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Abstract

Let (X%) be a strictly stationary sequence of random variables with values in some Polish
space E and common marginal u, and (Ag)rso be a sequence of Borel sets in E. In this
paper, we give some conditions on (Xj) and (Ay) under which the events {X; € Ay} sat-
isfy the Borel-Cantelli (or strong Borel-Cantelli) property. In particular we prove that, if
p(limsup,, A,) > 0, the Borel-Cantelli property holds for any absolutely regular sequence. In
case where the A,’s are nested, we show, on some examples, that a rate of convergence of the
mixing coefficients is needed. Finally we give extensions of these results to weaker notions of

dependence, yielding applications to non-irreducible Markov chains and dynamical systems.

1 Introduction

Let (€2, 7,P) be a probability space. Let (X;);ez be a sequence of random variables defined
on (2, 7,P) and with values in some Polish space E, and (A )r~0 be a sequence of Borel sets
in £/. Assume that

P(B;) >0 and Z}P’(Bk) = 00, where B, = {X} € Ax}. (1.1)

k>0

Our aim in this paper is to find nice sufficient conditions implying the so-called Borel-Cantelli

property
Z 1p, = oo almost surely (a.s.) (1.2)
k>0



or the stronger one

lim (S,/E,) =1 a.s., where S,, = Z 1p, and E, =E(S,), (1.3)
n—oo

k=1
usually called strong Borel-Cantelli property. The focus will be mainly on irreducible or
non-irreducible Markov chains. Nevertheless we will apply some of our general criteria to
dynamical systems and compare them with the results of Kim (2007) and Gouézel (2007)
concerning the transformation defined by Liverani-Saussol-Vaienti (1999).

Let us now recall some known results on this subject. On one hand, if the sequence (X;);cz
is strictly stationary, ergodic, and if A, = A; for any positive k, then lim, n=1S, = u(A;)
a.s., where 1 denotes the law of X;. Hence (1.2) holds. However, as pointed out for instance
by Chernov and Kleinbock (2001), the ergodic theorem cannot be used to handle sequences
of sets (Ag)r such that limy u(Ay) = 0. On the other hand, if the random variables X} are
independent, then (1.2) holds for any sequence (Ag)i~o of Borel sets in E satisfying (1.1)
(see Borel (1909), page 252). Extending this result to non necessarilly independent random
variables has been the object of intensive researches. Let Fj, = o(X; : i < k) and recall that
By, = { X} € A}. Lévy (1937, p. 249) proved that, with probability 1,

Z 1p, = oo if and only if Z]P’(Xk € Ay | Fr—1) = 0. (1.4)
k>0 k>1

However the second assertion is still difficult to check in the case of sequences of dependent
random variables. As far as we know, the first tractable criterion for (1.2) to hold is due to
Erd6s and Rényi (1959) and reads as follows:

lim B, =co and lim E,*Var(S,) =0. (1.5)

n—oo n—o0

Suppose now that the sequence By = {X; € Ay} satisfies the following uniform mixing

condition:
[P(By N Biin) — P(Bi)P(Biin)| < n(P(Bi) +P(Biin)) - (1.6)
Then, if
nh_)rrgo E, =00 and ngn < 00, (1.7)
n>1

the criterion (1.5) is satisfied and consequently (1.2) holds. Furthermore, if (1.7) holds, then
the strong Borel-Cantelli property (1.3) also holds, according to Theorem 8 and Remark
7 in Chandra and Ghosal (1998). This result has applications to dynamical systems. For
example, Philipp (1967) considered the Gauss map T'(z) = 1/ (mod 1) and the S-transforms
T(z) = Bx (mod 1) with 8 > 1, with (Xz)rs0 = (T%)r>0 viewed as a random sequence on the
probability space ([0, 1], 1), where p is the unique T-invariant probability measure absolutely
continuous w.r.t. the Lebesgue measure. For such maps and sequences (Ay) of intervals
satisfying

S (A = oo, (18)



he proved that (1.7) is satisfied. More recently, Chernov and Kleinbock (2001) proved that
(1.7) is satisfied when (Xj)r>o are the iterates of Anosov diffeomorphisms preserving Gibbs
measures and (Ay) belongs to a particular class of rectangles (called EQR rectangles). We
also refer to Conze and Raugi (2003) for non-irreducible Markov chains satisfying (1.7).

However some dynamical systems do not satisfy (1.7). We refer to Haydn et al. (2013)
and Luzia (2014) for examples of such dynamical systems and Borel-Cantelli type results,
including the strong Borel-Cantelli property. In particular, estimates as in (1.7) are not
available for non uniformly expanding maps such as the Liverani-Saussol-Vaienti map (1999)
with parameter v €]0, 1[. Actually, for such maps, Kim (2007) proved in his Proposition 4.2
that for any v €]0, 1], the sequence of intervals A, = [0, k'/0~Y] satisfies (1.8) but (By,) does
not satisfy (1.2). Moreover, there are many irreducible, positively recurrent and aperiodic
Markov chains which do not satisfy (1.6) with ¢, — 0 even for regular sets Ay, such as the
Markov chain considered in Remark 5.1 in the case where A = [0,1/k] (see Chapter 9 in
Rio (2017) for more about irreducible Markov chains). However, these Markov chains are
f-mixing in the sense of Volkonskii and Rozanov (1959), and therefore strongly mixing in
the sense of Rosenblatt (1956).

The case where the sequence of events (By)g>o satisfies a strong mixing condition has
been considered first by Tasche (1997). For n > 0, let

G = %Sup {E(|P(Bisn | Fi) — P(Biin)|) - k > 0}. (1.9)

Tasche (1997) obtained sufficient conditions for (1.2) to hold. However these conditions

are more restrictive than (1.1): even in the case where the sequence (&,), decreases at a

geometric rate and (P(By))y is non-increasing, Theorem 2.2 in Tasche (1997) requires the

stronger condition ), _, P(By)/log(k) = co. Under slower rates of mixing, as a consequence

of our Theorem 3.2 (see Remark 3.4), we obtain that if (P(Bg))x is non-increasing and

a, < Cn~? for some a > 0, (By) satisfies the Borel-Cantelli property (1.2) provided that
Z(P(Bn))(“+1)/“ =o0 and lim n*P(B,) = oo,

n——+oo
n>1

which improves Item (i) of Theorem 2.2 in Tasche (1997). Furthermore, we will prove that
this result cannot be improved in the specific case of irreducible, positive recurrent and
aperiodic Markov chains for some particular sequence (A)rso of nested sets (see Remark 3.5
and Section 5). Consequently, for this class of Markov chains, the size property (1.1) is not
enough for (By)g>o to satisfy (1.2).

In the stationary case, denoting by p the common marginal distribution, a natural ques-
tion is then: for sequences of sets (Ay)x~o satisfying the size property (1.8), what conditions
could be added to get the Borel-Cantelli property? Our main result in this direction is
Theorem 3.1 (i) stating that if

p(limsup 4,) >0 and lim B i1(n) =0, (1.10)
n—oo

n



then (By)g>o satisfies the Borel-Cantelli property (1.2) without additional conditions on the
sizes of the sets Ay (see (3.3) for the definition of the coefficients (. 1(n)). Notice that
the first part of (1.10) implies the size property (1.8) : this follows from the direct part of
the Borel-Cantelli lemma. For the weaker coefficients (1 1(n) defined in (4.2) (resp. B{f’f (n)
defined in Remark 4.2) and when the A;’s are intervals, Item (i) of our Theorem 4.1 implies
the Borel-Cantelli property under the conditions

p(limsup 4,) > 0 and ZBll(n) < 00 <resp. Zﬁﬁv(n} < oo). (1.11)

n>0 n>0

The proof of this result is based on the following characterization of sequences (Ay,) of intervals
satisfying the above condition: For a sequence (Ay) of intervals, u(limsup,, A,)) > 0if and only
if there exists a sequence of intervals (J;) such that .J;, C Ay, for any positive k, >, pu(Ji) =
oo and (J) fulfills the asymptotic equirepartition property

. > pet Ly
hmsupH% < 00, (1.12)
n Zk:l :u(‘]k) 00,14
where || - ||oo,, denotes the supremum norm with respect to p. Up to our knowledge, this

elementary result is new. We then prove that, under the mixing condition given in (1.11), the
sequence ({Xj € Ji}) has the strong Borel-Cantelli property (see Item (ii) of Theorem 4.1).
In the case of the Liverani-Saussol-Vaienti map (1999) with parameter v €]0, 1], the mixing
condition in (1.11) holds for B{e{’(n) and any 7 in ]0,1/2[. For v in |0,1/2[, our result can
be applied to prove that (By)rso satisfies the Borel-Cantelli property (1.2) for any sequence
(Ag) of intervals satisfying p(limsup,, 4,) > 0, and the strong Borel-Cantelli property (1.3)
under the additional condition (1.12) with J; = Ag. However, for the LSV map, Gouézel
(2007) obtains the Borel-Cantelli property (1.2) under the condition

0<y<1 and » A4 =o0 (1.13)

k>0

(but not the strong Borel-Cantelli property). Now

p(limsup 4,)) > 0 = A(limsup 4,) > 0 = Z A(Ag) = o0,
" " k>0
by the direct part of the Borel-Cantelli lemma. Hence, for the LSV map, (1.13) is weaker than
(1.11). Actually the condition (1.13) is the minimal one to get the Borel-Cantelli property
in the case A, = [0, a,] (see Example 4.1 of Section 4.3).

A question is then to know if a similar condition to (1.13) can be obtained in the setting
of irreducible Markov chains. In this direction, we prove that, for aperiodic, irreducible and
positively recurrent Markov chains, the renewal measure plays the same role as the Lebesgue
measure for the LSV map. More precisely, if (X;)reny and v are respectively the stationary
Markov chain and the renewal measure defined in Section 5, we obtain the Borel-Cantelli



property in Theorem 5.2 (but not the strong Borel-Cantelli property) for sequences of Borel
sets such that
Z v(Ay) = oo and Agy C Ap for any k£ >0, (1.14)
k>0
without additional condition on the rate of mixing. Furthermore we prove in Theorem 5.4

that this condition cannot be improved in the nested case.

The paper is organized as follows. In Section 2, we give some general conditions on
a sequence of events (By)r~o to satisfy the Borel-Cantelli property (1.2), or some stronger
properties (such as the strong Borel-Cantelli property (1.3)). The results of this section,
including a more general criterion than (1.5) stated in Proposition 2.3, will be applied all along
the paper to obtain new results in the case where By, = {X} € A}, under various mixing
conditions on the sequence (Xj)r>o. In Section 3, we state our main results for S-mixing and
a-mixing sequences; in Section 4, we consider weaker type of mixing for real-valued random
variables, and we give three examples (LSV map, auto-regressive processes with heavy tails
and discrete innnovations, symmetric random walk on the circle) to which our results apply;
in Section 5, we consider the case where (Xj)gso is an irreducible, positively recurrent and
aperiodic Markov chain: we obtain very precise results, which show in particular that some
criteria of Section 3 are optimal in some sense. Section 6 is devoted to the proofs, and
some complementary results are given in Appendix (including Borel-Cantelli criteria under

pairwise correlation conditions).

2 Criteria for the Borel-Cantelli properties

In this section, we give some criteria implying Borel-Cantelli type results. Let (Q, 7T, P) be a
probability space and (By)r>o be a sequence of events.

Definition 2.1. The sequence (By)g>o is said to be a Borel-Cantelli sequence in (€2, T, P) if
P(limsup,, By) = 1, or equivalently, >, _,1p, = 0o almost surely.

From the first part of the classical Borel-Cantelli lemma, if (By)g>o is a Borel-Cantelli
sequence, then ), P(By) = oo.

We now define stronger properties. The first one is the convergence in L.

