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Abstract  
Little research has been conducted on the occurrence of pharmaceuticals and personal care products 
(PPCPs) in the marine environment despite being increasingly impacted by these contaminants. This 
article reviews data on the occurrence of PPCPs in seawater, sediment and organisms in the marine 
environment. Data pertaining to 196 pharmaceuticals and 37 personal care products reported from 
more than 50 marine sites are analyzed taking into account sampling strategies and analytical methods. 
A particular attention is given to the most frequently detected substances and at highest 
concentrations. A snapshot of the most impacted marine sites is provided by comparing the highest 
concentrations reported for quantified substances. The present review reveals that i) PPCPs are 
widespread in seawater; particularly at sites impacted by anthropogenic activities and that ii) the most 
frequently investigated and detected molecules in seawater and sediments were antibiotics, such as 
erythromycin. Moreover, this review points out other PPCPs of concern such as ultraviolet filters and 
underlines the scarcity of data on those substances despite recent evidence on their occurrence in 
marine organisms. Thus, the review discusses the exposure of marine organisms in regard to these 
insufficient data.   
Keywords: pharmaceuticals, personal care products, marine environment, seawater, sediment, marine 
organisms 
 

Introduction  
The expression ‘pharmaceuticals and personal care products’ (PPCPs) encompasses many different 
substances, such as drugs used in human and veterinary medicine, fragrances, sun-screen agents and 
cosmetics ingredients (Daughton and Ternes, 1999; Richardson et al., 2005). More than 3000 PPCPs 
are currently marketed and new molecules enter the market yearly. Pharmaceuticals (PPs), after their 
therapeutic use, and some personal care products (PCPs), after regular use, are released in raw sewage 
waters and then often inefficiently treated in sewage treatment plants (STPs) and finally discharged in 
rivers, streams or lakes. These compounds are ubiquitously detected in treated wastewater, which is 
the main source of surface water contamination (Verlicchi et al., 2012). The PPCPs present in solid 
waste discharge, sewage sludge and in manure applied as fertilizer may leach from fields and, 
depending on their mobility in the soils, end up in ground waters (Daughton and Ternes, 1999; Diaz-
Cruz et al., 2003).  Some PCPs are also directly released into water during swimming and bathing 
activities in lakes or rivers (Balmer et al., 2005). PPCPs used throughout the world are thus widely 
detected in freshwater environments. Recent reviews have reported the occurrence of PPCPs in surface 
water (Brausch and Rand, 2011; Pal et al., 2010) and in groundwater (Lapworth et al., 2012).  

Marine ecosystems are also affected by PPCP contamination (Klosterhaus et al., 2013) but little data 
has been published on PPCPs in seawater. However, coastal zones are subject to growing pressure due 
to the increase in human activities. PPCPs are released into seawater through submarine or marine 
STP outfalls (Fenet et al., 2014) or in runoff via rivers and streams (la Farre et al., 2008). Other 
sources of PPCPs in the marine environment are fish farming, for antibiotics (Zou et al., 2011) and 
antiparasitic drugs (Rico and Van den Brink, 2014), and recreational activities, especially regarding 
sun screen agents, which are washed from the skin into the water (Bachelot et al., 2012; Langford and 
Thomas, 2008). Fewer studies have been conducted in the marine environment because PPCP levels 
are expected to be low due to dilution and diffusion, and because of the complex hydrodynamics of the 
marine environment in coastal zones, for instance. Vidal-Dorsch et al. (2012) observed a significant 
dilution of STP effluent discharge in seawater at submarine outfalls and highlighted the difficulty to 
determine the environmental relevance of the low level PPCPs observed in seawater. However, several 
authors reported the occurrence of PPCPs in marine organisms (Klosterhaus et al., 2013; Nakata et al., 
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2012). Hence, it is essential to evaluate the contamination range while identifying vulnerable marine 
sites so as enhance assessment of the exposure of marine organisms.  
This paper reviewed current knowledge on PPCP contamination of the marine environment. Data 
pertaining to 196 pharmaceuticals and 37 personal care products reported from more than 50 marine 
sites were analyzed taking into account sampling strategies and analytical methods.  A snapshot of the 
marine sites the most impacted is provided by comparing the highest concentrations reported for 
quantified substances to reveal areas of concern. The exposure of marine organisms was discussed 
through the scarce selected data on their PPCPs occurrence.  
 

1- Framework used to record data on the occurrence of the investigated compounds 
Although studies on the occurrence of PPCPs in freshwater have increased markedly over the past 20 
years, studies in marine environment are more recent. Therefore, 71 articles providing data on the 
occurrence of PPCPs in seawater, sediment and marine organisms published since 2002 (Table A – 
supplementary material) were analyzed in the present work. The concerned areas were mainly placed 
in Asia (18 articles), North America (18 articles) and in southern Europe (16 articles), often located on 
the coasts, in areas influenced by STP effluents, bays, harbors and estuaries. Lagoons, gulfs and 
oceans were studied in less than five articles for each of them. Together, these studies target a total of 
233 compounds (196 PPs and 37 PCPs), parent molecules and some of their metabolites. Data 
reported in the reviewed articles were analyzed by differentiating PPs and PCPs. PPs were classified 
according to their therapeutic classes. In the reviewed articles, the sampling strategies, analytical 
methods and studied molecules differed, which could appear to be a limitation for data comparison; 
these points are discussed below. 
 
