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The optical reflectivity of Al-based and Ti-based quasicrystalline and approximant samples were 

investigated versus the quality of their structural morphology using optical reflectometry, X-ray diffraction and 

transmission electron microscopy. The different structural morphologies were obtained using three different 

preparation processes : sintering, pulsed laser deposition and reactive cathodic magnetron sputtering. The work 

demonstrates that the canonical behaviour of icosahedral state in specular reflectivity is extremely sensitive to 

different and very fine aspects of the microstructure : sizes of grains smaller than 50 nm, slight local diffuse 

disorder and shifts away from the icosahedral crystallographic structure (approximants). The work explains why 

the optical properties of the same kind of quasicrystals found in literature sometimes reveal a different behaviour 

from one author to another. The study then confirms the work of some authors and definitely shows that the 

canonical behaviour of icosahedral state in specular reflectivity over the 30000 - 50000 cm-1 domain is 

characterized by a decreasing function made of steps. It also shows that this behaviour can be interpreted thanks 

to the cluster hierarchy of the  model of Janot.  

PACS indexing codes : 61.44Br, 61.72.-y, 61.10.Nz 

 

I. INTRODUCTION 

In 1984, the icosahedral crystallographic structure was discovered in the Al-Mn system.1 Since then, many 

other phase diagrams showed to exhibit the same quasicrystalline structure (Al-Pd-Mn, Al-Cu-Fe, Al-Cu-Fe-B, 

Ti-Ni-Zr, etc …) Quasicrystalline structures exhibit an orientation-ordered structure with classically forbidden 

rotation symmetries. They possess an absence of periodic translation ordering. The new class of materials exhibits 

a new combination of properties. Indeed electronic, thermal, optical, tribological properties have been widely 

investigated in the past decades and were found to be very original with respect to what could have been expected 

regarding the physical and chemical behaviour of their metallic components. 2-12 Some crystals with big lattice 

parameters called approximants have a local order which is very close to the one of some quasicrystals. The 

structural similarity between quasicrystals and their approximants makes their physical and chemical properties 

close from each other. Within the mass of the work made on the physical characterization of these materials, optical 

properties were found to be rather difficult to be interpreted. For instance, Karpus et al.13 underlined that the 

measured data were complex and stressed on the importance of the quality of the samples. This is of course well 

known from all material scientists and physicists : purity and structural quality of samples are of high relevance to 

identify their canonical physical properties. A right interpretation of optical properties of the icosahedral phases 

and their closely related phases cannot be done with no care for these considerations. Indeed, although some 

significant progress seems to have been done recently in the field, 14-16 the authors think it is pertinent to be more 
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specific about the influence of the quality of quasicrystalline samples and their approximants on optical reflectivity, 

especially in the ultra-violet and far ultra-violet domains.  

In this paper we report on the preparation and on the optical properties of several icosahedral (Al-Cu-Fe, 

Al-Cu-Fe-B, Al-Pd-Mn, Ti-Ni-Zr) and approximant (Al-Cr-Fe, Al-Cr-Fe-Mo) samples of different structural 

quality. The different qualities of the quasicrystalline samples were obtained either by preparing samples of the 

same system by two distinct synthesis processes, either by changing the preparation parameters using one synthesis 

process.  

The structural quality of the samples was evaluated by X-ray diffraction (XRD), transmission electron 

microscopy (TEM) and scanning electron microscopy (SEM) when necessary.  

Optical specular reflectivity of all samples was measured and is linked to the structural quality of the 

samples. The paper insists on the very high sensitivity of optical reflectivity data in the ultra-violet (UV) domain 

to the degree of structural order of the samples. The optical behaviour of several systems was considered. Results 

of The reflectivity response of the Al-Cu-Fe-B,  Al-Pd-Mn system on all the frequency domain could be found in 

15 , 15,17, respectively. Partial optical data of the Al-Cu-Fe system could be found in Homes et al.18 and Eisenhammer 

et al.,19 Ti-Ni-Zr optical data are new. Optical data of approximant AlCrFe- ( brass phase) was already 

published.15 The data of the O1 phase (AlCrFe-O1 and AlCrFeMo-O1) are new although data obtained on a 

(O1/O2)Al-Cr-Fe mixed sample was presented in 15.  

