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Abstract

This paper studies the estimation of the conditional density f(x, ·) of Yi given Xi = x,
from the observation of an i.i.d. sample (Xi, Yi) ∈ Rd, i ∈ {1, . . . , n}. We assume that f
depends only on r unknown components with typically r � d. We provide an adaptive
fully-nonparametric strategy based on kernel rules to estimate f . To select the bandwidth
of our kernel rule, we propose a new fast iterative algorithm inspired by the Rodeo algorithm
(Wasserman and Lafferty, 2006) to detect the sparsity structure of f . More precisely, in
the minimax setting, our pointwise estimator, which is adaptive to both the regularity
and the sparsity, achieves the quasi-optimal rate of convergence. Our results also hold for
(unconditional) density estimation. The computational complexity of our method is only
O(dn log n). A deep numerical study shows nice performances of our approach.

Keywords: Conditional density, Sparsity, Minimax rates, Kernel density estimators,
Greedy algorithm

1. Introduction

Consider W = (W1, . . . ,Wn) a sample of a couple (X,Y ) of multivariate random vectors:
for i ∈ {1, . . . , n},

Wi = (Xi, Yi),

with Xi valued in Rd1 and Yi in Rd2 . We denote by d := d1 + d2 the joint dimension. We
assume that the marginal distribution of X and the conditional distribution of Y given X
are absolutely continuous with respect to the Lebesgue measure, and we denote by fX the
marginal density of X (and more generally by fZ the density of any random vector Z). Let
us define f : Rd → R+ such that for any x ∈ Rd1 , f(x, ·) is the conditional density of Y
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conditionally on {X = x}:
f(x, y)dy = dPY |X=x(y).

In this paper, we aim at estimating the conditional density f at a set point w = (x, y) in Rd.

1.1 Motivations

The conditional density is more informative than the regression function (think in par-
ticular to the case of an asymmetric or multimodal distribution) and its estimation is
considered in various application fields: meteorology, insurance, medical studies, geology,
astronomy (see Nguyen, 2018, and references therein). Moreover, the ABC methods (Ap-
proximate Bayesian Computation) are actually dedicated to find a conditional distribution:
see (Izbicki et al., 2019) where the link between conditional density estimation and ABC is
studied. Several nonparametric methods have been proposed for estimating a conditional
density: for kernel estimators and bandwidth selection issues see (Bashtannyk and Hyn-
dman, 2001), (Fan and Yim, 2004), (Holmes et al., 2010), (Ichimura and Fukuda, 2010).
Later, adaptive-in-smoothness estimators have been introduced: (Brunel et al., 2007) with
piecewise polynomial representation, (Chagny, 2013) with wraped bases method, (Le Pen-
nec and Cohen, 2013) with penalized maximum likelihood estimator, (Bertin et al., 2016)
with Lepski-type methods and (Sart, 2017) with tests-based histograms.

All above references do not really deal with the curse of dimensionality. From a the-
oretical point of view, the minimax rate of convergence for such nonparametric statistical
problems is known to be n−s/(2s+d) (possibly up to a logarithmic term), where s is the
smoothness of the target function. This illustrates that estimation gets increasingly hard
when d is large. Moreover the computational complexity of above methods is often in-
tractable as soon as d is larger than 3 or 4. A first answer to overcome this limitation is
to consider single-index models as (Bouaziz and Lopez, 2010) or semi-parametric models as
(Fan et al., 2009). In the same framework, Shiga et al. (2015) assume that the dependence of
Y on the relevant components is additive. Another way is paved by Otneim and Tjøstheim
(2018) who estimate the dependence structure in a Gaussian parametric way while estimat-
ing marginal distributions nonparametrically. But those methods imply strong structural
assumptions.
A more general advance has been made by Hall et al. (2004) who assume that some com-
ponents of X can be irrelevant, i.e. that they do not contain any information about Y
and should be dropped before conducting inference. Their cross-validation approach allows
them to obtain a minimax rate for a r1-dimensional C2 function, where r1 is the number
of relevant X-components. Efromovich (2010) has improved these non-adaptive results by
using thresholding and Fourier series and achieves the minimax rate n−s/(2s+r1) without
any knowledge of r1 nor s. Note that above rates were established for the L2-loss whereas
we shall consider the pointwise loss. However these combinatorial approaches make their
computation cost prohibitive when both n and d are large. More recently, Izbicki and Lee
(2016, 2017) have proposed two attractive methodologies using orthogonal series estima-
tors in the context of an eventual smaller unknown intrinsic dimension of the support of
the conditional density. In particular, the Flexcode method originally proposes to transfer
successful procedures for high dimensional regression to the conditional density estimation
setting by interpreting the coefficients of the orthogonal series estimator as regression func-
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tions, which allows to adapt to data with different features in function of the regression
method. However, the optimal tuning parameters depend in fact on the unknown intrinsic
dimension. Furthermore, optimal minimax rates are not achieved, revealing the specific
nature of the problem of conditional density estimation, more intricate, in full generality,
than regression.

1.2 Objectives, Methodology and Contributions

Here, we consider the setting where the conditional density f has r ∈ {0, . . . , d} relevant
components, i.e. that there exists a subset R ⊂ {1, . . . , d} with cardinal r, such that for any
fixed {zj}j∈R, the function {zk}k∈Rc 7→ f(z1, . . . , zd) is constant on the neighborhood of w,
with Rc = {1, . . . , d} \ R. We denote by fR the restriction of f to the relevant directions.
Assuming that f is s-Hölderian, our goal is to provide an estimation procedure such that it
achieves the best adaptive rate. Our meaning of adaptation is twofold. The first meaning
corresponds to adaptation with respect to the smoothness, which is the classical meaning
of adaptation. The second one corresponds to adaptation with respect to the sparsity.

In the literature of conditional density estimation, to the best of our knowledge, no
method provides theoretical results achieving the twofold adaptive rates. Moreover, the
smoothness-adaptive procedures of bandwidth selection are based on optimization over d-
dimensional grids of bandwidths, thus require intensive computation, even in moderately
high dimension as the grid grows exponentially fast with the dimension. So, our goal is
to propose an optimal procedure in this context, meaning that it does not depend on the
knowledge of s and R, and even r. Furthermore, for practical purposes in moderately large
dimensions, it should be implemented with low computational time.

For this purpose, we consider a particular kernel estimator depending on a bandwidth
h ∈ Rd+ to be selected. To circumvent the curse of dimensionality, we consider an iterative
algorithm on a special path of bandwidths inspired by the Rodeo procedures proposed
by Wasserman and Lafferty (2006) and Lafferty and Wasserman (2008) for nonparametric
regression, Liu et al. (2007) for density estimation and Nguyen (2018) for conditional density
estimation. More precisely, our new procedure, called RevDir CDRodeo, is a variation of
the CDRodeo proposed by Nguyen (2018) (and called Direct CDRodeo in the sequel).

We establish that, up to a logarithmic term whose exponent is positive but as close
to 0 as desired, RevDir CDRodeo achieves the rate ((log n)/n)s/(2s+r), which is the op-
timal adaptive minimax rate on Hölder balls Hd(s, L), when the conditional density de-
pends on r components. When r is smaller than d, this rate is faster than the usual rate
((log n)/n)s/(2s+d) achieved by classical kernel rules. Furthermore, unlike previous Rodeo-
type procedures, our procedure is adaptive with respect to both the smoothness and the
sparsity. To the best of our knowledge, our RevDir CDRodeo procedure is the first algo-
rithm achieving quasi-minimax rates for conditional density estimation in this setting where
both sparsity and smoothness are unknown.
We also propose a deep numerical study of parameters tuning of the algorithm. Then the
numerical performances are presented for several examples of conditional densities. In par-
ticular RevDir CDRodeo is able to tackle the issue of sparsity detection. Moreover, for
each relevant component, reconstructions are satisfying. Finally, we show that the total
worst-case complexity of the RevDir CDRodeo algorithm is only O(dn log n). This last
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result is very important for modern statistics where many problems deal with very large
data sets.

1.3 Plan of the Paper and Notation

The plan of the paper is the following. First we describe in Section 2 the estimation pro-
cedure. We give heuristic ideas based on the minimax approach and explain why some
modifications of the Direct CDRodeo procedure are necessary. Then a detailed presenta-
tion of our algorithm is provided in Section 2.3. Next, the main result is stated in Section
3. The complexity of the algorithm is computed in Section 3.4. After tuning the method,
the latter is illustrated via simulations and examples in Section 4. The proofs are gathered
in Section 5.