Study design 
The sampling strategies deployed were highly dependent on the objectives of the reported studies. 
When the aim was to evaluate the spatial distribution of PPCPs within a defined area receiving a point 
source pollution (STP, rivers, etc.), samples were collected at regular distances from the source 
(Rubinfeld and Luthy, 2008), in different directions (Fang et al., 2012) or at different depths (Liang et 
al., 2013). Most often, concentrations were generally found to decrease with increasing distance from 
the pollution source such as an STP outfall (Amine et al., 2012; Minh et al., 2009), a bathing area 
(Langford and Thomas, 2008) or a more polluted area such as a river or an estuary (Andresen et al., 
2007; Weigel et al., 2002), emphasizing the role of dilution in the marine environment. However, the 
observed concentration was also largely dependent on the coastal hydrodynamics as shown by Bayen 
et al. (2013). Indeed, these authors demonstrated that the long residence times created by the 
hydrodynamic resulted in highest concentrations of pollutants than those in the proximity to the STP 
reject. Depth was involved differently in the dilution from point sources of pollution. When 
contaminated fresh water comes from the bottom, as it is the case with submarine outfalls, Fenet et al. 
(2014) showed that a thermocline observed in summer limits the PPCP diffusion from the bottom to 
the surface. In estuaries, diffusion from fresh water carrying the PPCPs to the salt water was limited 
with depth, as observed by Liang et al. (2013), which reported that the total concentration of 
antibiotics of the Pearl River estuary was significantly higher in the surface water than in the bottom 
water layer during both dry and wet seasons. In marine water, tidal stage could have an influence on 
dilution and diffusion of a contaminant. However, Fair et al. (2009) have studied the influence of the 
tidal stage on triclosan concentrations in the Charleston Harbor, and found no significant difference 
between the low tidal stage and the high tidal stage. The synthesis that can be made from these results 
is that, even more than in the case of fresh water, the site conformation and hydrodynamics will 
determine the spatial distribution of concentrations found for PPCPs. The parameters which may 
influence the temporal variation of concentrations in seawater and sediments are seasons (dry or wet 
season) and recreational activities (tourism) as indicated by Liang et al. (2013) and (Knee et al., 2010).  
Beyond the sampling strategy, the method used to sample the different compartments could have an 
impact on the results. In most of the reviewed articles (43), water was collected by active sampling 
with pumps or grab sampling. Passive integrative samplers for polar molecules (POCIS) were used by 
Alvarez et al. (2014), Martinez Bueno et al. (2009) and Munaron et al. (2012). Active sampling is 
easier to implement than passive sampling and enables direct quantification of PPCPs in water. 
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However, to be representative of the studied area, numerous samples should be collected and more if a 
temporal variation was researched. Passive sampling allows an estimation of the target analyte 
concentration during an exposure time, enabling the semi-quantification of some PPs depending on the 
sampling rate (Rs), predefined in the laboratory. However, harmonizing measurements during 
laboratory calibration is difficult (Munaron et al., 2012), which explains the low use of this technique 
at the moment.  
Sediment depth sampled in the reviewed articles varied from 2-3 cm (Long et al., 2013; Maruya et al., 
2012) to 40 cm (Miller et al., 2008) requiring different equipments. Surface sediment was sampled 
using a stainless steel Van Veen type grab sampler whereas sediment cores were sampled with gravity 
corers. The sample pre-treatment (freeze drying, homogenization, sieving) may influence the analysis 
efficiency. Belkessam et al. (2005) revealed that the increasing sample homogeneity improved analysis 
reproducibility and extraction recovery of PAH compounds. This influence observed for persistent 
contaminants could be studied for PPCPs, which should possibly have a different behavior.  The 
storage may have an influence on the stability of the compounds. Negreira et al. (2014) showed that 
environmental samples such as wastewater had to be frozen immediately after collection and had to be 
analyzed as soon as possible in order to minimize the degradation of cytostatic drugs. The influence of 
freeze on PPCPs in sediments remains to determine. Most of the articles have studied the spatial 
variation of PPCP contamination in surface sediments whereas some authors have investigated the 
geochronology of the contamination by sampling sediment cores (Cantwell et al., 2010; Miller et al., 
2008). The contaminant distribution in sediments varies in function to the sediment composition, 
which depends on sedimentation rates, and is variable in line with the characteristics of the studied 
sites (topography and hydraulic conditions). Beretta et al. (2014) reported the influence of the location 
in an area of low energy with high sediment rates on the composition of muddy sediments, composed 
predominantly of clay and silt, prone to become a sink of organic contaminants such as PPCPs. 
Moreover, transformation processes in sediment such as aerobic and anaerobic degradation are 
dependent on the location and depth in the sediment (Hektoen et al., 1995; Robinson and Hellou, 
2009). This latter point may affect the rate of degradation and detection of PPCP transformation 
products (Cantwell et al., 2010).   
Concerning marine organisms, sampling was performed mainly to assess the status of contamination 
of studied sites subjected to anthropogenic pressure. Bivalves (mussels, oysters, scallops and clams) 
were the most frequently studied organisms, by direct sampling  (Bachelot et al., 2012; Dodder et al., 
2014; Klosterhaus et al., 2013; Li et al., 2012; Martinez Bueno et al., 2014; Na et al., 2013; Nakata et 
al., 2007; Picot Groz et al., 2014) or via caging at sites of interest (Hoenicke et al., 2007; Kookana et 
al., 2013; McEneff et al., 2014; Wille et al., 2011). Bivalves, such as mussels have often been used as 
bioindicators for aquatic pollution monitoring (Quinete et al., 2009), and they are representative of the 
sampling area because of their sedentary behavior (De Donno et al., 2008), whereas fishes are less 
representative of a site. Fishes are highly mobile and may have a migratory behavior (Ferreira et al., 
2009), thus complicating data interpretation. However marine mammals (dolphins, sea lions, otters, 
seals) and fishes (sharks, salmons, flatfishs, eelpouts, rays) were also studied in four papers (Kannan et 
al., 2005; Maruya et al., 2012; Nakata et al., 2007; Rüdel et al., 2006). In fish and marine mammals, 
liver was often sampled because biotransformation enzymes are mainly distributed in this organ 
(Matsuo et al., 2008; Teramitsu et al., 2000), while in mussels, all the soft tissues were mainly 
sampled, although xenobiotics are accumulated in the digestive gland, responsible for metabolic 
activity (Fasulo et al., 2012).  
 
As a conclusion of this section, although several parameters influence the results of the analysis as 
well as in freshwater studies, the issue of the sampling site choice is a critical aspect of the study 
design and appears to depend mostly on the knowledge of hydrodynamic characteristics of the studied 
site.  

Analytical procedures 
Beyond the sampling strategies, one of the difficulties in reviewing research in this area is to compare 
data derived from various analytical procedures. The different analytical steps, such as the extraction 
process, quantification methods and the addition of an internal standard have consequences on the 
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analytical performances, such as the limit of quantification or repeatability.  Multiple residues analyses 
were often performed in the reviewed articles. As regards the extraction steps for the aqueous samples, 
in the last 30 years solid phase extraction (SPE)  has replaced the traditional liquid-liquid extraction 
(LLE) and has become the technique most commonly used for sample preparation. At present, 
hydrophilic-lipophilic-balanced-reversed-phase (HLB) sorbent is best used for the extraction of 
organic pollutants from water samples, due to its ability to retain analytes in a wide range of polarities 
and stability throughout the pH range. One of the great advantages of these adsorbents is the 
possibility of multi-analyte method work at neutral pH (Gomez et al., 2006), which greatly simplifies 
the treatment of the sample. However, for very polar and water-soluble analytes, such as ranitidine, 
recoveries may be low if the samples are not adjusted to the appropriate pH (Pichon, 2000). 
For the analyses, liquid chromatography-mass spectrometry (LC-MS or LC-MS/MS) and gas 
chromatography-spectrometry (GC-MS or GC-MS/MS) were used to quantify concentrations in 
samples in 32 and 37 articles, respectively. However, matrix effects are widely described in LC-MS 
analyses of complex matrices (Petrović et al., 2005), and are most frequent than in GC-MS analyses 
(Caban et al., 2012). The use of an isotope-labeled standard in isotope dilution-based methods helps 
correct this issue (Hernandez et al., 2005). More broadly, the use of an internal standard (IS) can 
correct errors related to extraction processes, injection and ionization such as matrix effects. The use 
of an IS was reported in more than 80% of the papers reviewed, and a third of these 80% used isotopic 
dilution. Isotope dilution can significantly reduce systematic errors from several sources, including 
sample stability prior to analysis, analyte loss during extraction procedures and matrix effects (Boden 
and Reiner, 2004; Vanderford and Snyder, 2006). However, limited availability of isotope labeled 
standards is problematic for broad screening analysis, for some PPCPs and particularly for 
metabolites. For example, Martinez Bueno et al. (2014) analyzed metabolites of venlafaxine,  N-
desmethylvenlafaxine, in mussels by LC-MS/MS with venlafaxine-d6 as a surrogate because no 
isotope labeled standard is marketed for this venlafaxine metabolite.  In the present review, the 
reported occurrence values in articles were selected when the use of an internal standard was reported.  
Furthermore, the limits of quantification (LOQ) and limits of detection (LOD) for a molecule varied in 
the reviewed articles with the overall analytical procedures. For example, for sulfamethoxazole, LODs 
ranged from 0.084 (Yang et al., 2011) to 300 ng/L (Bayen et al., 2013). Thus, the authors are aware 
that when a detection frequency was calculated for PPCPs detected at the different sites reviewed in 
the present work, there was bias due to the difference in LODs at the different studies.  
As presented above, there are a wide variety of analytical procedures applied to the environmental 
samples studied in the reviewed articles. A standardization of the analytical procedures, mainly for 
multi-residue analyses, could allow an accurate comparison of the results. 
 