Definition 2.2. We say that the sequence (By)io is a L' Borel-Cantelli sequence in (€2, 7, P)
if 320 P(By) = 00 and limy, o || (Sn/Eyn) — 1|1 = 0, where S, = ") | 15, and E, = E(S,).

Notice that, if (By)rso is a L' Borel-Cantelli sequence, then S,, converges to co in proba-
bility as n tends to co. Since (S, ), is a non-decreasing sequence, it implies that lim,, .S,, = co
almost surely. Therefrom (By)x~o is a Borel-Cantelli sequence.

The second one is the so-called strong Borel-Cantelli property.

Definition 2.3. With the notations of Definition 2.2, the sequence (Bg)x~o is said to be a
strongly Borel-Cantelli sequence if »,_,P(By) = 0o and lim,,_,(S,/E,) = 1 almost surely.

5



Notice that E(S,/FE,) = 1. Since the random variables S,,/E,, are nonnegative, by The-
orem 3.6, page 32 in Billingsley [1], if (B, )n>0 is a strongly Borel-Cantelli sequence, then
(Sn/En)n>o is a uniformly integrable sequence and consequenly (S, /FE,,),>o converges in L

to 1. Hence any strongly Borel-Cantelli sequence is a L' Borel-Cantelli sequence.

We start with the following characterizations of the Borel-Cantelli property.

Proposition 2.1. Let (Ap)g=o be a sequence of events in (2, T,P) and 6 €]0,1] be a real

number. The two following statements are equivalent:
1. P(limsup, Ag) > 9.
2. There exists a sequence (I'y)i>o of events such that T'y C Ay, Y, P(I'y) = 0o and

ZZ:I ]'Fk

S B | <1/§. (2.1)

lim sup
n

Furthermore, if there exists a triangular sequence of events (Agn)i1<k<n With Ay, C Ay,
such that E, := S P(Ag,) > 0, lim, E, = oo and (E;l Py 1,4,C7n)n>1 s uniformly
integrable, then P(limsup, A) > 0.

Before going further on, we give an immediate application of this proposition which shows
that a Borel-Cantelli sequence is characterized by the fact that it contains a subsequence
which is a L' Borel-Cantelli sequence.

Corollary 2.1. Let (Ag)r=o be a sequence of events in (Q,T,P) and § €]0,1] be a real
number. Then the following statements are equivalent:

1. P(limsup, Ag) = 1.
2. There erists a L' Borel-Cantelli sequence (Ty)rso of events such that Ty C Ay.

Now, if the sets A, are intervals of the real line, then one can construct intervals I';
satisfying the conditions of Proposition 2.1, as shown by the proposition below, which will
be applied in Section 4 to the LSV map.

Proposition 2.2. Let J be an interval of the real line and let p be a probability measure on
its Borel o-field. Let (Iy)k=0 be a sequence of subintervals of J and § €]0, 1] be a real number.
The two following statements are equivalent:

1. p(limsupy ) > 9.

2. There exists a sequence (I'y)p=o of intervals such that T'y C Iy, Y, o pu(I'x) = 0o and
(2.1) holds true.

Let us now state some new criteria, which differ from the usual criteria based on pairwise
correlation conditions. Here it will be necessary to introduce a function f with bounded
derivatives up to order 2.



Definition 2.4. Let f be the application from R in R defined by f(z) = 2?/2 for x in
[—1,1] and f(x) = || —1/2 for x in | — oo, —1[U]1, +o0.

We now give criteria involving the so defined function f.

Proposition 2.3. Let f be the real-valued function defined in Definition 2.4 and (Bg)r>o be
a sequence of events in (0, T,P) such that P(B;) > 0 and ), ,P(By) = oc.

(1) Suppose that there exists a triangular sequence (g;n)1<j<n Of non-negative Borel functions
such that g;,, < 1p, for any j in [1,n], and that this sequence satisfies the criterion below:
if S, = > i Gkn and E, = E(S,), there exists some increasing sequence (ng)x of positive

integers such that

lim F, =oco and lim E(f((g’nk — E’nk)/Enk)) = 0. (2.2)

k—o00 n—00

Then (By)rso is a Borel-Cantelli sequence.
(ii) Let S, =Y ,_, 1p, and E, =E(S,). If

lim E(f((S, — E,)/E,)) =0, (2.3)

n—o0

then (By)r>o is a L' Borel-Cantelli sequence.

(iii) If

S B G B(F(Se - B/E)) < oo, 2.4

>0 n  ke[ln]

then (By)rso is a strongly Borel-Cantelli sequence.

Remark 2.1. Since f(z) < x?/2 for any real x, (2.3) is implied by the usual L? criterion
(1.5), which is the sufficient condition given in Erdés and Rényi (1959) to prove that (By)k=o
is a Borel-Cantelli sequence. Moreover, (2.4) is implied by the more elementary criterion

ZE;‘?’IP’(BH) sup Var(Sy) < oo, (2.5)

>0 ke[l,n]

which is a refinement of Corollary 1 in Etemadi (1983) (see also Chandra and Ghosal (1998)

for a review).

3 [-mixing and a-mixing sequences

In order to state our results, we need to recall the definitions of the a-mixing, S-mixing and

-mixing coefficients between two o-fields of (2, T, P).

Definition 3.1. The a-mixing coefficient a(A, B) between two o-fields A and B of T is
defined by
2a(A, B) = sup{|E(|P(B|A) —P(B)|) : B € B}.



One also has a(A, B) = sup{ |[P(AN B) — P(A)P(B)| : (A, B) € A x B}, which is the usual
definition. Now, if X and Y are random variables with values in some Polish space and
A and B are the o-fields generated respectively by X and Y, one can define the S-mixing
coefficient 3(A, B) and the p-mixing coefficient ¢ (A, B) between the o-fields A and B by

B(A, B) = E(Sup IP(B|A) —]P’(B)\) and (A B) = H sup [P(B|.A) |H

BeB BeB

where P(-|A) is a regular version of the conditional probability given A. In contrast to the
other coefficients ¢(A, B) # ¢(B,.A) in the general case.

From these definitions 2a(A, B) < (A, B) < ¢(A,B) < 1. According to Bradley (2007),
Theorem 4.4, Item (a2), one also has

4da(A, B) = sup{||E(Y]A)||; : Y B-measurable, ||Y ||, =1 and E(Y) =0}. (3.1)

Let us now define the the S-mixing an a-mixing coefficients of the sequence (X;);ez.
Throughout the sequel

Fn=0Xr:k<m) and G,, =0(X;:i>m). (3.2)
Define the -mixing coefficients oo 1(n) of (X;)icz by
Boo1(n) = B(F_pn,0(Xp)) for any n >0, (3.3)

and note that the sequence (fo01(n))n>0 is non-increasing. (X;);ez is said to be absolutely
regular or f-mixing if lim,joe Boc1(n) = 0. Similarly, define the c-mixing coefficients o 1(n)
by

Qoo,1 (1) = a(F_n, 0(Xo)) (3.4)

and note that the sequence (@1(n))n>0 is non-increasing. (X;);ez is said to be strongly

mixing or a-mixing if lim, 1 eo.1(n) = 0.

3.1 Mixing criteria for the Borel-Cantelli properties

We start with some criteria when the underlying sequence is f-mixing and p(limsup,, 4,)) > 0
(see Remark 3.1).

Theorem 3.1. Let (X;)icz be a strictly stationary sequence of random variables with values
in some Polish space E. Denote by j the common marginal law of the random variables X;.
Assume that limppee Boo1(n) = 0. Let (Ag)r=o be a sequence of Borel sets in E satisfying
Y koo M(Ag) = +00. Set By = { X}, € Ay} for any positive k.

(i) If p(limsup,, A,) > 0, then (By)rso is a Borel-Cantelli sequence.

(ii) Set E, = > 5 p(Ay) and H, = E;' Y0 1a,. If (Hy)nso is a uniformly integrable
sequence in (E,B(E), ), then (Byg)iso is a L' Borel-Cantelli sequence.



(iii) Let Qpm, be the cadlag inverse of the tail function t — p(H, >1t). Set

Q*(0) =0 and Q" (u) = sup/ Qu, (s)ds for any u €]0, 1]. (3.5)
n>0
If
D i B (1)@ (Broa (4)) < o0, (3.6)
>0

then (By)kso is a strongly Borel-Cantelli sequence in (2, T,P).

Remark 3.1. By the second part of Proposition 2.1 applied with Ay, = Ay, if (H,)n>0 18
uniformly integrable, then p(limsup,, 4,) > 0. Hence (ii) does not apply if u(limsup,, A,)) =
0. On another hand, the map u — u@*(u) is non-decreasing. Thus, if 8. 1(j) > 0 for any
J, (3.6) implies that lim, o u@*(u) = 0. Then, by Proposition A.1, (H,),>o is uniformly
integrable and therefrom p(limsup, 4,) > 0. Consequently, if p(limsup, A,) = 0, (iii)
cannot be applied if o 1(j) > 0 for any j.

Remark 3.2. If the sequence (H,),>o is bounded in LP(u) for some p in |1, 00|, Q*(u) =
O(u~'/?) as u tends to 0. Then, by Proposition A.1, this sequence is uniformly integrable and
consequently, by (ii), (Bk)rso is a L' Borel-Cantelli sequence as soon as lim,; 100 Bo0.1(n) = 0.
If furthermore Z]>03_151 17(§) < oo, then, by (iii), (Bk)iso is a strongly Borel-Cantelli
sequence. In particular, if pu(A4; N A;) < Cu(A;)p(A;) for any (4,75) with i # j, for some
constant C, (H,)n>o is bounded in L?(u), and consequently (By)gso is a strongly Borel-

Cantelli sequence as soon as Zj>0j_1\/5m71(j) < 00.

Remark 3.3. Let S, = > 7, 14,(Xy) and E,, = E(S,). Inequality (6.31) in the proof of
the above theorem applied with 'y, = Ay gives

lim supI['E(fn(Sn — En)) < 2lim sup/ Goomdi,
E

n n

for any m > 0, where 1, is defined in (6.22), G,, = S,,/E,, and f,(z) = f(z/E,). It follows
that

limsup E(fn(Sn — En)) < 2]t

for any positive integer m. Now, from inequality (6.22) in the proof of Theorem 3.1, we have
|Vmlloo < @(a(Xo), F-n). Hence, if ¢(o(Xy), F-,,) converges to 0 as m tends to oo, then
lim,, IE( fu(Sn — En)) = 0 and consequently (By)r>o is a L' Borel-Cantelli sequence (see Item
(ii) of Proposition 2.3). Similarly, one can prove that, if ¢(o(Xy), G, ) converges to 0 as m
tends to oo, then (By)gso is a L' Borel-Cantelli sequence. For other results in the ¢-mixing
setting, see Chapter 1 in Josifescu and Theodorescu (1969).

Let us now turn to the general case where p(limsup,, A,) is not necessarily positive. In
this case, assuming absolute regularity does not yield any improvement compared to the
strong mixing case (see Remark 3.5 after Corollary 3.1). Below, we shall use the following

definition of the inverse function associated with some non-increasing sequence of reals.

9



Definition 3.2. For any non-increasing sequence (v, )nen of reals, the function v is defined
by v (u) = inf{n € N : v, <u} =37 -~ Tucv,}-

Theorem 3.2. Let (X;);ez be a strictly stationary sequence of random variables with values in
some Polish space E. Let (s 1(n))n>0 be its associated sequence of strong-mizing coefficients
defined by (3.4). Denote by p the law of Xo. Let (Ag)r=o be a sequence of Borel sets in E
satisfying Y .o 1(Ar) = +o00. Set By, = { X}, € Ay} for any positive k. Assume that there

exist ng > 0, C' >0, 0 > 0 and a non-increasing sequence (. (n)),>o such that for alln > ny,
Aoo1(n) < Can(n) and o, (2n) < (1 —0)a.(n). (3.7)

Suppose in addition that (u(Ay))n>1 1S a non-increasing sequence,

/;@?n))%oo as n — oo, and Z&:oo. (3.8)

2 o T(u(A,)

Then (By)k>o s a Borel-Cantelli sequence.

