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Consensus and Flocking in a Class of Cucker-Smale Systems under

Communication Failures

Benoît Bonnet∗and Émilien Flayac†

May 28, 2020

Abstract

We study sufficient conditions for the emergence of consensus and flocking in a class of
strongly cooperative non-linear multi-agent systems subject to communication failures. Our
approach is based on a combination of Lyapunov analysis along with the formulation of a novel
persistence condition for cooperative systems. The latter can be interpreted as a lower bound
on the algebraic connectivity of the time-average of the interaction graph generated by the
communication weights, and provides quantitative convergence rates towards consensus and
flocking.

Keywords : Multi-agent systems, Persistence of excitation, Asymptotic Flocking, Lyapunov Methods.

1 Introduction

The study of emerging patterns in dynamical systems describing collective behaviour has been the
object of an increasing attention in the past decades. There is by now a large literature devoted to
the analysis of cluster formation in the class of so-called cooperative systems, see e.g. [31]. These
systems are widely used, for example, to study crowd motion [11], robot swarms [3, 15] and animal
groups such as bird flocks or fish schools [1, 4].

Since the seminal papers [12, 13], a great deal of interest has been manifested towards the anal-
ysis of the so-called flocking behaviour (see Definition 4 below), which describes the appearance of
alignment patterns in second-order cooperative multi-agent systems. In [18], the authors proposed
a simpler proof of the emergence of asymptotic flocking based on Lyapunov-type methods. One
of the main strength of the latter approach is that it could be applied to both finite and infinite
dimensional multi-agent systems, while providing a strong unifying framework for consensus and
flocking analysis with very diverse interaction topologies (see e.g. [6, 25]). It also allowed to design
efficient control laws for key models, see [7, 8, 29].

When communications between agents are subject to possibly severe failures, it is then of high
interest to identify conditions under which convergence can still be guaranteed. For discrete-time
first and second order systems, opinion formation models have been thoroughly investigated in a
graph-theoretic framework, see for instance the seminal paper [27] and subsequent developments
in [23, 33]. These contributions include in particular asymptotic flocking analysis in some specific
classes of discrete and continuous time systems. Further results allowed to incorporate asymmetric
communication rates and random communication failures e.g. in [14, 30], as well as stochastic
perturbations described by Brownian motions [16, 17]. However, to the best of our knowledge, the
problem of studying the convergence towards flocking for general non-linear time-continuous sys-
tems subject to multiplicative communication failures has not been fully addressed in the literature.
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In this paper, we investigate the formation of asymptotic flocking for general second-order
multi-agent systems of the form

{

ẋi(t) = vi(t),

v̇i(t) = 1
N

∑N
j=1ξij(t)φ(|xi(t) − xj(t)|)(vj(t) − vi(t)),

where we assume that the interaction kernel φ ∈ Lip(R+,R
∗
+) is strictly positive. The functions

ξij(·) ∈ L∞(R+, [0, 1]) represent communication weights, taking into account potential commu-
nication failures that can occur in the system (e.g. when ξij(t) = 0, see Section 4 below). We
require them to be symmetric, i.e. ξij(·) = ξji(·), which means that the interaction graph of the
system is undirected at almost every time. This simplifying assumption is fairly standard in con-
sensus analysis, as it encodes the fact that the interactions between agents are fully reciprocal. One
of the main motivations for this choice of communication rates is to propose a formalism allowing
to encompass random interaction failures. This article is aimed at being the first step towards a
more general theory for such systems, in which the ξij(·) will be realisations of stochastic processes.

The main novelty of the approach developed in this work is the introduction of an adequate
persistence condition on the time-varying weights. We shall say that the collection of weights
(ξij(·))1≤i,j≤N (written ξij(·) for conciseness) satisfy the persistence condition (PE) (see Definition
3 below) if there exist (τ, µ) ∈ R

∗
+ × (0, 1] such that

B
((

1
τ

∫ t+τ
t Lξ(s)ds

)

v,v
)

≥ µB(v,v),

for all v ∈ (Rd)N . Here, B(·, ·) denotes the variance bilinear form over (Rd)N (see Definition 2
below), and Lξ(·) is the time-dependent graph-Laplacian associated to the interaction weights ξij(·)
of the system, see (2) below. Similar integral conditions were already investigated in the literature
(see e.g. [2, 22, 32]), but to the best of our knowledge this article is the first one to formulate a
persistence condition in terms of positive-definiteness of the averaged graph-Laplacian with respect
to the variance bilinear form.

Persistence conditions are quite standard in classical control theory (see e.g. [9, 10, 28]), and
have proven their adaptability in stability theory, in particular in allowing to build strict Lyapunov
functions for perturbed systems (see e.g. [20, 21, 24]). Besides their practical interest (e.g. study
input-to-state stability), strict Lyapunov functions allow to recover quantitative convergence rates
towards the equilibrium, which are crucial to ensure the formation of flocking behaviours in multi-
agent systems.