In the sequel, we adopt the following notation. Given two functions φ, ψ : Rd → R, two
integers j, k, two vectors h and h′, two real numbers a and b, we denote

- ‖φ‖q =
(∫
|φ(u)|qdu

)1/q
the Lq norm of φ for any q ≥ 1;

- φ ? ψ the convolution product u 7→
∫
Rd φ(u− v)ψ(v)dv;

- ∂jφ the partial derivative of φ with respect to the direction j (or ∂
∂uj

φ when there is

ambiguity on the variable);

- j : k the set of integers from j to k;

- |A| the cardinal of a set A;

- h � h′ the partial order on vectors defined by: hk ≤ h′k, for k ∈ 1 : d;

- a . b (respectively a ≈ b) means that the inequality (respectively the equality) is
satisfied up to a constant.

2. Estimation Procedure

In this section, we detail our estimation procedure.

2.1 Kernel Rule

Our conditional density estimation procedure follows the kernel methodology. Let K : R→
R be a kernel function, namely K satisfies

∫
RK(t)dt = 1. Then, following the methodology

proposed by Bertin et al. (2016), the estimator of f at the point w = (x, y) with bandwidth
h = (h1, . . . , hd) ∈ (0, 1]d is defined by

f̂h(w) :=
1

n

n∑
i=1

1

f̃X (Xi)
Kh(w −Wi), (1)

where for any v ∈ Rd, Kh(v) =
∏d
j=1 h

−1
j K(vj/hj) and f̃X is an estimator of fX , built from

a sample X̃ not necessarily independent of W .

Remark 1 Note that (non conditional) density estimation is a special case of this studied
problem, as it corresponds to the setting where d1 = 0 and fX ≡ 1 (≡ f̃X). In this case,
f̂h(w) is the usual kernel density estimator.
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These estimators, called hereafter the Blr estimators, differ from the intensively stud-
ied family expressed as a ratio of two density estimates of fW and fX , following f(x, y) =
fW (x, y)/fX(x). Indeed, this last decomposition takes into account the characteristics (smooth-
ness, sparsity) of fW and fX instead of those of our target f . More precisely, an irrelevant
component of the conditional density may be relevant for both the joint density fW and the
marginal density fX and it occurs in particular when a component of X is independent of
Y . Similarly, the smoothness of f can be different from those of the functions fW and fX ,
which potentially would deteriorate the rates of convergence.
Conversely, the Blr estimators estimate f more directly: in particular, their expectations
can be written as the usual kernel regularization of f : under some mild assumptions on K
and f and with f̃X = fX ,

E[f̂h(w)] =

∫∫
1

fX(u)
Kh(w−(u, v))fW (u, v)dudv =

∫
Kh(w−z)f(z)dz = (Kh?f)(w). (2)

Let us study briefly the minimax pointwise risk of the estimator (1) in the simplified setting
f̃X = fX . We can decompose the pointwise squared risk in bias and variance terms:

R(h) := E[(f̂h(w)− f(w))2] = B2(h) + Var(f̂h(w)). (3)

If f is a function in the Hölder ball Hd(s, L) with at most r relevant components, the usual
respective upper bounds for the bias and variance are typically

B2(h) :=
(
E[f̂h(w)]− f(w)

)2
.
∑
j∈R

h2s
j (4)

(see Inequality (42) of Lemma 18) and

Vh := Var(f̂h(w)) .
1

n
∏d
j=1 hj

(5)

(see Inequality (36) of Nguyen, 2018). The theoretical minimizer h∗ on (0, 1]d of the minimax
risk is then of the form:

h∗j =

{
n−1/(2s+r) for j ∈ R,
1 for j /∈ R. (6)

Given this bandwidth, which depends on s, r and R, and given a sharp estimator f̃X , the
Blr estimator achieves the minimax rates n−

s
2s+r . But s, r and R are unknown. Hence in

the following we present a fast data-driven bandwidth selection method.

2.2 Bandwidth Selection

The principal issue in kernel rules is the choice of the bandwidth. In particular, we consider
a d-dimensional bandwidth, instead of a scalar one which would be easier and faster to
select but would also deteriorate the performances of the estimator.
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2.2.1 Rodeo Algorithm Principle

The principle of Rodeo, and of its derived versions (Wasserman and Lafferty, 2006; Nguyen,
2018), is to progressively build a monotonous path of bandwidths through the bandwidths
grid. The construction of this path is based on tests at each iteration to decide if a bandwidth
component has a convenient level or still has to be multiplied by an iterative step factor.
The tests rely on the partial derivatives of the estimator with respect to the components of
the current bandwidth: for h ∈ (0, 1]d and j ∈ 1 : d,

Zhj :=
∂

∂hj
f̂h(w). (7)

The main idea is to use Zhj as a proxy of ∂
∂wj

f , relying on the natural intuition that the

more f is varying, the smaller the bandwidth is needed in order to fit the curve. It is
consistent with the minimax bandwidth level h∗j = 1 for irrelevant j and the flatness of the
curve in such a direction. Using the Blr family of conditional density estimators, the Zhj ’s
are well defined as soon as the kernel K is C1. They are straightforwardly expressed, thus
easily implementable, by using the following equation:

Zhj = − 1

nh2
j

n∑
i=1

1

f̃X(Xi)
J
(
wj−Wij

hj

) d∏
k 6=j

h−1
k K

(
wk −Wik

hk

)
, (8)

where J denotes the function t 7→ K(t) + tK ′(t). Note that, under the condition f̃X = fX ,
if j is an irrelevant component,

E[Zhj ] = 0, (9)

which is expected in view of (7) (see Lemma 19 in Appendix or Lemma 6 of Nguyen, 2018
for a rigorous proof). The tests involved in the Rodeo procedure consist in comparing
|Zhj | to a threshold λhj . The threshold is chosen as follows:

λhj := Cλ

√
(log n)a

nh2
j

∏d
k=1 hk

, (10)

with Cλ = 4‖J‖2‖K‖d−1
2 and an hyperparameter a > 1. We justify this definition of the

threshold λhk in the following technical remark.

Remark 2 The threshold value is determined by Bernstein’s concentration inequalities to
ensure that with high probability Zhj is close to its expectation: |Zhj −E[Zhj ]| ≤ 1

2λhj. The
hyperparameter a quantifies the degree of high probability. This definition is justified by
following heuristic arguments. With B(h) = E[f̂h(w)]− f(w),

∂

∂hj
B(h) =

∂

∂hj
E[f̂h(w)] = E

[
∂

∂hj
f̂h(w)

]
= E[Zhj ].

If the upper bound of (4) is tight and since, with large probability, Zhj ≈ E[Zhj ], we obtain,
for j ∈ R

|Zhj | ≈ hs−1
j .
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We stop the algorithm when |Zhj | ≈ λhj since for this bandwidth h, we expect

hj
s−1 ≈ λhj ≈

1

hj

√
n
∏d
k=1 hk

(up to the logarithmic term),

which corresponds to the minimax bandwidth h∗ which satisfies the minimax trade-off:

h∗j
2s ≈ 1

n
∏d
j=1 h

∗
j

,

for j ∈ R.

Remark 3 For the problem of variable selection in the regression model with very high
ambient dimension, Comminges and Dalalyan (2012) used similar ideas to select the rele-
vant variables by comparing some quadratic functionals of empirical Fourier coefficients to
prescribed significance levels.

2.2.2 Variants of CDRodeo and Initialization of the Algorithm

We now study the initialization of the algorithm. We describe several alternatives.

Direct CDRodeo algorithm. The natural idea consists in initializing the bandwidth at
a large enough level and then decreasing the components of the bandwidth until |Zhj | ≤ λhj .
The detailed procedure is stated in Algorithm 0.

Algorithm 0 Direct CDRodeo algorithm

Given a starting bandwidth h(0) = (h0, . . . , h0) with h0 > 0, the decreasing iterative step
factor β ∈ (0, 1), a hyperparameter a > 1, the activation of all components.

While there are still active components,
for all active component j, we test if |Zhj | is large (with respect to a threshold λhj
defined in (10)):

- If |Zhj | > λhj , then hj ← βhj , and j remains active.

- Else, j is deactivated and hj remains unchanged for the next steps of the path.

Output The loop stops when either all components are deactivated or the bandwidth is too

small
(∏d

j=1 hj <
logn
n

)
, then the final bandwidth is selected and denoted by ĥ.

This procedure, called Direct CDRodeo, has been deeply studied by Nguyen (2018).
Two cases can be distinguished for a component hj . Either hj is selected at the first
iteration, or when |Zhj | ≈ λhj .