Data analysis considerations  
As the authors are aware of the uncertainties and the limits of the comparison of the results in this 
review and as previously mentioned, regarding the available articles, for occurrence studies (detection 
frequencies and concentrations), data were selected only when an internal standard (surrogate or 
isotopic) was used. Furthermore, as recommended by the European Commission’s ‘Guidance 
documents on pesticide residue analytical methods’ (“SANCO/825/00,” 2010), the data were reported 
in this occurrence review, when the reported recovery ranged from 70% to 120% and the precision, 
expressed as the relative standard deviation (RSD), was lowest than 20 %.  Furthermore, passive 
sampling data (POCIS) were not included in the occurrence study as we consider that data are semi-
quantitative. Based on the selected data, the detection frequencies of studied PPCPs were calculated in 
aqueous phase by including all sampling sites of each study selected in the present review. The 
detection frequency for each PPCP expressed in % was calculated with the formula (d/i) ×100, where 
d is the number of sampling sites where the specific compound was detected and i is the number of 
sampling sites where the compound was investigated.  The frequency was calculated when a 
compound had been detected in at least ten sampling sites, and at least two distinct geographical areas. 
For some articles, information on detected but not quantified compounds was missing. In these cases, 
the reported frequency in the present review work should be considered as underestimated. However, 
the detection frequencies gave a good overview of the occurrence of PPCPs in the marine 
environment.  For the presentation of the reviewed data, the maximum concentrations were chosen to 
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reflect the occurrence of the studied compounds as these values were the most commonly cited values 
in the reviewed articles. Moreover, maximum concentrations far from the limit of detection were 
likely more independent of the variability in the sensitivity of the analytical techniques than the 
concentrations close to the limit of detection, such as minimal concentrations. The median values 
would have been the preferred values as they were less impacted by the extreme values chosen, but 
these data were not available for all the reviewed studies. Thus, the results were expressed as follows: 
number of sampling sites where the molecule was investigated (s), detection frequency for all sites (f) 
%, and number of studies (n). 
 

2- Occurrence in seawater   
PPCPs were investigated worldwide in seawater in North America (Canada and USA), in northern 
Europe (United Kingdom (UK)), Ireland, Belgium, Germany, Netherlands, Denmark, Sweden and 
Norway), in southern Europe (France, Spain, Majorca, Portugal, Italy and Greece) and in Asia (China, 
Taiwan and Singapore) (Table A – supplementary material). For PPs, different trends between 
continents and countries could have been expected due to differences in prescription habits, authorized 
drugs and patient consumption. However the data were too scarce to study any difference between 
these continents and countries. 
On the 100 investigated compounds (parents and metabolites) in water meeting the entered criteria, the 
half was detected. The most frequently investigated and detected compounds were antibiotics with  
erythromycin (s: 220; f: 77%; n:7), sulfamethoxazole (s: 251, f: 71%; n:9 ) and trimethoprim (s:168, 
f:80%; n:6), antiepileptics with carbamazepine (s: 85, f: 23%, n:5), caffeine (s:76, f: 86%, n:5), anti-
inflammatories with  ibuprofen (s:79, f:38%, n:5) and analgesics with acetaminophen (s:65, f:81%; 
n:3).  
Maximum PP concentrations reported in seawater were in a large range of concentrations from the 
LOQ (few ng/L) to 230,000 ng/L (Fig.1 A-F). Antibiotic concentrations ranged from 0.24 to 1900 
ng/L (Fig.1 A). The most frequently detected compounds were erythromycin, sulfamethoxazole and 
trimethoprim. The highest concentration was quantified for erythromycin, i.e. 1900 ng/L at the site 
immediately adjacent to the effluent discharge of a STP located in the typhoon shelter situated in 
Victoria Harbor (Hong Kong, China), where the water exchange to the outside sea is particularly low 
(Minh et al., 2009). Non-steroidal anti-inflammatory drugs (NSAIDs) (Fig. 1 B) were detected in 
seawater at maximal concentrations ranging from 0.7 ng/L to 6100 ng/L (Jiang et al., 2014; Togola 
and Budzinski, 2008; Weigel et al., 2004). Although the highest concentration was found for 
ketoprofen (s:60, f:68%,n:2), ibuprofen was the most frequently investigated and detected NSAID. For 
central nervous system drugs (Fig.1 C), carbamazepine was the most frequently detected compound 
in water (Jiang et al., 2014; Togola and Budzinski, 2008; Wille et al., 2010). Amitriptyline was less 
often screened and presented lower concentrations (30 ng/L) (Togola and Budzinski, 2008). Among 
cardiovascular system drugs (Fig.1 D), atenolol was detected at the highest level (293 ng/L) 
although its detection frequency was very low (s:64, f:3%, n:2).  Gemfibrozil was the most frequently 
detected compound (s:68, f:40%, n:3). Other less investigated classes such as analgesics, analeptics 
and illicit drugs were reported in Fig.1 (E-F). The most frequently investigated and detected 
compound was caffeine. The highest levels were reported for acetaminophen (230,000 ng/L) and 
aspirin (8300 ng/L) in sampling sites close to the pollution source, at less than 500 m from an STP 
outfall (Marseille, France) without secondary treatment, where the effluent was rejected in a semi 
enclosed area, poorly submitted to dilution (Togola and Budzinski, 2008). Among PCPs (Fig.1 G-I), 
little data was available. Musks and disinfectants are rejected in seawater with STP discharges and 
were detected at sites influenced by anthropogenic pressures, such as estuaries or harbors. Musks 
AHTN (Tonalide®), HHCB (Galaxolide®) were detected at levels up to 28 ng/L for HHCB (Sumner et 
al., 2010). Triclosan was detected at concentrations up to 99.3 ng/L in Victoria Harbor waters (China) 
(Wu et al., 2007). Concerning UV filters, most of studies were conducted along the coasts, as 
recreational activities are the main source of contamination. Highest concentrations were reported for 
benzophenone 3 (BP-3) and octocrylene (OC) with 2013 ng/L and 1409 ng/L respectively in the most 
highly frequented beaches sampled by Bratkovics and Sapozhnikova (2011). Tovar-Sanchez et al. 
(2013) studied the intra-day variation in concentrations of sunscreen agents and found the maximum 
levels in seawater when the sunlight radiation was maximum, when the skin applications are highest. 
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This broad range of concentrations was noted for most of the investigated PPCPs. This could be due to 
the sampling sites (proximity of the sources of contamination with direct or indirect input) and 
sampling strategies (depth in the water column, etc.), the hydrodynamics of the investigated sites with 
various dilution and diffusion processes and probably to variable attenuation processes. Little data is 
available on these two latter points regarding PPCPs in the marine environment.  
 