In the context of cooperative dynamics, our notion of persistence of excitation has both a deep
and simple meaning in terms of interaction topology. Indeed, it transcribes the fact that on average
on a sliding time window, the interaction graph describing the multi-agent system is connected.
It also imposes a uniform lower-bound on the algebraic connectivity of the time-averaged graph
corresponding to the weights (ξij(·)), which is represented by the first non-zero eigenvalue of the
graph-Laplacian (see e.g. [23]). This type of average connectedness assumption is standard when
studying first-order time-varying interaction topologies (see e.g. [2, 5, 27]), and is even proven to
be necessary for consensus to arise in a large number of cases in [27]. In the way we formulate it,
this condition further encodes the idea that one only requires the system to be persistently exciting
with respect to the agents which have not reached flocking.

Our approach can be related more precisely to other existing contributions as follows. In [27, 19]
and other works in the literature, it is proven that asymptotic consensus can be recovered in ori-
ented first-order systems under mere average connectivity assumptions on the interacting topology,
together with other assumptions ensuring that the interactions are somewhat reciprocal. However
in general, it is known that quantitative exponential convergence rates can only be recovered with
strong average connectedness assumptions such as (PE), see also [22] for similar conditions. More-
over, notice that under the persistence assumption (PE), the interaction graph of the system need
not be connected at all times, nor does it need to exhibit dwell times. This is stark in contract
with other contributions on the topic of multi-agent flocking, such as [33]. In the subsequent work
[23], the authors relaxed this connectivity assumption, at the price of restricting their attention to
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discrete-time systems in which the maximal spreading in position of the agents is a priori bounded.
In this article, the difficulty to be handled is precisely that the agents may scatter too quickly and
arbitrarily far away in the absence of communications. Indeed, our persistence assumption (PE)
only imposes a lower-bound on the algebraic connectivity of the graph generated by the weights
ξij(·). Whence, the true interaction graph incorporating the magnitude function φ(·) may a priori
have an averaged connectivity which vanishes. We also stress that the model of communication
failures considered in the present paper is substantially different from several other contributions
of the literature, such as [16, 17]. In the latter, the communications of the agents are supposed to
remain unaltered as the system evolves, and the random disturbances due to the environment are
modelled by additive white noises.

The structure of the article is the following. In Section 2, we introduce our Lyapunov approach
by recovering a known result of consensus formation for persistently excited first-order dynamics.
We then extend this result in Section 3 to prove the formation of flocking in a class of Cucker-Smale
type systems with strongly interacting kernels in the sense of Hypothesis (K), which is the main
result of this paper. In Section 4, we illustrate our persistence condition on a general class of
communication weights, and we conclude with some remarks and open perspectives in Section 5.

2 Exponential consensus under persistent excitation for first-order

dynamics

In this section, we introduce the main tools used throughout this article in the particular case of
consensus formation. We study first-order cooperative systems of the form











ẋi(t) = 1
N

N
∑

j=1
ξij(t)φ(|xi(t) − xj(t)|)(xj(t) − xi(t)),

xi(0) = x0
i , (CS1)

where (x0
1, . . . , x

0
N ) ∈ (Rd)N is an initial datum.

From now on, we use the notation x = (x1, . . . , xN ) for the state in (Rd)N and x̄ = 1
N

∑N
i=1xi

for its mean value. For systems of the form (CS1), we aim at studying the formation of asymptotic
consensus, defined as follows.

Definition 1. A solution x(·) of (CS1) converges to consensus if for any i ∈ {1, . . . , N} it holds

lim
t→+∞

|xi(t) − x̄(t)| = 0.

By the symmetry of the rates ξij(·), the system (CS1) can be rewritten in matrix form as

ẋ(t) = −L(t,x(t))x(t), x(0) = x0, (CSM1)

where L : R+ × (Rd)N → L((Rd)N ) is the so-called graph-Laplacian, defined by

(L(t,x)y)i := 1
N

N
∑

j=1
ξij(t)φ(|xi − xj |)(yi − yj). (1)

In the sequel, we will also use the graph-Laplacian Lξ(·) associated to the weights ξij(·), defined
by

(Lξ(t)y)i := 1
N

N
∑

j=1
ξij(t)(yi − yj). (2)

Observe that since the communication rates ξij(·) are L∞-functions, both L(·, ·) and Lξ(·) are
defined only for almost every t ≥ 0.

The structure displayed in (1) is fairly general and allows for a comprehensive study of both
consensus and flocking problems via Lyapunov methods. With this goal in mind, we introduce the
following bilinear form in the spirit of [6, 7].
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Definition 2. The variance bilinear form B(·, ·) is

B(x,y) := 1
N

∑N
i=1〈xi, yi〉 − 〈x̄, ȳ〉. (3)

It is symmetric and positive semi-definite.

