AUC obtained by S-SVM is printed onto each
plot.

Figure 3: AUC (and 95% confidence intervals computed from 5-fold cross-validation) for each feature indi-
vidually, and for the S-SVM multivariate classification, for all patients (All), patients with (AT) and without
(NoAT) antithrombotic treatment.

6 Conclusions

Results obtained here suggest the promising value of
features based on the scattering transform, as well
as multiscale entropy, as predictors of ischemic stroke
—in particular when patients are not undergoing an-
tithrombotic treatment. Results emphasize that rele-
vant information is encoded in nonlinear dynamics not
accessible from simpler spectral techniques, and show-
case the large discriminatory power provided by a cas-
cade of simple operators in the scattering transform.
They also show that S-SVM, performing jointly feature
selection and classification, achieves improved classifi-
cation performance. Notably, results show that activ-
ity in the HF range –previously considered to be ran-
dom noise under AF– is discriminant. Further research
is needed to understand the physiological mechanisms

for these nonlinear modulations in the HF range.
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