 

Figure 1: Maximum PPCP concentrations in seawater (ng/L). PPs: A-antibiotics/B-NSAIDs/C- 
central nervous system drugs/ D-cardiovascular system drugs /E-analgesics/ F-other drugs; PCPs:  
G-musks/H-UV filters/I-disinfectants  
 
For the sampling sites, as data concerning the most frequently quantified compounds were available 
for numerous sites, the results are presented according to the nature of the sampling sites. As to Fig. 2, 
the sites were classified as sites heavily influenced by STP, harbors, estuaries, bays, coasts, open seas 
and high seas to study the influence of the distance to a source of pollution on PP concentrations. As 
one might expect, highest concentrations were detected in zones closely impacted by STP effluents, 
harbors and bays where urban activities were located and estuaries subject to surface water 
contamination. In open seas and high seas, concentrations were lower (up to 16.6 ng/L) due to the 
lower anthropogenic pressure and to higher dilution or advection mechanisms. For example, for 
erythromycin, the highest reported concentrations were reported at a site directly impacted by  STP 
(Minh et al., 2009), then in a harbor and an estuary, with maximum levels ranging from 121 to 212 
ng/L (Liang et al., 2013; Minh et al., 2009), whereas in bays, coasts, open seas and high seas, 
maximum concentrations ranged from 0.76 to 26.6 ng/L (Zhang et al., 2013a, 2013b, 2012). In marine 
water, as expected, the maximum concentrations of PPCPs reported in the literature were lower than 
those reported in freshwater. For example, carbamazepine was found at levels ranging from 9 to 2,000 
ng/L in surface waters (Fent et al., 2006) whereas concentrations reported in marine waters ranged 
from 3.89 ng/L along the coasts (Jiang et al., 2014) to 185 ng/L in estuaries (Wille et al., 2010). 
Triclosan was detected with concentrations ranging from 0.1 to 1023 ng/L in freshwater (Bu et al., 
2013; Gorga et al., 2013) and  from 6.87 to 99.3 ng/L in marine water (Wu et al., 2007; Xie et al., 
2008).  Similarly, 2-ethyl-hexyl-4-trimethoxycinnamate (EHMC) was detected in seawater at levels of 
144-264 ng/L (Benedé et al., 2014; Bratkovics and Sapozhnikova, 2011) whereas  in freshwater,  the 
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concentrations range was 7-3009 ng/L (Balmer et al., 2005; Rodil et al., 2009).  In the same way, OC 
was detected in the reviewed studies with the lowest concentrations in seawater, ranging from 187 to 
1409 ng/L (Benedé et al., 2014; Bratkovics and Sapozhnikova, 2011) and 5 to 4301 ng/L in  
freshwater (Kameda et al., 2011; Rodil et al., 2009).  
 

 

Figure 2: Concentration ranges of caffeine (CAF), carbamazepine (CBZ), erythromycin (ETM), 
sulfamethoxazole (SMX), and trimethoprim (TMP) at different sampling sites in seawater: STP, 
harbor, estuary, bay, coast, open sea and high sea (ng/L) 
 
 

3-  Occurrence in sediment  
Most of the studies have been conducted on the aqueous compartment insofar as most of PPCPs are 
molecules particularly water-soluble.  However, some PCPs are more lipophilic compounds, such as 
OC or EHMC (log Kow close to 6), and may be highly subject to sorption by sediment (Amine et al., 
2012). A relationship between the degree of sorption and organic matter has been shown to some 
PPCPs. Sorption to sediment is a complex process influenced simultaneously by hydrophobic 
interactions (Van der Waals forces), ionic interactions (electrostatic interactions, complexation), 
hydrogen bonding etc., i.e. electrostatic forces are stronger than Van der Waals forces (von Oepen et 
al., 1991). More recently, studies investigated the sorption of PPs pointed out that the degree of 
ionization of the functional groups is a factor which influences the sorption on sediment. Numerous 
environmentally relevant PPs contain one or several dissociable functional groups (acidic/basic). 
Therefore, these compounds are in dissociation equilibrium depending on the seawater pH. 
Particularly for compounds with pKa within the seawater 7.4-8.35 pH range (Byrne, 2002), a highly 
pH-dependent sorption behaviour could be expected (Franco et al., 2009; Franco and Trapp, 2008; 
Kah and Brown, 2007). Studies performed on the sorption process of antibiotics by Vasudevan et al. 
(2009) revealed that ciprofloxacin was able to mainly undergo cationic exchange and that its sorption 
was strongly dependant on the soil CEC at all tested pH values. Yamamoto et al. (2009) reported the 
existence and dominant role of cation exchange processes for atenolol, positively charged at neutral 
pH. However, studies on sorption processes of PPs were mainly conducted in freshwater-sediment 
systems. Few data are available on the sorption of PPs in marine sediments while the degree of salinity 
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is an additional factor that may control the PP sorption onto natural sediment. Wang et al. (2010), who 
studied the sorption of antibiotic tetracycline onto clays and marine sediment from seawater, found 
that sorption decreased with increased salinity.  
A few studies have focused on PPCPs in marine sediment (15 papers between 2008 and 2014, Table A 
– supplementary material). PPCPs were investigated in North America in USA, in South America, in 
northern (UK) and southern Europe (France, Spain), in the Near East in Lebanon, and in Asia in 
China. These scarce publications showed that the marine sediment is also concerned by the presence 
of PPCPs. Twenty PPCPs (14 PPs and 6 PCP) were detected among thirty researched compounds, 
parents and metabolites (Table 1). Detection frequencies could not be estimated due to the lack of data.  
Among data selected as previously mentioned, the PP quantified at the highest levels was sulfameter 
(56.65 ng/g dry weight (dw)) in sediments located in the Dalian coastal environment (China) (Na et 
al., 2013). The reason could be that sulfameter had the highest sorption capacity among antibiotics 
investigated by Na and al. (2013).  
Among PCPs, UV filters, musks and antimicrobials were detected and quantified. A general trend is 
difficult to highlight as it has been performed for aqueous compartment, because of the lack of data for 
marine sediments, however some studies highlighted, as expected, that the highest concentrations were 
mostly reported in zones impacted by anthropogenic activities. Cantwell et al. (2010) reported a high 
concentration of triclosan (400 ng/g dw) in the urbanized estuary of the Narragansett Bay (USA). It is 
acknowledged that STP effluents are the primary source of triclosan in estuarine sediments. Amine et 
al. (2012) studied levels and spatial trends of concentrations of three UV filters in coastal zones 
impacted by indirect inputs (rivers and STP), highest concentrations of UV filters were reported for 
OC (78 ng/g dw) in surface sediments receiving STP effluents along El Mina city coastline. 
Concerning musks, Beretta et al. (2014) detected AHTN and HHCB in sediments in the Todos os 
Santos Bay (Brazil), at highest levels, i.e. 52.5 ng/g dw for HHCB, at sites with the highest population 
density and the presence of muddy coastal sediments. 
Despite the limited results available, it appeared that the concentrations found in marine sediments 
were lower than those observed in rivers sediments (Zeng et al., 2008). For example, sulfamethazine 
and triclosan were detected in river sediments in China at concentrations up to 248 ng/g dw (Yang et 
al., 2010) and  1329 ng/g dw (Zhao et al., 2010) respectively.  In contrast, the maximum 
concentrations reported in this review were 3.24 ng/g dw for sulfamethazine and 400 ng/g dw for 
triclosan (Liang et al., 2013).  