Remark 3.4. Let us first notice that Theorem 3.2 still holds with &, defined in (1.9) instead
of s 1(n) (the proof is unchanged). To compare Theorem 3.2 with Theorem 2.2 (i) in Tasche
(1997), let us consider

(W(Ay) ~ Cyn~ Y/ 02D (1og )~ and &, ~ Cyn~ "+ (logn)™®

with » > —1. Theorem 2.2 (i) in Tasche (1997) requires @ > 1 and b < 1 whereas an
application of Theorem 3.2 gives the weaker conditions: (r +2)b <a+r+ 1if r > —1 and
a>bif r=—-1.

Theorem 3.3. Let (X;);ez be a strictly stationary sequence of random variables with values in
some Polish space E. Let (s 1(n))n>0 be its associated sequence of strong-mizing coefficients
defined by (3.4). Denote by u the law of Xo. Let (Ag)k>0 be a sequence of Borel sets in
E satisfying Y poqm(Ax) = 4oo. Set By = {X) € Ay} for any positive k. Let E, =

> et H(Ar).
1. Let n(z) = 27 a1 ([7]). Assume that lim, E,;'n7'(1/n) = 0. Then (By)iso is a L'

Borel-Cantelli sequence.

2. Assume that there ezist a sequence (uy,)n~o of positive reals such that

N un<oo and Z'u a (Bpu,/n) < 0o. (3.9)

n>0 n>0 "

Then (By)kso 1S a strongly Borel-Cantelli sequence.

We now apply these results to rates of mixing O(n~*) for some positive constant a.
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Corollary 3.1. Let (Ay)r>o0 be a sequence of Borel sets in E satisfying Y, ., i(Ax) = +o0.
For any k > 0, let B, = {Xy € Ax}. Assume that there exists a > 0 such that as1(n) <
Cn=®, forn > 1.

1. If ZnZI(,u(An))(a“)/“ = 00, lim, n?u(A,) = oo and (u(A,))n>1 is non-increasing, then
(Bi)rs0 is a Borel-Cantelli sequence.

2. Iflim, n=Y(@+tVE, = oo then (By)gso s a L' Borel-Cantelli sequence.
8. If Y, cont @ u(A,)E % < oo then (By)i=o is a strongly Borel-Cantelli sequence.

Remark 3.5. According to the second item of Remark 5.1, Item 1. of Corollary 3.1 cannot

be improved, even in the S-mixing case.

Remark 3.6. Theorems 3.2 and 3.3 (and therefore Corollary 3.1) also hold if the coefficients
Qo1(n) are replaced by the reversed ones oy (n) = a(o(Xy),G,) (see Section 6.2.3 for a

short proof of this remark).

Remark 3.7. Let ay 1 (n) = a(o(Xp), 0(X,)). From the criteria based on pairwise correlation
conditions stated in Annex B, if aj1(n) = O(n™) with a > 1 then (By)k>o is a L' Borel-
Cantelli sequence if lim,, p Vet p  — o (see Remark B.1), which is the same condition
as in Corollary 3.1. Now if oy 1(n) = O(n™®) with a €]0,1[, (Bk)k>0 is a L' Borel-Cantelli
sequence when lim, n™'*%2E, = oo (see Remark B.1), which is more restrictive. Recall that,
for Markov chains . 1(n) = ay,1(n). Hence criteria based on pairwise correlation conditions

are less efficient in the context of a-mixing Markov chains and slow rates of a-mixing.

4 Weakening the type of dependence

In this section, we consider stationary sequences of real-valued random variables. In order
to get more examples than a-mixing or [f-mixing sequences, we shall use less restrictive
coefficients, where the test functions are indicators of half lines instead of indicators of Borel
sets. Some exemples of slowly mixing dynamical systems and non-irreducible Markov chains
to which our results apply will be given in Subsection 4.3.

4.1 Definition of the coefficients

Definition 4.1. The coefficients & (A, X) and 3(A, X) between a o-field A and a real-valued

random variable X are defined by

a(A, X) = sup IE(1x<i|A) —P(X <t)||, and B(A, X) = sup E(1x<]A) —P(X <t) i
te te

The coefficient $(A, X) between A and X is defined by

P(A, X) = sup [E(Lx<|A) —P(X < 1), -

teR
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From this definition it is clear that a(A, X) < 8(A, X) < @¢(A, X) < 1.
Let (X;)iez be a stationary sequence of real-valued random variables. We now define the

dependence coefficients of (X;);ez used in this section. The coefficients d 1(n) are defined
by
Qoo (n) = a(Fo, Xp,) for any n > 0. (4.1)

Here Fy = 0(Xy : k < 0) (see (3.2)). The coefficients 1 (n) and @1 1(n) are defined by

Bia(n) = B(o(Xo), X,) and  @11(n) = G(a(Xo), X,) for any n > 0. (4.2)

4.2 Results

Theorem 4.1. Let (X;);cz be a strictly stationary sequence of real-valued random variables.
Denote by p the common marginal law of the random variables X;. Let (Iy)r>0 be a sequence
of intervals such that p(l) > 0 and Y, o p(Ix) = 0o. Set By = { Xy, € I} for any positive
k, and E, =3 1, u(Iy).

(i) If p(limsup, I,,) > 0 and ), Br1(k) < oo, then (By)kso is a Borel-Cantelli sequence.
(ii) Let p € [1,00) and q be the conjugate exponent of p. If

JLII;O?Z/CP 1511 )=0 and SUp (Xo) H < 00,
then (By)rso is a L' Borel-Cantelli sequence.
(iii) Let p € [1,00) and q be the conjugate exponent of p. If
n—1 1/p
I, ~
L) Zk‘p_lﬁl 1(k) < oo and (Xo)|| < oo,
= B \I 7 n>0 e

then (Bg)ko s a strongly Borel-Cantelli sequence.
(iv) If limy, oo Bt Y007 L @11(k) =0, then (By)kso is a L' Borel-Cantelli sequence.
V) If > -0 Enlgpm(n) < 00, then (By)k=o is a strongly Borel-Cantelli sequence.

Remark 4.1. Item (v) on the uniform mixing case can be derived from Theorem 8 and
Remark 7 in Chandra and Ghosal (1998). Note that, if p = 1, the condition in Item (iii)

becomes
Z 1,(Xo)

Note that, for intervals (I)g>o satisfying the condition on right hand, we get the same

1
ZBH < oo and supE— < 00.

n>0

n>0 S

condition as in (v), but for £y 1(n) instead of @11 (n).

Remark 4.2. Theorem 4.1 remains true if we replace the coefficients §; 1(n) (resp. @11(n))
by A1 (n) = B(0(X.), Xo) (resp. ¢} (n) = $(0(X,), Xo)).
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Remark 4.3. Comparison with usual pairwise correlation criteria. Let us compare Theorem
4.1 wit the results stated in Annex B in the case pu(limsup,, I,,) > 0. From the definition of
the coefficients £y 1(n),

[P(Bk N Biin) — P(B)P(Biin)| < Sr1(n).

Hence the assumptions of Proposition B.1 hold true with v, = ¢, = 0 and «,, = 3171(71). In
particular, from Proposition B.1(i), if

n ok
hTILnE;2szin<ﬂ~l,l(j)7ﬂ<[k)> = 07 (43)

k=1 j=1
(Bi)i>o is a Borel-Cantelli sequence. For example, if f;(n) = O(n=) for some constant
a > 1, then, from Remark B.1, (4.3) holds if lim, n~ /@Y E, = co. In contrast Theorem
4.1(i) ensures that (By)k>o is Borel-Cantelli sequence as soon as ), B (k) < oo, without
conditions on the sizes of the intervals . Next, if £;1(n) = O(n~%) for some a < 1, then,
according to Remark B.1, (4.3) is fulfilled if lim,, n~'*(¢/?) E,, = co. Under the same condition,

Theorem 4.1(ii) ensures that (By)x>o is a Borel-Cantelli sequence if, for some real ¢ in (1, o],

Z 1Ik (X())

where p = ¢/(¢ — 1). Consequently Theorem 4.1(ii) provides a weaker condition on the sizes
of the intervals I, if the sequence (}_,_, 17, (Xo)/En)n>0 is bounded in L9 for some g > 2.

< 00, (4.4)

q

1
limn P E =0 and sup —
n n>0 En

As quoted in Remark 3.1, if g(limsup,, I,,) = 0 then (i), (ii), (iii) of Theorem 4.1 cannot
be applied. Instead, the analogue of Theorems 3.2 and 3.3 and of Corollary 3.1 hold (the
proofs are unchanged).

Theorem 4.2. Let (X;);cz be a strictly stationary sequence of real-valued random variables.
Denote by p the common marginal law of the random variables X;. Let (Iy)r~0 be a sequence
of intervals such that p(ly) > 0 and Y, o p(Ix) = 0o. Set By = { Xy, € I} for any positive
k, and E, ="} _, pi(Iy). Then the conclusion of Theorem 3.2 (resp. Theorem 3.3, Corollary
3.1) holds by replacing the conditions on (e 1(n))n=0 and (Ag)kso in Theorem 3.2 (resp.
Theorem 3.3, Corollary 3.1) by the same conditions on (Goo1(n))n>0 and (Ix)k>o-

Remark 4.4. Theorem 4.2 remains true if we replace the coefficients doo1(n) by &1 (1) =
(G, Xo) where G, = 0(X;,i > n) (see the arguments given in the proof of Remark 3.6).

4.3 Examples

Example 4.1. Let us consider the so-called LSV map (Liverani, Saussol and Vaienti (1999))
defined as follows:

1427 ifzel0,1/2
for0<vy<1, 6(z)= = ) ifee(01/2] (4.5)
2 — 1 if v € [1/2,1].
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Recall that if v €]0, 1[, there is only one absolutely continuous invariant probability p whose
density h satisfies 0 < ¢ < h(x)/277 < C < co. Moreover, it has been proved in [7], that the
N{elv (n) coefficients of weak dependence associated with (6"),,>0, viewed as a random sequence
defined on ([0, 1], i), satisfy B{ef(n) < kn~=)/7 for any n > 1 and some & > 0.

Let us first recall Theorem 1.1 of Gouézel (2007): let A be the Lebesgue measure over

[0,1] and let (Ix)r=0 be a sequence of intervals such that

> MIp) =o0. (4.6)

k>0

Then B, = {6" € I,} is a Borel-Cantelli sequence. If furthermore the intervals I; are
included in [1/2,1] then B, = {0" € I,,} is a strongly Borel-Cantelli sequence (this follows
from inequality (1.3) in [15], and Item (ii) of Proposition B.1.) If (1,,) is a decreasing sequence
of intervals included in (d, 1] with d > 0 satisfying (4.6), then B, = {6™ € I,} is strongly
Borel-Cantelli as shown in Kim (2007, Prop. 4.1).

We consider here two particular cases:

e Consider I, = [0, a,] with (a,),>0 a decreasing sequence of real numbers in ]0, 1] con-
verging to 0. Set B, = {0" € I,}. Using the same arguments as in Proposition 4.2
in Kim (2007), one can prove that, if ) _,
Conversely, if >~ a, = 0o, which is exactly condition (4.6), then (B,),>1 is a Borel-

a, < oo, then p(limsup,_,. B,) = 0.

Cantelli sequence.