 

II. SAMPLE PREPARATION 

Bulk samples or thick films were prepared according to three different manufacturing processes : sintering 

of either powdered crushed ingots, or atomised powder, pulsed laser deposition (PLD), and reactive magnetron 

sputtering. For each process, several samples were prepared with technical process parameters close one from each 

other. They are compiled in tables 1 and 2.  

Al-Cu-Fe-B and Al-Pd-Mn quasicrystalline samples and Al-Cr-Fe and Al-Cr-Fe-Mo approximant 

samples were prepared according to a classic sintering process. Three Al-Cu-Fe-B samples of the same 

composition Al58.4Cu25.1Fe12.5B4 (named AlCuFeB-0, AlCuFeB-1, AlCuFeB-2) were prepared. AlCuFeB-0 was 

prepared by hot-press sing sintering a quasicrystalline atomised powder whose particle size was around 25 m, at 

1103 K under 40 MPa uniaxial stress, followed by a post annealing treatment at 1053 K for 3 hours to eliminate 

the non-wanted CsCl-type  phases. AlCuFeB-1 and AlCuFeB-2 samples were prepared from powders whose 

particle size was taken in the 25-65 m range, obtained by crushing ingots. The ingots were previously obtained 

by melting the pure constitutive elements by induction under a helium atmosphere in a copper mould crucible 
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using r-f energy. The sintering treatment of AlCuFeB-1 (respectively AlCuFeB-2) was 1053 K under 15 MPa with 

a post annealing treatment of 3 hours at 373 K (respectively 903 K). Slow cooling to room temperature at 20 K/min 

followed, while maintaining the applied pressure. Two Al-Pd-Mn samples of Al69.8Pd21.6Mn8.6 composition (named 

AlPdMn-0 and AlPdMn-1) were prepared. AlPdMn-0 and AlPdMn-1 samples were prepared from crushed ingots 

prepared as described above.   in a similar way as just. Thermal sintering treatment plateau of AlPdMn-0 

(respectively AlPdMn-1) was set at 1103 K and followed by an annealing treatment for 3 hours at 873 K 

(respectively 373 K).  

Three Al-Cr-Fe and Al-Cr-Fe-Mo samples were also prepared from crushed ingots : a sample named 

Approx-0 of Al9(Cr,Fe)4 composition, a sample named Approx-1 of Al71.6Cr22.4Fe6 composition and a sample 

named Approx-2 of Al71.6Cr20.8Fe5.9Mo1.6 composition. Thermal sintering treatment plateau of 30 min was 

maintained at 20 K under the melting temperature of the approximant (i.e. 1333 K for the Approx-0  brass phase 

and 1253 K for the Approx-1 and Approx-2 phases) followed by an annealing treatment for 2 hours at 373 K.  

Two Ti-Ni-Zr thick films of Ti41.5Ni17Zr41.5 composition (named TiNiZr-0 and TiNiZr-1) were prepared 

by pulsed laser ablation using a pulsed Nd : YAG (Qantel, YG 571C) laser. The wavelength used was 1064 nm, 

the repetition rate was 10 Hz and the pulse durations was 10 ns. The laser fluence used was 72 J/cm2. Experiments 

were conducted under high vacuum. The matter source to be ablated was a cylindrical piece of 3 mm in height and 

2 cm in diameter cut ted from an ingot prepared by melting the pure constitutive elements by induction under 

helium atmosphere in a copper mould crucible using r-f energy. TiNiZr-0 (respectively TiNiZr-1) were synthesized 

by depositing on a substrate whose temperature was kept at 538 K (respectively 298 K). The films were not further 

annealed. Films of around 0.6 m thickness were obtained. More details concerning the deposition conditions can 

be found in 20. 

Al-Cu-Fe samples were prepared by reactive cathodic magnetron sputtering. Two Al-Cu-Fe thick films 

of composition Al62.5Cu5.5Fe12.5 were prepared. Al-Cu-Fe-1 was prepared on a glass substrate whose temperature 

was kept at 298 K. The disk target was made of three sectors, each sector being made of each of the elements (Al, 

Cu, and Fe). Background vacuum was 0.3 Pa, a current of 0.6 A was maintained on the sputtered target and the 

power used was 250 W. A thick film of around 6 m was obtained. Al-Cu-Fe-0 is the Al-Cu-Fe-1 sample that has 

undergone ex-situ a thermal treatment of 2 h at 673 K. As thicknesses of the films are huge regarding to the usual 

coherency lengths of the quasicrystalline structures, they can be considered as bulk material and can thus be 

compared to the sintered ones.  