4- What about marine organisms? 
Although the presence of PPCPs in organisms sampled in marine environment has been rarely 
reported in the literature, mostly because of the high polarity of some of them, these compounds 
(PCPs) were detected at levels up to 7112 ng/g dw (Bachelot et al., 2012). Thus, this aspect of PPCPs 
contamination in the marine environment has to be considered. Twenty articles were published 
between 2006 and 2014 and were reported in Table A – supplementary material.  The occurrence of 
PPCPs in organisms has been documented in North America from San Francisco Estuary and Bay, 
along the California and Florida coasts to Charleston Harbor and South America along the Brazilian 
coasts, in Europe along the Portuguese, French, Ireland and Belgian coasts, in Asia and in Australia.  
Ranges of concentrations detected in marine organisms are presented in Table 2A for PPs and 2B for 
PCPs. As regard to selected data, PPs were detected in bivalves. Antibiotics were the main represented 
pharmaceutical class with a little more than ten detected molecules. The highest concentrations were 
490 ng/g dw for salicylic acid, 115 ng/g dw for acetaminophen in mussels Mytilus edulis of the 
Oostende marina in Belgium (Wille et al., 2011) and 19.9 ng/g ww for sulfamerazine in bivalves 
Crassostrea gigas, Patinopecten yessoensis and Chlamys farreri located at the Dalian coastal sites in 
China (Na et al., 2013). Martinez Bueno et al. (2014) detected the antidepressant venlafaxine and four 
of its metabolites in mussels Mytilus galloprovincialis sampled in the vicinity of a submarine outfall 
with industrial and urban discharges in Montpellier (France). Among PCPs, the highest concentrations 
were found in mussels Mytilus galloprovincialis and  Mytilus edulis for OC and for the stabilizer UV-
328 at levels up to 7112 ng/g dw at a the Mediterranean coastal site (Bachelot et al., 2012) and up to 
14,000 ng/g lw in mussels Perna viridis and Mytilus edulis in Kohyongsong Bay in Korea (Nakata et 
al., 2012), respectively. Bachelot et al. (2012) reported highest levels of sunscreen agents in 
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recreational sites in summer period, in July and August. Picot Groz et al. (2014) observed similar 
seasonal trends of UV filters in mussels Mytilus galloprovincialis sampled along the Portuguese 
coasts, with highest concentrations in July. As noticed by Tovar-Sanchez et al. (2013), concentrations 
of UV filters in seawater vary throughout the day, depending on the arrival of bathers. This lead thus to 
an intra-day variation  of organisms exposure which could be investigated through the measurement of 
concentrations in exposed organisms, helping to a better interpretation of  pharmacokinetic studies 
concerning UV filters. However, for musks,  a seasonal trend was not reported and their presence at 
sampling sites was due to the proximity of a STP (Picot Groz et al., 2014). Concerning marine 
mammals, Kannan et al. (2005) reported HHCB concentrations of 25 ng/g lw in striped dolphins and 
of 6.6 ng/g lw in pigmy sperm whales of the Florida coast.   
Although PPs are found at relatively low levels in the environment, their possible risk for aquatic 
organisms is mostly related to chronic exposure. The real ecological risk of these compounds is thus 
difficult to apprehend. The studies show generally effects at concentrations highest than those reported 
in the environment. As an example, Huggett et al. (2002) observed a significant decrease in eggs 
production of the fish Orizias latipes after a 4-week exposition to propranolol at 500 ng/L which is 
higher than the maximum concentration observed in seawater of 52 ng/L (Wille et al., 2011). Recently, 
some studies reported results of toxicity at levels close to the environmental concentrations, which is 
subject of controversy. Di Poi et al. (2013) and Franzellitti et al. (2013) reported behavioral effects of 
antidepressant fluoxetine on the cuttlefish Sepia officinalis and transcriptional effects on the marine 
mussel Mytilus galloprovincialis respectively, both at concentrations of 1 ng/L or less.  Sumpter and 
Margiotta-Casaluci (2014) have risen to question the relevance and the significance of these results in 
a commentary paper, and have highlighted the lack of pharmacological and pharmacokinetic data in 
aquatic organisms exposed to such molecules, helpful to confirm these results.  Although 
pharmacokinetics have been studied concerning some marine species (Li and Randak, 2009), few 
studies have been published, mainly for invertebrates, for which it is difficult to know the fluid 
concentrations such as haemolymph in mussels (Franzellitti and Fabbri, 2014).  Li and Randak (2009) 
showed that environmental conditions such as water temperature and salinity influence the 
pharmacokinetics in aquatic organisms. Metabolisation data are currently lacking to assess the loss of 
parent compounds by metabolite production. Ueno et al. (2001) studied the distribution of the 
antibiotic miloxacin in the fish Anguilla japonica and found the highest concentrations in kidney, in 
muscle and liver after oral administration. Smith et al. (2010) studied the hepatic metabolism of 
fluoxetine in freshwater fishes (rainbow trout, goldfish, killifish, zebrafish) and found that the 
metabolism was lower than in mammals, with differences noted regarding the metabolite nature and in 
proportions. Such studies have never been performed in marine organisms.  
Concerning some PCPs, more lipophilic than PPs, their risk may be predicted by their 
bioaccumulation or bioconcentration potential. The main property which influences bioaccumulation 
is the hydrophobicity of the substance, expressed as log Kow. The log Kow values of the PCPs discussed 
in the present review range from approximately 5.0 to 7.5. Beyond chemical properties, several 
biological parameters may influence the bioaccumulation. Borga et al. (2004) reported the influence of 
lipids, seasonality, reproduction, body size, age, sex, life cycle, biotransformation, habitat use, 
migration, and feeding ecology in bioaccumulation of organochlorine contaminants in arctic marine 
organisms. Although PCPs have different properties, the influence of such parameters should be taken 
into consideration. A few studies have been conducted on the distribution and bioaccumulation of 
PCPs in aquatic organisms, especially in marine organisms. Gatidou et al. (2010) and Kookana et al. 
(2013) studied the bioaccumulation of triclosan in marine mussels and reported a log BCF of 3.23 and 
2.81 L/kg dw, at exposition levels in water of 300 and 100 ng/L, respectively. Gomez et al. (2012) 
studied the accumulation kinetic of OC and EHMC during 48h in Mytilus galloprovincialis exposed 
by food at 0h and 24h, and observed higher concentrations 24h after the second spiking than the initial 
concentration.  Bioaccumulation can be observed in marine mammals which may particularly 
accumulate hydrophobic compounds because they are at the top of the food chain (Teramitsu et al., 
2000). Indeed, Kannan et al. (2005) detected higher concentrations for musks AHTN and HHCB in 
marine mammals than in fishes sampled in the California seawater. Considering the available data, it 
appears that the highest levels were reported for UV filters, which are able to bioaccumulate in 
organisms. However, for the most lipophilic compounds such as sunscreen compounds, it remains to 
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obtain in the same time the concentrations in seawater and in the organisms, to calculate a BCF and 
assess the exposure of the organisms to these contaminants. The presence of PCPs in marine mammals 
confirms their bioconcentration potential and their possible risk.  
Further investigations on temporal trends, regional and global monitoring of PPCPs is needed to 
understand their environmental profiles and potential risks to wildlife. As little or no information was 
being gathered on chemicals of emerging concerns (CECs) on a national scale in US coastal 
ecosystems, the Mussel Watch Program recommended, since 2009, the inclusion of CECs (in 
particular PPCPs), as pilot study and regular monitoring efforts are done  to assess the risk posed by 
these contaminants to the marine wildlife. The questions of occurrence (frequency of detection, 
concentration) and its variability were raised and factors as land use, proximity of wastewater 
treatment plant outflow and stormwater runoff were discussed. To answer these questions, native 
mussels were collected and analyzed at 68 sampling sites along the California coasts to characterize 
the spatial extent and temporal trends in contaminant concentrations (Bricker et al., 2014; Dodder et 
al., 2014; Maruya et al., 2014a, 2014b).  The results showed that 30 out of 88 PPCPs were detected 
and that frequencies of detection of lomefloxacine and sertraline exceed 60%. Dodder et al. (2014) 
revealed a widespread occurrence of PPCPs in mussels without discernible trend with land use. 
Moreover, neither discharge of WTP nor discharge of stormwater runoff dominated the input. Among 
CECs, lomefloxacine was proposed to be included in future coastal bivalve monitoring efforts because 
of its relatively high concentrations and detection frequencies. This study demonstrates that PPCPs 
have to be taken into account in pollution monitoring programs. Such pilot studies should be 
conducted in other countries to better understand the local specificities of this contamination.  