Now, to apply Theorem 4.2 (and its Remark 4.4), we first note that it has been proved
in [8], that the &y »(n) coeflicients of weak dependence associated with (6"),>¢, viewed
as a random sequence defined on ([0, 1], 11), satisfy k1n= /7 < &) oo (n) < kogn~1=1/7
for any n > 1 and some positive constants k1 and k,. Hence, in that case, Theorem 4.2
gives the same condition (4.6) for the Borel-Cantelli property, up to the mild additional
assumption n'/7a, — co. This shows that the approach based on the &; (n) depen-
dence coefficients provides optimal results in this case. Now, if na, — oo, then (B,,),>1
is a L' Borel-Cantelli sequence. Finally, if > ., n"'(na,)"™' < oo, then (B,),>1 is a
strongly Borel-Cantelli sequence. B

e Let now (ay,)n>0 and (by,)n>0 be two sequences of real numbers in [0, 1] such that ap > 0
and b,41 = b, + a, mod 1. Define, for any n € N, I,,,1 = [by, byi1] if by < byig
and I,y1 = [bn, 1] U [0,b,41] if bpi1 < b,. It follows that (I,),>1 is a sequence of

consecutive intervals on the torus R/Z. Assume that >  _.a, = oo (which is exactly

neN
(4.6)). Since ju(In41) > Cay, the divergence of the series implies that > u(1,) = oo.
Applying Theorem 4.1 (iii), it follows that for any v < 1/2, (B,),>1 is a strongly Borel-
Cantelli sequence. Now if v = 1/2, applying Theorem 4.1 (ii) and (iii) with p = 1, we
get that (B,),>1 is a L' Borel-Cantelli sequence as soon as (>, _; ax)/log(n) — oo,
and a strongly Borel-Cantelli sequence as soon as (> ,_; ax)/(log(n))*™* — oo for

some ¢ > 0. If v > 1/2, we get that (B,),>1 is a L' Borel-Cantelli sequence as
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soon as (Yp_, ax)/n®~V/7 — oo, and a strongly Borel-Cantelli sequence as soon as
o, ax)/(n® =Y/ (log(n)) ) — oo for some & > 0.

Example 4.2. Let (g;);ez be a sequence of iid random variables with values in R, such that
E(log(1 + |eo|)) < oco. We consider here the stationary process

Xp=> 2, (4.7)

i>0
which is defined almost surely (this is a consequence of the three series theorem). The
process (Xi)k>0 is a Markov chain, since X, 11 = %Xn + €p41. However this chain fails to
be irreducible when the innovations are with values in Z. Hence the results of Sections 3
and 5 cannot be applied in general. Nevertheless, under some mild additional conditions, the

coefficients 3y 1(n) of this chain converge to 0 as shown by the lemma below.

Lemma 4.1. Let p be the law of Xy. Assume that ju has a bounded density. If
supyso tPP(log(1 + |go]) > t) < oo  for somep > 1, (4.8)
then By1(n) = O(n=®P=1D/2),

Remark 4.5. The assumption that p has a bounded density can be verified in many cases.
For instance, it is satisfied if &; = & + n; where (§;) and (7;) are two independent sequences
of iid random variables, and &, has the Bernoulli(1/2) distribution. Indeed, in that case,
Xo=Uo+Zy with Uy = >0 27%¢_; and Zy = > 27"n_,. Since Uy is uniformly distributed
over [0, 2], it follows that the density of y is uniformly bounded by 1/2.

Since (X )kez is a stationary Markov chain, de1(n) < Bl,l(n). Hence, under the assump-
tions of Lemma 4.1, we also have that d.1(n) = O(n=®"=Y/2). Let then B, = {X,, € I,.}.
As a consequence, we infer from Lemma 4.1, Theorems 4.1 and 4.2 that

e If p(limsup, I,,) > 0, p has a bounded density and (4.8) holds for some p > 3, then
(Bn)n>1 is a Borel-Cantelli sequence.

e If 1 has a bounded density, (4.8) holds, >~ -, (;L(In))(pﬂ)/(p*l) = 00, (UW(ln))n>1 18

non-increasing, and lim, n®=1/2(1,,) = oo, then (B, ),>1 is a Borel-Cantelli sequence.
g >

Example 4.3. We consider the symmetric random walk on the circle, whose Markov kernel

is defined by

1

Kf(z) = 5(f(z+a) + f(z - a)) (4.9)

on the torus R/Z with a irrational in [0,1]. The Lebesgue-Haar measure A is the unique
probability which is invariant by K. Let (X;);en be the stationary Markov chain with tran-
sition kernel K and invariant distribution A\. We assume that a is badly approximable in the

weak sense meaning that, for any positive €, there exists some positive constant ¢ such that
d(ka,Z) > c|k|~'"¢ for any k > 0. (4.10)
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From Roth’s theorem the algebraic numbers are badly approximable in the weak sense (see
for instance Schmidt [26]). Note also that the set of numbers in [0, 1] satisfying (4.10) has

Lebesgue measure 1. For this chain, we will obtain the bound below on the coefficients

51,1(”).

Lemma 4.2. Let a be badly approzimable in the weak sense, and let (X;);en be the stationary

Markov chain with transition kernel K and invariant distribution \. Then, for any b in

(0,1/2), Bra(n) = O(n7?).

Since (Xj)kez is a stationary Markov chain, de1(n) < 51,1(71)- Hence, under the assump-
tions of Lemma 4.2, s 1(n) = O(n™?) for any b in (0,1/2). As a consequence, we infer from
Lemma 4.2, Theorems 4.1 and 4.2 the corollary below on the symmetric random walk on the
circle with linear drift.

Corollary 4.1. Let t be a real in [0,1[. Set Y, = X — kt. For any positive integer n, let
I, =1[0,n7°]. Set B, ={Y, € I,}. If § < 1/3, (B,)n>1 is a strongly Borel-Cantelli sequence
for any t in [0,1]. Now, if t is badly approximable in the strong sense, which means that
(4.10) holds with € = 0, (By,)n>1 s a strongly Borel-Cantelli sequence for any 6 < 1/2.

5 Harris recurrent Markov chains

In this section, we are interested in the Borel-Cantelli lemma for irreducible and positively
recurrent Markov chains. Let E be a Polish space and B be its Borel o-field. Let P be a
stochastic kernel. We assume that there exists a measurable function s with values in [0, 1]

and a probability measure v such that v(s) > 0 and
P(z,A) > s(x)v(A) for any (z,A) € E x B. (5.1)

Then the chain is aperiodic and irreducible. Let us then define the sub-stochastic kernel @)
by
Q(z,A) = P(z,A) — s(x)v(A) for any (x,A) € E x B. (5.2)

Throughout this section, we assume furthermore that
Z vQ"(1) < oc. (5.3)
n>0
Then the probability measure
-1
p= (> v m) dover (5.4)
n>0 n>0

is the unique invariant probability measure under P. Furthermore the stationary Markov
chain (X;);en with kernel P is positively recurrent (see Rio (2017), Chapter 9 for more
details) and [-mixing according to Corollary 6.7 (ii) in Nummelin (1984). Thus a direct
application of Theorem 3.1 (i) gives the following result.
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Theorem 5.1. Let (Ax)r>o be a sequence of Borel subsets of E' such that p(limsup,, A,) > 0.
Then Y i 14, (Xy) = 00 a.s.

Obviously the result above does not apply in the case where the events are nested and
lim,, ;1(A,) = 0. However in this case, the regeneration technique can be applied to prove the
following result.

Theorem 5.2. Let (Ay)i>o be a sequence of Borel subsets of E such that ), _,v(Ax) = oo
and Ap11 C Ag for any positive k. Then Y, 14, (X)) = 00 a.s.

Suppose now that p(limsup, A,) = 0 and that the events (A,),>1 are not necessarily
nested. Then applying Corollary 3.1 and using Proposition 9.7 in Rio (2017) applied to
arithmetic rates of mixing (see Rio (2017) page 164 and page 165 lines 8-11), we derive the

following result:

Theorem 5.3. Let Ty be the first renewal time of the extended Markov chain (see (6.75)
for the exact definition). Assume that there exists a > 1 such that P,(Ty > n) < Cn™®
for n > 1. Suppose furthermore that (Ag)k>0 S a sequence of Borel subsets of E such
that 3", o, ((Ay)) @Y/ = oo, lim,, n%u(A,) = 0o and (1(A,))n>1 is non-increasing. Then
Y ks 14, (Xi) = 00 a.s.

If the stochastic kernel Q(z,.) defined in (6.72) is equal to ,, then Theorem 5.2 cannot
be further improved, as shown in Theorem 5.4 below

Theorem 5.4. Let E be a Polish space. Let v be a probability measure on E and s be a

measurable function with values in |0, 1] such that v(s) > 0. Suppose furthermore that
/ L) < 0o (5.5)
g () . .
Let
P(z,.) = s(x)v+ (1 — s(x))d,. (5.6)

Then P is irreducible, aperiodic and positively recurrent. Let (X;);en denote the strictly
stationary Markov chain with kernel P and (Ay)r>o be a sequence of Borel subsets of E such
that Y, o V(Ar) < 00 and Apyy C Ay for any positive k. Then Y, 14, (Xi) < 00 a.s.

Remark 5.1. Let us compare Theorems 5.2 and 5.3 when P is the Markov kernel defined
by (5.6) with £ = [0,1], s(z) = z and v = (a + 1)z*\ with @ > 0 (here X is the Lebesgue
measure on [0, 1]). For this example, pp = az® '\ and P,(Ty > n) ~ al'(a)n~". Furthermore,
from Lemma 2, page 75 in Doukhan, Massart and Rio (1994), if (8,)n>0 denotes the sequence
of B-mixing coefficients of the stationary Markov chain with kernel P, then

al'(a) < liminfn®g, <limsupn®f, < 3al'(a)2¢.
Now, for any k > 1, let Ay, = I, =]a,/*, b}/“).
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e Assume that [;,1 C I, which means that (ax) is non-decreasing and (by) is

increasing. Then Theorem 5.2 appliesif ), _,(b; plati/e al(eaﬂ)/ )

non-

= oo whereas Theorem

5.3 applies if lim,, n®(b, — a,) = oo and Y, ,(bx — ax)®*V/% = co. Note that the first
condition is always weaker than the second one. Note also that, if limga, > 0, the

first condition is equivalent to ), _,(by — ar) = oo, which is then strictly weaker

than

S peolbr — ap)@tV/a = oo, Since (b — ax) = p(ly) = P(X; € Iy), the condition
> is0(bk — ax) = oo is the best possible for the Borel-Cantelli property (this is due to

the direct part of the Borel-Cantelli lemma).

e Assume now that a; = 0 and (by) is non-increasing. In that case, v ()

necessary condition to get the Borel-Cantelli property.

= (N(Ik))(a+1)/a,
for any k > 1. According to Theorem 5.4, it follows that Y-, -, (u(L,))“™™/* = o0 is a

e Assume now that I =Ja)’, (2a,)/?] C [0,1] with (az)x | 0. Since L1y ¢ I in this
case, Theorem 5.2 does not apply whereas the conditions of Theorem 5.3 hold provided

that lim, n“a, = oo and ), a, aleth/e —

6 Proofs

6.1 Proofs of the results of Section 2
6.1.1 Proof of Proposition 2.1.

We start by showing that 2. = 1. Let I' = limsup, I'x. It suffices to prove that P(T")
Note first that

FZZ 1 Fk

s ey |, <0 T

H Zk 11Fk
Zk 1

by (2.1). Hence it is enough to prove that

11_‘(‘ Zk 11Fk

2k PTe) 4

=1 and lim sup‘

1

> 0.

This follows directly from (2.1) and the fact that, by definition of the limsup and since

> koo P(Tk) = +o0,

n
kl]‘

Sopmy — 0P

hm 1re

We prove now that 1. = 2. Proceeding by induction on k one can construct an increasing

sequence (ny)g>o of integers such that ny = 1 and

'I’Lk—l

IP( U Aj> > §(1—27%) for any k > 0.

J=nk-1
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Define now the sequence (I';);~¢ of Borel sets by

j-1
I, =4, andIl'; =A4;\ (U Al') for any j €]ng, ngy1[, for any k> 0.