 



 5 

III. CHEMICAL, STRUCTURAL AND OPTICAL CHARACTERIZATION OF SAMPLES 

Atomic compositions of the samples were checked by Electron Probe Microanalysis. 

The structure of the samples was determined by X-Ray Diffraction (CoKradiation, λ = 0.178897 nm). 

In case of a texture (typically for TiNiZr thick films21), a four-circles diffractometer was used. 22 scans were so 

recorded at different χ angles and added in order to cumulate and visualize all the possible Bragg reflections on a 

same diagram. This acquisition was done with χ ranging from 0 to 55° assuring a φ rotation of the sample at 600 

rotations per minute. Such an acquisition allows to visualize all the possible Bragg diffraction peaks in the range 

30° ≤ 2θ ≤ 96° (where θ is the Bragg angle). Quasicrystalline state was systematically checked by TEM on a 

PHILIPS CM200 microscope. Morphologies were studied by TEM (PHILIPS CM200) or by SEM on a PHILIPS 

XL-FEG microscope.  

The bulk sintered samples were mirror polished before their reflectivity R could be measured (mechanical 

standard polishing using SiC paper grids, followed by diamond paste polishing was performed). The Ti-Ni-Zr and 

Al-Cu-Fe samples’ reflectivity was measured on the as synthesized films. The reflectivity spectra were measured 

using a Perkin-Elmer spectrometer in the wide frequency range 4100 - 50 000 cm-1 at nearly normal incidence. All 

samples, due to their preparation method, are very dense. Their porosity (far less than 10 %) makes them adequate 

samples to be optically characterized, notably in the UV domain.  

 

IV. EXPERIMENTAL RESULTS 

A. Optics 

The complete set of optical reflectivity R data obtained with the Al-Cu-Fe-B and Al-Pd-Mn sintered 

samples and with the Ti-Ni-Zr and Al-Cu-Fe thick film samples is shown on the curves in Fig. 1. The authors have 

deliberately decided to present them versus the wave numbers instead of versus the wavelengths as this 

presentation brings out the behaviour in the UV domain. The optical data of the Al-Cr-Fe and Al-Cr-Fe-Mo 

approximants are given in Fig. 2. Whatever the samples, all reflectivity curves globally follow a plateau around 

60 % in the infra-red and visible domain until around 25 000 cm-1. Above this value, in the UV domain, reflectivity 

behaviour is not the same for all samples. The differences between samples allow a classification of samples in 

four groups. The first type of behaviour is a decreasing curve adopting a smoothed steps shape (Group A = 

AlCuFeB-0, AlPdMn-0). The second type of behaviour is a decreasing curve with some and very weak 

modulations (Group B = AlCuFeB-1, AlCuFeB-2, AlPdMn-1, AlCuFe-0, TiNiZr-0, TiNiZr-1). A third group is 

constituted by the alloys whose reflectivity curve roughly keeps the 60 % value over all the measured domain 
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(Group C = Approx-0, Approx-1 and Approx-2). The fourth group is characterized by an increase of R over the 

UV domain (Group D = AlCuFe-1).  

 

B. Morphological and structural characterization of samples 

 X-ray and TEM analyses showed samples are all crystallized (quasicrystalline or approximant) except 

AlCuFe-1 which is amorphous. Table 1 (respectively 2) compiles the structural and morphological details of the 

sintered (respectively thick film) samples.  

1. Sintered samples 

All sintered samples (Al-Cu-Fe-B, Al-Pd-Mn, Al-Cr-Fe and Al-Cr-Fe-Mo ones) exhibit granular 

morphologies whose grain size measured on SEM pictures is of the m order. Fig. 3(a) shows the differences 

between the three Al-Cu-Fe-B samples prepared. The diagram of AlCuFeB-0 sample exhibits the characteristic 

peaks of the pure icosahedral phase as it was indexed, the peaks are well defined and well separated. The diagram 

of sample AlCuFeB-1 (very similar to the former one) attests the sample is mostly composed of the quasicrystalline 

phase with a residual CsCl-phase as the presence of the 51° peak shows it (as shown by the arrow on the figure). 