CONCLUSION 
Over the last few decades, the characterization of the PPCP contamination in the marine environment 
and the identification of sources that lead to contamination have been made possible by the 
widespread availability of sensitive analytical techniques designed to detect environmental traces. 
However, studies concerning the quantitative analysis of PPCPs in marine ecosystems are still 
somewhat limited. Reported concentrations were generally lower than those reported in freshwater 
environments making the assessment of ecological risks caused by this contamination challenging. 
Despite the scarcity of quantitative data, the contamination of the marine ecosystem is a new reality 
that leads to the exposure of the marine wildlife species, confirmed by the data of occurrence in 
marine organisms available in literature. It is essential to acquire more accurate data on the fate of 
PPCPs in the marine ecosystem and the effects of PPCPs on marine organisms.  The main knowledge 
gaps and research needs highlighted by the present study address the following issues. 

1) Through the analysis of reviewed papers, some factors influencing the distribution of the 
PPCPs concentrations in marine environment were emphasized. The site conformation and 
hydrodynamic conditions will largely determine the spatial distribution of marine PPCP 
concentrations. These particular aspects should be considered when designing an occurrence 
study at a marine site.  
 

2) A need for harmonizing analytical procedures for multi-residue analyses in aquatic 
environments was highlighted. It would allow more effective data comparisons and make the 
characterization of the PPCP contamination more accurate. Moreover, there is a lack of 
specific quality criteria for organic contaminant multi-residue analyses. More specific 
guidelines should be completed to obtain higher quality occurrence data for PPCPs.  
 

3) Research projects to assess the fate of PPCPs in the marine environment should be conducted. 
Sorption studies on marine sediments are rare in literature. For some PPCPs, degradation 
processes need to be better understood. With these data, hydrodynamic models could help 
predict the behavior of such substances on a local scale, by integrating degradation and 
sorption parameters. 
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4) The assessment of any potential risk of PPCP exposure to marine species should be completed 
with supplemental studies. The ecological significance of ecotoxicity data extrapolated to 
natural marine systems is difficult to understand.  There is thus a need to conduct long-term 
ecotoxicological tests on sensitive species at environmental levels. The use of sensitive 
approaches and informative techniques, such as “omics” approaches, already used for other 
pollutants such as heavy metals or pesticides (Kwon et al., 2012; Milan et al., 2013) could 
help obtain this information.  

 
5) In the future, marine pollution monitoring programs conducted at local scales should, to the 

extent feasible, include PPCPs to improve understanding of the local specificities of the PPCP 
contamination and thus better inform future management decisions concerning the quality of 
the marine environment.  
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Table 1: Occurrence of PPCPs in marine sediments (highest concentrations in ng/g dw)  
OD-PABA:octyl-dimethyl-PABA 
 

Type Class Compound Concentrations 
ng/g dw References 

PP
s 

Antibiotics chloramphenicol 2.31 Na et al., 2013 

 doxycycline 1.54 Na et al., 2013 

 erythromycin 2.29-14 Beretta et al., 2014 ; Liang et al., 2013 

 roxithromycin 13.5 Liang et al., 2013 

 sulfacetamide 1.39 Na et al., 2013 

 sulfadiazine 1.68 Na et al., 2013 

 sulfamerazine 3.67 Na et al., 2013 

 sulfameter 56.65 Na et al., 2013 

 sulfamethazine 1.76-3.24 Liang et al., 2013; Na et al., 2013 

 sulfamethoxypyridazine 7.67 Na et al., 2013 

 sulfathiazole 1.89 Na et al., 2013 

 tetracyclin 1.74-7.13 Liang et al., 2013; Na et al., 2013 

 Antiepileptics carbamazepine 4.81 Beretta et al., 2014 

 NSAIDs diclofenac 1.06 Beretta et al., 2014 

  ibuprofen 14.3 Beretta et al., 2014 

 Others caffeine 23.4 Beretta et al., 2014 

  diazepam 0.71 Beretta et al., 2014 

PC
Ps

 

Antimicrobials triclosan 400 Cantwell et al., 2010 
Musks AHTN 17.3-27.9 Beretta et al., 2014 ; Zeng et al., 2008 

 HHCB 44.5-52.5 Beretta et al., 2014 ; Zeng et al., 2008 
UV filters EHMC 9 Amine et al., 2012 

 OC 78 Amine et al., 2012 

 OD-PABA 9 Amine et al., 2012 
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Class Compound Mollusks ng/g References 

Antalgics acetaminophen 115 Wille et al.,  2011 
  salicylic acid 490 Wille et al.,  2011 
Antibiotics chloramphenicol 3.23* Na et al., 2013 

 doxycycline 1.57* Na et al., 2013 

 ofloxacin 65 Wille et al., 2011 

 oxytetracycline 9.45* Na et al., 2013 

 sulfacetamide 2.10* Na et al., 2013 

 sulfadiazine 5.21* Na et al., 2013 

 sulfamerazine 16.69* Na et al., 2013 

 sulfamethazine 3.93* Na et al., 2013 

 sulfamethiazole 2.05* Na et al., 2013 

 sulfamethoxypyridazine 6.11* Na et al., 2013 

 sulfathiazole 2.16* Na et al., 2013 
Antidepressants NDV 3.0 Martinez Bueno et al., 2014 

 NODDV 3.5 Martinez Bueno et al., 2014 

 ODV 3.7 Martinez Bueno et al., 2014 

 venlafaxine 2.7 Martinez Bueno et al., 2014 
Antiepileptics carbamazepine 11 Wille et al., 2011 
Betablockers propranolol 52 Wille et al.,  2011 

Table 2A: Highest concentrations of PPs reported in marine organisms in the literature (ng/g, dry weight or wet weight*), 
NDV: N-desmethylvenlafaxine, NODDV: N,O-didesmethylvenlafaxine, ODV: O-desmethylvenlafaxine 
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Class Compound Mollusks Fishes Mammals References 
Disinfectants Triclosan 2578 - - Gatidou et al., 2010 
Musks AHTN  [2500] 1.7* 2.3* Kannan et al., 2005; Nakata et al., 2012 

 HHCB 12 ; [14,000] 6.6* 25* Kannan et al., 2005; Nakata et al., 2012; Picot Groz et al., 2014 
UV filters EHMC 256-1765 - - Bachelot et al., 2012; Picot Groz et al., 2014 
  OC 3992-7112 - - Bachelot et al., 2012; Picot Groz et al., 2014 

 OD-PABA 833 - - Picot Groz et al., 2014 
UV stabilizers UV-320 [86] - - Nakata et al., 2012 

 
UV-327 [300] - - Nakata et al., 2012 

 
UV-328 [830] - - Nakata et al., 2012 

Table 2B: Highest concentrations of PCPs reported in marine organisms in the literature (ng/g, dry weight or wet weight* or lipid weight [ ]) 
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Reference 

Number of 
purchased 
compounds 

Sampling  
Type of 
water 

sampling  

PP 
and/or 
PCP 

Location Site description 

Alvarez et al., 2014 5 Water POCIS PP, PCP USA 
Eleven sampling stations along the California’s San Francisco Bay and 
the Southern California Bight with urban and agricultural activities, 
stormwater discharges and STPs. 

