Skip to Main content Skip to Navigation
Journal articles

Mortality Prediction in Severe Congestive Heart Failure Patients With Multifractal Point-Process Modeling of Heartbeat Dynamics

Abstract : Background: Multifractal analysis of human heartbeat dynamics has been demonstrated to provide promising markers of congestive heart failure (CHF). Yet, it crucially builds on the interpolation of RR interval series which has been generically performed with limited links to CHF pathophysiology. Objective: We devise a novel methodology estimating multifractal autonomic dynamics from heartbeat-derived series defined in the continuous time. We hypothesize that markers estimated from our novel framework are also effective for mortality prediction in severe CHF. Methods: We merge multifractal analysis within a methodological framework based on inhomogeneous point process models of heartbeat dynamics. Specifically, wavelet coefficients and wavelet leaders are computed over measures extracted from instantaneous statistics of probability density functions characterizing and predicting the time until the next heartbeat event occurs. The proposed approach is tested on data from 94 CHF patients aiming at predicting survivor and nonsurvivor individuals as determined after a four years follow up. Results and Discussion: Instantaneous markers of vagal and sympathovagal dynamics display power-law scaling for a large range of scales, from ≃ 0.5 to ≃ 100 s. Using standard support vector machine algorithms, the proposed inhomogeneous point-process representation-based multifractal analysis achieved the best CHF mortality prediction accuracy of 79.11% (sensitivity 90.48%, specificity 67.74%). Conclusion: Our results suggest that heartbeat scaling and multifractal properties in CHF patients are not generated at the sinus-node level, but rather by the intrinsic action of vagal short-term control and of sympatho-vagal fluctuations associated with circadian cardiovascular control especially within the very low frequency band. These markers might provide critical information in devising a clinical tool for individualized prediction of survivor and nonsurvivor CHF patients.
Complete list of metadatas

Cited literature [46 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-02089319
Contributor : Open Archive Toulouse Archive Ouverte (oatao) <>
Submitted on : Wednesday, April 3, 2019 - 4:09:24 PM
Last modification on : Tuesday, September 8, 2020 - 10:52:07 AM

File

valenza_22701.pdf
Files produced by the author(s)

Identifiers

Citation

Gaetano Valenza, Herwig Wendt, Ken Kiyono, Junihiro Hayano, Eiichi Watanabe, et al.. Mortality Prediction in Severe Congestive Heart Failure Patients With Multifractal Point-Process Modeling of Heartbeat Dynamics. IEEE Transactions on Biomedical Engineering, Institute of Electrical and Electronics Engineers, 2018, 65 (10), pp.2345-2354. ⟨10.1109/TBME.2018.2797158⟩. ⟨hal-02089319⟩

Share

Metrics

Record views

296

Files downloads

928