Such a pollution is due to the post-treatment temperature at 373 K which is not adequate to completely eliminate 

this phase. The diagram of sample AlCuFeB-2 is constituted of much less resolute and larger peaks than the 

diagram of AlCuFeB-0 (namely in the 36 - 47° range) testifying to attesting a poorer structural perfection than the 

one of AlCuFeB-0. Moreover, the diffuse scattering of the AlCuFeB-2 diagram localized around 2 = 52° is the 

result of structural disorder in the packing of atomic clusters in the icosahedral structure. 

Identical qualitative differences can be spotted between the AlPdMn-0 and AlPdMn-1 samples (Fig. 3(b)). 

AlPdMn-0 is the sample owning the best icosahedral order as attested : on the one hand by a close to zero diffuse 

scattering observed at the bottom-foot of the peaks of the icosahedral phase (as indexed on the figure) and on the 

other hand by the thin width of peaks very close to instrument resolution only. AlPdMn-1 is an icosahedral sample 

with local structural disorder as confirmed by the two maxima of diffuse scattering respectively located at 2 

and 51°.  

Fig. 4 shows the X-ray diffraction diagrams of the approximant samples : Approx-0, Approx-1 and 

Approx-2 samples. They attest of a good crystallization of these samples and show that Approx-0 is made of a  

brass phase, Approx-1 (Al-Cr-Fe) and Approx-2 (Al-Cr-Fe-Mo) are composed of an orthorhombic O1 phase. The 

 brass phase is an approximant of both the decagonal and the icosahedral phases and the O1 phase is an 

approximant of the known decagonal phase. The  brass phase is a rhombohedral R3m structure with a = 0.7805 

nm , and  = 109.7°. The AlCrFe-O1 phase is an orthorhombic Bmm2 phase with a = 3.25 nm, b = 1.22 nm, c = 
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2.36 nm. Comparison of diagrams of fig.4 (b) and (c) shows that the insertion of Mo in the system does not change 

the crystallographic parameters.  

 

2. Thick film samples 

The Ti-Ni-Zr samples X-ray diagrams are displayed in Fig. 5(a). Extensive details on the structure of 

these films were  published in detail elsewhere21. TiNiZr-0 sample is made of quasicrystalline columns normal to 

their substrate. Their average width is 50 nm. The columns are textured along a fibre located around the five fold 

axis. TiNiZr-1 is homogeneous. It exhibits an icosahedral nanocrystalline order. Calculation thanks to Scherrer 

law applied on the full width at half maximum of deconvoluted peaks of the main signal of the diagrams 21 give 2 

(±1) nm (micro-strain and lattice distortion were assumed to be nil). The grain size of these samples is of the order 

of the lattice parameters (few nm) of approximant phases which are the related crystalline phases of the 

quasicrystals. It implies the Ti-Ni-Zr samples can be considered either as icosahedral matter with grain size of few 

nm, or as approximant with a lattice parameter equal to the grain size. 

Fig. 5(d) gives the X-ray diagrams of the Al-Cu-Fe samples. AlCuFe-1 sample is amorphous (attested by 

TEM experiment, in dark field images : no nanocrystal are observed). AlCuFe-0 is the AlCuFe-1 sample that has 

undergone a thermal treatment. This thermal treatment leads to a nanocrystallization of the film (attested by TEM 

dark field experiment). The average particle size measured is 3 (±1) nm. This could be obtained by direct 

measurement of the TEM images and was confirmed by calculation based on Scherrer law applied on deconvoluted 

peaks of the main XRD signal (micro-strain and lattice distortion were assumed to be nil).  

 

IV. DISCUSSION 

The classification in four groups as well as the contradictory results of literature can actually be 

interpreted with the Model of Janot23 and taking into considerations the crystallographic and morphological state 

of the samples. Indeed, the icosahedral structure (the one of Al-Pd-Mn, Al-Cu-Fe, Al-Cu-Fe-B and Ti-Ni-Zr) is a 

hierarchical arrangement of clusters where every hierarchical level is obtained by inflation of the one before and 

where each atomic cluster can be considered as a potential well. The model of Janot says 1) the resonance 

frequencies in the optical conductivity (optical conductivity and reflectivity data are mathematically linked by a 

Kramers Krönig transformation 15) are the result of hierarchical variable-range electronic hopping mechanism 

between potential, or localization wells14,23 2) the electronic hopping distances  are indeed linked to the resonance 

frequencies w0 by 
0

2
mw

h  , h being the Planck constant, m the mass of the free electron. In the quasicrystalline 
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structure the most representative hopping distance is the one in between clusters from centre to centre (adjacent 

but not interpenetrating). Theses distances are 12 and 14 Å for the Mackay and the Bergmann clusters, respectively. 

