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Abstract: In this expository article, we address the problem of computing adaptive models that can be used for guiding the
motion of robotic systems with uncertain action-to-perception relations. The formulation of the uncalibrated sensor-based control
problem is first presented, then, various methods for building adaptive sensorimotor models are derived and analysed. Finally,
the proposed methodology is exemplified with two cases of study.
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1 INTRODUCTION

Sensor-based control encompasses a family of methods

that exploit feedback information from (typically external)

sensors for controlling the robot’s motion, and in general, its

behaviour. On its most fundamental form, it can trace back

its origins to the servomechanism problem [1]. Some com-

mon examples are visual servoing [2], tactile/force servoing

[3, 4], proximity servoing [5], aural servoing [6], deforma-

tion/shape servoing [7, 8], to name a few cases.

To effectively execute these types of advanced tasks,

sensor-based controls invariably require some knowledge (at

least coarse) of how the robot’s motor actions transform into

sensor measurements. This information is captured by the

sensorimotor model of the system, which besides coordinat-

ing action and perception, it can also be used to anticipate

the effect that an input motor command will produce on the

output sensor measurements [9]. Note, however, that if this

information is not known (or is highly uncertain), the robot

cannot properly coordinate actions with perceptions.

Existing methods to obtain sensorimotor models require

either exact knowledge of its analytical structure [10, 11]

(which might not be known) or only compute instantaneous

local estimations of it [12] (therefore, they cannot globally

describe and control the system). Compared to these com-

putational approaches, the human brain has a remarkable de-

gree of adaptability that allows it to learn new sensorimotor

relations from birth through death and under multiple mor-

phological and perceptual conditions (see e.g. the pioneer-

ing study [13]). Humans can easily coordinate hand mo-

tions through a mirror, position unknown tools attached to

the body, and even recover (some) mobility after strokes.

Our aim in this paper is precisely to address the design

of computational methods that efficiently provide sensor-

guided robots with robust adaptation capabilities. For that,

we first formulate the sensorimotor control problem of

robots using uncertain perceptual/motor models. Next, we

formulate various structure-based and structure-free meth-

ods to adaptively compute these unknown relations. Finally,

This work is supported in part by the Research Grants Council (RGC)

of Hong Kong under grant 14203917, and in part by The Hong Kong Poly-

technic University (PolyU) under grant G-YBYT.

the presented methodology is exemplified with two cases of

study and discussions about its implementation are given.

The contribution of this work is that it presents a general

methodology that can be used as a guideline or even a tuto-

rial for researchers working on adaptive sensor-based con-

trol of robots. It can be applied to various configuration-

dependent sensing modalities (e.g. vision, audio, thermal),

and robotic platforms (manipulators, mobile robots, robot

heads).

The rest of this manuscript is organised as follows: Sec.

2 presents the preliminaries of the problem, Sec. 3 derives

the adaptive sensorimotor algorithms, Sec. 4 illustrates two

cases of study, and Sec. 5 gives final conclusions.

2 PRELIMINARIES

2.1 Notation

Along this note we use very standard notation. Column

vectors are denoted with bold small letters m and matrices

with bold capital letters M. Time evolving variables are rep-

resented as mt, where the subscript ∗t denotes the discrete

time instant, or, the iteration step. Gradients of functions

b = β(m) : M 7→ B are denoted as ∇β(m) = (∂β/∂m)
⊺

.