In the first case, remark that testing |Zh(0)j | ≤ λh(0)j corresponds to testing the hy-

pothesis |E[Zh(0)j ]| ≤ 1
2λh(0)j , which is satisfied for any irrelevant component j: for any h,
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E[Zhj ] = 0. So, with high probability the irrelevant bandwidth components are selected at
the initialization level h0, i.e. as large as allowed by the procedure, in line with the minimax
approach.

In the second case, the component j is selected after a few iterations, and |Zhj | ≈ λhj
(where the approximation is due to the discretization in {βkh0, k ∈ N}d). Thus with high
probability: 1

2λhj . |E[Zhj ]| . 3
4λhj . For a relevant component j, for s an integer larger

than 1, Nguyen (2018) proved that

|E[Zhj ]| ≈ hs−1
j ,

if the derivative satisfies |∂sjf | > 0 on the neighborhood of the evaluation point w.

zone where |Zhj | > λhj
zone where |Zhj | ≤ λhj

hj

Direct CDRodeo progression
0

output

h0•

βh0

···

ĥj � h∗j

h′0 •
βh′0
···

ĥ′j ≈ h∗j

Figure 1: Two bandwidth paths for Direct CDRodeo with two different initializations, when
hj 7→ |Zhj |/λhj is not monotonous (larger than 1 in the lightgray zone and smaller
than 1 in the darkgray zone). Starting with a large h0, the algorithm stops
when |Zhj | becomes smaller than λhj and provides a too large output bandwidth.
Starting with h′0, the algorithm can provide the optimal bandwidth h∗j . Observe
that the area where E[Zhj ] ≥ λhj is unknown, so h′0 is intractable.
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The assumption is quite restrictive. In particular, it excludes any density that is locally
a polynomial of order smaller than s. Moreover, s has to be an integer. When this as-
sumption is not satisfied, Direct CDRodeo may stop with a too large bandwidth. Indeed,
remember it begins with a large initial bandwidth in order to select large irrelevant band-
width components, but the relevant components have to be selected much smaller. Between
these two bandwidth levels, E[Zhj ] may have a change of sign, thus vanishes briefly before
becoming larger (in absolute value) than λhj again. We have illustrated this problem in
Figure 1 where we show that the initialization h0 is not convenient.

In view of this issue, we consider in the following some variations to the Direct CDRodeo
procedure.

A Reverse CDRodeo algorithm. The first variation which could be considered is the
Reverse CDRodeo procedure in the same spirit as (Liu et al., 2007) (see Section 4.2
therein). We start with a small bandwidth and use a sequence of non-decreasing bandwidths
to select the optimal value, still by comparing the Zhj ’s with the λhj ’s. More precisely,
instead of decreasing the bandwidth components by multiplied them by the factor β when
|Zhj | ≥ λhj , the reverse algorithm increases them by dividing them by β when |Zhj | < λhj .
Note that with this second test, it does not matter if Zhj vanishes. As illustrated by Liu
et al. (2007), this approach is very useful for image data. However, the choice of the initial
bandwidth is very sensitive. In particular, assume that f has a very low regularity and has
only one relevant component, say the first one for instance. In this case, if h∗ is the ideal
bandwidth, h∗1 has to be as small as possible, i.e. h∗1 = 1/n (up to a logarithmic term).
Therefore, since R is unknown, the initialization of the bandwidth must be not larger than
h0,rev = (1/n, . . . , 1/n). However, such a small bandwidth leads to instability problems. In

particular, the variance of f̂h0,rev(w) is of order nd−1 (see Equation 5).

2.3 Our Method: the RevDir CDRodeo Procedure

In view of the analysis led in Section 2.2.2, we propose to give the option for each band-
width component to either increase or decrease. The procedure is precisely described by
Algorithm 1 and is explained as follows. The initial bandwidth can then be chosen at an
intermediate level (and we show later that h0 has to be chosen larger than the relevant
components of the minimax bandwidth), then our procedure comprises the two following
steps:

1. The first step consists in the execution of a Reverse CDRodeo procedure to increase
the bandwidth components that need to be increased (including the irrelevant ones).

2. The second step executes a Direct CDRodeo procedure on the other bandwidth
components.

The output bandwidth of the algorithm is denoted by ĥ, and the estimator of f by
f̂ := f̂ĥ. Figure 2 illustrates the two kinds of path for the bandwidth components. If

the component belongs to Act(−1) (resp. Act(0)), it is deactivated during the Direct Step
(resp. the Reverse Step) and has to be chosen larger (resp. smaller) than the initial
bandwidth value h0. Note that the RevDir procedure generalizes both the Direct and
Reverse procedures in function of the choice of h0. Indeed, if we set h0 = 1, the RevDir

9
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Algorithm 1 RevDir CDRodeo algorithm

1. Input: the estimation point w, the observations W , the bandwidth decreasing factor
β ∈ (0, 1), the bandwidth initialization value h0 > 0, a tuning parameter a > 1.

2. Initialization:

. Initialize the trial bandwidth: for k ∈ 1 : d, H
(0)
k ← h0.

. Determine which variables are active for the Reverse Step or for the Direct Step:

Act(−1) ← {k ∈ 1 : d, |ZH(0)k| ≤ λH(0)k}
Act(0) ← {1 : d} \ Act(−1)

3. Reverse Step:

. Initialize the counter: t← −1

. Initialize the current bandwidth: ĥ(−1) ← H(0)

. While (Act(t) 6= ∅) & (max ĥ
(t)
k ≤ β) :

I Set the current trial bandwidth: H
(t)
k =

{
β−1ĥ

(t)
k if k ∈ Act(t)

ĥ
(t)
k else.

I Set the next active set: Act(t−1) ← {k ∈ Act(t), |ZH(t)k| ≤ λH(t)k}

I Update the current bandwidth: ĥ
(t)
k ←

{
H

(t)
k if k ∈ Act(t−1)

ĥ
(t)
k else.

I Initialize the next bandwidth: ĥ(t−1) ← ĥ(t)

I Decrement the counter: t← t− 1

4. Direct Step:

. Initialize the current bandwidth: ĥ(0) ← ĥ(t)

. Reinitialize the counter: t← 0

. While
(
Act(t) 6= ∅

)
&

(
d∏

k=1

ĥ
(t)
k ≥

(logn)1+a

n

)
:

I Increment the counter: t← t+ 1

I Set the current active set: Act(t) ← {k ∈ Act(t−1), |Zĥ(t−1)k| > λĥ(t−1)k}

I Set the current bandwidth: ĥ
(t)
k ←

{
β.ĥ

(t−1)
k if k ∈ Act(t)

ĥ
(t−1)
k else.

5. Output: ĥ← ĥ(t) (and compute f̂ĥ(w)).
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iterations

h
Reverse Step Direct Step

h0
-1
|

-2
|

-3
|

0
|

1
|

2
|

end

ĥj

tj

ĥk

tk

j ∈ Act(−1)

k ∈ Act(0)

Figure 2: The two patterns of bandwidth path: the components j ∈ Act(−1) with a de-
activation time tj ≤ 0 in red, and in blue the components k ∈ Act(0) with a
deactivation time tk ≥ 0.

procedure behaves as a Direct procedure with the same initialization. Conversely, setting
h0 = 1/n brings us back on the Reverse procedure. Nonetheless, the purpose of our approach
is to provide a better tuning of h0, as discussed in the next section, to solve the initialization
issue of the Direct and Reverse procedures.

Range of the algorithm inputs. The RevDir CDRodeo procedure depends on three
tuning parameters, namely β, a and h0. In the sequel, we take β ∈ (0, 1). Since β is
an exponential decay factor, its value has no influence on rates of convergence (up to the
constant factor).
The parameter a will be assumed to be larger than 1. Its value does not affect the main
polynomial factor n−

s
2s+r of the rate of convergence but only the logarithmic factor: the

smaller a, the smaller the exponent of the logarithmic factor. See Section 4.2 for a detailed
analysis of the practical choices for a and β.
Finally, to initialize the procedure, we take h0 such that

C
2/d
λ

(
(log n)a

n

) 1
d(2p+1)

≤ h0 ≤ 1, (11)

where Cλ, only depending on the kernel K, is defined after Equation (10) in Section 2.2.
Note in particular that the lower bound does not depend on any unknown value, and thus
can be implemented as the bandwidth initialization. Besides, observe that each component
of the minimax bandwidth for estimating f on Hd(s, L) is of order n−1/(2s+r) for relevant
components and are constant for irrelevant ones. So, if s ≤ p, as assumed in Theorem 12,
then h0 is larger than all relevant components of the optimal bandwidth, as required by the
RevDir CDRodeo procedure.

