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Mortality Prediction in Severe Congestive Heart
Failure Patients With Multifractal Point-Process

Modeling of Heartbeat Dynamics
Gaetano Valenza , Member, IEEE, Herwig Wendt , Member, IEEE, Ken Kiyono, Junichro Hayano ,

Eiichi Watanabe, Yoshiharu Yamamoto, Member, IEEE, Patrice Abry , Fellow, IEEE,
and Riccardo Barbieri , Senior Member, IEEE

Abstract—Background: Multifractal analysis of human 
heartbeat dynamics has been demonstrated to provide 
promising markers of congestive heart failure (CHF). Yet, 
it crucially builds on the interpolation of RR interval se-
ries which has been generically performed with limited 
links to CHF pathophysiology. Objective: We devise a novel 
methodology estimating multifractal autonomic dynamics 
from heartbeat-derived series defined in the continuous 
time. We hypothesize that markers estimated from our 
novel framework are also effective for mortality predic-
tion in severe CHF. Methods: We merge multifractal anal-
ysis within a methodological framework based on inho-
mogeneous point process models of heartbeat dynamics. 
Specifically, wavelet coefficients and wavelet leaders are 
computed over measures extracted from instantaneous 
statistics of probability density functions characterizing and 
predicting the time until the next heartbeat event occurs. 
The proposed approach is tested on data from 94 CHF pa-
tients aiming at predicting survivor and nonsurvivor individ-
uals as determined after a four years follow up. Results and 
Discussion: Instantaneous markers of vagal and sympatho-
vagal dynamics display power-law scaling for a large range 
of scales, from ≃0.5 to ≃100 s. Using standard support 
vector machine algorithms, the proposed inhomogeneous 
point-process representation-based multifractal analysis 
achieved the best CHF mortality prediction accuracy of 
79.11% (sensitivity 90.48%, specificity 67.74%). Conclusion: 
Our results suggest that heartbeat scaling and multifractal 
properties in CHF patients are not generated at the sinus-
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node level, but rather by the intrinsic action of vagal short-
term control and of sympatho-vagal fluctuations 
associated with circadian cardiovascular control especially 
within the very low frequency band. These markers might 
provide crit-ical information in devising a clinical tool for 
individualized prediction of survivor and nonsurvivor CHF 
patients.

Index Terms—Multifractal analysis, point process, heart 
rate variability, wavelet coefficients, wavelet leaders, con-
gestive heart failure, autonomic nervous system.

I. INTRODUCTION

N
ONLINEAR dynamics of human cardiovascular oscilla-

tions has long been recognized throughout the past two

decades [1]–[3]. In fact, because of the multiple dynamical

interplay with other physiological systems (e.g., endocrine,

neural, and respiratory), as well as multiple biochemical pro-

cesses, combined sympathetic and vagal stimulations on heart

rate control are not simply additive [1]. Consequently, stan-

dard estimates from heartbeat dynamics defined in the time

and frequency domains [4], which intrinsically assume that

the magnitude of cardiac responses is proportional to the

strength/amplitude of the autonomic stimuli, need complemen-

tary nonlinear/multiscale metrics (see [2], [4]–[6] and references

therein for reviews). Among others, fractal theory has been giv-

ing a major contribution in understanding complex cardiovascu-

lar dynamics especially involving nonlinear cardiovascular con-

trol and related autonomic nervous system (ANS) activity [2],

[5], [7]–[11]. Recently, a robust and efficient procedure relying

on the use of multiscale representation and wavelet leaders, has

been proposed to conduct multifractal analysis [10] and tested

on heartbeat series [8], [11].

A paradigmatic clinical application of these metrics refers to

severe congestive heart failure (CHF) [9], [12]. Indeed, non-

linear measures derived from bispectral, entropy, and non-

Gaussian analyses have been proven effective in discerning

healthy subjects from CHF patients at a group-wise level [2],

[4], [5], [12]–[17]. Also in CHF patients, departures from Gaus-

sianity were used to evaluate increased mortality risk [9], and

compared against fractal exponent [18]. Leveraging on the so-

called cardiovascular fractal complexity at many spatial and

temporal scales, multifractal analyses were successfully em-

ployed to model ANS regulatory actions and related temporal



fluctuations in CHF heartbeat dynamics [2], [4], [5], [19], [20].

Additionally, in discerning the healthy from CHF patients, Dutta

[21] reported on the dependency of parameters on multifractal

spectra, whereas Galaska et al. [22] pointed on advantages of

multifractal detrended fluctuation analysis.

Nevertheless, several limitations can be pointed out in deal-

ing with current multiscale approaches: i) the intrinsic discrete

nature of the unevenly sampled R-R interval series can lead to

estimation errors; considering the series as inter-events does not

allow for matching time scales, and may be missing intrinsic

generative properties as reflected in complex dynamics; ii) the

application of preliminary interpolation procedures could affect

complexity estimates, with a bias from the specific interpolation

function (e.g., linear, polynomial, etc.); iii) multifractal analysis

has always been performed over series of heartbeat dynamics ex-

clusively; therefore it is unknown whether scale-free properties

arise from the nonlinear/complex interactions between sympa-

thetic and parasympathetic activity at the level of the sinoatrial

node (as thoroughly reported in [1]), or whether there are already

intrinsic multifractal properties in each autonomic dynamics per

se; iv) specifically for CHF, an effective prediction of mortality

risk, as well as risk stratification, at a single-subject level with

enough accuracy for a direct application in clinical practice [9],

[11], [23], [24] is still missing.