2.2 Control Architecture

Consider a class of fully-actuated robotic systems whose

configuration (modelling the end-effector pose) is denoted

by the vector xt ∈ R
n. In our formulation of the problem,

it will be assumed that the motion of robotic system is com-

manded via a standard position/velocity controlled interface

[14, 15] (which is typically found in the large majority of

commercial robotic platforms). With position interfaces, the

control commands ut ∈ R
n are given in terms of differential

displacement motions as follows:

xt+1 − xt = ut (1)

All methods presented in this note are formulated using the

above described position controls, yet, these can be easily

transformed into its velocity control equivalent vt ∈ R
n by

dividing both sides of (1) by the time step dt of the servo-

loop as

(xt+1 − xt)/dt = ut/dt ≈ vt (2)



2.3 Configuration Dependant Feedback

To perform a sensorimotor task, the robot is equipped

with a set of r sensors (not necessarily of the same modal-

ity) that continuously measure physical quantities whose

values depend on the robot’s configuration. This situation

means that relative robot motions produce relative sensory

changes. Some examples of configuration dependent signals

(measured using either external or wrist-mounted sensors)

are: geometric visual features, observed end-effector poses,

forces applied onto a surface, proximity to an object, inten-

sity of an audio source, temperature from a heat source, ul-

trasound images from probe, etc.

The feedback signal from the ith sensor is denoted by the

vector sit = gi(xt) ∈ R
li , where the function gi : Rn 7→ R

li

represents the analytical sensor model that statically relates

the instantaneous configuration with the feedback signal;

all these measurements can be grouped into a single vector

st = [s1t
⊺

, . . . , srt
⊺]

⊺
= g(xt) ∈ R

l. Sensorimotor controls

often require to construct a vector of meaningful features to

quantify and guide the task [2]. To this end, let us introduce

the (possibly nonlinear) vectorial functional

yt = f(st) = f(g(xt)) : R
n 7→ R

m (3)

for m as the number of feature coordinates (along this node,

we assume that f(g(·)) is smooth functional). There are

three cases with this configuration-dependent structure: n ≥
m (more controls than features), n ≤ m (more features than

controls), and n = m (same number of features and con-

trols). These cases have different properties that determine

the regulation of yt.

2.4 Sensorimotor Control Problem

The differential expression that describes how the motor

actions result in changes of feedback features is represented

by the first-order model:

yt+1 = yt +Atut (4)

for At = [∂f/∂st][∂g/∂xt] ∈ R
m×n as the Jacobian matrix

of the system (also known as the interaction matrix in the

sensor servoing literature [16]), whose elements depend on

the instantaneous configuration xt.

The sensorimotor control problem consists in coordinat-

ing the motor actions with the feedback signals such that a

desired sensory behaviour is achieved. Without loss of gen-

erality, such behaviour is characterised as the set-point reg-

ulation of yt towards a constant sensory target y∗. The nec-

essary actions ut to approach the target can be computed by

minimising the quadratic cost function1:

J = ‖Atut + λ sat(yt − y∗)‖
2

(5)

for λ > 0 as feedback gain, and sat(·) as a vectorial

saturation function to ensure that ut satisfies the differen-

tial motion condition in (1). By computing the extremum

∇J(ut) = 0, we obtain the normal equation

A
⊺

tAtut = −λA⊺

t sat(yt − y∗) (6)

1The rational behind the minimisation of (5) is to find a motor command

ut that projects into the sensory space as a vector pointing towards y∗.

which exposes the different properties of the three cases re-

lating the dimension of yt with xt.

For n > m, the solution to the problem can be obtained

from (5) via the right pseudo-inverse of At as follows [17]:

ut = −λA⊺

t (AtA
⊺

t )
−1

sat(y − y∗) (7)

Note that the above motor action will globally minimise (5)

(i.e. ‖yt−y∗‖ → 0), as long as the m feature coordinates in

yt are linearly independent with respect to xt. This ensures

that the matrix AtA
⊺

t can be inverted.

For m > n, the solution is obtained by solving the normal

equation (6) for ut, which yields:

ut = −λ (A⊺

tAt)
−1

A
⊺

t sat(y − y∗) (8)

Substituting (8) into (5) shows that the cost function can only

be locally minimised (i.e. ‖yt − y∗‖ → η, for η > 0). The

use of redundant features is useful in practice to cope with

intermittent feedback from sensors, such as in the case of

camera occlusions or malfunctions.

For the trivial case of n = m, the matrix At is square,

therefore, the solution is simply obtained via standard matrix

inversion ut = −λA−1
t sat(y − y∗).