11
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3. Theoretical Results

This section is devoted to the theoretical results satisfied by the RevDir CDRodeo proce-
dure. First we define very rigourously the notions of local sparsity and smoothness, next
we present our assumptions and finally we state our theorem.

3.1 Sparsity and Smoothness Classes of Functions

We assume that the kernel K is C1, with compact support denoted by supp(K). We shall
also assume that K is of order p, i.e.: for ` ∈ 1 : p − 1,

∫
R t

`K(t)dt = 0. Taking a
kernel of order p is usual for the control of the bias of the estimator. Then, we define the
neighborhood U of the point w ∈ Rd as follows:

U :=
{
u ∈ Rd : w − u ∈ (supp(K))d

}
.

In the sequel, we denote
‖f‖∞, U := sup

x∈ U
|f(x)|.

Remark 4 The size of U is fixed. But U could be chosen so that its size goes to 0. In

this case, we have to modify the stopping rule of the Reverse Step, namely max ĥ
(t)
k ≤ β, to

force max ĥ
(t)
k

n→∞−→ 0. For instance, if we impose max ĥ
(t)
k ≤

1
logn , the rates of convergence

of our estimate would typically be deteriorated by a logarithmic term.

The notion of relevant components has already been introduced in Section 1.2 but subse-
quent results only need the function f to be locally sparse, so we shall consider the following
definition depending on U .

Definition 5 We denote R the subset of {0, . . . , d} with cardinal r such that for any fixed
{zj}j∈R, the function {zk}k∈Rc 7→ f(z1, . . . , zd) is constant on U . We call relevant any
component in R.

The previous definition means that on U , f depends only on r of its d variables. In the
sequel we derive rates on Hölder balls defined as follows.

Definition 6 Let L > 0 and s > 0. We say that the conditional density f belongs to the
Hölder ball of smoothness s and radius L, denoted Hd(s, L), if f is of class Cq and if it
satisfies for all z ∈ U and for all t ∈ R such that z + tek ∈ U∣∣∂qkf(z + tek)− ∂qkf(z)

∣∣ ≤ L|t|s−q,
where q = ds− 1e = max{l ∈ N : l < s} and ek is the vector where all coordinates are null
except the kth one which is equal to 1.

We investigate adaptive results in terms of sparsity and smoothness properties on Hölder
balls Hd(s, L), with s > 1. Adaptation means that our procedure will not depend on the
knowledge of R and (s, L). The condition on s means that f has to be at least C1. This
technical assumption is related to our methodology based on derivatives of f̂h(w) as proxies
of derivatives of f to detect relevant components.

12
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3.2 Assumptions

To derive rates of convergence for f̂(w), we need three assumptions. The first two ones are
related to fX , the density of the Xi’s. We recall that the evaluation point is w = (x, y).

Assumption LX [Lower bound on fX ]
The density fX is bounded away from 0 in the neighborhood of x:

δ := inf
u∈U1

fX(u) > 0,

where U1 :=
{
u ∈ Rd1 : x− u ∈ (supp(K))d1

}
.

Remark 7 Similarly to Remark 4, the size of U1 is fixed but it could decrease to 0 if we
modify the stopping rule of the Reverse Step.

This assumption is classical in the regression setting or for conditional density estimation.
Indeed, if fX is equal or close to 0 in the neighborhood of x, we have no or very few
observations to estimate the distribution of Y given X = x. Thus, this assumption is
required in all of the aforementioned works about conditional density estimation.

The next assumption specifies that we can estimate fX very precisely.

Assumption EfX [Estimation of fX ]
The estimator of fX in (1) satisfies the following two conditions:

Condition (i): a positive lower bound: δ̃X := inf
u∈ U1

f̃X(u) > n−1/2,

Condition (ii): a concentration inequality in local sup norm:

P

(
sup
u∈ U1

∣∣∣fX(u)− f̃X(u)
∣∣∣ > MX

(log n)
a
2

√
n

)
≤ exp(−(log n)1+a−1

2 ),

with MX :=
δ‖J‖2‖K‖d−1

2

4‖f‖∞,U‖J‖1‖K‖d−1
1

.

Remark 8 For the simpler problem of density estimation, since fX ≡ 1 ≡ f̃X , Assump-
tion EfX is obviously satisfied.

Due to the
√
n-rate, Condition (ii) seems strong. In our proofs, it is needed to deal with

the term ∆Z,hk in the decomposition Zhk = ∆Z,hk + Z̄hk, where Z̄hk is defined as Zhk but
with true fX replacing f̃X (see notations introduced in Section 5.1). Our computations lead
to the control

|∆Z,hk| =

∣∣∣∣∣ 1n
n∑
i=1

(
fX−f̃X

f̃X
(Xi)

)
Z̄hik

∣∣∣∣∣ ≤ ∥∥∥ fX−f̃X
f̃X

∥∥∥
∞,U1

× 1

n

n∑
i=1

|Z̄hik|

(see Equation 48 and subsequent lines). Since fX is not random, the concentration inequal-
ities are easier to compute on Z̄hk than on Zhk. Note nevertheless that in the parametric

13
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setting, this condition is mild since in most situations, it is possible to build an estimator
achieving the parametric rate

√
n.

We show in next Proposition 9 that Condition (ii) can be established nonparametrically by
assuming we have at hand a larger sample of X. In particular, the following proposition
provides precise conditions to satisfy Assumption EfX using a well-tuned kernel density
estimator f̃X .

Proposition 9 Given a sample X̃ with same distribution as X and of size nX = nc with
c > 1, if fX is of class Cp

′
with p′ ≥ d1

2(c−1) , there exists an estimator f̃X which satisfies
Assumption EfX .

To prove Proposition 9, we build f̃X as a truncated kernel estimator with a fixed bandwidth
(thus easily implementable), but other methods can be used in practice, as, for instance,
a Rodeo algorithm for density estimation. Any reasonable nonparametric estimator would
actually have a rate of convergence in sup norm of the form n−βX (typically β = p′/(2p′+d1))
up to a logarithmic term. Then Condition (ii) of Assumption EfX is verified as soon as

n−βX ≤ n−1/2 and we need c ≥ 1 + d1/(2p
′). Then, observe that if fX is of class C∞, then

we just need c = 1 and we can take X̃ = X. If we know that fX is at least of class C1 but
its precise smoothness is unknown, taking c ≥ 1 + d1/2 is sufficient to satisfy assumptions
of Proposition 9.

Remark 10 For practicality, we use X̃ = X in our simulation study even if this choice
does not fit theoretical requirements.

The next assumption is necessary to control the bias.

Assumption C
For all j ∈ R, for all h and h′ ∈ [ 1

n , 1]d such that h � h′, |E[Z̄h,j ]| ≤ |E[Z̄h′,j ]|, where Z̄h,j
is defined as Zh,j in (7) but with true fX replacing f̃X .

Assumption C is named after convexity or concavity, as it requires monotony of E[Z̄hj ],
which is the derivative of the bias (after removing the potential perturbations of the pre-
estimator f̃X by replacing f̃X by fX). The absolute value in the assumption is simply a way
to cover both cases (convexity and concavity), since in fact E[Z̄hj ] → 0 as h → 0 (at least
in the scope of our results: when the smoothness s is larger than 1).
As this assumption prevents E[Zhj ] from vanishing temporarily before its asymptotic be-
haviour, it leads to the bias-variance trade-off by preventing the algorithm from stopping
prematurely during the Reverse step at an iteration with a too large bandwidth.

Note that otherwise, the non-convexity of the squared bias would reverberate on the
squared risk, making its minimization much harder, especially when we target greedy algo-
rithms to avoid a computationally intensive optimization over all bandwidths.

Remark 11 If f is smooth enough so that ∂p

∂hpj
f(h) 6= 0 with p such that

∫
upK(u)du 6= 0,

then Assumption C is not required. Nevertheless, the procedure cannot be adaptive in this
case. See (Nguyen, 2018).

3.3 Main Result

We now derive the main result of our paper proved in Section 5 in which we show that ĥ is
closed to the ideal bandwidth h∗ defined in Section 2.1.
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Theorem 12 For any r ∈ 0 : d, for any L > 0, if 1 < s ≤ p, if f has only r relevant
components and belongs to Hd(s, L), then under Assumptions LX , EfXand C, the pointwise
risk of the RevDir CDRodeo estimator f̂ĥ(w) is bounded as follows: for any l ≥ 1, for n
large enough,

E
[∣∣∣f̂ĥ(w)− f(w)

∣∣∣l]1/l

≤ C

(
(log n)a

n

) s
2s+r

(12)

where C only depends on d, r,K, β, δ, L, s, ‖f‖∞, U .