To overcome these limitations, in this study we propose a

novel methodology combining multifractal analysis and inho-

mogeneous point-process models, which have been specifically

devised for cardiovascular dynamics [14], [25]. Specifically,

we propose multiscale representation and the so-called wavelet

p-leaders, i.e., local ℓp norms of wavelet coefficients [10], [26]

of moments derived from probability density functions (PDFs)

characterizing and predicting the time until the next heartbeat

event occurs. To this extent, we proposed the use of inhomo-

geneous point-processes to effectively characterize the proba-

bilistic generative mechanism of heartbeat events, even con-

sidering short recordings under nonstationary conditions [25].

The unevenly spaced heartbeat intervals are then represented

as multiscale quantities of a state-space point process model

defined at each moment in time, thus allowing to estimate in-

stantaneous measures without using any interpolation method,

therefore overcoming limitations i) and ii). We demonstrate how

to capture fluctuations of regularity in heartbeat data by scan-

ning all details finer than the chosen analysis scale [8], [11]. To

compare our method against a more standard approach, we also

investigate the use of a non-informative standard spline-based

interpolation. Finally, we here study multiscale properties of

heartbeat-derived series with high resolution in time, including

long-term instantaneous mean heart rate, standard deviation, and

low-frequency (LF) and high-frequency (HF) spectral powers,

which correspond to time-varying vagal activity estimates [4],

thus overcoming limitation iii). Application of these metrics is

then performed on experimental data gathered from 94 CHF

patients by evaluating the recognition accuracy in predicting

survivor and non-survivor patients after a 4 years follow up,

demonstrating how to overcome limitation iv). Of note, prelim-

inary results associated with this study were presented in [27],

[28], in which a wavelet leader-based multiscale representation

was applied to instantaneous heartbeat series as well as to in-

stantaneous vagal activity series. Here, we significantly expand

on these results by generalizing the development of the method-

ology to be suitable for generic inhomogeneous point process-

derived heartbeat dynamics series defined in continuous time, as

well as by increasing the number of patients involved in the ex-

periment, and accounting for their clinical characteristics. Fur-

thermore, the scale dependent features resulting from the pro-

posed methodology have been exploited through nonlinear sup-

port vector machines and related feature selection procedures.

II. MATERIALS AND METHODS

In this Section, we provide theoretical and methodological de-

tails on the proposed multifractal approach for inhomogeneous

point-processes of heartbeat dynamics. The overall processing

chain is shown in Fig. 1. Specifically, automatic R-peak detec-

tion is performed on artifact-free ECG series from each CHF

patient enrolled in this study. Recognition and correction of

eventual algorithmic (e.g., R-peak mis-detection) and/or physio-

logical artifacts (e.g., ectopic beats) was performed through our

recently proposed log-likelihood point process-based method

[29]. Then, for each RR interval series from each subject, a

continuous PDF in time, in the form of inverse-Gaussian dis-

tribution, is estimated for each heartbeat event considering the

long-term past events. From such continuous PDFs, multiscale

representations of a number of instantaneous estimates defined

in the time (e.g., mean heart rate and standard deviation) and fre-

quency domains (e.g., LF and HF powers) are derived. Finally,

these and further features are fed into a standard Support Vector

Machine (SVM) to predict mortality in CHF patients at a single-



Fig. 1. Overall data processing chain.

subject level. Validation was performed through a leave-one-out

procedure. Mathematical details of each processing stage follow

below.

A. Experimental Data

24-hour Holter ECG recordings from a cohort of 94 patients

suffering from CHF were made available by the Fujita Health

University Hospital, Japan. Of these patients, 31 died within

33 ± 17 months (range, 1–49 months) after hospital discharge,

whereas 61 survived for a longer time. The former group is re-

ferred to as non-survivors (NS) and the latter as survivors (SV).

Further clinical details can be found in [9]. For each patient, R

peak arrival times were carefully extracted from 24-hour Holter

ECG recordings. Missing data and outliers stemming from atrial

or ventricular premature complexes were handled by our pre-

processing automated tools [29]. All RR interval series were

also checked by visual inspection analysis. Subjects with sus-

tained tachyarrhythmias were excluded from the study. Baseline

clinical characteristics of the patients enrolled in this study are

shown in Table I. The study was approved by the ethics commit-

tee of Fujita Health University and conformed to the principles

outlined in the Declaration of Helsinki. All patients provided

written informed consent.

B. Multiscale Analysis

1) Self-Similarity and Wavelets: Classical multiscale anal-

ysis relies on the estimation of wavelet coefficients, which are

obtained by comparing the cumulated sum of a series of RR inter-

vals {R R} to the collection {ψ j,k(t) = 2− jψ(2− j t − k)}( j,k)∈N2

of dilated and translated templates of a mother wavelet ψ via

inner products, d{R R}( j, k) = 〈ψ j,k |{R R}〉 (see, e.g., [30] for

details on wavelet transforms).