1=Ng
From the definition of (I';) ;>0
nk+1—1
1p, =1 =1 <1 forany k> 0.
Z;c (Uie[nk,nk+l[ Fl) (Uie[nk,nk+1[ Al)

Consequently, for any j > 0 and any n in [nj,n;41],

n J o Mkg1—l
S (X ) <+t
i=1 k=0 i=ny
Furthermore, from (6.1),
n 7 np—1
SPr) =Y P( | A)=(G-15
=1 k=1 T=Nk_1

for any j > 1 and any n in [n;,nj4[. Hence, if G, = (X1, P(Fi))fl >, 1p,, then G, <
(7+1)/((j —1)d) for n in [nj, nj41[, which ensures that limsup, G,, < 1/0.

We now prove the second part of Proposition 2.1. Suppose that there exists a triangular
sequence of events (Ay,)i1<k<n With Ay, C Aj, such that E, = Yo P(Ag,) — oo and
that the sequence (Z,),>1 defined by Z, = E,j ISy 1 Ay, is uniformly integrable. Set
Cn = Ujon Ag- For any n > N,

E(Zy) = E(Zules) + E(Zuley) < (N/Eo) +E(Zuley),

since » ,_, 1a,, < N on Cf. Using Lemma 2.1 (a) in Rio (2017), it follows that
- 1 - P(Cn)
1 =E(Z,) < (N/E,) + / Qz.(w)Qu,, (w)du < (N/E,) + sup / Qz, (w)du,
0 n>0Jo
where Q7 denotes the cadlag inverse of the tail function ¢t — P(Z > t). Hence,
P(CN)
1 =1limE(Z,) < sup/ Qz, (u)du.
n n>0 Jo

Now, if P(limsup, Ax) = 0, then limyP(Cy) = 0. If furthermore (Z,),>¢ is uniformly
integrable, then, by Proposition A.1, the term on right hand in the above inequality tends

to 0 as N tends to oo, which is a contradiction. The proof of Proposition 2.1 is complete. ¢
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6.1.2 Proof of Corollary 2.1.

The fact that 2. implies 1. is immediate. Now, if 1. holds true, then, by Proposition 2.1,
there exists a sequence (I'y);~o of events such that I'y C Ay, >, P(I'x) = +00 and (2.1)
holds with § = 1. Since || >} _; 1,/ > p_; P(T'x)|l1 = 1, it follows that

DY LIS ‘ =1. (6.2)

S P

which, together with (6.2), implies that the above sequence (I'y)pso is a L' Borel-Cantelli

=2
1

H Zk 11Fk _1
Zk 1

<2<H§11< o

sequence. Hence Corollary 2.1 holds. ¢

6.1.3 Proof of Proposition 2.2.

The fact that 2. = 1. follows immediately from Proposition 2.1. We now prove the direct
part. Proceeding by induction on k one can construct an increasing sequence (ng)x>o of
integers such that ng = 1 and

ng—1
u(U )>51—2 ) for any k > 0. (6.3)

J=nk-1

Now, for any k& > 0, we construct the intervals I'; for j in [ny, ngq][. This will be done by
using the lemma below.

Lemma 6.1. Let (Jy)repi,m) be a sequence of intervals of R. Then there exists a sequence
(Tk)kep,m) of disjoint intervals such that \J._; Tw = Upy Jx and 'y C Jy for any k in [1,m)].

Proof of Lemma 6.1. We prove the Lemma by induction on m. Clearly the result holds
true for m = 1. Assume now that Lemma 6.1 holds true at range m. Let then (Ji)rep m1]
be a sequence of intervals. By the induction hypothesis, there exists a sequence (I'xm)1<k<m
of disjoint intervals such that (J;, Tx.m = U~ Jk and Iy, C Ji for any k in [1,m]. Now,
at the range m + 1, define now the intervals 'y for & in [1,m] by I'y = 0 if 'y ,,, C Jpqr and
I'y =Tkm if Ty & Jipg1. Clearly these intervals are disjoint. Set

Lyt = ) (r; N JmH). (6.4)
k=1

If Ty = 0, then T'¢ N Jpp1 = 1. Otherwise, from the definition of Ty, 'y is a nonempty
interval and I'y & J,,11, which implies that I'{, N J,,4+1 is an interval. Hence I';,4; is a finite
intersection of intervals, which ensures that I',,.; is an interval. By 6.4, I';,,1 does not
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intersect Iy for any k in [1,m]. Hence the so defined intervals I'y are disjoint, Iy C J for
any k in [1,m + 1]. Finally

m+1 m

kL;Jl Iy = Jms1 U(U Fk) = Jmt1 U(Q Fk,m> = Jm41 U<,Q J;;) (6.5)

k=1

Hence, if Lemma 6.1 holds true at range m, then Lemma 6.1 holds true at range m+ 1, which
ends the proof of the lemma. ©

End of the proof of Proposition 2.2. For any £ > 0, by Lemma 6.1 applied to
(13) jenpmpsa]> there exists a sequence (I';) e, .., [ Of disjoint intervals such that

U I'; = U I; andI'; C I; for any j € [ng, njg1[. (6.6)

JEMK k1] JEME,NEg1]

From now on the end of the proof is exactly the same as the end of the proof of the first part
of Proposition 2.1. ©

6.1.4 Proof of Proposition 2.3.

We start by proving Item (ii). Let f be the function defined in Definition 2.4 and X be any
integrable real-valued random variable. Then

[ X[ < [[XTxi<alle + XL xpsalle < V2E(F(X)) 4 2E(f(X)). (6.7)

Consequently, if (2.3) holds, then lim, . ||(S, — E,)/E,|[1 = 0, which proves Item (ii).

Proof of Item (i). Applying (6.7), we get that limy_e ||(Sn,/En,) — 1]1 = 0. Hence, by
the Markov inequality, limyg_,. ]P’(Snk < Enk /2) = 0, which proves that gnk converges to 0o
in probability as k tends to co. Now g;,, < 1p, any j in [1,n;]. Therefrom S, < S,
and consequently S, converges to oo in probability as k tends to oco. Since (S,), is a
non-decreasing sequence of random variables, it implies immediately that lim,, ., S, = 400
almost surely, which completes the proof of Item (i).

Proof of Item (iii). For any non-negative real x, define ' : x — E(z) = E(Sy)). E
is a non-decreasing and cadlag function defined on R* with values in RT. Let E~! be its
generalized inverse on RT defined by E~!(u) = inf{x € R* : E(z) > u}. Hence

r>EYu) <= E(x)>u. (6.8)
Note that E([z]) = E};). Let 7,, = o™ for a fixed o > 1 and define
m, = Er,) =inf{k >1: E(k) >7,}.

Hence (m,),>1 is a non-decreasing sequence of integers. Note also that there exists a positive
integer ny depending on « such that, for any n > ng, m, < m,,1. Indeed, let assume that

21



there exists n > ngy such that m,, = m,;. By definition E(m, — 1) < o™ and E(m,) =
E(myy1) > o™ This implies that

"t < E(my, — 1) +P(B,,,) <a" +1.

Since a > 1, there exists an integer ngy such that the above inequality fails to hold for any
n > ng. This contradicts the fact that there exists n > ng such that m,, = m,,.1. Let us then
show that

(Sm,,/Em,) — 1 almost surely, as n — oo. (6.9)

By the first part of the Borel-Cantelli lemma, (6.9) will hold provided that

> E(f((Smn = Emy)/Em,)) < oc. (6.10)

n>ng

Hence, setting, for any real b > 0,

f*(x/b) := sup E(f((Sk — Ek)/b)) ,

1<k<[a]

to prove (6.10), it suffices to show that

> [(mn/En,) < o0. (6.11)
n>ng
Write
Mp41 Mn+1 _
S/ B) = Y S BB ma/En)( Y P(BY) 1
n>ng n>ng k=mp+1 k=mn,+1
Mp+1 Mn+41 1
<> Y PBISREL)( Y PBY)
n>ng k=mn+1 k=myn+1

Note now that, for any real a > 1, f(ax) < a®f(x). Therefore

Mn+1 Mn+1
> ma/En) <30S BBOESEn AR/ ED (Y P(B)) o
n>ng n>ng k=mp+1 l=mn+1

Next, for any k < my,1, By < F,

Mn41

< Tyy1 + P(Bp,,y) <™+ 1, E,, > o™ and

Mn+1
N B(B) = By — By 2 0" = (0" 4 P(Byy,) 2 a"(a— 1) — 1> a"(a —1)/2,
l=mn+1

for any n > n;. Hence, for any n > n; and any 1 < k < my,1,

S By » CMaoD @A D)) Ble— )

2x 4o - 4o
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So, overall, setting ny = max(ng,n;),

Mp+1
S Frma/5,,) < 2OT S S BB gy~ 3 BB .
n>nso n>ng2 k=mpn—+1 I~<:>mn2

proving (6.11) (and subsequently (6.9)) under (2.4). The rest of the proof is quite usual
but we give it for completeness. Since (S,),>1 is a non-decreasing sequence as well as the
normalizing sequence (F,),>1, if 1 <m, <k < my1,

E'mn Smn Sk Emn+1 Smn+l
Em . Ep. =g = En. B,

Mn41

n+1

But, for any positive integer k, o* < E,,, < of + P(By). Therefore E,,, .,/Ep, — «, as
n — oo. Hence, by using (6.9), almost surely,

(1/a) < hmmf(Sk/Ek) < limsup(Sk/Ey) <

k—o00

Taking the intersection of all such events for rationals a > 1, Item (iii) follows. ¢

6.2 Proofs of the results of Section 3
6.2.1 Proof of Theorem 3.1 (S-mixing case)

Throughout this section, §; = foo1(j). Items (i) and (ii) will be derived from the proposition
below.

Proposition 6.1. With the notations of Theorem 3.1, let (I'y.n)1<k<n be a double array of
Borel sets in E. Set E, = Y_p_ w(Ty) and G, = E;1 30 1r, . Suppose that E, >
0 for any positive n, lim, 1o E, = oo and (Gn)nso 18 a uniformly integrable sequence in
(E,B(E),p). Let By = {Xy, € Tip} and S, = 3p_ 1p,,. If limyeo B = 0, then

lim ||(S, — E,)/Ep|1 = 0. (6.12)

n—oo

Proof of Proposition 6.1. From (6.7), it is enough to prove that

lim E(f,(S, — E,)) =0, where f,(z) = f(z/E,). (6.13)

n—oo

Now, by setting Sy = Ey = 0, we first write

n

fn(‘gn - En) = Z(fn(gk - Ek)) - fn(gk—l - Ek—l) ) (614)

k=1

Let then Ty = 0 and, for £ > 0,

=Sy — By, & =T — Thmr = 1, (Xi) — u(Thn)- (6.15)
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With these notations, by the Taylor integral formula at order 1,

Fa(Sk = Ei)) = fu(See1 — Eje1) = fulTh) — fn(Tk—ll)
= fv/v,(Tk—1>£k _'_/ (fT/L(Tk—l + tgk) - fé(Tk_l))ék dt.

0

Now f/(z) = E;'f'(z/ E ). Moreover, from the definition of f, f’is 1-Lipschitzian. Hence

(fr(Thor + &) — fo(Tuo1)) & < B2

for any ¢ in [0, 1], which implies that

FalT) = falTior) < fulTeo1)& + E,287 (6.16)

Now, using (6.14), (6.16), taking the expectation and noticing that f),(Ty) = f(0) = 0, we
get that
E(f.(S, — En)) ZE (Th1)&) + E ZM Lin). (6.17)

k=1

Next, let m > 2 be a fixed integer. For n > m,

fa(T-1)8k = [ (Th-my. )§ wZ (Th—g) = Fi(Tirj1ys ) ) -

Taking the expectation in the above equality, we then get that

m—1

E(f1(Te1)&k) = Cov(fo(Tiromy,)s 1s,,) + Y Cov(fo(Tih-p.) = FoTthmj=1).): 15,.,)-
j=1

(6.18)
In order to bound up the terms appearing in (6.18), we will use Delyon’s covariance inequality,
which we now recall. We refer to Rio (2017, Theorem 1.4) for an available reference with a

proof.