3 CONTINUOUS MODEL ADAPTATION

3.1 Uncertain Sensorimotor Models

Computing any of the above motor actions requires some

knowledge (at least coarse) of the transformation matrix At,

which in turn, depends on the sensor and the feature models

g(·) and f(·). However, if the estimated model is corrupted

at some point in time, the robot may no longer properly co-

ordinate action with perception. This situation may happen

when the mechanical structure of the robot is altered (e.g.

due to bendings or damage of links) or when the configura-

tion of the perceptual system is changed (e.g. due to reloca-

tion of external sensors).

The capability to dynamically estimate sensorimotor mod-

els is needed to use robots in many growing fields such as

domestic robotics, autonomous systems, field robotics, etc.,

where the sensorimotor conditions are highly uncertain. Sev-

eral methods have been proposed to compute or approximate

these models (see [18] for a comprehensive survey on the

topic). In this paper, we coarsely classify these methods

into the following two approaches: structure-based estima-

tion and structure-free estimation. In the following sections,

we present the model adaptation problem and provide vari-

ous solutions to it.

3.2 Structure-Based Model Adaptation

These types of algorithms represent calibration-like tech-

niques that aim to estimate the parameters π ∈ R
p of the

uncertain sensorimotor model. Its implementation requires

exact knowledge of the analytical structure of the model

yt = f(g(xt), which for ease of presentation, we assume

it is linearly parametrisable as2:

yt = f(g(xt)) = L(xt)π (9)

2For non-linear model parametrisations, other types of optimisation al-

gorithms must be used, whose details are beyond the scope of this note.



where L(xt) ∈ R
m×p represents a known regression-like

matrix that captures the properties of the analytical model,

and whose elements depend on the configuration vector xt.

To compute the vector of estimated parameters π̂t ∈ R
p,

structure-based methods require to first collect a set of T
observation points (yk;xk), for k = 1, . . . , T (see e.g. [11]).

This data is used for computing the quadratic cost function:

U =
γ

2

T∑

k=1

‖L(xk)π̂t − yk‖
2

(10)

for γ > 0 as a learning gain. The above function is clearly

convex with respect to the error vector π̂t−π. Therefore, U
can be adaptively minimised with the gradient descent rule:

π̂t+1 = π̂t −∇U(π̂t) (11)

which in the absence of measurement noise, it globally min-

imises U (i.e. ‖π̂t − π‖ → 0, yet, a small estimation error

is typically expected in practice). Then, the transformation

matrix is then simply computed as:

Ât =
∂

∂xt

{L(xt)π̂t} (12)

Structure-based approaches have one major disadvantage:

its dependency on fixed analytical models. Note that since

the model’s structure (9) is explicitly used within the adapta-

tion algorithm (11), these methods are not robust to unknown

changes in the mechanical and perceptual conditions. Fur-

thermore, in many situations, the analytical model might not

be available, or be subject to large uncertainties. This limits

the applicability of these types of approaches.

3.3 Structure-Free Model Adaptation

These types of algorithms have the capability to com-

pute the unknown sensorimotor model in the following man-

ner: (i) entirely from scratch (i.e. without requiring any a-

priori knowledge of the model’s analytical structure), (ii) on-

demand (i.e. they can modify its acquired structure at any

time instant so as to identify new relations), and (iii) from

data observations only (i.e. by using information from con-

trols and measurements only).

Based on its computation, we coarsely classify these al-

gorithms into the following two general categories: instan-

taneous estimation, and distributed estimation.

Instantaneous estimation. As the name suggests, these

techniques compute a matrix At that is only valid at the cur-

rent (instantaneous) configuration xt. The Broyden rule [12]

is an example of such technique. It iteratively computes At

with the following rule:

Ât = Ât−1 + Γ
δt − Ât−1ut

u
⊺

t ut

u
⊺

t (13)

for δt = yt+1 − yt, and 0 < Γ ≤ 1 as a tuning gain.