Amine et al., 2012 3 Sediment - PCP 
Lebanon 
southern 
France 

Sampling in coastal zones of three Lebanese rivers with urban and 
agricultural pressure, along the El-Mina coastline with a commercial 
harbor, a fishing harbor and four STPs. In France, sampling in coastal 
lagoons and in the vicinity of a submarine outfall. 

 Andresen et al., 2007 7 Water Active PCP North Sea 
Sampling sites in the German Bight, a region of special concern for 
fisheries, heavily influenced by shipping, fishing and recreational 
activities and by the river Elbe estuary. 

 Bachelot et al., 2012  3 Organism - PCP France 
Ten sites along the French coast, three in eastern France, seven in 
southern France, representing different anthropogenic pressures and 
geomorphologic configurations. 

 Bayen et al., 2013  4 Water Active PP, PCP Singapore Twenty four samples from eight sites around Singapore. 

 Benedé et al., 2014  8 Water Active PCP Spain Three sampling sites in the Palmira Beach (Majorca Island), the 
Malvarrosa Beach and the Pinedo Beach (Valencia). 

Beretta et al., 2014 9 Sediment - P,PCP Brazil 
Seventeen sampling sites in the Todos os Santos Bay, receiving 
drainage from various watersheds and the main destination for the 
domestic and hospital sewage from the city of Salvador. 

 Bertin et al., 2011  1 Sediment - PP Chile 

Sampling at nine sites at the discharge locations of nine STPs 
distributed along the Pacific Ocean coastline of the Biobío region. 
STPs treat domestic and industrial waste waters with primary treatment 
mostly. 

 Bratkovics and Sapozhnikova, 
2011  7 Water Active PCP USA Sampling at four sites along the Folly Beach, South Carolina, differing 

in access and in usage. 

 Cantwell et al., 2010  1 Sediment - PCP USA 
Samples collected in four urbanized estuaries situated along the 
Atlantic coast of the United States including Boston Harbor, 
Narragansett Bay, the Lower Hudson River and Chesapeake Bay. 

 Cavalheiro et al., 2013  9 Water Active PCP France, Spain Samples collected in the Gernika estuary (Bay of Biscay) and the 
Adour estuary (Bayonne). 
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 Comeau et al., 2008  11 Water Active PP Canada 

Four samples in Halifax Estuary, three in Pictou Estuary, where both 
untreated and treated waste waters are released and two sampling 
points in the Cocagne Estuary, where there is no sewage release, but 
possibility of septic tank leaching. 

 del Rey et al., 2012  1 Water Active PP USA 

Fourteen samples along the Oregon coast, from Astoria in the North, to 
Brookings in the South, some with populated areas with pollution 
threats (STP, rivers) and some with sparsely populated areas with no 
identifiable pollution threats. 

 Dodder et al., 2014  86 Organism - PP, PCP USA 

Sixty-eight mussel stations along the coast of California. These stations 
were located in areas submitted to different pressures (receiving STP 
discharge, agriculture areas, urbanized areas and stormwater receiving 
areas). 

 Fair et al., 2009  1 Water, organism Active PCP USA 
Blood sampled from dolphins in Charleston and in Indian River 
lagoon. Eighteen samples were collected in estuarine surface waters of 
Charleston. 

 Fang et al., 2012  4 Water Active PP Taiwan 

Fourteen samples in Danshui Estuary where Bali STP discharges its 
effluents through an ocean outfall pipe. It receives untreated sewage 
from several industries and domestically treated and untreated 
wastewaters. 

 Fernandes et al., 2011  2 Sediment - PCP Australia Thirty sampling sites near the Barket Inlet mouth in South Australia, 
receiving effluents from the Bolivar STP. 

 Gago-Ferrero et al., 2013  1 Organism - PCP Brazil 
Fifty-six samples collected from dolphins found dead on beaches along 
the southern Brazilian coast (six sampling sites), impacted by domestic 
wastewaters. 

 Gatidou et al., 2010  1 Organism - PCP Greece Eighteen bivalve samples collected in the Thermaikos Gulf and the 
Lesvos Island. 

 Giokas et al., 2004  4 Water Active PCP Greece Samples collected along the coastal line of North Greece (Epirus), at a 
site of recreational and bathing activities. 

 Giokas et al., 2005  5 Water Active PCP Greece Sampling done in a closed gulf located in a popular touristic area. 

 Gulkowska et al., 2007  9 Water Active PP China 
Eight samples along Hong Kong coasts, one in Victoria Harbor, one 
farther away near an STP outfall, two as a reference location, and three 
in waters influenced by an STP outfall. 

 Hoenicke et al., 2007  8 Organism - PCP USA Mollusks deployed at 4 sites: Coyote Creek, Redwood 
Creek, Napa River, and Yerba Buena Island (San Francisco Estuary). 

 Jiang et al., 2014  31 Water Active PP, PCP Taiwan Fifty-three sampling stations in coastal south-western Taiwan, which 
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includes heavily urbanized, industrial areas and activities such as 
animal husbandry and aquaculture. 

 Kannan et al., 2005  2 Organism - PCP USA Coastal waters of Alaska and California. 

 Klosterhaus et al., 2013  104 
Water, 

organism, 
sediment 

Active PP, PCP USA Sampling in urbanized segments of San Francisco Bay influenced by 
municipal and industrial wastewaters. 

 Knee et al., 2010  1 Water Active PP Hawaii Samples at five sites along the north shore of the island of Kauai 
(Haena, Hanaley Bay, Hono Iki, Pier and Pavilion). 

 Kookana et al., 2013  2 Organism - PCP Australia 
Cages of mussels deployed at two sites along the Adelaide 
metropolitan coast. The sampling sites are adjacent to the Bolivar STP 
and to the Glenelg STP. 

 Langford and Thomas, 2008  4 Water Active PCP Norway Samples collected from sites with direct (bathing areas and marinas) 
and indirect sites receiving wastewater effluent) human influences. 

 Li et al., 2012  23 Organism - PP China 
Mollusk samples collected from nine coastal cities along the Bohai 
Sea. Most of sampling sites were large and busy seaports with a large 
population. 

 Liang et al., 2013  9 Water, sediment Active PP China 

Seven sampling sites located downstream of Pearl River Estuary, with 
four located in Shiziang channel, receiving runoff from the Guangzhou 
channel and the East River. Seven other sampling sites were distributed 
within the estuary. 

 Long et al., 2013  119 Sediment - PP, PCP USA Ten samples in Puget Sound and 30 samples in Bellingham Bay. 

 Magner et al., 2010  10 Water Active PP Sweden 
Eight samples collected in the central Bay of Stockholm, receiving 
effluents from Henriksdal STP. Four other samples were collected 
along the coast downstream of Himmerfjärdens STP. 

 Martinez Bueno et al., 2009  12 Water POCIS PP Spain Fish farm set up in the Mediterranean Sea in a coastal zone. 