For self-similar processes {R R} such as fractional Brownian

motion, which are commonly used models for heartbeat dynam-

ics series [19], the so-called wavelet structure functions S(q, j)

display power laws with respect to scale j and order of sample

TABLE I
BASELINE CLINICAL CHARACTERISTICS OF THE PATIENTS

Survivors (n = 63) Non Survivors (n = 31) p-val

Age [years] 66.5 ± 10 71 ± 8 >0.05
Sex [M/F] 39/24 17/14 >0.05
NYHA:

class II 9(15.5%) 3(9.7%) >0.05
class III–IV 54(84.5%) 28(90.3%) >0.05

Ischemia 15 (25.8%) 15(48.4%) <0.05
LVEF [%] 36.5 ± 11.5 40 ± 10 >0.05
BNP [pg/mL] 483.5 ± 322.5 960.0 ± 490.0 <0.01
BUN [mg/dL] 18.5 ± 5.5 25.0 ± 8.0 <0.01
Cr [mg/dL] 0.8 ± 0.3 1.0 ± 0.4 <0.05
Beta-blocker 21(36.2%) 7(22.6%) >0.05
Hb 12.25 ± 1.25 10.9 ± 1.9 <0.05
ACE/ARB 25(43.1%) 16(51.6%) >0.05
Loop diuretic 26(44.8%) 21(67.8%) <0.05
Spironolactone 14(24.1%) 13(41.9%) <0.05
VPBh 1.062 ± 1.062 1.333 ± 1.333 >0.05

Uncorrected p-values calculated from Mann-Whitney Non-parametric tests for contin-

uous variables and Chi-square test for other variables.

NYHA: New York Heart Association functional class; LVEF: Left ventricular ejection

fraction; ACE: angiotensin-converting enzyme inhibitor; ARB: angiotensin II receptor

blocker; BNP: brain natriuretic peptide; BUN: blood urea nitrogen; Cr: creatinine; Hb:

Hemoglobin; VPBh: Ventricular premature beats per hour.

moments q:

S(q, j) =

n j∑

k=1

|d{R R}( j, k)|q ≃ Kq2 jq H (1)

with n j the number of d{R R}( j, k) available at scale 2 j . The

Hurst parameter H and the function S(q = 2, j) are directly

related to the distribution of energy along frequencies (i.e., to

the Fourier spectrum or autocorrelation of {R R}). They are

hence linear features of {R R} that can be efficiently estimated

using wavelets [8], [10].

2) Multifractal Models and Wavelet p-Leaders: It has

been demonstrated that self-similar models describe only parts

of the scaling properties in HRV data and that multifractal mod-

els could provide more complete descriptions (see, e.g., [2],

[8]). These models essentially imply that the linear scaling ex-

ponents q H in (3) should be replaced with a more flexible,

concave function ζ (q), and that the parameter H alone can no

longer account for all scaling properties in HRV data. To cor-

rectly estimate ζ (q), wavelet coefficients must be replaced with

non-linear multiscale quantities that sense the local regularity

fluctuations in data across all finer scales [10]. In this study, we

employ the wavelet p-leaders, which have recently renewed the

state-of-the-art for the estimation of multifractal models [26],

for the primitive {R R}′(t) =
∫ t

{R R}(s)ds of {R R}. They are

defined as ℓp-norms, computed in a narrow time neighborhood

over all finer scales, of the wavelet coefficients of {R R}′,

L
(p)

{R R}′ ( j, k) =
(

2 j
∑

λ′⊂3λ j,k

|d{R R}′ (λ
′)|p2− j ′

)1/p

, (2)

with λ j,k = [k2 j , (k + 1)2 j ) and 3λ j,k =
⋃

m∈{−1,0,1} λ j,k+m .

The parameter p > 0 must be chosen to ensure minimal reg-

ularity constraints (cf. [26] and references therein for details

on multifractal analysis, beyond the scope of this contribution).



Below, we use p = 1, which have been shown to yield lowest

variance [26]. it has been shown that the multifractal proper-

ties of {R R} are well described by a multiscale representation

consisting of the sample cumulants Cumm of the logarithm of

p-leaders ln L
(p)

{R R}′ ( j, ·) [10]

Cm( j) ≡ Cumm ln L
(p)

{R R}′( j) ≃ c0
m + cm ln 2 j . (3)

In particular, the coefficients cm are related to ζ (q) via the

polynomial expansion ζ (q) ≡
∑

m≥1 cmqm/m! (and hence to

the multifractal spectrum, cf., [10] for details). Consequently,

the leading coefficients c1 and C1( j) are closely related to H

and S(2, j), respectively, and constitute linear features associ-

ated to the autocorrelation of {R R} [8], [10], while C2( j), C3( j)

and C4( j) (the variance, skewness and kurtosis of ln L
(p)

{R R}′( j),

respectively) and c2, c3 and c4 (related to the multifractal prop-

erties of {R R}) are nonlinear features that capture information

beyond correlation.

C. Instantaneous Autonomic Features for Multifractals

1) Point Process Models: We model the unevenly sampled

RR interval series through inverse-Gaussian PDFs whose first-

order moment (the meanµR R(t,Ht , ξ (t)), withHt as the history

of past RR intervals, ξ (t) the vector of the time-varying param-

eters, and ξ0(t) the shape parameters of the inverse-Gaussian)

has an autoregressive formulation. Importantly, the use of an

inverse Gaussian distribution f (t |Ht , ξ (t)) is physiologically

motivated, as it models the integrate-and-fire mechanism of the

cardiac contraction [25]).

The inverse Gaussian is defined as:

f (t |Ht , ξ (t)) =

[
ξ0(t)

2π (t − u j )3

] 1
2

× exp

{
−

1

2

ξ0(t)[t − u j − µ(t,Ht , ξ (t))]2

µ(t,Ht , ξ (t))2(t − u j )

}

(4)

with j = Ñ (t) the index of the previous R-wave event before

time t , and:

µR R(t,Ht , ξ (t)) = γ0 +

p∑

i=1

γ1(i, t) R R Ñ (t)−i (5)

where Ht = (u j , R R j , R R j−1, ..., R R j−p+1), ξ (t) = [ξ0(t),

γ0(t), γ1(1, t), ..., γ1(p, t)], and ξ0(t) > 0.