With “high” gains Γ ≈ 1, by right-multiplying (13) by ut

(namely, projecting the motor action into sensory space), we

can see that yt+1 ≈ yt + Âtut is satisfied. However, using

high gains results in a noisy and rapidly changing matrix Ât.

For slow robot motions, the Jacobian matrix is expected to

change slowly, therefore, using “small” gain values for Γ
can help to make the computation less responsive, i.e. Ât ≈
Ât−1 as well as to filter out noisy measurements.

Another example of these techniques can be derived from

the following instantaneous cost function [19]:

V =
γ

2

∥∥∥Âtut − δt

∥∥∥
2

(14)

which provides a metric of the accuracy of Ât. The terms of

this unknown matrix are continuously adapted with the rule:

âijt+1 = âijt −∇V (âijt ) (15)

where the scalar âijt denotes ith-row jth-column term in Ât.

With instantaneous estimation techniques, the matrix At

must be continuously recalculated with new sensor obser-

vations as the robot moves into other configurations. Thus,

these types of techniques do not provide a mechanism for

locally preserving knowledge of previous estimations.

Distributed estimation. Note that since the feature func-

tional (3) is smooth (i.e. differentiable), its Jacobian ma-

trix is expected to smoothly change along the configuration

space xt. This means that a local Jacobian matrix estimated

at a particular configuration point is also valid around the

neighbourhood surrounding it. This simple yet powerful idea

forms the working principle of distributed estimation tech-

niques. With these adaptive algorithms, the estimation prob-

lem is shared amongst multiple computing units that spe-

cialise in a local transformation.

Consider a network of N computing units spread around

the robot’s configuration space. The following data structure

zl is associated with each computing unit:

zl =
{
xl Âl

}
, for l = 1, . . . , N (16)

where Âl stands for a local approximation of At estimated

at the configuration point xl. There are multiple methods for

establishing the distribution of these units around the robot’s

workspace, e.g. based on self-organising rules, evenly dis-

tributed locations, or random point distributions [20, 21].

For ease of presentation, we assume that the location of these

N configuration points xl associated with the units has al-

ready been established.

Estimation of local transformation matrices is performed

by first collecting a data set of T observation points (δk;uk),
for k = 1, . . . , T . Then, the following local cost function for

the lth unit is computed:

W l =
γ

2

∑

j∈B

hlj
∥∥∥Âluj − δj

∥∥∥
2

(17)

for B as a local ball centred at the lth unit, and hlj as its

Gaussian neighbourhood function computed as

hlj = exp

(
−
‖xl − xj‖2

2σ2

)
(18)

where σ > 0 determines the ball’s radius. In this method,

the idea is to make use of neighbouring data (whose con-

tribution decreases with its distance to the centre unit l) for
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Fig. 1: Shape servoing system composed of a 4-DOF manip-

ulator, an elastic object, and a 3D vision sensor.

approximating the local transformation matrix. The update

rule to adaptively compute the ith row jth column term of

Âl
t is as follows:

âl,ijt+1 = âl,ijt −∇W (âl,ijt ) (19)

Once the N cost functions (17) have been minimised, the

network is trained to perform local sensorimotor transforma-

tions with each of its units. In order to implement a motor

command as the ones derived in Sec. 2.4, the estimated local

matrix must be retrieved from the l unit that best matches the

current position xt by solving the search problem

l = argmin
j

{
‖xj − xt‖

}
(20)

Note that this adaptation approach can be combined with

the previous instantaneous estimation technique (or possibly

others) by defining a cost function H l = V + W l that ex-

ploits the current feedback measurements. This allows to

also quantify the accuracy of the model based on new sen-

sory data; the cost function can then be minimised with sim-

ilar gradient descent tools as before.

Compared to the previous estimation approaches, dis-

tributed estimation requires considerably more data to ap-

proximate the sensorimotor model, however, it can effec-

tively preserve local knowledge within its computing units.