The evaluation B(x,x) of this bilinear form is the distance of a given x ∈ (Rd)N from the
so-called consensus manifold

C = {x ∈ (Rd)N s.t. x1 = · · · = xN}.

It then follows that B(x,x) = 0 if and only if xi = x̄ for any index i ∈ {1, . . . , N}, i.e. if x is a
consensus. We now list some properties of B(·, ·) and L(·, ·).

Proposition 1. The graph-Laplacian L(t,x) is positive-semi definite with respect to B(·, ·). More-
over, vectors of the form L(t,x)y have zero mean.

Proof. By summing over i ∈ {1, . . . , N} the components in (1), one can check that L(t,x)y has
zero mean. This together with the symmetry of the communication rates ξij(·) implies that

B(L(t,x)y,y) = 1
N2

N
∑

i,j=1
ξij(t)φ(|xi − xj|)〈yi, yi − yj〉

= 1
2N2

N
∑

i,j=1
ξij(t)φ(|xi − xj |)|yi − yj|2 ≥ 0,

for all x,y ∈ (Rd)N .

We now introduce the concept of persistence of excitation for multi-agent systems.

Definition 3. The weights ξij(·) satisfy the persistence of excitation condition (PE) if there
exist (τ, µ) ∈ R

∗
+ × (0, 1] such that

B

((

1
τ

∫ t+τ

t
Lξ(s)ds

)

x,x

)

≥ µB(x,x), (PE)

for all x ∈ (Rd)N and almost every t ≥ 0.

Remark 1. Condition (PE) only involves the communication weights ξij(·) through Lξ(·) and
not the state of the system. Moreover, it is formulated using the bilinear form B(·, ·), illustrating
the fact that one only needs the persistence to hold along directions which are orthogonal to the
consensus manifold C . Finally, (PE) can be interpreted as a lower bound on the so-called algebraic
connectivity (see e.g. [23]) of the time-average of the graphs with weights ξij(·), as illustrated in
Section 4 below.

In the following theorem, we prove that solutions of (CS1) exponentially converge to consensus
when the persistence assumption (PE) holds. This result is not new, and can be derived from earlier
works dealing with consensus in undirected graphs, see e.g. in [27, 5]. However, we believe that
this exposition allows for a progressive introduction of some of the concepts that shall be necessary
for the establishment of our main result Theorem 2.

Theorem 1 (Consensus). Let φ(·) be positive and ξij(·) be weights such that (PE) holds with
parameters (τ, µ) ∈ R

∗
+ × (0, 1]. Then, any solution x(·) of (CS1) exponentially converges to

consensus.

Proof. Let ‖L(t,x)‖B be the operator norm of L(t,x) with respect to B(·, ·), defined by

‖L(t,x)‖B = sup
y∈(Rd)N

√

B
(

L(t,x)y,L(t,x)y
)

B(y,y)
.
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Define the constant c := sup(t,x) ‖L(t,x)‖1/2
B – which is finite since φ(·) is bounded –, and denote

by X the standard deviation of x ∈ (Rd)N , defined by

X :=
√

B(x,x).

By definition of B(·, ·), a solution x(·) of (CS1) asymptotically converges to consensus if and only
if X(·) vanishes at infinity.

We introduce the time-dependent family of linear operators ψτ : R+ → L((Rd)N ) along x(·),
given by

ψτ (t) := (1 + c2)τ Id − 1
τ

∫ t+τ

t

∫ s

t
L(σ,x(σ))dσds. (4)

Then, ψτ (·) is Lipschitz with pointwise derivative

ψ̇τ (t) = L(t,x(t)) − 1
τ

∫ t+τ

t
L(s,x(s))ds. (5)

By construction, it further holds that

√
τX ≤

√

B(ψτ (t)x,x) ≤
√

(1 + c2)τX. (6)

We thus define the candidate Lyapunov function

Xτ (t) := λX(t) +
√

B(ψτ (t)x(t),x(t)), (7)

where λ > 0 is a tuning parameter and x(·) solves (CSM1). Notice that by (6), it holds that

(λ+
√
τ)X(t) ≤ Xτ (t) ≤ (λ+

√

(1 + c2)τ)X(t). (8)

This type of construction is inspired from [24] and appears frequently in strict Lyapunov design for
persistent systems.

By Proposition 1, any solution x(·) of (CSM1) has constant mean, i.e. x̄(·) ≡ x̄0. By invariance
with respect to translation of (CSM1), we can assume without loss of generality that x̄(·) ≡ 0. We
now want to prove that Xτ (·) satisfies a strict-dissipation inequality of the form

Ẋτ (t) ≤ −αXτ (t), (9)

for some α > 0. With this goal, we first compute

Ẋτ (t) = − λ
X(t)B(L(t,x(t)),x(t))

+ B(ψ̇τ (t)x(t),x(t))

2
√
B(ψτ (t)x(t),x(t))

− B(L(t,x(t))x(t),ψτ (t)x(t))√
B(ψτ (t)x(t),x(t))

.