Since these PDFs are defined at each moment in time, it is

possible to obtain an instantaneous estimate of µR R(t) at a very

fine time scale (with an arbitrarily small bin size 1), which re-

quires no interpolation between the arrival times of two beats,

therefore addressing the problem of dealing with unevenly sam-

pled observations. This key advantage, particularly useful when

dealing with multifractality, applies also for the derivation of

spectral measures, following the estimation of µR R(t,Ht , ξ (t)).

2) Model Identification: We estimate the parameter vectors

ξ (t) at each time interval 1 = 5 ms using a Newton-Raphson

procedure to compute the local maximum-likelihood estimate

[25] using observations within a time window of 90 s. Because

there is significant overlap between adjacent local likelihood

intervals, we start the Newton-Raphson procedure at t with

the previous local maximum-likelihood estimate at time t −1,

where 1 defines the time interval shift to compute the next

parameter update. We determine the optimal model order {p} by

pre-fitting the point process model to a subset of the data. Model

goodness-of-fit is based on the Kolmogorov-Smirnov (KS) test

and associated KS statistics. The recursive, causal nature of the

estimation allows to predict each new observation, given the

previous history independently at each iteration. The model and

all its parameters are therefore also updated at each iteration,

without priors. In other words, each test point R Rk is tested

against one instance of a time-varying model trained with points

{R R j } with j < k. Autocorrelation plots are also considered to

test the independence of the model-transformed intervals. Once

the order {p} is determined, the initial model coefficients are

estimated by the method of least squares. Extensive details on

all these steps can be found in [25].

3) Feature Selection: Our framework allows for a

quantitative characterization of autonomic features based

on instantaneous time- and frequency-domain estimations.

Time-domain indices are based on the first and the second order

moments of the underlying probability structure. Namely, given

the time-varying parameter set ξ (t), the instantaneous estimates

of mean µR R(t,Ht , ξ (t)), R-R interval standard deviation

σ 2
R R(t,Ht , ξ (t)), mean heart rate µH R(t,Ht , ξ (t)), and heart

rate standard deviation σH R(t,Ht , ξ (t)) can be derived at each

moment in time as follows [14], [25]:

σ 2
R R(t,Ht , ξ (t)) = µ3

R R(t)/ξ0(t). (6)

µH R(t,Ht ,ξ (t)) = ˜µR R
−1 + ξ0(t)−1 (7)

σH R(t,Ht , ξ (t)) =

[
2 ˜µR R + ξ0(t)

˜µR R ξ0
2(t)

]1/2

(8)

Linear power spectrum estimation allows for selection of

autonomic features in the frequency domain. In particular, given

the model ofµR R(t,Ht , ξ (t)), we can compute the time-varying

parametric (linear) autospectrum [14], [25] as follows:

Q( f, t) = σ 2
R R H1( f, t)H1(− f, t) (9)

where H1 represents the Fourier transform of the γ1 terms (see

(5)). By integrating (9) in each frequency band, we compute

the indices within the very low frequency (VLF = 0+−0.04

Hz), low frequency (LF = 0.04–0.15 Hz), and high fre-

quency (HF = 0.14–0.45 Hz) ranges, along with their ratio

(L F/H F). In the end, the instantaneous feature set consid-

ered for further analyses is as follows: µR R(t), ξ0(t), σ 2
R R(t),

V L F(t), L F(t), H F(t), L F/H F(t). The information about

the long-term, time-varying dynamics of each given instanta-

neous feature can then be summarized using a subset of ex-

ponents ζ (2), c1, c2, c3, c4, estimated for each range of scales

j = 1, . . . , 8, as well as a subset of multiscale representation

log2 S(2, j),C1( j),C2( j),C3( j),C4( j) for j ∈ [ jm, jM ], esti-

mated for each range of scales j = 5, . . . , 19.

D. Statistical Testing and Pattern Recognition

First, from the heartbeat series, we investigated the scaling

properties and predictive value in the frame of CHF for: i) heart-

beat series as interpolated using the informative Point Process



model, i.e., µR R(t); ii) heartbeat series as interpolated using a

standard non informative Spline-based interpolation, referred to

as the Spline Interpolated time series.

The analysis is conducted using Daubechies3 wavelets.

As mentioned in Feature Selection, for each feature µR R(t),

ξ0(t), σ 2
R R(t), V L F(t), L F(t), H F(t), L F/H F(t), we consid-

ered
r α set: a subset of exponents ζ (2), c1, c2, c3, c4, obtained

as local slopes estimated over 4 octaves centred at

{1.71, 3.41, 6.83, 13.7, 27.3, 54.6, 109.2, 218.5} s.
r β set: a subset of multiscale representation log2 S(2, j),

C1( j), C2( j), C3( j), C4( j) for dyadic scales 2 j ∈

[0.21, 3495] s.

We then evaluated between-group differences (NS vs. SV) for

every feature using bivariate non parametric statistics (Mann-

Whitney test) under the null hypothesis that the between-subject

medians of the two groups are equal.