We can compare the obtained rate with the classical pointwise adaptive minimax rate
for estimating a s-regular r-dimensional density, which is ((log n)/n)s/(2s+r) (see Rebelles,
2015). Our procedure achieves this rate up to the term (log n)s(a−1)/(2s+r). In Section 3.2,
we specify that any value a > 1 is suitable. So, our procedure is nearly minimax optimal.
Actually, we need a > 1 to ensure that for n large enough,

(log n)a−1 ≥
‖f‖∞, U

δ
(13)

but if an upper bound (or a pre-estimator) of
‖f‖∞, U

δ were known, we could obtain the
similar result with a = 1, and our procedure would be rate-optimal without any additional
logarithmic term. Remember that the term (log n)s/(2s+r) is the price to pay for adaptation
with respect to the smoothness (see Tsybakov, 1998). This minimax rate is achieved by our
method thanks to an efficient bandwidth selection: the proof of Theorem 12 (see Section 5)
reveals that our algorithm is able to both detect the irrelevant components and select the
minimax bandwidth for relevant and irrelevant components. In particular, it shows that, in
this setting, there is no additive price for not knowing the sparsity, i.e. the value of r. This
result is new for conditional density estimation.

Remark 13 Assumption C allows for a sharp control of the bias of our estimate and is
only used in Section 5.5.1. Refining the decomposition of the term B̄h in (34) shows that
we can relax Assumption C. This is done in Appendix G where Assumption C is replaced

by Assumption M. The price to pay is an extra logarithmic term (log n)
2s

2s+r in the upper
bound (12).

Remark 14 In fact, CDRodeo detects more complex sparsity structures than the one of
Definition 5. In particular, Rc could be enlarged to the components which are polynomial of
degree smaller than the order p of the kernel, namely it suffices to consider f(z) = zljg(z−j)
with l ∈ 0 : p − 1, z−j = (z1, . . . , zj−1, zj+1, . . . , zd) and where g is an arbitrary function.
Then j is considered as an irrelevant component by both our algorithm and in the bias-
variance trade-off. Indeed, assume that f̃X = fX for the sake of simplicity. Then for the
algorithm, an easy computation leads to E[Zhj ] = 0 as an irrelevant bandwidth component.

Then our algorithm behaves exactly as if j were irrelevant and selects a large ĥj (with high
probability). For the bias-variance trade-off, the bias for f is proportional to the bias for g
(multiplied by a term that does not depend on h):

(Kh ? f − f)(w) = wlj (K
(−j)
h ? g − g)(w−j), K

(−j)
h (z−j) :=

∏
k 6=j

Kh(zk),
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exactly as if j were irrelevant and f(z) = cg(z−j), for c a constant. Then since only the
variance depends on hj, the bias-variance trade-off chooses a large value for hj.
In particular there is no need for preliminary linear variable selection as suggested in Sec-
tion 6.1 of (Lafferty and Wasserman, 2008).

3.4 Algorithm Complexity

We now discuss the complexity of CDRodeo. Regarding the computation cost of f̃X , the
estimator built for the proof of Proposition 9 has complexity O(d1n

c) but in practice we
use a Rodeo estimator with the same sample size n, which has a complexity O(d1n log n)
for each computation of f̃X(Xi) which causes an additional cost in O(d1n

2 log n) (applying
following Proposition 15).

Regarding the main part of the algorithm, during the Reverse Step, |Act(−1)| compo-
nents are updated, and, for fixed h, the computation of all Zhj ’s and the comparisons to
the thresholds λhj need O(|Act(−1)|n) operations. In the same way, during the Direct Step,
|Act(0)| components are updated and each update needs O(|Act(0)|n) operations. Since the
number of updates is at worse of order log(n) (because of the stopping conditions), and
|Act(−1)|+ |Act(0)| ≤ d, we obtain the following proposition. More details can be found in
the proof (see Section 5.6).

Proposition 15 Apart from the computation of f̃X , the total worst-case complexity of
RevDir CDRodeo algorithm is

O(dn log n).

Notice that for classical methods with optimization on a bandwidths grid, the complexity is
of order dn|H|d, where |H| denotes the size of the grid for each component. In practice, the
grid has to include at least log n points, which leads to a computational cost O(dn(log n)d).

For illustration, for d = 5 and n = 105, the ratio of complexities dn(logn)d

dn logn is already larger

than 1.7× 104.

4. Simulations

This section is devoted to the numerical analysis of our algorithms. In Section 4.1, we first
describe the three examples on which we test CDRodeo. Then we calibrate its parameters
in Section 4.2. We finally look at its numerical performances in Section 4.3: we first analyse
the behavior of CDRodeo for different examples then assess the sparsity detection by
adding an increasing number of irrelevant components. In particular, our analysis relies on
the fact that the behavior of CDRodeo is easily explainable from the bandwidth it selects.

4.1 Examples

We describe 3 examples. For this purpose, we denote N (a, b) the Gaussian distribution
with mean a and variance b, U[a,b] the uniform distribution on the compact set [a, b] and
IG(a, b) the inverse-gamma distribution with parameters (a, b).
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• Example (a): We consider d2 = 2 response variables and d1 ∈ 1 : 4 auxiliary variables
with the following hierarchical structure:

Yi2 ∼ IG(4, 3), Yi1|Yi2 ∼ N (0, Yi2), Xij |Yi
iid∼ N (Yi1, Yi2),

which leads to the following conditional density (derived in Nguyen, 2019, Chapter
IV, Section 5.a):

f : (x, y) 7→ 1{y2>0}

√
d1 + 1√

2πΓ(4 + d1
2 )

(β1(x))4+
d1
2 y
−(5+

d1+1
2

)

2 e

−β1(x)
y2
−

y1−
∑d1
j=1

xj
d1+1


2

(
2y2
d1+1

)

with β1(x) := 1
2

(
6 +

∑d1
j=1 x

2
j −

(
∑d1
j=1 xj)

2

d1+1

)
.

This example is an usual Bayesian model (see for example Raynal et al., 2018) where
one of the tasks is to retrieve the posterior distribution f of the mean Yi1’s and the
variance Yi2’s given the normal observations Xi’s, which is exactly what our method
performs in this paper.

• Example (b): We consider d2 = 1 response variable and d1 ∈ 1 : 12 auxiliary variables
with the following hierarchical structure:

Xij
iid∼ N (0, 1), Yi1|Xi ∼ N (3X3

i1, 0.5
2).

In this case, the conditional density is then

f : (x, y) 7→
√

2

π
e−2(y−3x3

1)2
.

Note that a modification of this example with irrelevant response variables is provided
in Appendix H, Section H.2.

• Example (c): We consider d2 = 1 response variable and d1 ∈ 1 : 12 auxiliary variables
with the following hierarchical structure:

Xij
iid∼ U[−1,1], Yi1|Xi ∼ N (3X3

i1, 0.5
2).

In this case, the conditional density is then

f : (x, y) 7→
√

2

π
e−2(y−3x3

1)2
1{x∈[−1,1]d1}.

Example (a), in which r = d, will be used as reference for estimation without sparsity
structure and will illustrate the estimation difficulty when we have to face with the curse
of dimensionality. Examples (b) and (c) circumvent the curse of dimensionality given their
sparsity structure: r = 2 (Yi is scalar and depends only on Xi1). Note that Example (c) is
discontinuous, whereas our method rather targets C1-functions.
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4.2 Calibration...

In this section, we focus on the calibration of the threshold λhj and the decay factor β,
whereas some other parameters are fixed: in particular, we are using the Gaussian kernel,
and the initialization value h0 is chosen as the lower bound of the Range (11):

h0 = C
2/d
λ

(
(log n)a

n

) 1
d(2p+1)

(14)

with Cλ = 4‖J‖2‖K‖d−1
2 . The choice of the threshold is quite sensitive since it influences

the bias-variance trade-off, and intensive simulations have been performed to determine the
convenient tuning, while the decay factor (which only quantifies the size of the step) rather
impacts the running times of the procedure.

We determine each parameter separately, since their respective impact is rather inde-
pendent. Moreover, to avoid the influence of a chosen f̃X (and its peculiar specificities), the
calibration is run with known fX (which is plugged as input of the algorithm).

4.2.1 ... of the Threshold

Since the calibration of β is not done yet, we fix for this section β = 0.9.
Given Definition (10), two parameters influence the threshold: a and Cλ, but they are

clearly redundant. Therefore only the calibration of a will be performed while we take the
theoretical value of Cλ.