By (5)-(6), it holds that

Ẋτ (t)

≤ − 1

2
√

(1+c2)τX(t)
B

(( 1
τ

∫ t+τ

t
L(s,x(s))ds

)

y,y
)

+ 1√
τX(t)

B
((

1
τ

∫ t+τ

t

∫ s

t
L(σ,x(σ))dσds

)

y,L(t,y)y
)

+ 1√
τX(t)

(1
2 −

√

(1 + c2)τ −
√
τλ)B(L(t,y)y,y),

(10)

where we wrote y := x(t) for conciseness.
To estimate the first line of (10), recall that first-order cooperative systems have compactly

supported trajectories, see e.g. [29, Lemma 1] . Since φ(·) is positive and continuous, there exists
a positive constant C0 depending only on x0, such that

min
1≤i,j≤N

φ(|xi(t) − xj(t)|) ≥ C0,
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for all times t ≥ 0. By (1), this further implies that

B
(

L(t,x(t))y,y
)

≥ 1
2N2

N
∑

i,j=1

C0ξij(t)|yi − yj |2

= C0B
(

Lξ(t)y,y
)

,

for any y ∈ (Rd)N . By (PE), this further yields

B

((

1
τ

∫ t+τ

t
L(s,x(s))ds

)

x(t),x(t)

)

≥ C0µX
2(t). (11)

For the second line of (10), one has that

B
(

1
τ

(

∫ t+τ

t

∫ s

t
L(σ,x(σ))dσds

)

x(t),L(t,x(t))x(t)
)

≤ τc2X(t)
√

B
(

L(t,x(t))x(t),L(t,x(t))x(t)
)

≤ τc2X(t) ‖L(t,x(t))1/2‖B
√

B
(

L(t,x(t))x(t),x(t)
)

≤ τc3
(

ǫ
2X(t)2 + 1

2ǫB(L(t,x(t))x(t),x(t))
)

,

(12)

for any ǫ > 0, by definition of ‖·‖B and by applying the Cauchy-Schwartz and Young inequalities.
Merging (10)-(11)-(12) and recalling that L(·, ·) is positive semi-definite, we obtain that

Ẋτ (t) ≤ −
(

C0µ

2
√

(1+c2)τ
− c3

√
τ

2 ǫ

)

X(t)

+ 1
X(t)

(

1
2
√
τ

+ c3
√
τ

2ǫ − λ
)

B(L(t,x(t))x(t),x(t)).

Choosing furthermore the parameters

ǫ = C0µ

2c3τ
√

(1+c2)
, λ = 1

2
√
τ

+ c3
√
τ

2ǫ

and using (8), we recover that

Ẋτ (t) ≤ − C0 µ

4
√

(1+c2)τ
X(t)

≤ − C0 µ

4
√

(1+c2)τ(λ+
√

(1+c2)τ )
Xτ (t)

so that (9) holds with a given constant α > 0. By an application of Grönwall’s Lemma, we obtain
that lim

t→+∞
Xτ (t) = 0, and thus lim

t→+∞
X(t) = 0 by (8).

By definition of X(·), this implies that x(·) exponentially converges to consensus with rate
α > 0.

3 Flocking for Cucker-Smale systems with strong interactions

In this section, we prove the main result of this article, which is the formation of asymptotic flocking
for a class of Cucker-Smale type subject to communication failures. These systems are of the form











ẋi(t) = vi(t), (CS2)

v̇i(t) = 1
N

N
∑

j=1
ξij(t)φ(|xi(t) − xj(t)|)(vj(t) − vi(t)).

Similarly to Section 2, (CS2) can be rewritten in matrix form as follows using the graph-Laplacian
{

ẋ(t) = v(t), x(0) = x0,

v̇(t) = −L(t,x(t))v(t), v(0) = v0.
(CSM2)

We now recall the definition of asymptotic flocking.
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Definition 4. A solution (x(·),v(·)) of (CS2) converges to flocking if for any i ∈ {1, . . . , N} it
holds

sup
t≥0

|xi(t) − x̄(t)| < +∞, lim
t→+∞

|vi(t) − v̄(t)| = 0.

For this problem, we assume that the interaction kernel φ(·) ∈ Lip(R+,R
∗
+) satisfies the follow-

ing strong interaction assumption.

Hypotheses (K). There exist positive constants K,σ along with a parameter β ∈ (0, 1
2) such that

φ(r) ≥ K

(σ + r)β
. (13)

In particular, φ /∈ L1(R+,R
∗
+). Up to replacing φ(·) by this lower estimate, we can assume without

of generality that φ(·) is non-increasing.