Furthermore, we employed an automatic classification algo-

rithm based on well-known SVM in order to automatically dis-

cern NS vs. SV at a single subject level. To this extent, a multidi-

mensional point in a given feature set was considered an outlier

if z-scores associated to its dimensions were greater than 2.58

(i.e., p < 0.01). To assess the out-of-sample predictive accuracy

of the system, we adopted a Leave-One-Out (LOO) procedure

based on a SVM-based classifier. Specifically, we employed a

ν-SVM (ν = 0.5) with a sigmoid kernel function with γ = n−1,

where n is equal to the number of features. Within the LOO

scheme, the training set was normalized by subtracting the me-

dian value and dividing by the median absolute deviation over

each dimension. These values were then used to normalize the

example belonging to the test set. During the LOO procedure,

this normalization step was performed on each fold.

In order to optimize the number of features to be used for

the NS vs. SV classification and to provide meaningful infor-

mation for the physiopathology-related discussion of results,

we applied a support vector machine recursive feature elimina-

tion (SVM-RFE) procedure. Such a procedure was carried out

on the training set at each LOO fold. Then, the mode of all

ranks was considered for further analyses. Note that SVM-RFE

includes a correlation bias reduction strategy into the feature

elimination procedure [31]. All analyses were performed using

Matlab (MathWorks, Natick, Massachusetts, USA) v8.4 and

an additional toolbox for pattern recognition (LIBSVM [32]).

Classification results are summarized as balanced recognition

accuracy, sensitivity and specificity.

III. RESULTS

Between SV and NS patients, there were no significant differ-

ences with regard to age, sex, disease severity according to New

York Heart Association classification, left ventricular ejection

fraction, use of beta-blockers, angiotensin-converting enzyme

inhibitor, and number of ventricular premature beats per hour.

NS patients exhibited higher prevalence of ischemic events,

higher plasma brain natriuretic peptide, blood urea nitrogen,

and creatinine, lower hemoglobin, and were treated more fre-

quently with diuretics during Holter recording (see Table I).

Fig. 2. Multiscale representations for the 3 different data modeling, for
SV an NS subjects (median values ; the blue shaded areas indicate time
scales not directly available from raw RR intervals).

A. Comparison Between Multifractals of Point-Process

and Standard Interpolation

The wavelet coefficient-based representations log2 S(2, j)

and C1( j) (related to self-similarity) and p-leader based rep-

resentations C2( j),C3( j),C4( j) (quantifying multifractality)

for the informative point-process time series µR R(t), for non-

informative cubic spline interpolation time-series, as well as for

raw RR interval data R R, are shown in Fig. 2 as a function of

scale 2 j . Scales have been translated to physical units (seconds)

using the inverse of the central frequency of the wavelet. Be-

cause of the intrinsic ambiguity in the unevenly sampled raw RR

interval series, associated scales are qualitatively matched using

the average over RR inter-arrival times for all NS or SV subjects,

respectively. This enables us to compare multiscale representa-

tions obtained from each method, as functions of equivalent

scales, for NS and SV subjects. The blue shaded area indicates

the finer resolution time scales that cannot be assessed for the

raw RR interval data (for the mother wavelet used here, smaller

than ≃2 s).

Results clearly show that the multiscale representations for

the three time series are essentially identical at large time scales

(i.e., above ≃10 s), therefore not altering actual coarse time

scales. This is to be expected for the spline interpolation, and

validates the proposed physiologically-informative quantifica-

tion strategy.

The finer scales below ∼2 s do not exist for original R R

series but can be computed for the interpolated data. Important

differences between physiologically-informative point process-

derived heartbeat series and smooth deterministic spline in-

terpolated series are shown, confirming the difference in the

two approaches. For the finest two time scales of RR inter-

vals (∼2 − 10 s), the scaling behaviour is broken and departs

from that observed at intermediary ≥10 s. For these scales,



Fig. 3. Scaling and multifractal properties of physiologically-informative point process-derived series of heartbeat dynamics between SV and NS
patients with severe CHF. The blue shaded areas indicate time scales not directly available from raw RR intervals. The red shaded areas represent
scales for which statistically significant differences between SV and NS patients exist.

the spline interpolated time series show scaling in agreement

with coarser scales for the (linear) self-similar representations

log2 S(2, j), C1( j), but they suffer from the same drawback as

R R for C2( j),C3( j),C4( j).

In contrast, the physiologically-informative point-process

model leads to a clean continuation of the scaling behaviour

that is manifested at coarser scales for log2 S(2, j), C1( j) as

well as for the multifractal representations C2( j),C3( j),C4( j).

This is particularly striking for C4( j), for which scaling is con-

tinued to one order of magnitude finer times scales than what

can be observed on R R.

B. Scaling Properties Between CHF Survivors and

Non-Survivors

The favourable comparison of the observed scale invariance

properties for the informative point process-derived time-series

µR R(t) motivates a closer investigation of the scaling and mul-

tifractal properties of other instantaneous estimates provided by

this model. Since S(2, j) and C1( j) quantify essentially the same

information, we discard S(2, j) here and focus on the represen-

tations C1( j),C2( j),C3( j),C4( j) for the sake of conciseness.