We compare on a grid of values of a the absolute error of our estimator, i.e.
∣∣∣f̂ĥ(w)− f(w)

∣∣∣.
We abbreviate it AE in the following. Several settings are considered, each corresponding
to a separate graph. In particular, we consider for each example a variety of sample sizes
(n ∈ {10 000; 50 000; 100 000; 200 000}) and X of different dimensions (d1 ∈ 1 : dmax, with
dmax = 6 in Example (a) and dmax = 9 in Examples (b) and (c)). Moreover, in each graph,
we consider 3 samples (in the graphs with different line types) and several evaluation points
{wk}k=1:16 randomly drawn according to the joint distribution fW (the 16 pastel curves
in the graphs). Note that, to refine our selection of a, we add a logarithmic grid to the
standard grid of integers, after observing that the AE minimizers increase sublinearly with
d1. We simply provide here one case (Example (a) with n = 200 000 in Figure 3), but the
whole set of figures can be found in Appendix H, Section H.3.

For ease of interpretation, the average per sample over the different evaluation points
has been added in thicker black line. Then, our goal is to determine this minimizer as a
function of the varying parameters mentioned above. A good point is that the minimizers
do not seem to depend on the sample size (cf the whole set of figures). However the effect
of the dimension is more sensitive. First note that the larger a, the larger the thresholds
λhj , thus the larger ĥ. We observe the chaotic behavior of CDRodeo for small values
of a (especially for large dimension and small sample size) and, for large values of a, the
superposition of the curves built from different samples, meaning low variance but large bias
of the estimators. This corresponds to the usual phenomenon of under- and over-smoothing.

Finally, a good trade-off is achieved by the tuning

a = log(d− 1),

and all the following simulations will be implemented with this choice.

18



Greedy Conditional Density Estimation

0
.0

0
.4

0
.8

1
.2

-2 -1 0 1 2 3 4 5 6

Sample
1
2
3

a

a
b

s
o

lu
te

 e
rr

o
r

ln(d-1)d= 1 + 2

0
.0

0
.4

0
.8

1
.2

-2 -1 0 1 2 3 4 5 6
a

a
b

s
o

lu
te

 e
rr

o
r

ln(d-1)d= 2 + 2
0

.0
0

.4
0

.8
1

.2

-2 -1 0 1 2 3 4 5 6
a

a
b

s
o

lu
te

 e
rr

o
r

ln(d-1)d= 3 + 2

0
.0

0
.4

0
.8

1
.2

-2 -1 0 1 2 3 4 5 6
a

a
b

s
o

lu
te

 e
rr

o
r

ln(d-1)d= 4 + 2

Calibration de a
Modèle 3 - RevDir - n= 200 000

Figure 3: Illustration of the tuning of a for Example (a) with n = 200 000 for growing
dimensions. In each subgraph: AE curves in function of a for 16 evaluation
points wk (the warmer the pastel color, the larger f(wk)) given B = 3 samples
(differentiated by line type) at fixed dimension (specified top left in the form
d = d1 + d2). In black lines: the average per sample of the 16 pastel curves. The
vertical straight red line: our final choice.

4.2.2 ... of the Step Size

Let us now tune the step parameter, namely β the multiplicative decay factor of the band-
width. As one can expect, the calibration of β is a compromise between running times and
estimation sharpness: the smaller the parameter β, the bigger the step size leading to a
faster procedure but a larger approximation error.

In Figure 4 (corresponding to Example (a) with d1 = 3 and n = 100 000), we put in
perspective the boxplots (built given 50 samples) of the AEs with their mean running times.
As one could expect with a multiplicative factor, the computational time increases expo-
nentially fast with β: in particular, the running time explodes when β ≥ 0.9. Conversely
the smaller β, the larger standard deviation of the boxplots, therefore β should not be taken
too small.

To sum up, the range of values satisfying a good compromise is quite large. To fix the
parameter, we take

β = 0.8,

and all the following simulations will be implemented with this choice.
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Figure 4: Illustration of the calibration of β. For Example (a) with d1 = 3, given B = 50
samples of size n = 100 000, boxplots of the AEs and their average running times
(in black) in function of β.

4.3 Numerical Performances

In this section, we assess the performances of our procedure according to two directions:
we first visualize how our procedure reconstructs functions, then we focus on the sparsity
detection, the key property of our algorithm to circumvent the curse of dimensionality.

4.3.1 Reconstructions: Direction-by-direction Visualization and Estimation
of fX

We first focus on a global visualization of the estimation of the function f : in particular,
we are interested in the performances of our estimator evaluated on a grid. Two kinds of
estimates are considered: one in which the true fX is plugged, the other in which f̃X is
estimated by our procedure with the following methodology.

Density estimation: a RevDir CDRodeo procedure for the input {f̃X(Xi)}i=1:n.
First, for the sake of practicality, we use the same sample to compute f̃X and f̂ĥ. Note that
there is no requirement of independence in the theoretical results.

We use the RevDir CDRodeo procedure, since it can perfectly be used for estimating
standard densities (cf Remark 1). Since our method is pointwise, we need to compute fX(Xi)
for each i ∈ 1 : n. Note that sparsity structures are rarer in standard densities, for which
all variables are of interest, than in conditional densities. Therefore the straightforward
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estimation of fX is limited by the dimension of X due to the curse. To circumvent this fact,
we propose to add conditioning, artificially, by decomposing fX as follows:

fX(x) = fX1(x1)

d1∏
j=2

fXj |X1:(j−1)
(x1:j). (15)

Note that the order of the conditioning might have an impact on the estimation. It would
be interesting to study what would be the best decomposition. Notice that the n estimates
{f̃X1(Xi,1)}ni=1 are needed as input to compute the {f̃X2|X1

(Xi,1:2)}ni=1, which are needed to

compute the {f̃X3|X1:2
(x1:3)}ni=1, and so on.

Observe also that the previous calibration of a, namely a = log(d− 1), does not extend
for univariate densities. Based on preliminary numerical experiments, we set a = −1 for
the univariate case.

Implemented in R, with a 3.1 GHz Intel Core i7 processor, the running times for f̃X
in Example (a) in dimension d1 = 2 and in Examples (b) and (c) in dimension d1 = 3 is
summarized in the following table :

Mean time per run (seconds) Total time for 100 000 runs

f̃X1 f̃X2|X1
f̃X3|X1:2

f̃X
Example (a) 0.734 0.654 N.A. 138 780s (around 1d 15h)

Example (b) 1.31 1.61 1.72 463 559s (around 5d 9h)

Example (c) 0.675 1.17 1.05 289 695s (around 3d 8h)

Note that N.A. means Non Applicable as X is of dimension 2 in this example.

The running times strongly depend on the distance between the initialization bandwidth
and the selected one, which explains non increasing running times when the dimension grows
for Examples (a) and (c).

One may object that several days of computation for the preliminary estimator is quite
long. But, note that it is done without parallelization. Given a powerful enough cluster,
the running time can be divided by n using parallelization over the evaluation points.

Visualization. In Figures 5, 6, and 7, the two kinds of estimates are built from a sample
of dimension d = 4 and size n = 100 000 for respectively Examples (a), (b) and (c). Limited
to two-dimensional visualizations, we vary only one component at a time, the others being
fixed to a set point: w = (0, 0, 0, 0.4) for Example (a) and w = (0, 0, 0, 0) for Examples (b)
and (c).

The overall signal is nicely recovered. Comparing the different examples, Example (a)
is the least accurately estimated: the estimates are oversmoothed near the modes. It was
expected since it is the example without sparsity and even in dimension as small as 4, the
curse deteriorates the convergence rate.

Thanks to the strong similarity between Example (b) and Example (c), the impact of
the discontinuity can be properly visualized: (b) is clearly more accurately estimated than
(c), even though the focus point w = 0 is not really close to the discontinuity points ±1 (in
the directions xj). The loss of accuracy is once again due to the curse, as the directions xj ,
j ≥ 2, in Example (c) are not completely irrelevant. The CDRodeo procedure does not
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Figure 5: Reconstruction for Example (a). Compared to the true conditional density (in
black line), our pointwise estimates with the true marginal density fX (circles
in darker shade) or with the estimate f̃X (triangles in lighter shade). Only one
direction is varying specified at the top left of each graph, the others being fixed
to a set point: w = (0, 0, 0, 0.4). The sample size is n = 100 000.

consider the relevance of a variable as a binary answer: in fact, when a variable is relevant,
it can be more or less relevant. See the analysis of the selected bandwidths in the next
section for more details.

Besides, in all examples, the estimation is less accurate at the specific points where
Assumption C is not satisfied. Taking account that the chosen kernel is Gaussian, thus of
order 2, it especially happens around the zeros of the second derivative.