4 CASES OF STUDY

4.1 Visual Shape Servoing of Elastic Objects

To exemplify our methodology, consider the setup de-

picted in Fig. 1, where a 3D camera captures point clouds

of a beam-like elastic object manipulated by a robot. Let us

denote the captured 3D points by sit, for i = 1, . . . , r (note

that the number r is generally in the order of hundreds). The

task to be performed is to automatically deform the object

into a desired shape. We can use the point cloud to approxi-

mate a the object’s backbone (represented as the blue curve

in Fig. 1). With this geometric information, we compute the

feature vector defined as follows:

yt =
[
κ θ

]⊺
(21)

for κ > 0 as the object’s curvature, and θ as the angle of the

object’s bending with respect to it’s frame, see [22] for de-

tails. For this task, model adaptation can be performed with

distributed estimation algorithms. These approaches provide

an efficient solution to the highly nonlinear transformation

problem of relating robot poses to object deformations (note

xt

3D frame

FT sensor
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RGB�D
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Fig. 2: Multi-modal system composed of a robot manipula-

tor, an ultrasound probe, a force sensor and a 3D camera.

that deformation models are hard to compute analytically).

For that, several computing units must be first defined at key

end-effector poses, e.g. ranging from fully stretched to vary-

ing bending configurations; local sensory observations can

then be collected for approximating the model.

4.2 Multi-Modal Scanning with Ultrasound Probes

Consider the setup in Fig. 2, which depicts a robot per-

forming automatic scanning of tissues with an ultrasound

probe [23] (we assume the robot has 6-DOF). This system

is instrumented with a force/torque sensor and a 3D camera.

Let us denote by ϕ the (normal) force applied onto tissues,

by µ the location of the ultrasound feature of interest, and by

ω the probe’s 3D orientation. The task to be performed is

conveniently described with respect to the body’s 3D frame.

It consists in positioning µ at the centre of the ultrasound

image, while applying a desired normal force and control-

ling the probe’s pose over the tissues. Note that this rela-

tive orientation can be computed from the 3D point clouds

ω = q(s). The task’s feature vector is defined as

yt =
[
µ ϕ ω

]⊺
(22)

The models for the above feature coordinates are simple

to analytically derive, namely using Hooke’s law for ϕ, hor-

izontal image displacements for µ, and homogeneous trans-

formations for ω. Therefore, model adaptation can be per-

formed using structure-based algorithms as in (9). With

these approaches, we can robustify the sensor-guided task

by continuously calculating unknown task parameters such

as: stiffness of soft tissues, relative location of ultrasound

features, and robot-camera-body transformations.

5 CONCLUSIONS

In this expository paper, we addressed the problem of

computing adaptive sensorimotor models for robots with un-

calibrated sensory feedback and/or uncertain morphology. A

general sensor servoing approach was first formulated using

an energy minimisation approach. Then, we derived vari-

ous methods for providing these controllers with continuous

model adaptation capabilities. Two cases of study we pre-

sented to illustrate the proposed methodology.

The presented sensorimotor controls are formulated based

on the assumption that the feedback signals dependent on

the robot’s configuration only. Although this condition can

be fairly used to represent many sensor-guided applications,

it may not be the most accurate model for describing tasks

where the measurements also depend additional variables

(e.g. manipulating fabrics with infinite dimensional config-

urations) or even time-varying states (e.g. controlling the



effect of cosmetic lasers stimulating skin tissues). The de-

velopment of more general sensor models is still an open

research problem.

The presented model adaptation methods allow robots

to perform sensor-guided tasks even when its sensorimo-

tor model is not known or might suddenly change. For ex-

ample, robots can adapt to unknown sensor configurations

and/or morphologies. By understanding the principle of how

sensors models can be effectively created from scratch and

adapted on-the-fly, we hope to build machines with more

resilient properties that allow them to perform long-term

operations with minimal supervision. These advanced ca-

pabilities are needed to advance towards building truly au-

tonomous robots.
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