Lemma 6.2. - Delyon (1990) - Let A and B be two o-fields of (Q,T,P). Then there exist
random variables da and dg respectively A-measurable with values in [0, (A, B)] and B-
measurable with values in [0, (B, A)] , satisfying E(d4) = E(dg) = B(A,B) and such that,
for any (p, q) in [1,00]? with (1/p)+(1/q) = 1 and any random vector (X,Y) in LP(A)x L1(B),

| Cov(X, Y)| < 2(E(dalX[7) " (E(dg]y'|7)"", (6.19)
where (E(da|X[7)"" = || Xl if p = 00 and (E(ds|Y]9))"" = ||V |l if ¢ = o0

We now bound up the first term in the right-hand side of equality (6.18). If k¥ < m, then
T(k—m), = 0, whence
COV(fé(T(k_mM), 1Bk,n) = 0.
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Set
Wi = Z (1pi+k’n(Xi) — [L(Fi+k7n)> for any [ < k. (6.20)

—k<i<—l

If k& > m, using the stationarity of (X;);cz, we obtain that

E(f3(Tth-my. )x) = Cov(fr(Wim), 1r, . (Xo0)). (6.21)
Let us now apply Lemma 6.2 with A= F_,,,, B=0(Xy),p=00,¢=1, X = f} (Wg,») and

Y =1, (Xo): there exists some measurable function ¢, satisfying

0 <ty < p(o(Xg), Fom) and /Ewmd,u = B, (6.22)

such that, for any k > m,

Covl £y (Tpm. o 1a,) < 21 File [ Ar, i (6:23
E

Next f!(z) = E; f(x/E,). Since ||f'||ls < 1, it follows that || f/ e < E;'. Summing (6.23)
on k and using this bound, we finally get that

E

S Cov( £ (Ti-my. ) 1n,) <2 / Grtbmd, (6.24)
k=2

where G, is defined in Proposition 6.1.
We now bound up the other terms in the right-hand side of equality (6.18). If j > k, then
Tik—j),. = Tik—j—1), = 0, which implies that

Cov(fr(Tte-y),) = fr(Tte=j-1),):15,,) = 0.

If 7 < k, using the stationarity of (X;);cz, we obtain that

Cov (/i (Tw-j),) = Fn(Tih—j-1), ) 18,.,.) = Cov(fy,(Wij) — fr(Wijs1), 1, (X0)),  (6.25)

where W, ; and W, ;41 are defined in (6.20). Applying Lemma 6.2 with A = F_;, B = o(X,),
p=q=2,X=f,(Wi;) — f,(Wijs1) and Y = 1, (Xo), we obtain that there exist some
0(Xo)-measurable random variable b; and some F_;-measurable random variable n; with
values in [0, 1], satisfying

E(b;) = E(n;) = B; (6.26)

and such that

Cov(fr (W) = f,(Wi 1), 1r, . (X0)) < 2\/E(ﬁj\fé(Ww) = (Wi i) P)E(;1p, , (X0)) -
(6.27)
Next, from the definitions of f, and f, f/(z) = E;'f'(z/E,) and f is 1-Lipschitzian. Con-
sequently

fo(Wis) = FoWijen)| < B2 (Wi — Wil = B2, (X)) — w(Tazjn)l,
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which implies that

E(nl £ (Wig) = Fu(Wigr) ) < BB 1r,,, (Xog) = p(Cejn) ),

with b = E(n; | ¢(X_;)). Combining the above inequality, (6.27) and the elementary
inequality 2v/ab < a + b, we infer that

E2 Cov(f},(Wi) = frn(Wiji1), 1r,.,. (Xo)) < E(bilr, , (Xo) + 0|1, (X ) = p(Thjn) ).
(6.28)
Recall now that b; is o(Xo)-measurable and b’ is o(X_;)-measurable. Hence there exists Bore-
lian functions ;o and ;; with values in [0, 1] such that b; = ©;(Xo) and b; = p;1(X_;).
Using now the stationarity of (X;);cz, we get

E(bjlr,, (Xo) +bjl1r, , (X—j) — p(Th—jn)*) = / (wjolre, + @il — p(Chjn)*)dp.
E
Next, applying the elementary inequality
‘11_‘]@7_7‘,71 - M(kaj,n)‘z < 1Fk7j,n + N(Fk*j,n)a

noticing that [, ¢;1du = f; and putting together (6.25), (6.28) and the above inequalities,
we get

E2 Cov(fi(Tw-iy,) = foTo—je1),)s 15,.,.) < Bit(Crejn) + / (¢iolr,, +@ialr,_,,)du,
E

(6.29)
for some Borelian functions ¢, and ¢;; with values in [0, 1] satisfying
[ o= [ pradn=5, (630
E E
Finally, summing (6.29) on j and k, using (6.17), (6.18) and (6.24), we obtain
~ ~ ~ m—1 ~ m—1
B(fu(S0 - B) < B2 (143 6) 42 [ Ga(vw+ B Y 4))dn (6.31)
j=1 E j=1
where
Vs = (wj0 + ©51)/2 (6.32)

Let A\ denote the Lebesgue measure on [0, 1] and let Q¢, be the cadlag inverse function of
the the tail function of G,,. Then, by Lemma 2.1 (a) in Rio (2017) applied to the functions
Gy and 1,<y,,,

Bm
/ Gnmdp = // Gnlu<y,,dp @ A < Qa, (s)ds. (6.33)
B Ex[0,1] 0

In a similar way

Bj
/ Gnidp < Qq, (s)ds. (6.34)
E

0
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Putting the two above inequalities in (6.31), we get:

- - - Bm
E(fu(S, — Ey) +Z / 1+ 2Qc, (s))d ) Qc, (s)ds. (6.35)

0

We now complete the proof of Proposition 6.1. Since fol Qac,(s)ds = [, Gpdpu = 1, the
above inequality ensures that

~ - - Bm
E(fa(Sh — En)) < E,;'(3m —2) +2 Qa, (s)ds. (6.36)
0
It follows that
~ - - Bm
limsupE(f((S, — En)/Ey)) < 2limsup Qa, (s)ds (6.37)
n—o00 n—o00 0

for any integer m > 2. Now lim,1e0 B = 0. Consequently, if the sequence (G,)nso is
uniformly integrable, then, by Proposition A.1, the term on right hand in the above inequality
tends to 0 as m tends to oo, which ends the proof of Proposition 6.1. ¢

End of the proof of Theorem 3.1. Item (ii) follows immediately from Proposition 6.1
applied with I'y,, = Ax. To prove Item (i), we note that applying Proposition 2.1 with
(Q,T,P) = (X,B(X), 1), there exists a sequence of events (I'y)g>o such that (Txn)ks0 =
(T'k ) k>0 satisfies the assumptions of Proposition 6.1. Item (i) then follows by applying Propo-
sition 6.1.

It remains to prove Item (iii). Here we will apply Proposition 2.3 (iii). Thoughout the
proof of Item (iii), Sy = 1 by convention. For any positive integer k, let Sy = Z?zl 1p, and
= E(Sk). Since f is convex and f(0) = 0,

f((Sk = Ek)/ En) < (Ex/En) f((Sk — Ex)/Ex)
for any k& in [1,n]. Applying now Inequality (6.35) in the case I';,, = A;, we get that

/8 m

m— ﬁ]
B(f((Sc ~ B/BY) < B Y. / (14 2Qu())ds +2 [ Qu, (s)ds

0

Now, from the definition of Q*,
/ Qn,(s))ds < uQ*(u) for any u €]0,1] and any k£ > 0.
0

The three above inequalities ensure that

supE(fu(Se — Ex)) < B0 Y B52Q7(8) + 1) + 28,Q" (B). (6.38)

ksn JE[0,m—1]
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Let ng be the smallest integer such that FE,, > 2. For n > ng, choose m :=m,, =1+ [E,] in
the above inequality. For this choice of m,,, noticing that Q*(5;) > Q*(1) = 1, we get

B(5,) (5, P(B)
IR R ED M DI LTS '

E,
n>ng n>ng “0<j<[En]

(6.39)

Q" (Bm,,)

We now bound up the first term on the right-hand side. Clearly

Y ) BQBHEP(BY) =Y BQNB) D, EP(B

n>no 0<5<[En] >0 n:En>jV2

Next, noticing that E, — E, 1 = P(B,), we get that P(B,)/E? <1/E,_1 — 1/E,. It follows
that
> E*P(B,) <1/E, 1,

n:Ep>75V2
where n; is the smallest integer such that FE, > jV 2. Since En, 1 > B, — 1, 1/Enj,1 <
2/(j V2). Hence

DD BQUGER(B) <1423 578,078 < (6.40)
n>ng 0<5<[En] J>0
under condition (3.6). To complete the proof of (iii), it remains to prove that
> Brun@ (B, B, ' P(B,) < o0 (6.41)
n>ng

under condition (3.6), where m,, = 1+ [E,]. For any integer k > 2, let I} be the set of
integers n such that [E,] = k. By definition, [ is an interval of N. Furthermore, from the
fact that u(A,) <1, I # 0. Since lim,, E,, = co, this interval is finite. Consequently

Z P(B,) = Eswpr, — Eintr-1 < Esupr, — Einer, +1 < 2.
nely
Now, recall that ng is the first integer such that E,, > 2. Consequently ny = inf I, and

Z B, Q" ﬁmn Zﬂkﬂ@ (Br+1) Z P(EBTL) < QZ k™ B Q" (Bran) < 00,

n>ng E>2 nely, n k>2

under condition (3.6). This ends the proof of Item (iii). Theorem 3.1 is proved. ©

6.2.2 Proofs of Theorems 3.2 and 3.3 (a-mixing case)

Proof of Theorem 3.2. To apply Item (i) of Proposition 2.3, we shall prove that under
(3.7) and (3.8), there exists a sequence (1,),~0 of positive integers such that setting m,, =
inf{k € N* : ¢ >n}, S, = 7 llAw (Xy,) and E, = E(S,) = 277" u(Ay,) (so here
Gin = g5 = 14,(X;) if j € 9(N*) and 0 otherwise), we have

lim Eyv =oco and lim (f((SQN - E~’2N)/E~’2N) ) =0. (6.42)

N—oo N—oo
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To construct the sequence b = (1,)n>1, let us make the following considerations. By the
second part of (3.8), there exists a positive decreasing sequence (9,),>1 such that 6, — 0 ,

as n — 0o, and

p(Ay) —
; 6”—a;1 A . (6.43)

Now, note that, by the second part of (3.7), there exist vy > 0 and x > 1 such that for any
u €]0, o[, a; ' (u/2) < ko (u). Hence setting j, =sup{j >0 : k7 >d,} and g, = 277 it
follows that a;'(u(A,)) > d,a; (e,uu(A,)), which combined with (6.43) implies that

A
; T e (A) : (6.44)

Definition 6.1. Let (k1).>o be the sequence of integers defined by
kr = L A [logy o, (g9 pt(Ase))], where log, v = log(z V 1)/log 2

and [z] = infZ N [z,00[. Set jo = 0 and jp,1 = j + 2% for any L > 0, Finally, for any
L >0, weset 1;, =25 and for any i = jp + ¢ with £ € [1, jp41 — jz — 1] NN*, ¢, = 28 4 (2F2,

Recall the notation, fon(x) = f(x/EQN) Noticing that Syv = S7¥7 11Aw (Xy,) and
recalling that f(0) = 0, we have

E(f((gw - EQN)/EQN) ) = Ef2N(S'2N - E2N)

— Z ]Lz:l {]Esz( ﬁ (1a,, (Xy,) (sz))> _Ef2N<§(1Awi(X¢i) _”(Aq”i)))}‘
L=2 (=j_, i=1 =

(6.45)