Fig. 3 reports these representations (from top to bottom) for

the time series µRR(t), ξ0(t), σ 2
R R(t), H F(t), L F(t), V L F(t),

L F/H F(t) (from left to right), as a function of scale. In ad-

dition, scales for which the difference between NS and SV is

significant (Wilcoxon rank-sum p-values below the value 0.05)

are shaded in red (uncorrected p-values). Results indicate that

the time series µR R(t), ξ0(t), σ 2
R R(t), H F(t) display power law

scaling from ∼0.5 s to ∼82 s. These scaling properties are

observed both for the NS and SV groups. For ξ0(t), the shape

parameter of inverse-Gaussian PDFs, scale invariance appears

to be perturbed for scales ∼2 − 10 s. Within this interval, sig-

nificant discerning between SV and NS patients with CHF are

associated with multifractal representations C3( j),C4( j). This

is consistent with previous evidences reporting that parasympa-

thetic activity affects complexity at short and long time scales,

with maximum at precisely the range of scales ∼2 − 10 s [33].

A second, different scaling regime is observed for coarse

time scales beyond 82 s, yet is apparently non-informative for

CHF clinical application, because the multiscale representations

similarly converge for NS and SV. In contrast, the difference

between NS and SV are almost systematically significant for

finer scales for the multifractal representation C3( j),C4( j).

Importantly, such significant differences are not observed for

the original RR time series. Also, interestingly, for ξ0(t), these

scales with significant differences largely overlap with those

where scaling is observed to be perturbed.

For the time series V L F(t), L F(t) and L F/H F(t) of instan-

taneous spectral measures, scale invariance in form of power

laws is evidenced exclusively for scales larger than ∼100 s,

again both for NS and SV. This indicates that the scaling prop-

erties of combined (because of the overlap in the LF band)

instantaneous sympathetic and parasympathetic activities can

be considered a signature of slower physiological phenomena

than those observed for the other time series. This is consistent

with previous evidences reporting that sympathetic activity af-

fects complexity only at long time scales [33], constituting best

predictors of mortality following myocardial infarct or heart

failure (see [33] and references therein).

These observations suggest that it is meaningful to esti-

mate self-similar and multifractal exponents c1 and c2, c3, c4,

respectively, for scales faster than ∼82 s for the time series

µR R(t), ξ0(t), σ 2
R R(t), H F(t). Results are reported in Table II, to-

gether with those obtained for R R for comparison with µR R(t).

The instantaneous time series µR R(t), ξ0(t), σ 2
R R(t), σ 2

H R(t),

H F(t) can be well described by a multifractal model since

cm 6= 0 for m ≥ 2, both for NS and SV.

As discussed above, µR R(t) and R R lead to similar results,

with the exception of c4 for which µR R(t) yields a reduction of

cross-subject variability by a factor 3 to 4. The time series ξ0(t),

σ 2
R R(t) (and to a lesser extent H F(t)) are further characterized

by a long-range persistence type autocorrelation with c1 > 0.5.



TABLE II
SCALING AND MULTIFRACTAL EXPONENTS c1, c2, c3, c4 ESTIMATED OVER

SCALES [2.6, 81.9] S-MEDIAN (MED) AND MEDIAN ABSOLUTE DEVIATION

(MAD)-P-VALUES FROM MANN-WHITNEY TEST

RR NS: med (mad) SV: med (mad) p-value

c1 0.104 (0.164) 0.156 (0.171) 0.07
c2 −0.007 (0.049) 0.004 (0.054) 0.60
c3 0.007 (0.040) 0.003 (0.037) 0.68
c4 −0.045 (0.275) −0.030 (0.298) 0.33

µRR NS: med (mad) SV: med (mad) p-value

c1 0.147 (0.155) 0.200 (0.175) 0.11
c2 −0.027 (0.044) −0.019 (0.060) 0.74
c3 −0.019 (0.050) −0.007 (0.048) 0.76
c4 −0.068 (0.096) −0.030 (0.064) 0.04

ξ0 NS: med (mad) SV: med (mad) p-value

c1 0.766 (0.062) 0.744 (0.095) 0.35
c2 −0.192 (0.094) −0.133 (0.118) 0.05
c3 0.124 (0.254) 0.071 (0.207) 0.19
c4 −0.340 (0.773) −0.228 (0.423) 0.24

σ 2

RR
NS: med (mad) SV: med (mad) p-value

c1 0.773 (0.058) 0.732 (0.093) 0.36
c2 0.026 (0.120) −0.009 (0.098) 0.23
c3 0.016 (0.149) 0.033 (0.125) 0.91
c4 −0.109 (0.489) 0.015 (0.538) 0.33

σ 2

HR
NS: med (mad) SV: med (mad) p-value

c1 0.759 (0.066) 0.715 (0.096) 0.49
c2 0.016 (0.118) −0.008 (0.116) 0.24
c3 −0.017 (0.186) 0.025 (0.164) 0.71
c4 −0.155 (0.876) −0.008 (0.705) 0.23

H F NS: med (mad) SV: med (mad) p-value

c1 0.549 (0.074) 0.526 (0.105) 0.88
c2 −0.164 (0.122) −0.197 (0.130) 0.19
c3 −0.137 (0.243) −0.080 (0.252) 0.82
c4 −0.611 (0.883) −0.488 (1.449) 0.35

Yet, none of the exponents cm , considered individually, can be

directly translated into the clinical practice for risk stratification

between NS and SV. Consistently with the fact that autonomic

nervous system linear and nonlinear dynamics cannot be fully

explained by a single measure only, in the next paragraph we

show how to combine the aforementioned multifractal point-

process measures for SV vs. NS discrimination in CHF at a

single subject level.