Remark 2. Hypothesis (K) is a strengthened version of the usual strong interaction condition,
which requires that φ /∈ L1(R+,R

∗
+), see e.g. [18]. Remark that here, we require that the Cucker-

Smale exponent β be less that 1
2 , whereas in the literature the expected critical exponent beyond

which unconditional flocking may fail to occur is β = 1.

Remark 3. When φ(·) is bounded from below by a positive constant, flocking always occurs in
the full-communication setting, see e.g. [12, 18, 29]. For systems with communications failures
satisfying (PE), this result is a simple consequence of Theorem 1. For positive kernels φ(·) ∈
L1(R+,R

∗
+), one can construct examples of initial conditions (x0,v0) for which flocking does not

occur [7].

One can check that solutions of (CSM2) satisfy

˙̄x(t) = v̄(t), ˙̄v(t) = 0.

By invariance properties of multi-agent systems, we can assume without loss generality that x̄(·) =
v̄(·) ≡ 0. We define the standard deviation maps

X(t) :=
√

B(x(t),x(t)), V (t) :=
√

B(v(t),v(t)).

As a consequence of the symmetry of ξij(·), the system (CSM2) is weakly dissipative in the sense
that

Ẋ(t) ≤ V (t), V̇ (t) ≤ 0. (14)

In the seminal paper [18], the authors introduced a concise proof of the Cucker-Smale flocking
based on the analysis of a system of strictly dissipative inequalities. More precisely, if it holds that

Ẋ(t) ≤ V (t), V̇ (t) ≤ −φ(2
√
NX(t))V (t), (15)

with an interaction kernel φ /∈ L1(R+,R
∗
+), then the system converges to flocking. Our aim is

to adapt their strategy while taking into account possible communication failures. We prove the
following main result of this paper.

Theorem 2 (Main result - Flocking). Let φ(·) be positive, non-increasing and satisfying (K).
Assume that the weights ξij(·) are such that (PE) holds with parameters (τ, µ) ∈ R

∗
+ × (0, 1]. Then

any solution (x(·),v(·)) of (CS2) converges to flocking.

The proof of this result relies on the construction of a locally-strict and time-dependent Lya-
punov function for (CSM2), for which a system of inequalities akin to (15) holds only on a
bounded time interval. This local-in-time strict dissipation allows us to recover the asymptotic
flocking of the system by a reparametrisation of the time variable. To the best of our knowledge,
this combination of strict Lyapunov design and flocking analysis via locally dissipative inequalities
is fully new in the context of multi-agent systems.
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Notation 1. Define the rescaled interaction kernel

φτ (r) := φ
(

2
√
N(r + τV (0))

)

(16)

for any r ≥ 0, and denote by Φτ (·) its uniquely determined primitive which vanishes at X(0), i.e.

Φτ (X) :=

∫ X

X(0)
φτ (r)dr. (17)

We start the proof of Theorem 2 by a series of lemmas which will progressively highlight the
role of the different assumptions made on the system.

Lemma 1. Let (x(·),v(·)) solve (CSM2). If (PE) holds with (τ, µ) ∈ R
∗
+ × (0, 1], then

B

((

1
τ

∫ t+τ

t
L(s,x(s))ds

)

w,w

)

≥ µφτ (X(t))B(w,w), (18)

for any w ∈ (Rd)N , with φτ (·) defined as in (16).

Proof. By definition of L(·, ·), it holds that

B

((

1
τ

∫ t+τ

t
L(s,x(s))ds

)

w,w

)

≥ 1
2N2

N
∑

i,j=1

(

1
τ

∫ t+τ

t
ξij(s)φ(|xi(s) − xj(s)|)ds

)

|wi − wj |2

≥ 1
2N2

N
∑

i,j=1

(

1
τ

∫ t+τ

t
ξij(s)φ(2

√
NX(s))ds

)

|wi −wj |2,

(19)

since φ(·) is non-increasing. As a consequence of the weak dissipation (14), it further holds that

X(s) = X(t) +

∫ s

t
Ẋ(σ)dσ ≤ X(t) + τV (0),

for all s ∈ [t, t + τ ]. By (19), and using again that φ(·) is non-increasing, it holds

B

((

1
τ

∫ t+τ

t
L(s,x(s))ds

)

w,w

)

≥ φ
(

2
√
N(X(t)+τV (0))

)

2N2

N
∑

i,j=1

(

1
τ

∫ t+τ

t
ξij(s)ds

)

|wi − wj|2

= φτ (X(t))B

((

1
τ

∫ t+τ

t
Lξ(s)ds

)

w,w

)

≥ φτ (X(t))µB (w,w) ,

where we used (PE) in the last inequality.

We now define the candidate Lyapunov function

Vτ (t) := λ(t)V (t) +
√

B(ψτ (t)v(t),v(t)), (20)

where ψτ (·) is chosen in (4) and λ(·) is a smooth tuning curve. We have the following lemma.