Using Taylor’s formula (as to get (6.16)) and taking the expectation, we derive

~

-1

Efon (ia% (X0) = 1(AL)) = Efar (3 (1a, (X0) = 1(A0)))

i=1 1=

< COV(féN < e_zl(lA%. (Xy,) — N(sz')))v 1AW(XW>) + % ‘

i=1 QN)

—_

Since || fin]|oe < 1/FE,yw, it follows from (3.1) that

(f((SQN — EQN /EQN Z ]Lzzl { 40400{(2%2)}

L=2/¢= ]L 1 EQN

Now, since j;, — jr_1 = 257 and Fov = SN 5701 1i(Ay,), we get

l=jr 1

E(F((Bor — B )/B) ) < = 443 anon(2-9) 2

oN L—2 EQN
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Note then that, since (p(A,)),>1 is a non-increasing sequence,

jr—1 N
By _Z > uAy) =Y (= jr-1)u(Ay,) ZQL R Agr) (6.46)
L=2/l=j1_4 L=2
Thus N i -
1 4N o (2k2)2l—he
B(F(Sor — Bn)/Fn) ) < o + Listzp st (P2
EQN ZL:Q 2 L,LL(AQL)
This shows that (6.42) will be satisfied if
lim v =oco and lim (06001(2 1)/ pu(Agn) ) = 0. (6.47)
N—o0 L—

Since (u(An))n>1 is a non-increasing sequence, condition (6.44) is equivalent to

Z2k mAw) (6.48)

>0 Hegepu(Agr))

Together with (6.46) and the definition of 22, (6.48) implies the first part of (6.47). Next,
taking into account the definition of 2%2,

oo1 (27) /(Agr) < max(Cegr, o1 (27)/p(Age)) — 0, as L — oo,
by the first parts of conditions (3.7) and (3.8). This ends the proof. ¢
Proof of Theorem 3.3. Starting from (6.17), taking into account (6.18) and the facts that
|Cov (f1 (Tl ) Lay (X2))| < 4o (m)/ B

and
|Cov (fr(Tw-i).) = Fo(T—i-1ys ), 1, (Xi)) | < B, ?u(Ar)

we infer that, for any positive integer m and any integer k in [1,n],
E(f((Sk — Ex)/Ey)) < 4nase1(m)/E, + m/E, .

Item 1. follows by choosing m = m, = n~!(1/n) and by taking into account Item (ii) of
Proposition 2.3. To prove Item 2., we choose m = m,, = a};(u, E,/n). Item 2. then follows
by taking into account Item (iii) of Proposition 2.3. ©

6.2.3 Proof of Remark 3.6

To prove that Theorem 3.2 still holds with oy «(n) replacing as1(n), it suffices to modify
the decomposition (6.45) as follows:

E(f(( ~2N - EzN)/E2N> ) = Esz(SW - EzN)

N  jp-1 Jjn—1 Jjn—1

=3 3 B (30 () = m40)) ~ Bl (3 (L, () — m(4u) }-

=2 0=j_; i=¢ i=0+1
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Next, as in the proof of Theorem 3.2, we use Taylor’s formula and the fact that, by (3.1), for
any g € {jL—b ce ajL - 1}7

Jjn—1 .
Cov{e (32 (1a, 060) = (40). 1, (50) < foun )

The rest of the proof is unchanged.
To prove that Theorem 3.3 still holds with a; «(n) replacing o 1(n), we start by setting

Sk_leznaEk ZM in)s T = Si — Ej and & =T — T, .

Then, setting S}, = £, = 0, instead of (6.14), we write

n

FoSn = En) = (fulSk = Ef)) = fu(Sii1 — Bria) ) -

k=1
By the Taylor integral formula at order 1, it follows that

n

5 N 1
S = B) = 3 (ATt [ (T + 160 = ST )6 )

k=1
Then, instead of (6.18), we use the following decomposition:

m—1

E(f:z<Tl:+1)£k) :COV(fﬁ(T(Lm) ) ]‘Bkn +ZCOV (k:-i-j) ) — f;L(T(>‘;<:+j+1)+>7]‘Bk,n)'

7j=1

Hence, the only difference with the proof of Theorem 3.3 is the following estimate:
|Cov (14, (X3), f (T(k+m) { <day (m)/E, .

This ends the proof of the remark. ©

6.3 Proofs of the results of Section 4
6.3.1 Proof of Theorem 4.1.

To prove Item (i), we first apply Proposition 2.2. Since u(limsup,, I,,) > 0, it follows from that
proposition that there exists a sequence (I'y);, of intervals such that I'y, C I, >, oo (') = 00

and s
k=1 T
SUp || S~ < 00 (6.49)
n>0 ZZ:I N<Fk) ‘oo n ’
where || - ||oo,, is the essential supremum norm with respect to p.

Let us prove now that Bk ={X, €It} isa L'-Borel-Cantelli sequence. Since Bk C
B, this will imply that (By)rso is a Borel-Cantelli sequence. From (1.5) applied to S, =
> k1 1, it is enough to prove that

lim (E(S,)) *Var(S,) = 0. (6.50)

n—oo
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By stationarity,

n—1 n—

k
Var(S Z\/ar 1, (Xo)) +2> ) Cov(1r, (Xo), 1r,,,(X;)) . (6.51)

k=1 j=1

Let b; = sup,cp |E(1x;<:|Xo) — P(X; < t)|. Clearly, since I' is an interval,
|Cov(1r, (Xo), Iry,, (X5))| < 2E(1p, (Xo)b)) - (6.52)

Setting B, = by + - -+ + b,_1, we infer from (6.51) and (6.52) that
Var(S,) < ]E((l +4B,) Y 1, (X0)> . (6.53)
k=1

Since E(S,) = u(T'y) + - - - 4 u(T,), we infer from (6.53) that

n n—1
Zk:l 1Fk ‘ < (1+4Zk 1B11 H Zk 11Fk
Dot MTe) o, = g #(Th) > et (Tk)

(S,) _ E(1+4B,)
(B(S,))* ~ 2kt #(Te)

" (6.59)
the last inequality being true because E(b;) = £11(k). Hence (6.50) follows from (6.49),
(6.54), and the fact that ), Bra(k) < oo and > k>1 #(Tx) = +00. The proof of Item (i) is
complete.
We now prove Item (ii). Let S, = > ,_, 1p,. Arguing as for (i), it is enough to prove
(6.50) with S,, instead of S,. Since the I}, are intervals, the same computations as for (i) lead
to

Var(s;) < E((l +4B;) i 15, (X0)> < E((l +4B,) i 1Ik(X0)) (6.55)

k=1 k=1

for any j < n. Set 3171(0) = 1. Applying Holder’s inequality, we get that, for any j < n,

Z 1, (Xo) Z 17, (Xo)
k=1

(the last inequality follows from Remark 1.6 and Inequality (C.5) in [24]). Consequently

ZZ:l 1Ik (XO)
E,

3
,_.

Var(.S;) (6.56)

( (l—i-k‘)p Lk )/p

0

T

Var(S,) _ 4(ppe(1+ k1B (k)7
(B(50)° En

q
Hence Item (ii) follows via (1.5). In addition, Item (iii) follows from (6.56) by applying (2.5).

To prove (iv) and (v), we start from (6.55), and we get that, for any j <mn,

Var(S;) \1—1—48 oo <_ 114 . 6.57
(B(s.) Do < g (14 Zs@ h). oo

Then (iv) follows from (6.57) with j = n and (1.5) and (v) from (6.57) and (2.5). ¢
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6.3.2 Proof of Lemma 4.1
We consider the natural coupling
k—1
Xl: = Z 2_Z€k_z‘ + Z 2_15;71‘ s
i=0 i>k

where (g});cz is an independent copy of (g;);ez. Note that X; distributed as X} and inde-
pendent of X,. Let then
§(k) = E (min(| X — X7[, 1)) .

We first give a bound on (k). By definition

3(k) < E(min( ] Z 2 (ep s — 1)

).

By sub-additivity and stationarity,

S(k) <> B (min(27eo — £4],1)) -

>k

Hence

5(k) < ZQ’iEQaO - gg|1|60,5/0|§2i/2) +) P (Je — gh| > 27?)

i>k i>k

and, consequently,
0(k) < w272+ E((2(log2) " log |eg — £4| — k) , ) (6.58)
with x = 1/(1 — 27%/2). This gives the upper bound
d(k) < K272 4 KE((log |eo — 56|1log|eo—eg\>klog(\/§)) :

Now, if (4.8) holds,

stlip tp_lE(log leg — ag\llog‘so,%pt) < 00,
and it follows then easily from (6.58) that there exists some positive constant B such that
§(k) < Bk'™? for any k > 1. (6.59)
Now let F), be the distribution function of . By Lemma 2, Item 2. in [9], for any y € [0, 1]
Bia(k) < y+P(|Fu(Xy) — Fu(X7)| > v) (6.60)
Since p has a bounded density, F), is Lipshitz. Moreover |F),(Xy) — F,,(X})| < 1. Hence
|Fl.(Xy) — Fu(X;)| < Amin(1, | X}, — X}|) for some constant A > 1. (6.61)

Now, by (6.60), (6.61) and the Markov inequality, 5171(/{) < y+ Ad(k)/y for any positive y.
Consequently 3,1 (k) < 21/Ad(k). The conclusion of Lemma 4.1 follows then from (6.59). o
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6.3.3 Proof of Lemma 4.2

We first note that, for any function g in L?()), one has

K"(g)(z) — Xg) = Z(COS(QWka))”Q(k‘) exp(2itkz) , (6.62)

kezZ*

where (G(k))rez are the Fourier coefficients of g.
Next, we need to approximate the function 15, by smooth functions. To do this, we

start from an infinitely differentiable density ¢ supported in [0, 1], and we define

o) = ([ e 1anfe) v (o) = (1= )T (o).
0
Now, for 0 < h < 1/4,t € [2h,1 — h] and x € [0, 1], we have

ftjh(x) < Tpgylz) < ft—:rh(x)>

where

fin(@) = 1pg(x) + g2((x = 1) /h) + 1 ((x + h = 1)/h)
fon(@) = Ly (2) + ga((x +h = 1) /h) + ga (/D).

Hence, for t € [2h,1 — h]
K™(fo3) = Afep) =20 < K™(Loy) —t < K"(f,,) — M f,5) + 20 (6.63)

On the other hand

sup |K”(1[0,t])—t|H <4h and
t€[0,2h] 1

sup |Kn<1[0,t])—t\H < 2h. (6.64)
te[1—h,1] 1

From (6.63) and (6.64), we get

sup [K™(1j0.) —t|H1 < 10h +

tel0,1]

sup |K"(f) = M) (6.65)
JEFR 1
where Fj, = {f:h, Jimt € [2h,1 — h]}.