The Mackay type cluster is found in the Al-Pd-Mn, Al-Cu-Fe and Al-Cu-Fe-B systems, the Bergmann type one in 

Ti-Ni-Zr. It results in an optical conductivity broad resonance centred around 15000 cm-1. The UV domain starts 

around 25000 cm-1. It implies that the effective hopping distances related to that domain are smaller : they 

correspond to electrons tunnelling from sites like from cluster centres to an atom being in flipping position 15 that 

is to an atom indifferently belonging to one of the two interpenetrated clusters. This study shows that the strong 

differences noted in reflectivity from one sample to another are located in this domain : they can be characterized 

and differentiated. They can also be enhanced by calculating the first-order derivatives of the optical curves : Fig. 

6 shows the derivative optical curves of the quasicrystalline samples of the paper.  

The canonical behaviour of a quasicrystalline alloy can be observed on the reflectivity curves of the 

samples of group A (Fig. 1) whose structure can be described as excellent (AlCuFeB-0, AlPdMn-0) : the observed 

drop of reflectivity goes off in several steps. The derivative curves (Fig.6(a) and (b)) indeed present two or three 

strong and net variations. Middle of each reflectivity step as indicated by arrows on the figure precisely 

corresponds to a maximal resonance of the conductivity15. The two steps centred at 41000 cm-1 and around 52000 

cm-1 are associated to electronic jumps of 11 Å and 9.5 Å, respectively. They correspond to jumps from a cluster 

centre to an atom being in flipping position. This could explain why these steps could not be readable in some 

literature works although some irregularities on the log-log plot could be guessed. The characterized 

quasicrystalline alloys were probably not of sufficient structural quality. 

When the order of the structure is perturbed as in the case of samples exhibiting X-ray diffuse scattering 

(sub group of group B : AlCuFeB-1, AlCuFeB-2, AlPdMn-1), the hierarchical geometrical arrangement of atomic 

clusters is modified. The deterioration of the structural perfection affects the densities and frequencies of electronic 

jumps, it decreases the conductivity resonance peaks and results in the disappearance of the stair behaviour of the 

reflectivity. The larger the diffuse scattering is, the less the peaks are defined and the more the distribution of 

structural distances spreads out. It results in a weaker decrease of reflectivity in the UV domain, and in the 

smoothing or disappearance of the steps (Fig. 1 (a) and (b)). This can be seen even more clearly on three derivative 

curves that are actually flat (Fig.6 (a) and (b)).  

 

The second sub-group of the group B is made of samples whose grains get as small as a few nanometers 

: AlCuFe-0, size of grains = 3 nm , TiNiZr-0 size of grains = 50 nm, and TiNiZr-1 size of grains = 2 nm; the grains 

are thus around 100 times smaller than for the sintered samples (few m). The first consequence is that the 
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distribution statistics of the in between sites distances is altered. The second point is that the ratio of surface atoms 

over volume atoms is strongly modified, many clusters are broken, and do not act as potential wells, it drastically 

reduces the statistics of some electronic jumps. These two points result in a smoothing of the maxima in 

conductivity and of course of the steps in reflectivity and by the disappearance of the strong and abrupt variations 

in the derivative curves (Fig.6(c) and (d)).  The optical reflectivity curves then decrease over the UV domain with 

no clear step behaviour (Fig. 1 (c) and d)), but with nearly non noticeable undulations reminding the step behaviour. 

This phenomenon is indeed progressive according to the decrease of the size of the grains. It can be seen on the 

curves of the samples of the second sub-group of the group B : TiNiZr-0 size of grains = 50 nm, TiNiZr-1 size of 

grains = 2 nm and AlCuFe-0, size of grains = 3 nm). The sample TiNiZr-0 is made of columnar grains 

perpendicular to the surface : the width of the columns (50 nm) is well the significant distance of the size of the 

grains as the optical waves will not be affected by the height of the columns (short penetration perpendicular to 

the surface). The derivative curves also confirm the evolution is progressive according to the size of the grains 

(Fig.6 (c)). 