 Martinez Bueno et al., 2014  5 Organism - PP France 

Thirty four mussel samples collected from different zones of the 
Mediterranean Sea in southeastern France (Marseille and Montpellier): 
a farming site, a lagoon influenced by human activities, in the vicinity 
of marine outfalls, and local markets. 

 Maruya et al., 2012  7 Sediment, 
organism - PP, PCP USA Four sites along the southern California coasts close to STPs, and a 

reference site. 

 McEneff et al., 2014  5 Water, organism Active PP Ireland Three sites: a control site and a two effluent exposure sites off the east 
and west coasts of Ireland, in an estuary and in a bay, respectively. 

 Miller et al., 2008  4 Sediments - PCP USA Sampling sites along the US East Coast near a wastewater outfall in the 
Chesapeake Bay watershed (Maryland) and in the Jamaica Bay (New 
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York). 

 Minh et al., 2009  16 Water Active PP China Twenty samples in Victoria Harbor, mainly near the sewage effluent 
discharge points. 

 Montesdeoca-Esponda et al., 
2012  5 Sediment - PP Spain Sampling close to a submarine outfall located in the southern region of 

Gran Canaria Island, discharging treated waste waters from an STP 

 Moon et al., 2011  5 Organism - PCP Korea Fifty two samples of bubbler from dolphins entangled in fishing nets 
along the Yellow Sea and the South Sea. 

 Munaron et al., 2012  21 Water POCIS PP France Thirteen samples along the Mediterranean coast, from the Italian 
border to the East to the Spanish border to the West. 

 Na et al., 2013  20 
Water, 

organism, 
sediment 

Active PP China Twenty sampling sites along the Dalian coasts in the Yellow Sea. 

 Nakata et al., 2007  5 Organism - PCP Japan 
Samples from the Ariake Sea, the Chiba coast, Shizuoka coast, Ise Bay, 
Mikawa bay, Taiji coast, Seto Inland Sea, Fukuoka coast and the 
Omura Bay. 

 Nakata et al., 2012  6 Organism - PCP 

Cambodia, 
China, India, 

Indonesia, 
Japan, Korea, 

Malaysia, 
Philippines, 

USA, 
Vietnam 

Coastal waters: harbors, fisheries, aquaculture, commercial, industrial, 
farming, residential areas and open coastal sites. 

 Nguyen et al., 2011  6 Water Active PCP Italy 
Ten samples, one blank at the Surla Beach in Genoa, nine others were 
collected in Santa Margherita, San Fruttoso and Camogli (Ligurian 
coast). 

Picot Groz et al., 2014 9 Organism - PCP Portugal Four different beaches in the south of Portugal with different 
recreational and tourist population pressures. 

 Pintado-Herrera et al., 2014  2 Water, sediment Active PCP Spain Sampling sites in the province of Cadiz, in the Guadalete River estuary 
receiving urban, agricultural and industrial effluents discharges.  

 Rocha et al., 2013  2 Water Active PP Portugal Nine sampling sites in the Ria Formosa Lagoon along the coast 
covering urban centers and a protected natural park area. 

 Rubinfeld and Luthy, 2008  2 Water, sediment Active PCP USA Sediments collected from 14 sites located in the South San Francisco 
estuary intertidal zone. Water samples were collected from the outfall 



25 

 

pipe of an local STP and the surrounding surface water. 

 Rüdel et al., 2006  8 Organism - PCP North Sea, 
Baltic Sea 

Samples from Environmental Specimen Bank (ESB) of mussels and 
fishes eelpout. 

 Siegener and Chen, 2002  1 Water Active PP USA Boston Harbor and Massachusetts Bay. 

 Singh et al., 2010  5 Water Active PP,PCP USA 
Eight samples in Kay Largo Harbor, largest island of Florida Keys,  
with several tank systems and 40 sampling points in Looe Key, a 
popular reef for scuba diving and snorkelling. 

 Sumner et al., 2010  6 Water, 
sediment, SPM Active PCP UK 

Eleven sampling sites in the Tamar Estuary, influenced by agricultural 
land runoff, discharges from STPs serving the city of Plymouth and 
commercial and industrial shipping activities in the area. 

 Thomas and Hilton, 2004  14 Water Active PP UK Twenty two samples in estuaries of the rivers Tyne, Tees, Mersey, and 
Thames and Belfast Lough. 

 Togola and Budzinski, 2008  17 Water Active PP France 
Samples in Cortiou rocky inlet (Marseille) in the Mediterranean Sea in 
the effluent plume of a wastewater treatment plant (no biological 
treatment). 

 Tovar-Sanchez et al., 2013  2 Water Active PCP Majorca 
Sampling in two areas corresponding to semi-enclosed and densely 
populated beaches and a third considered as a control, an open and 
scarcely used beach. 

 Vidal-Dorsch et al., 2012  20 Water Active PP, PCP USA 
Samples collected at five stations in the Southern California Bight, four 
located near municipal wastewater outfall effluent discharge areas and 
one from a reference area. 

 Weigel et al., 2002  2 Water Active PP 

Denmark, 
Norway,  

UK, 
Netherlands 

Fifteen samples in the North Sea. 

 Weigel et al., 2004  13 Water Active PP, PCP Norway 

Two samples in Breivika Harbor, one off the Tromso STP, two 300 m 
north of an STP, two in a marina, three on a sewage plume (upstream, 
downstream) and two reference points in the open North Atlantic 
Ocean. Treated STP and untreated effluents are discharged. 

 Wille et al., 2010  13 Water Active PP Belgium Eleven harbors (Ostend, Nieuwpoort and Zeebrugge), six offshore and 
two Schedt Estuary samples. 

 Wille et al., 2011  11 Organism - PP Belgium Cages of mussels from the Eastern Schedt placed in the marina of 
Nieuwpoort, Oostende, Zeebrugge, and in the open sea. 

 Wu et al., 2007  1 Water Active PCP China Sampling in Victoria Harbor and Tai Po Harbor (Hong Kong).  
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 Xie et al., 2008  1 Water Active PCP 
Germany, 

Denmark and 
Netherlands 

Twenty four sampling sites in the German Bight. 

 Yang et al., 2011  9 
Water, 

Sediment, 
SPM 

Active PP China One sample in the Yangtze River Estuary, two in coastal waters, and 
three around an STP (upstream, downstream and in the STP outfall). 

 Zeng et al., 2008  6 Sediment - PCP China Three sampling sites along the Macao coast, a know pollution 
deposition zone in the Pearl River Delta. 

 Zhang et al., 2012  13 Water Active PP China Twenty seven samples in Laizhou Bay (15 in inner bay and 12 in outer 
bay). 

Zhang et al., 2013a 11 Water Active PP China 

Sixty two samples collected in the Bohai Sea semi-enclosed sea and in 
the Yellow Sea (open sea) where coasts have dense human populations, 
developed industries and agriculture, including animal husbandry and 
aquaculture. 

 Zhang et al., 2013b  11 Water Active PP China Fifty-six samples in Jiaozhou Bay and in Yantai Bay, close to 
urbanized areas with agriculture, fish farming, and industries. 

 Zheng et al., 2012  11 Water Active PP China Thirty-five samples in Beibu Gulf where aquaculture is developed.  

 Zou et al., 2011  21 Water Active PP China Twenty-eight samples in Bohai Bay, which receives wastewaters and 
municipal sewage from the city of Beijing 

 Table A: Main characteristics of sites where PPCP contamination was reported in the papers reviewed (PP: pharmaceutical, PCP: personal care product, SPM: 
suspended particulate matter, UK: United Kingdom, USA: United States of America) 
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