Note that the functions belonging to JFj, are infinitely differentiable, so that one can easily
find some upper bounds on their Fourier coefficients. More precisely, by two elementary

integrations by parts, we obtain that there exist a positive constant C' such that, for any
[ € F,

5 C
B < ————. 6.66
0 < 7 (6.66)
From (6.62) and (6.66), we get that
C — n
sup | K" (f) = A(f)llsea < - > |k 7% cos(2mka)|". (6.67)
JE€Tn kezr
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Take 8 € (0,1/2). By the properties of the Gamma function there exists a positive constant
K such that,

. K
3" —|cos(2mka)|" < '

nﬁ’COS( Tka)|"* < (1 —|cos(2mka)|)t=#
n>1

Since (1 — |cos(mu)|) > w(d(u, Z))?, we derive that

2 n |k| 2
Z > [k 7?| cos(2mka)|" < p— BZ a2

n>1 keZ* ke Z*

Note that, if a is badly approximable by rationals in the weak sense, then so is 2a. Therefore
if a satisfies (4.10), proceeding as in the proof of Lemma 5.1 in [10], we get that, for any
n >0,

oN+1_1

1 —
Z (d(Qk‘a,’ Z))2_2,8 = (9(2(2 25)N(1+n)) '

k=2N

Therefore, since 8 € (0,1/2), taking 7 close enough to 0, we get

1
Y= > Ik cos(2rka)|® < Y 2@V max (k[ < oo (6.68)
n

ON <fp<oN+1
n>1"" kez* N>0 ==

From (6.67) and (6.68), for any ¢ in (0, 1) there exists a constant B such that

sup 1K™ (f) = A()lloop < Bn™*h7". (6.69)

From (6.65) and (6.69), we infer that, for any ¢ in (0, 1) there exists a constant x such that

sup [K"(1j0,4) —t\H <k(h+n"°h7").
tef0,1] 1

Taking h = n? in the above inequality, we then get Lemma 4.2. ¢

6.3.4 Proof of Corollary 4.1

The first part of Corollary 4.1 follows immediately from Lemma 4.2 and Theorem 4.2 applied
to (X;)iez and the sequence (.J,,) of intervals on the circle defined by J,, = [nt,nt +n°]. In
order to prove the second part, we will apply Theorem 4.1(iii) to the sequence (X;);cz. The
main step is to prove that

(Xo) H < o0 (6.70)

sup —
n>

Now E, ~ n'=°/(1 — §) as n — oo. Therefrom one can easily see that (6.70) follows from
the inequality below: for some positive constant co,

2m
Z 15, < com'~° for any integer m > 0. (6.71)
k=m+1
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Now >3 1 (2) < S 1 Ly m-s<ki<,. Furthermore, if ¢ is badly approximable, then,
from (4.10) with € = 0, d(kt, lt) = d(t(l — k), Z) > c¢(l — k)~ > ¢/m for any (k,[) such that
m < k <l < 2m, which ensures that Zizmﬂ 1, -scpics < 1+ ¢ 'm!? for any z. This
inequality and the above facts imply (6.71) and, consequently, (6.70). Now Corollary 4.1

follows easily from Lemma 4.2, (6.70) and Theorem 4.1(iii) ¢

6.4 Proofs of the results of Section 5
6.4.1 Proof of Theorem 5.2.

Recall that, for any Polish space F, there exists a one to one bimeasurable mapping from F
onto a Borel subset of [0,1]. Consequently we may assume without loss of generality that
E = 10,1]. We define the Markov chain and the renewal process in the same way as in
Subsection 9.3 in Rio (2017). Let (U;,¢€;):>0 be a sequence of independent random variables
with the uniform law over [0,1]* and ¢y be a random variable with law p independent of
(Ui, e1)i0- Let (&)k=0 be a sequence of independent random variables with law v. Suppose
furthermore that this sequence (& )g>o is independent of the o-field generated by (, and
(Ui, €:)i>0. Define the stochastic kernel ¢y by

Qi(x, A) = (1 —s(z)) " H(P(x.A) — s(x)v(A)) if s(x) <1 and Q,(x, A) = v(A) if s(z) = 1

6.72
and the conditional distribution function G, by ( |
G:(t) = Q1(x, | — 00,t]) for any (z,t) € [0,1] x [0, 1]. (6.73)

Define the sequence (X,,)n>0 by induction in the following way: X, = (y and
Xni1 = &npr if 8(X,) > U, and Xoppq = Gy (ey) if s(X,) < U (6.74)

Then the sequence (X,,)n>0 is @ Markov chain with kernel P and initial law g. The incidence
process (1,)n>0 is defined by 7, = 1y, <s(x,) and the renewal times (7%)r>0 by

To=1+inf{j>0:m+-- +mn =k+1}. (6.75)

We also set 7; = T4 — T for any j > 0. Under the assumptions of Theorem 5.2, (7;);>0
is a sequence of integrable, independent and indentically distributed random variables. Note
also that (5.3) implies that Ty < oo almost surely (see Rio (2017), Subsection 9.3). Hence,
by the strong law of large numbers,

lim (Ty/k) = E(n) as. (6.76)

Let m be a positive integer such that m > E(7;). Then there exists some random integer kg
such that T}, < km for any k > ko. Since the sequence of sets (A;);>o is non-increasing, it
follows that 1 Ar, 2 Lay, for any k > ko. Furthermore

Z 1Ak (Xk) > Z 1ATk (XTk) (677)

k>0 k>0
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Consequently, if 7, 14, (X7,) = 0o a.s., then as. >, 14,(X;) = co. Now, from the
construction of the Markov chain, the random variables (X, )x>o are iid with law v. Next,
since the sequence of sets (A;);so is non-increasing and  _, v(Ay) = oo, the series >, v(Akm)
is divergent. Hence, by the second Borel-Cantelli lemma for sequences of independent events,
> k=0 1a,,. (X7,) = 0o a.s., which completes the proof of Theorem 5.2. ¢

6.4.2 Proof of Theorem 5.4.

From Lemma 9.3 in Rio (2017), the stochastic kernel P is irreducible, aperiodic and positively

o= (L) s

is the unique invariant law under P. Now, let (X;);en denote the strictly stationary Markov

recurrent. Furthermore

chain with kernel P. Define the renewal times T}, as in (6.75). Then the random variables
(X7, )k>0 are iid with law v. Since ), ,v(Ax) < oo, it follows that }°, 14, (X7,) < o0
almost surely. Now T}, > k, from which Ay, C Aj. Hence

P(X7, € Ag, infinitely often ) = 0. (6.78)

Since Q1(z,.) = 0z, Xy = Xp, for any m in [T}, Tj41][. Furthermore A,, C Ap for any
m > Ty. Consequently, if X7, does not belong to Az, , then, for any m in [Ty, Tji1[, X does
not belong A,,. Now (6.78) and the above fact imply Theorem 5.4.

A Uniform integrability

In this section, we recall the definition of the uniform integrability and we give a criterion for
the uniform integrability of a family (Z;);c; of nonnegative random variables. We first recall
the usual definition of uniform integrability, as given in Billingsley (1999).

Definition A.1. A family (Z;);c; of nonnegative random variable is said to be uniformly

integrable if limp/_, o0 SUP;c; E(Zz-lzi>M) =0.

Below we give a proposition, which provides a more convenient criterion. In order to state

this proposition, we need to introduce some quantile function.

Notation A.1. Let Z be a real-valued random variable and Hz be the tail function of Z,
defined by Hz(t) = P(Z > t) for any real t. We denote by @)z the cadlag inverse of H.

Proposition A.1. A family (Z;);er of nonnegative random variables is uniformly integrable
if and only if

hm Sup/ Qz (u (A.1)

0 jer
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Proof. Assume that the family (Z;);c; is uniformly integrable. Let U be a random variable
with uniform distribution over [0, 1]. Since @z, (U) has the same distribution as Z;,

sup [ Qa(wdu < M+ swE(Zi1z0).
i€l Jo el

Choosing M = £7'/2 in the above inequality, we then get (A.1). Conversely, assume that
condition (A.1) holds true. Then one can easily prove that A := sup,.; E(Z;) < oco. It follows
that P(Z; > A/e) < e, which ensures that Qg (¢) < A/e. Consequently, for any i € I,

E(Zilz>a/:) = / Qz,(wW)lq, (wy>a/-du < / Qz (u)du,
0 0

which implies the uniform integrability of (Z;);cr. ©

B Criteria under pairwise correlation conditions

Proposition B.1. Let (By)iso be a sequence of events in (Q,T,P) such that P(B;) > 0
and Y, oP(B) = oo. Set E, = Y, P(By). Assume that there exist a non-increasing
sequence (Vn)n of reals in [0,1] and sequences (ay,), and (@), of reals in [0,1] such that for
any integers k and n,

|P(Bk N Bisn) — P(Br)P(Bitn)| < 1P (Bi)P(Biin) + 00 (P(Bk) + P(Biin)) + v -

(i) Assume that

n n k
Y — 0, E;lzgok—)O and E;QZZmin(aj,]P’(Bk))AO, asn — o0o. (B.2)

k=1 k=1 j=1

Then (By)k>o is a L* Borel-Cantelli sequence.

(ii) Assume that

Z % < 00, g—: < oo and ZEk_Q Z min(a;, P(By)) < 0o. (B.3)
k>1 k>1 k>1 JE[L,k]

Then (By)k=o 1S a strongly Borel-Cantelli sequence.

Remark B.1. If a,, = O(n™%) with a €]0, 1], then 2521 a; = O(k'"*). Hence the third
condition in (B.2) holds as soon as n~'*(%/2)E,, — co. On the other hand, the third condition
in (B.3) holds as soon as Y ., n'"*E,? < oo (note that this latter condition is satisfied when
n~H2(logn)~ /2R, — oo for some & > 0).

If a, = O(n~ ') then Z?:l a; = O(logk). Hence the third condition in (B.2) holds as
soon as E,(nlogn)~!/2 — co. On the other hand, the third condition in (B.3) holds as soon as
> o (nlogn)/E? < oo (note that this latter condition is satisfied when n=*/2(logn) ="+ E, —
oo for some € > 0).
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If a, = O(n™) with a > 1, then Y72 min(ay;, P(By)) = O(P(B,)'"/*). Hence the
third condition in (B.2) holds if n~/(@+VE, — oo (use the fact that Y, P(By)!"Ye <
n(E,/n)'~1/). Next, the third condition in (B.3) holds as soon as >_ ., E;?P(B,)! "% < oo
(note that this latter condition is satisfied when P(B,) > n~%/(@+1(log n)a/(@+D+¢ for some
e>0).

If a, = O(a") with a €]0, 1] then 7% min(ay;, P(By)) = O(P(By,) log (¢/P(By)). Hence
the third condition in (B.2) holds as soon as nP(B,) — oco. On the other hand, the third
condition in (B.3) holds as soon as P(B,) > n~!(logn)® for some & > 0.

Proof of Proposition B.1. Note that

max VarSy < Ey +2 Z Z (% ~iP(Bi)P(B;) + ;i (P(B;) + P(B;)) + (P(B;) A Oéj—z‘))

7,1] i+1
n j—1
1+4Z<pk +23 ) (P(B)) Aay) +2ZZ%Z OP(B;). (B.4)
7j=2 k=1 i=1 j=i+1

Moreover, for any positive integer m,

n—1 n n—1 (i+m—1)A n—1 n
SN PBIPB) <> Y P(Bi)JrfymZ > P(B)P(B
i=1 j=i+1 i=1  j=itl i=1 j=itm
<mE, +v.E,_1FE, . (B.5)

Now, from (B.4) and (B.5), one easily infers that criteria (1.5) holds true under (B.2), which
proves Item (i) of Proposition B.1.
To prove Item (ii), we shall apply criteria (2.5). Startmg from (B.4) and using the facts

that > .o, E; P(B;) < B!, and > ons; B PP(By) < B 2 we get that
P(B,) 2 /\ Qg P(B,)
Z AE3 r,?ngarsk = E_I_ B, 1+ZZ Z E? gllgll (m+7mEn 1)
n>2 k>2 i>2 k=1 n>2
By the second and the third conditions in (B.3), it follows that (2.5) will be satisfied if
P(Bn)
2 E? mén (m + YmEn1) < 00. (B.6)

Define the function ¢ : [1,00[— [0, 00[ by 9 (x) = (7}5/[2]) and let ¢~ denote the cadlag

generalized inverse function of ¢. Let m,, = ¢ "*(E£,*,). Then m, > 1 and

min (m + Y En1) < My + ma(m,) B,y < 2my,

m>1

since ¥(¢p"!(x)) < x. Using the fact that z — ¢ ~'(1/z) is non-decreasing, it follows that

ZP;BQ)mirll (m+7mEn 1 < 22 72 )w_l(E;_ll)

n>2 - n>2 n

1/Eq o) 2
-1 _ e
<o [ wt@ae=2 [ vy g/,

which is finite under the first part of condition (B.3). This ends the proof of Item (ii). ¢
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