For the approximant samples which are crystalline (samples of group C : Approx-0, Approx-1 and 

Approx-2), the clusters do exist locally inside the cells, but the hierarchy (clusters of clusters) is  non existant. The 

potential wells disappear, tunnelling occurs then from atoms to atoms. The hopping distances distribution is in this 

case a distribution more continuous than previously. Optical conductivity will show up no resonance peak, and the 

optical reflectivity curves will exhibit no step (Fig. 2). There is no need here to look at the derivatives of the curves. 

The plateau goes on over the UV domain. Although, local order of approximant material is very close to the one 

of quasicrystals, the loss of quasicrystallinity is stronger than for the quasicrystalline samples where the 

Granularity granularity is around a nanometer. The content of the residual presence of the phase ( peak at 51°) 

which is an approximant of the AlCuFeB icosahedral phase in the AlCuFeB-1 sample is too small to have an 

important impact on the reflectivity curve which has already been altered by a smoothing due to local structural 

disorder. 

For samples whose structure is amorphous (Group D = AlCuFe-1), no cluster exists. The material is a 

dense random packing of hard spheres (atoms). The sample does not possess any hierarchy beyond local atomic 

distances : atoms are ordered over lengths inferior to two or three atomic distances. This leads to a continuous 

distribution of possible electronic jumps and to no frequencies resonance. It also leads to a progressive increase of 

the frequencies corresponding to the smallest distances. The plateau goes over the UV domain, presents no step 

and is continuously increasing.  
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VI. CONCLUSION 

A study was performed to get the canonical icosahedral quasicrystalline, approximant and amorphous 

phases response in optical reflectivity over the UV domain. It is remarkable to realize that a net and easy to read 

differentiation of optical behaviour occurs according to very small structural “shifts” from a “good” 

quasicrystallinity. Indeed, loss of order such as the one noticeable by the discrete presence of diffuse diffusion 

background at the base of X-ray diffraction peaks or too small coherency lengths (due to the size of grains, or to 

the approximant structure) are sufficient to dramatically affect the UV optical reflectivity. Amorphous phases lead 

to an increase of the signal over this domain. The reflectivity measurement, and all the more its derivative curve, 

are thus very sensitive. The measurements can be performed quickly and cheaply : it could thus be used by 

manufacturers of quasicrystalline matter to test their samples quality. It can also help to make the difference 

between amorphous and quasicrystalline samples with small grains (nanometer range) as it is not possible to do so 

by looking only at X-ray diffraction diagrams. This is all the more important since one might expect similar 

sensitivities of  other properties of quasicrystals. Indeed optical properties, like many other properties of the 

quasicrystals take their foundation on the peculiar waves interactions inside the structure.  

This work is a contribution to understand the relationship structure-properties of nanoscaled materials.  

The study stresses on why, as already mentioned in the introduction, quality of samples is of high 

relevance to characterize canonical properties of materials. This is for quasicrystals here, apparently even more 

true. 
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FIG. 1 Optical reflectivity versus wave number in the near infra red, visible and ultra-violet domain of 

quasicrystalline sintered samples : samples belong to different systems and exhibit different structural qualities. a/ 

Al-Cu-Fe-B system, b/ Al-Pd-Mn system c/ Ti-Ni-Zr system and d/ Al-Cu-Fe system. ●,x and ■ represent the X-

0, X-1 and X-2sample, respectively, X standing successively for AlCuFeB, AlPdMn, TiNiZr and AlCuFe. 

 

 



 13 

FIG. 2 Optical reflectivity versus wave number in the near infra red, visible and ultra-violet domain of approximant 

sintered samples. a/ Approx-0 b/ Approx-1 and c/ Approx-2. ●,x and ■ represent the Approx-0, Approx-1 and 