Lemma 2. For any ǫ0 > 0, there exists a time horizon Tǫ0
> 0 such that

V̇τ (t) ≤ − µφτ (X(t))

2
√

(1+c2)τ
V (t). (21)

for all times t ∈ [0, 2Tǫ0
).
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Proof. Following the proof of Theorem 1, we can estimate the time-derivative of Vτ (·) as

˙Vτ (t) ≤ −
(

µφτ (X(t))

2
√

(1+c2)τ
− c3

√
τ

2 ǫ(t) − λ̇(t)

)

V (t)

+ 1
V (t)

(

1
2
√
τ

+ c3
√
τ

2ǫ(t) − λ(t)
)

B(L(t,x(t))v(t),v(t)).

(22)

The two main differences with respect to the proof of Theorem 1 are the choice of time-dependent
families of parameters (λ(·), ǫ(·)) and the use of refined estimate (18) instead of directly using (PE).

We start by fixing for all times t ≥ 0

λ(t) := 1
2
√
τ

+ c3
√
τ

2ǫ(t) . (23)

This implies in particular that λ̇(t) = − c3
√
τ

2ǫ2(t)
ǫ̇(t). We choose now ǫ(·) as the solution of

ǫ̇(t) = ǫ3(t), ǫ(0) = ǫ0,

for a given constant ǫ0 > 0, i.e.
ǫ(t) = ǫ0√

1−2ǫ2
0
t
, (24)

for t ∈ [0, 1/2ǫ20). Then, (22) reads as

V̇τ (t) ≤ − µφτ (X(t))

2
√

(1+c2)τ
V (t),

and (21) holds with Tǫ0
= 1/4ǫ20.

Observe that (21) involves both V (·) and Vτ (·). We now derive an estimate involving solely
V (·).

Lemma 3. There exists a function ǫ0 ∈ R
∗
+ 7→ XM (ǫ0) such that X(t) ≤ XM (ǫ0) for all t ∈ [0, Tǫ0

].
Moreover, for any ǫ0 > 0 one has that

V (Tǫ0
) ≤

(

α1+β1ǫ0

α2+β2ǫ0

)

V (0) exp
(

−µφτ (XM (ǫ0))
4(α3+β3ǫ0)ǫ0

)

, (25)

where {αk, βk}3
k=1 depend on (c, τ).

Proof. Choose ǫ0 > 0 and denote by (λ(·), ǫ(·)) the corresponding functions given respectively by
(23)-(24). Similarly to (6), it holds that

√
τV ≤

√

B(ψτ (t)v,v) ≤
√

(1 + c2)τV.

By definition of Vτ (·) in (20), we then have that











Vτ (t) ≤
(

√

(1 + c2)τ + 1
2
√
τ

+ c3
√
τ

2ǫ0

)

V (t),

Vτ (t) ≥
(√

τ + 1
2
√
τ

+ c3
√

2τ
4ǫ0

)

V (t),

for any t ∈ [0, Tǫ0
], where we used the fact that ǫ(t) ∈ [ǫ0,

√
2ǫ0] on this time interval. By simple

identification of the coefficients, these estimates can be rewritten as

(

α2

ǫ0
+ β2

)

V (t) ≤ Vτ (t) ≤
(

α1

ǫ0
+ β1

)

V (t), (26)

for constants {αk, βk}2
k=1 depending on (c, τ).

We can further integrate (21) on [0, t] to recover

Vτ (t) ≤ Vτ (0) − µ

2
√

(1+c2)τ

∫ t

0
φτ (X(s))V (s)ds.

9



which in turn implies that

V (t) ≤
(

α1+β1ǫ0

α2+β2ǫ0

)

V (0)

− µǫ0

α′
2
+β′

2
ǫ0

∫ t

0
φτ (X(s))V (s)ds,

(27)

where (α′
2, β

′
2) = 2

√

(1 + c2)τ(α2, β2). Recall now that Ẋ(s) ≤ V (s) by (14) and apply the change
of variable r = X(s) in (27) to obtain that

V (t) ≤
(

α1+β1ǫ0

α2+β2ǫ0

)

V (0) − µǫ0

α′
2
+β′

2
ǫ0

∫ X(t)

X(0)
φτ (r)dr

=
(

α1+β1ǫ0

α2+β2ǫ0

)

V (0) − µǫ0

α′
2
+β′

2
ǫ0

Φτ (X(t)).