C. SV Versus NS Classification

Leveraging on the aforementioned results performed at a

group-wise level and with inferential significance only, we

moved beyond statistical analysis to automatically discern SV

from NS patients with CHF at a single-subject level. Scaling and

multifractal features of point process-derived heartbeat dynam-

ics are then combined throughout a nonlinear discriminant func-

tion, allowing therefore for a direct clinical translation. Follow-

ing the methodology description, we considered instantaneous

dynamics of µR R(t), ξ0(t), σ 2
R R(t), σ 2

H R(t), V L F(t), L F(t),

H F(t), L F/H F(t), and condensed the information about the

long-term, time-varying dynamics using the α and β sets of ex-

ponents and multiscale representations defined in Section II-D.

TABLE III
CLASSIFICATION PERFORMANCES IN % USING THE α SET OF EXPONENTS

ESTIMATED OVER 4 OCTAVES

Center scale (s) Accuracy Sensitivity Specificity N. Feature

1.71 63.02 46.03 80.00 3
3.41 54.05 71.43 36.67 15
6.83 58.02 79.37 36.67 28
13.7 67.90 80.95 54.84 2
27.3 72.66 90.48 54.84 30

54.6 64.52 77.42 51.61 18
109.2 57.26 72.58 41.94 2
218.5 62.90 77.42 48.39 2

Bold indicates best accuracy set.

TABLE IV
CLASSIFICATION PERFORMANCES IN % USING THE β SET

Scale (s) Accuracy Sensitivity Specificity N. Feature

0.21 60.93 44.44 77.42 15
0.43 67.95 74.60 61.29 39
0.85 68.66 85.71 51.61 28
1.71 67.90 80.95 54.84 29
3.41 66.26 84.13 48.39 29
6.83 79.11 90.48 67.74 4

13.7 63.06 80.95 45.16 12
27.3 71.86 88.89 54.84 14
54.6 58.22 80.95 35.48 17
109 64.70 77.78 51.61 11
218 63.36 42.86 83.87 1
437 71.07 87.30 54.84 31
874 61.75 42.86 80.65 1
1748 67.13 76.19 58.06 21
3495 77.44 96.83 58.06 31

Bold indicates best accuracy per feature set.

Throughout the LOO-SVM procedure, prediction accuracy,

sensitivity and specificity in discerning SV vs. NS patients were

evaluated for feature sets α and β, whose results are shown in

Tables III and IV, respectively. For each scale, these tables report

the best classification accuracy using a proper combination of

features, as identified by the SVM-RFE algorithm. Considering

the two CHF classes, accuracy of 50% is the change.

Using the subset of exponents ζ (2), c1, c2, c3, c4, an accuracy

of 72.66% was obtained for exponents estimated over scales

27.3 s ± 2 octaves. Nevertheless, specificity was barely beyond

the chance level (54.84%), being therefore not suitable for an

actual clinical application.

Using the subset of multiscale representation log2 S(2, j),

C1( j),C2( j),C3( j),C4( j), best classification accuracy of

79.11% was obtained at scale 6.83 s, with satisfactory sensitivity

of 90.48% and specificity 67.74%. The trend of classification

accuracy as a function of the number of features is shown in

Fig. 4. Particularly, the following four features were selected as

best candidate for the prediction of survivors in patients with

CHF: log2 S(2, j),C3( j),C4( j) calculated over V L F(t), and

log2 S(2, j) calculated over L F/H F(t), at scale j = 10 (∼7 s)

at which the precise choice of interpolation (here, using the

informative point process model) has significant impact.



Fig. 4. Recognition accuracy in discerning NS vs. SV patients
as a function of the feature rank estimated through the SVM-
RFE procedure, considering feature set β comprising log2 S(2, j),
C1( j),C2( j),C3( j),C4( j) at scale 6.83 s.

Merging the proposed multifractal features of α and β sets

did not straightforwardly improve the aforementioned best clas-

sification accuracy of 79.11%.

IV. DISCUSSION AND CONCLUSION

We proposed a novel methodology combining multifractal

analysis with instantaneous (time resolution of 5 ms) physio-

logical estimates derived from inhomogeneous point-process

models of cardiovascular dynamics. As previous evidences

demonstrated that autonomic nervous system dynamics affects

heartbeat complexity at all scales [33], we hypothesized that

our methodology would provide a good predictor of mortality

following congestive heart failure with single-patient specific

prognostic capabilities.

All instantaneous series derived from our physiologically-

informative model show a clear scaling behaviour at coarser

scales over all indices of self-similarity and multifractality. Con-

versely, considering multifractal indices C2( j),C3( j),C4( j)

for the scales ∼2 − 10 s, the scaling behaviour of spline-

interpolated series of RR intervals is broken and departs from

the behaviour observed at scales ≥10 s. This is particularly

evident for multifractal index C4( j). Note that self-similar

models describe only parts of the scaling properties of the

heartbeat interval series, whereas multifractal models provide a

more comprehensive description (e.g., [2], [8]). Therefore, we

demonstrated that scaling and multiscale representations of RR

interval series is biased by the interpolating method employed

(e.g., linear, spline, etc.). Therefore, more informative ad-hoc

physiologically plausible models, such as the inhomogeneous

point-process [14], [25], are strongly recommended. This result

is in agreement with our previous investigations [14], [25]

demonstrating that the use of an inverse-Gaussian distribution,

characterized at each moment in time, inherits both physio-

logical (the integrate-and-fire initiating the cardiac contraction

[25]) and methodological information.

Additionally, we found that series of purely vagal dynamics,

i.e., H F(t), display power law scaling from ∼0.5 s to ∼82 s,

whereas series of sympatho-vagal dynamics (e.g., L F(t) and

L F/H F(t)) are associated with scale invariance in form of

power laws exclusively for scales larger than ∼100 s. This is

also in agreement with previous evidences reporting that sym-

pathetic activity affects complexity at long time scales [33] only.