Approx-2 samples, respectively. 
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FIG. 3 X-ray diffraction diagrams (CoK) of a/ Al-Cu-Fe-B samples and b/ Al-Pd-Mn samples. Diagrams have 

been zoomed on adequate 2ranges to allow the comparison between the diagrams since details are small. ●, x, 

and ■ represent the X-0, X-1 and X-2sample, respectively, X standing successively for AlCuFeB and AlPdMn.  
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FIG. 4 X-ray diffraction diagrams (CoK) of a/ Approx-0, b/ Approx-1 and c/ Approx-2. 
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FIG. 5 X-ray diffraction diagrams (CoK) of a/ Ti-Ni-Zr samples and b/ Al-Cu-Fe samples. ● and x represent the 

X-0 and X-1sample, respectively, X standing successively for TiNiZr and AlCuFe. 
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FIG. 6 First-order derivatives curves of reflectivity curves presented in fig. 1. a/ Al-Cu-Fe-B system, b/ Al-Pd-Mn 

system c/ Ti-Ni-Zr system and d/ Al-Cu-Fe system. ●,x and ■ represent the X-0, X-1 and X-2sample, respectively, 

X standing successively for AlCuFeB, AlPdMn, TiNiZr and AlCuFe. 



 18 

TABLES 

 

TABLE I. Synthesis experimental, structural and morphological details of sintered bulk samples. “diffuse 

diffusion” means of the structure is slightly and locally disordered attested by diffuse diffusion at the base of  

the peaks of the X-ray diffraction diagrams (Fig. 3). 

 

  

Sample 

Composition 

 (atomic %) 

Base material 

Granularity of 

powder m) 

Sintering 

treatment 

Temperature (K) 

Stress (MPa) 

Post-treatment 

Temperature (K) 

Time (h) 

Structure  

Morphology 

Size of grains 

AlCuFeB-0 

Al58.4Cu25.1Fe12.5B4 

 

Atomized powder 

25 

830  

40  

780 

3 

Icosahedral 

Polycrystalline 

Fewm 

AlCuFeB-1 

Al58.4Cu25.1Fe12.5B4 

Powder from crushed 

ingots 

25 - 65 

780  

15  

100  

3  

Icosahedral + diffuse 

diffusion + residual 

presence of CsCl 

Polycrystalline 

Fewm 

AlCuFeB-2 

Al58.4Cu25.1Fe12.5B4 

Powder from crushed 

ingots 

25 - 65  

1053  

15  

903  

3 

Icosahedral + diffuse 

diffusion  

Polycrystalline 

Fewm 

AlPdMn-0 

Al69.8Pd21.6Mn8.6 

Powder from crushed 

ingots 

25 - 65 

1103  

15  

873  

3 

Icosahedral 

Polycrystalline 

Fewm 

AlPdMn-1 

Al69.8Pd21.6Mn8.6 

Powder from crushed 

ingots 

25 - 65 

1103 

15  

373 

3 

Icosahedral + diffuse 

diffusion 

Polycrystalline 

Fewm 

Approx-0  

Al9(Cr,Fe)4 

 

Powder from crushed 

ingots 

25 - 65 

1333 

15  

373 

2 
brass phase 

Polycrystalline 

Fewm 

Approx-1  

Al71.6Cr22.4Fe6 

 

Powder from crushed 

ingots 

25 - 65 

1253  

15  

373 

2 

O1 phase 

Polycrystalline 

Fewm 

Approx-2  

Al71.6Cr20.8Fe5.9Mo1.6 

Powder from crushed 

ingots 

25 - 65 

1253 

15  

373 

2 

O1 phase 

Polycrystalline 

Fewm 
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TABLE II. Synthesis experimental structural and morphological details of thick films samples. 

 

Sample 

Composition 

Preparation technique 

Thickness (m) 

Substrate 

temperature (K) 

Post-treatment 

Temperature (K) 

Time (h) 

Structure  

Morphology 

Size of grains 

TiNiZr-0 

Ti41.5Ni17Zr41.5 

PLD 

0.6 

548 None Icosahedral 

Textured 

Columnar,  

50 nm (width) 

TiNiZr-1 

Ti41.5Ni17Zr41.5 

PLD 

0.6 

298 None Icosahedral 

nanocrystalline 

2 nm 

AlCuFe-0 

Al62.5Cu5.5Fe12.5 

Reactive magnetron 

Sputtering 

6 

298 673 

2 

Icosahedral  

nanocrystalline 

3 nm 

AlCuFe-1 

Al62.5Cu5.5Fe12.5 

Reactive magnetron 

Sputtering 

6 

298  None Amorphous 

- 

- 

 

 

 