(28)

Since φτ /∈ L1(R+,R
∗
+), its primitive Φτ (·) is a strictly increasing map which image continuously

spans R+. It is therefore invertible, and for any ǫ0 > 0 there exists a radius XM (ǫ0) such that

XM (ǫ0) = Φ−1
τ

(

2
√

(1+c2)τ (α1+β1ǫ0)

µǫ0
V (0)

)

. (29)

Since V (·) is a non-negative quantity by definition, it necessarily follows by plugging (29) into (28)
that X(t) ≤ XM (ǫ0) on [0, Tǫ0

].
Going back to the dissipative differential inequality (21) combined with (26), we can again use

the fact that φτ (·) is non-increasing to obtain

˙Vτ (t) ≤ −µǫ0 φτ (XM (ǫ0))
(α3+β3ǫ0) Vτ (t)

for almost every t ∈ [0, Tǫ0
], where we denoted (α3, β3) = 2

√
(1+c2)τ(α1, β1). By an application of

Grönwall Lemma to Vτ (·) along with (26), we conclude that

V (Tǫ0
) ≤

(

α1+β1ǫ0

α2+β2ǫ0

)

V (0) exp
(

−µφτ (XM (ǫ0))
4(α3+β3ǫ0)ǫ0

)

where we used the fact that Tǫ0
= 1/4ǫ20.

Building on the estimate (25) obtained in Lemma 3, we now conclude the proof of our main
result Theorem 2. To lighten the computations, most of the argument will be carried out in terms
of asymptotic estimates.

Notation 2. We will use the notations

f(x) &
x→a

g(x) and f(x) .
x→a

g(x),

to mean that a map f(·) is bounded from below (respectively from above) by a map which is equivalent
to g(·) as x → a.

Proof (Theorem 2). In order to recover the emergence of flocking in (CS2), we look into the asymp-
totic behaviour of our estimates as ǫ0 → 0+, or equivalently as Tǫ0

→ +∞. Using the analytical
expression (29) of XM (ǫ0), we have that

φτ (XM (ǫ0)) = φτ ◦ Φ−1
τ

(

C1 +
C2

ǫ0

)

,

where C1, C2 are positive constants depending on the data of the problem. Moreover by integrating
(13), we obtain that

Φ(X) ≥ K
1−β

(

(σ +X)1−β − (σ +X(0))1−β
)

,

which along with standard monotonicity properties of inverse functions and the fact that φτ (·) is
non-increasing, yields the existence of a positive constants C such that

φτ ◦ Φ−1
τ

(

C1 +
C2

ǫ0

)

&
ǫ0→0+

Cǫ

β
1−β
0 . (30)
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Combining the expression (30) with (25) and recalling that Tǫ0
= 1/4ǫ20, we recover that

V (Tǫ0
) .
Tǫ0

→+∞

α1

α2
V (0) exp



−Cµ
8α3

T

1−2β
2(1−β)
ǫ0



 . (31)

Since ǫ0 ∈ R
∗
+ 7→ Tǫ0

continuously spans the whole of R+, we can reparametrise time using
T := Tǫ0

. As we assumed in (K) that β ∈ (0, 1
2 ), the estimate of (31) implies that

V (T ) −→
T→+∞

0.

We now turn our attention to the uniform boundedness of the position radius X(·). The weak-
dissipativity (14) of (CSM1) expressed in terms of the new time variable T := Tǫ0

writes

sup
T≥0

X(T ) ≤ X(0) +

∫ +∞

0
V (T )dT.

This implies that supT≥0X(T ) < +∞ as a consequence of (31) and of the fact that β ∈ (0, 1
2 ),

which concludes the proof of Theorem 2.

4 Illustration of the persistence condition

In this section, we exhibit a general situation in which (PE) holds. We start by fixing a constant
µ ∈ (0, 1] and by recalling known facts about interaction graphs and their Laplacians, for which we
refer the reader e.g. to [26].

Definition 5. The algebraic connectivity of a graph with weights ξij is the smallest non-zero
eigenvalue of Lξ, denoted by λ2(Lξ).

Lemma 4. If an interaction graph with weights ξij is such that λ2(Lξ) ≥ µ, then

B
(

Lξv,v
)

≥ µB(v,v),

for any v ∈ (Rd)N .

Proof. This follows from the definition of algebraic connectivity, along with the fact that

B
(

Lξ v,v
)

= 1
2N2

N
∑

i,j=1
ξij |vi − vj |2,

for any v ∈ (Rd)N .

Lemma 5. Let Lξ1
,Lξ2

be the graph-Laplacian associated to two interaction graphs with weights
ξ1
ij and ξ2

ij respectively. Then
Lξ := Lξ1+ξ2

= Lξ1
+ Lξ2

,

is the graph-Laplacian of the union of the two graphs, which weights are ξij = ξ1
ij + ξ2

ij.

From now on, we fix τ ∈ R
∗
+, an integer n ≥ 1, and time-dependent communication rates ξij(·)

which are constant on all the intervals of the form [mτn ,
(m+1)τ

n ) for some m ≥ 0.

Proposition 2. Suppose that for all m ≥ 0, the time-average of the graphs (ξij(
m+k
n τ))n−1

k=0 , which
weights are given by

ξmij := 1
n

n−1
∑

k=0
ξij

(m+k
n τ

)

, (32)

is connected with λ2
(

Lξm

)

≥ µ. Then (PE) holds.