Scaling and multifractal properties of circadian heartbeat dy-

namics in CHF patients, therefore, do not arise at a sinus-node

level, but seem to be already intrinsically present in vagal and

sympatho-vagal dynamics. At a speculative level, this can be due

to dysfunctional acetylcholine release on adrenergic receptors

on the vagal terminals, and/or dysfunctional cytosolic adeno-

sine 3,5-cyclic monophosphate release in post-junctions, and/or

dysfunctional acetylcholine release on muscarinic receptors [1].

Using these measures, we were able to predict survivor and

non-survivor CHF patients (4 year follow-up) with a satisfac-

tory accuracy of 79.11% (sensitivity 90.48% and specificity

67.74%), considering newly-derived heartbeat variables. To the

best of our knowledge, the majority of the previous studies

dealing with CHF mortality prediction evaluated the predictive

power of novel HRV markers using p-values and statistical in-

ference only. Since results from statistical inference refer to a

group-level analysis, whereas our classification results deal with

single subject-level analysis, a proper comparison of the pro-

posed multifractal point-process methodology with these stud-

ies cannot be performed. To give an idea of the significance of

our results, here we mention few studies that quantified accu-

racy, specificity, and sensitivity of an HRV- based methodology

for the mortality prediction in CHF. In particular, our results

show higher statistical performances than Yang et al. (accuracy:

74.4%) [34], Bigger et al. (sensitivity 58%, specificity of 71%)

[35], and are comparable with Pecchia et al. (79.3%) [36]. An

indirect quantitative reference to our results with other rele-

vant reports would point at an accuracy rate lower than Melillo

et al. (85.4%) [37], Guidi et al. (86%, sensitivity and sensibility

not reported) [38], and Shahbazi et al. (100%) [39], although

Melillo et al.’s method is with a specificity rate of 63.6%, and

results from Melillo et al., Guidi et al., and Shahbazi et al. are

from 41, 50, and 44 patients, respectively. Here, it is important

to highlight again that our study is associated with a signifi-

cantly higher statistical power than others, given our sample of

94 patients. Also, it must be noted that methods proposed by

Guidi et al. [38], and Yang et al. [34] need some parameters as

input that should be gathered directly from physicians, while the

adoption of only HRV measures, as in the current study, enables

a completely automatic assessment.

We found that optimal predictors of mortality in this kind

of pathology are associated with multifractal quantification of

very low frequency oscillations (<0.04 Hz) of heartbeat dy-

namics. Although precise physiological correlates of such VLF

are not well-defined yet [4], it is reasonable to associate proper

diagnostic and prognostic value to multifractal changes in car-

diovascular nonlinear oscillations with period between 25 s and

100 s. Accordingly, other studies involving circadian cardiovas-

cular rhythms or long-term sleep recordings highlighted such

clinical value of VLF dynamics, also as a powerful predictor

of clinical prognosis in patients with CHF [40]–[44]. In par-

ticular, testing on a large cohort of asymptomatic participants

undergoing 24 h Holter ECG recordings, the short-term fractal

scaling exponent of heartbeat dynamics and VLF power have

been recently selected as best candidate for the prediction of

CHF onset on follow-up [44]. To this extent, using the same

standard clinical recordings, our study makes a scientific step



forward, providing an effective methodology predicting mortal-

ity in CHF within a 4 years period at a single-patient level.

The number of subjects (94) has provided solid ground for

validation of our multifractal framework. Nevertheless, we are

planning a new prospective clinical trial study devoted to the

collection of long-term cardiovascular data from CHF patients,

including mortality follow-up evaluations. Moreover, we are

aware that the classification results shown in Tables III and IV

cannot be considered “optimal”. While in the initial phases of

this study we performed some exploratory analyses including

different classifiers such as Linear and Quadratic Discriminant

Classifiers, K-Nearest Neighbors, Artificial Neural Network,

and others, a rigorous/unbiased comparison between classifiers

would require proper parameter optimization to be performed at

each step of the leave one out procedure within a nested-cross

validation framework, which should also include parameter op-

timization for each classifier. This kind of optimization would

call for a larger sample size (see limitation above) and, most

importantly, is beyond the scope of this study, whose primary

aim is to demonstrate that novel multifractals for inhomoge-

neous point-process models carry very discriminant power and

are associated with prediction of CHF mortality. Indeed, the

obtained accuracy, with associated specificity and sensitivity,

may increase with a proper optimization of the classification

algorithm. Future works will also focus on the investigation of

combined scaling and multifractal analysis, and instantaneous

nonlinear/complex heartbeat dynamics including time-varying

bispectra [14], time-varying Lyapunov spectra [45], and time-

varying monovariate and multivariate cardiac entropy [16], [46],

extending therefore to higher-order statistics the recently pro-

posed complexity variability framework [45] (which is currently

defined through second-order moments).

In conclusion, this study poses a solid methodological basis

for devising a tool capable of performing accurate assessments

of CHF morbidity and sudden mortality, which still remain un-

acceptably high despite effective ongoing drug therapies. We

suggest that, in case of severe CHF, dysfunctional, multidi-

mensional power-law scaling of instantaneous sympatho-vagal

dynamics, as estimated through physiologically-plausible prob-

abilistic models of heartbeat generation, should be considered

as a high-mortality risk factor in a 4-year follow-up.
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