Then, note that RevDir CDRodeo may stop during the direct Step (as |Zhj | may
become smaller than λhj) but has no impact on the increasing step (Reverse Step). That
is why the initialization h0 is set as the lower bound of its range (see Equation 11) to
minimize the undesirable impacts. For illustration of the improvement made by the RevDir
algorithm, see Figures IV.3, IV.4 and IV.5 in Ph.D. thesis (Nguyen, 2019) which compares
the Direct and the RevDir procedures.

Note lastly that the estimates with either fX or f̃X are very close to each other. More
precisely, the estimates with f̃X is slightly better (in particular, near the modes and near the
discontinuity in Example (c)): Delyon and Portier (2016) actually prove that dividing by
an estimator of the density produces better results than if the density itself was used. That
is the reason why the reliability of our results is maintained in the following part even if
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Figure 6: Reconstruction for Example (b). See the description in Figure 5, except: w =
(0, 0, 0, 0).
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Figure 7: Reconstruction for Example (c). See the description in Figure 5, except: w =
(0, 0, 0, 0). 23
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Figure 8: Robustness to addition of irrelevant variables. Boxplots of the estimates f̂ĥ(w)
in function of d, given 50 samples of size n = 100 000 for Example (b) (in red
shades) and Example (c) (in green shades). The dashed horizontal line is the true
value f(w) (at the evaluation point w = 0).

the true fX is used in order to save the running times of computing the f̃X(Xi)’s for several
samples and dimensions.

4.3.2 Impact of the Dimension and Sparsity Detection

Let us now consider how the RevDir CDRodeo procedure detects the sparsity structure.
For examples with sparsity structure – namely Examples (b) and (c) –, we check the ro-
bustness to irrelevant explanatory variables: starting with the fully relevant example at
dimension d = 2, we gradually add irrelevant variables until dimension d = 13. In Figure 8,
the boxplots are built from 50 simulated samples of size n = 100 000 with varying dimension
d1 from 1 to 12: in bluish shades, the estimates of Example (b) and in reddish shades, the
ones of Example (c). We also provide in Figure 9 the boxplots of the selected bandwidths
for the dimensions d ∈ {2, 5, 9, 13}. Notice that our fully nonparametric procedure actually
ends within reasonable times for dimensions as large as 13 (e.g. 40 minutes for the whole
600 estimates of Figure 8 on samples of size 100 000), while most nonparametric methods
struggle to handle data set of dimension higher than 4.

Usually, without sparsity, each added variable worsens the estimation: see for instance
Example (a) with increasing (relevant) dimension in Figure 10 of Appendix H, in which our
method struggles providing good estimates as soon as the dimension 5. For Example (b)
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(where the relevant dimension is r = 2), until the dimension 6, our method has the same
behavior as for dimension 2. For larger dimensions, the estimation is progressively noised
by the too many irrelevant variables, to finally lose the signal beyond the dimension 10. The
bandwidths in Figure 9 give a good understanding of how the procedure handles the extra
variables. Comparing the dimensions d = 2 and d = 5, the relevant bandwidth components
(namely the directions y and x1) are selected at very similar values (called hereafter their
”expected values”), while the irrelevant components (in dimension d = 5) are taken as high
as possible, around the value 1 (the upper limit of the bandwidth grid): thus, the bias-
variance trade-off is unchanged, ensuring a quality of estimation as good as in dimension
d = 2. In dimension d = 9, the larger dimension makes the detection of irrelevant variables
more difficult, producing variance in the bandwidth selection. Nevertheless, the relevant
components are still selected at their expected value (but with more variance), producing
rather good estimates. In dimension d = 13, the sparsity is less accurately detected: the
irrelevant bandwidths decrease to 0.5. Their product 0.511 reaches numerically the emer-
gency stop ≈ 1

n . Therefore, there is not enough room left for the relevant components to
decrease until their expected value, which explains the loss of signal observed in Figure 8.
Note that in this last setting d > log n, and that is the reason why the emergency stop is
reached. More generally, this framework seemed to be out of reach for Rodeo-type proce-
dures: in particular, in (Lafferty and Wasserman, 2008) where growing dimensions with n
are considered, the framework is also restricted to dimensions d� log n.

Let now consider Example (c). The same phenomenon occurs, but complicated by the
discontinuity of f in the directions xj : away from ±1, the relevant dimension is r = 2, but
in the neighborhood of ±1, these components are highly relevant. In fact, these neighbor-
hoods depend on the bandwidth: the larger the bandwidth, the larger the support of Kh

until reaching the points ±1, and once ±1 belongs to the support of Kh, the components
xj , j > 1, are detected as relevant. This is the reason why these bandwidth components
are much smaller in Figure 9 (bottom) (around the value 0.48 instead of 1 in Example (c)).
These smaller components amplify the phenomenon described for Example (b): as soon as
dimension d = 5, the relevant components can no longer decrease to their expected value; in
dimension d = 9, there is almost no room left for the relevant components, and in dimension
d = 13, the relevant components are completely lost.

A similar study for sparsity detection in response variables can be found in Appendix H,
Section H.2.

All in all, the overall behavior of our procedure is very satisfying: the RevDir CDRodeo
procedure nicely detects relevant variables and is robust to extra irrelevant in moderate
dimensions (d ≤ log n). The difficulties described in the last paragraphs are inherent to the
curse of dimensionality and is bound to occur with any nonparametric procedure.

5. Proofs

In this section, we detail the proofs of ours results.

5.1 Notations

In order to prove the theorem, some intermediate lemmas are needed. See Appendix A for
their statements. First, we define some general notations: We denote
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• ∂jg the partial derivative of a function g with respect to its j-th component;

• v · v′ the multiplication term by term of two vectors v and v′;

• vI the vector v restricted to its components indexed in I;

• b ∨ c = max(b, c) the maximum value of two reals b and c.

Let us now introduce the key quantities of the proofs. For any bandwidth h ∈ (R∗+)d and
any component k ∈ 1 : d, we consider the estimator f̄h(w) that we would have used if the
density fX were known:

f̄h(w) :=
1

n

n∑
i=1

f̄hi(w), f̄hi(w) :=
Kh(w −Wi)

fX(Xi)

and we denote ∆h its difference with the real estimator:

∆h := f̂h(w)− f̄h(w).

We denote B̄h := E
[
f̄h(w)

]
− f(w) the bias of f̄h(w). We also consider its partial deriva-

tive Z̄hk:

Z̄hk :=
∂

∂hk
f̄h(w).

We can write

Z̄hk :=
1

n

n∑
i=1

Z̄hik, Z̄hik :=
1

fX (Xi)

∂

∂hk

(
d∏

k=1

h−1
k K

(
wk −Wik

hk

))
.

We shall consider ∆Z,hk the difference between Zhk and Z̄hk:

∆Z,hk := Zhk − Z̄hk.

Note that the value of the final bandwidth of our procedure provides the value of the
bandwidth at each iteration. More precisely, if a bandwidth h is the output of the RevDir
procedure, we denote (h(t))t∈Z, the different values of the bandwidth for all iterations t.
- On the one hand, if hk > h0, it means that at Initialization, the component k was in
Act(−1) and then the bandwidth path of this component has increased during the Reverse
Step according to the following path h0β

−1, h0β
−2, ... until hk := h0β

−|tk|, and remains
fixed during the whole Direct Step (t ≥ 0).
- On the other hand, if hk < h0, the component k was in Act(0) at Initialization. Thus the
value of the bandwidth component was fixed and equals to h0 during the Reverse Step (i.e
for every t < 0 ). Then, it decreases during the Direct step: h0β, h0β

2, ... until hk := h0β
tk

is achieved (see Figure 2). This gives the following formula: for any k ∈ 1 : d, during the
Reverse Step (when t < 0),

h
(t)
k := max(h0,min

(
hk, β

th0

)
)

=


h0 if k is active during the Direct Step,

βth0 if k is active during the Reverse Step and not deactivated yet,

hk if k has already been deactivated during the Reverse Step,
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and during Direct Step (when t ≥ 0),

h
(t)
k := max

(
hk, β

th0

)
=

{
βth0 if k is active during the Direct Step and not deactivated yet,

hk if k has already been deactivated (during the Reverse or the Direct Step).