11



Proof. For m ≥ 0 and t ∈ [mτn ,
(m+1)τ

n ), we have

1
τ

∫ t+τ
t Lξ(s)ds =

( (m+1)
n − t

τ

)

Lξ(
mτ
n )

+ 1
n

n−1
∑

k=1
Lξ

(

m+k
n τ

)

+
( t
τ − mτ

n

)

Lξ(
(m+n)τ

n ).

(33)

Now, remark that max{ (m+1)
n − t

τ ,
t
τ −mτ

n } ≥ 1
2n . Without loss of generality, assume that (m+1)

n − t
τ ≥

1
2n , so that by (33) it holds that

B
((

1
τ

∫ t+τ
t Lξ(s)ds

)

v,v
)

≥ B

(

(

1
2n

n−1
∑

k=0
Lξ

(

m+k
n τ

)

)

v,v

)

= B
(

Lξm
ij/2 v,v

)

≥ µ
2B(v,v),

for all v ∈ (Rd)N , where the weights ξmij are defined as in (32). �

Corollary 1. Suppose that the piecewise constant weights ξij(·) take their values in a finite subset
I ⊂ [0, 1]. Then (PE) holds if and only if for all m ≥ 0, the time-averaged graph which weights ξmij
are given by (32) is connected.

Proof : The direct implication of this statement is evident. For the converse, observe that since
I ⊂ [0, 1] is a finite set, there exists a finite number of graphs with weights given by (32) which are
connected. In particular, the quantity

µ := min
{

λ2
(

Lξm

)

s.t. (ξmij ) are given by (32)
}

,

is positive and independent from m ≥ 0. Thus, (PE) holds with parameters (τ, µ) ∈ R
∗
+ ×(0, 1].

We now illustrate these general results for piecewise constant communication rates on a simple
example with N = 4 agents. For τ ∈ R

∗
+ and t ≥ 0, define the interactions weights as follows:

ξ14(t) =

{

1 if ⌊t/τ⌋ = 1 mod[6],

0 otherwise,

ξ34(t) =

{

1 if ⌊t/τ⌋ = 3 mod[6],

0 otherwise,

ξ23(t) = ξ24(t) =

{

1 if ⌊t/τ⌋ = 5 mod[6],

0 otherwise,

(34)

where ⌊·⌋ denotes the lower integer part, and we set all the other weights to 0. In this example, we

chose n = 6 so that our signals are piecewise constant on intervals of the form [mτ6 , (m+1)τ
6 ) for any

m ≥ 0.
The weights ξij(·) defined in (34) are such that the persistence condition (PE) holds. This

can be verified e.g. by computing the smallest positive eigenvalue of the averaged graph-Laplacian
matrix Lξm , where ξm is defined as in (32) with t ∈ [mτ6 , (m+1)τ

6 ). In this example, the spectrum
of Lξm for all m ≥ 0 is

Sp
(

Lξm

)

=
{

0, 1
6 ,

1
2 ,

2
3

}

,

so that (PE) holds with τ ∈ R
∗
+, µ = λ2

(

Lξm

)

= 1
6 .
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Figure 1: Admissible connections between agents
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1
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1
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Figure 2: Averaged interaction graph on a time window of the form [t, t + τ ]

5 Conclusion and perspectives

In this article, we proved two results of convergence of multi-agent systems under arbitrary commu-
nication failures. If communication rates satisfy a persistence of excitation condition, then one has
both exponential convergence to consensus for first-order systems (Theorem 1), and quantitative
convergence to flocking for Cucker-Smale systems under an additional strong interaction condition
(Theorem 2). For the sake of conciseness and readability, we assumed that the initial time of the
non-stationary dynamics was fixed and equal to 0. Yet, it could be checked by repeating our argu-
ment that both convergence results are uniform with respect to the initial time. In the future, we
aim to improve our main result Theorem 2 in three directions.

Firstly, we will investigate whether the rather surprising exponent range β ∈ (0, 1
2) – which is

currently necessary in order to ensure that asymptotic flocking occurs – has an intrinsic meaning,
or if it is just appearing as a limit of our current choice of Lyapunov function. Answering this
question might also pave the way for flocking results with weaker interactions, involving confinement
conditions linking the initial state and velocity mean-deviations and the persistence parameters.

Secondly, we will study communication failures defined as the realisations of stochastic processes
and try to see under which assumptions and in what sense the convergence towards consensus and
flocking can occur (almost surely, in probability, etc...). In this setting, one of the main difficulty
will most likely lie in the identificaton of proper stochastic generalisations of (PE).

Lastly, we will investigate whether our dissipative approach, applied here to the mean-square
energies – which are L2-functionals –, can be adapted to L∞-type Lyapunov functionals in the
spirit of [29, 17]. The motivation behind this line of study is that L2-type functionals do not allow
for the study of flocking formation in the mean-field setting as the number of agents N goes to
infinity, while L∞-type functionals do.
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