Now we can define the set of bandwidths Hhp which contains with high probability the
bandwidth selected by the RevDir procedure:

Hhp := {h ∈
(
R∗+
)d

:∀k ∈ 1 : d, hk = βtkh0 ≤ 1 with tk ∈ Z,

and
d∏

k=1

hk ≥ βr (logn)a+1

n ,

and ∀k ∈ Rc, hk = hirr},

where hirr is uniquely defined by tirr ∈ Z such that β < hirr := βtirrh0 ≤ 1. We also denote
HRev

hp (respectively HDir
hp ) the set which contains the different states of the bandwidth during

the Reverse Step (respectively the Direct Step) provided that the selected bandwidth is in
Hhp:

HRev
hp := {h(t) : h ∈ Hhp, t < 0} (16)

HDir
hp := {h(t) : h ∈ Hhp, t ≥ 0}. (17)

Finally, we introduce the high probability event Ehp on which ĥ systematically belongs to
Hhp:

Ehp := Ãn∩
⋂

h∈Hhp

(
Bernf̄ (h) ∩ Bern|f̄ |(h)

)
∩

⋂
h∈(HRev

hp ∪H
Dir
hp )

d⋂
k=1

(
BernZ̄(h, k) ∩ Bern|Z̄|(h, k)

)
,

(18)
where Ãn is the high probability event of Condition (ii) in Assumption EfX :

Ãn =

{
sup
u∈ U1

∣∣∣fX(u)− f̃X(u)
∣∣∣ ≤MX

(log n)
a
2

√
n

}
,

and Bern†(‡) is the high probability event resulting of Bernstein’s Inequality applied on the
random variable † with parameter(s) ‡. More formally:

Bernf̄ (h) := {|f̄h(w)− E[f̄h(w)]| ≤ σh},

Bern|f̄ |(h) :=

{∣∣∣∣∣ 1n
n∑
i=1

|f̄hi(w)| − E[|f̄h(w)|]

∣∣∣∣∣ ≤ CĒ

}
,

BernZ̄(h, k) :=

{
|Z̄hk − EZ̄hk| ≤

1

2
λhk

}
,
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Bern|Z̄|(h, k) :=

{∣∣∣∣∣ 1n
n∑
i=1

|Z̄hik| − E|Z̄h1k|

∣∣∣∣∣ ≤ CE|Z̄|h
−1
k

}
,

where

σh = Cσ

√√√√√ (log n)a

n
d∏

k=1

hk

with Cσ =
2‖K‖d2‖f‖

1
2
∞, U

δ
1
2

. See Lemmas 18 and 19 in Appendix A for the details and defini-

tions of constants CĒ,CE|Z̄|.

5.2 Main Steps of the Proof

Proposition 16 describes the form of the bandwidth selected by the RevDir procedure with
high probability. Given this selection, Proposition 17 gives upper bounds on the bias and
the deviation of the estimator f̄ĥ(w).

Proposition 16 The selected bandwidth belongs to Hhp with high probability. More pre-
cisely:

Ehp ⊂ {ĥ ∈ Hhp} (19)

and for n large enough:

P
(
Echp
)
≤ 2e−(logn)1+a−1

2 . (20)

Note in particular that with high probability the irrelevant components of the selected
bandwidth are equal to hirr.

Recall that B̄h := E
[
f̄h(w)

]
− f(w) is the bias of f̄h(w).

Proposition 17 The following upper bounds are satisfied for all h ∈ Hhp, and any con-
stants A ∈ R and CA > 0:

1{ĥ=h}∩Ehp

∣∣B̄h∣∣ ≤ rCB̄CA
s (log n)As

n
s

2s+r

+ rmax

(
7Cλ

4β
d−r

2 CA
r
2

(log n)
a−Ar

2

n
s

2s+r

, 7
4

(
(log n)a

n

) p
2p+1

)
,

(21)

1{ĥ=h}∩Ehp

∣∣f̄h(w)− E
[
f̄h(w)

]∣∣ ≤ 1{ĥ=h}∩Ehpσh

≤ max

(
Cσ

β(d−r)/2CA
r/2 (log n)(a−Ar)/2,

4CA
sCEZ̄Cσβ

− r2−s

Cλ
(log n)sA

)
n−

s
2s+r , (22)

where Cλ is the constant defined in (10) and CB̄,Cσ,CEZ̄ are constants defined in Lemmas
18 and 19 in Appendix A.
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5.3 Proof of Theorem 12

Let us fix l > 1. From Proposition 16: Ehp ⊂ {ĥ ∈ Hhp}, thus:

E
[∣∣∣f̂ĥ(w)− f(w)

∣∣∣l] = E
[
1Echp

∣∣∣f̂ĥ(w)− f(w)
∣∣∣l]+

∑
h∈Hhp

E
[
1{ĥ=h}∩Ehp

∣∣∣f̂h(w)− f(w)
∣∣∣l] .
(23)

We first control the terms E
[
1{ĥ=h}∩Ehp

∣∣∣f̂h(w)− f(w)
∣∣∣l]. We fix h ∈ Hhp. Then, we

decompose the difference f̂h(w)− f(w) as follows:

f̂h(w)− f(w) = ∆h +
(
f̄h(w)− E

[
f̄h(w)

])
+ B̄h, (24)

where we recall the notations ∆h := f̂h(w) − f̄h(w) and B̄h := E
[
f̄h(w)

]
− f(w). Remark

that
∏d
k=1 hk ≤ 1, since h ∈ Hhp. We apply 2. of Lemma 20 and 3. of Lemma 18. Since

Ehp ⊂
(
Ãn ∩ Bern|f̄ |(h)

)
∩ Bernf̄ (h):

1Ehp
|∆h| ≤ CM∆σh

and
1Ehp

∣∣f̄h(w)− E
[
f̄h(w)

]∣∣ ≤ σh.
Therefore:

1{ĥ=h}∩Ehp

∣∣∣f̂h(w)− f(w)
∣∣∣ ≤ 1{ĥ=h}∩Ehp

(
(CM∆ + 1)σh +

∣∣B̄h∣∣) . (25)

From Proposition 17 which controls both σh and
∣∣B̄h∣∣, we deduce:

1{ĥ=h}∩Ehp

∣∣∣f̂h(w)− f(w)
∣∣∣

≤ (CM∆ + 1) max

(
Cσ

β(d−r)/2CA
r/2 (log n)

a−Ar
2 ,

4CA
sCEZ̄Cσβ

− r2−s

Cλ
(log n)sA

)
n−

s
2s+r

+ rCB̄CA
s (log n)As n−

s
2s+r + rmax

(
7Cλ

4β
d−r

2 CA
r
2

(log n)
a−Ar

2

n
s

2s+r

, 7
4

(
(log n)a

n

) p
2p+1

)
.

We optimize in A and CA: With A = a
2s+r , we obtain

1{ĥ=h}∩Ehp

∣∣∣f̂h(w)− f(w)
∣∣∣ ≤ max

(
C1

(
(log n)a

n

) s
2s+r

, 7
4r

(
(log n)a

n

) p
2p+1

)
.

where C1 depends on β, d, r, s,CB̄,CEZ̄ ,Cσ,CM∆,Cλ. If r = 0, the last term in the right
hand side vanishes, otherwise p/(2p+ 1) ≥ s/(2s+ r) (since p ≥ s). Therefore, for n large
enough:

1{ĥ=h}∩Ehp

∣∣∣f̂h(w)− f(w)
∣∣∣ ≤ C′

(
(log n)a

n

) s
2s+r

. (26)
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To prove the theorem, it then remains to control
∣∣∣f̂h(w)− f(w)

∣∣∣ on Echp. Recall that:

d∏
k=1

ĥk ≥ βr
(log n)1+a

n
,

and Condition (i):
δ̃X := inf

u∈ U1

f̃X(u) > n−1/2,

then we can roughly bound f̂ĥ(w) by:∣∣∣f̂ĥ(w)
∣∣∣ ≤ ‖K‖d∞n

δ̃Xβr(log n)1+a
= o(n2).

So: ∣∣∣f̂h(w)− f(w)
∣∣∣l = o(n2l) = o(e2l logn).

Besides, from Proposition 16:

P
(
Echp

)
≤ 2e−(logn)1+a−1

2 .

Note that, since a > 1,

2l log n+ l log(n
1
2 ) = o((log n)1+a−1

2 ), (27)

therefore:

E
[
1Echp

∣∣∣f̂ĥ(w)− f(w)
∣∣∣l]1/l

≤
(
P
(
Echp

)
e2l logn

)1/l
= o(n−

1
2 ).

To conclude, we combine Equation (23) with the above upper bound and Inequality (26):

E
[∣∣∣f̂ĥ(w)− f(w)

∣∣∣l]1/l

≤ o(n−
1
2 ) +


(

C′
(

(log n)a

n

) s
2s+r

)l ∑
h∈Hhp

E[1ĥ=h]


1/l

≤ C

(
(log n)a

n

) s
2s+r

,

with C depending on d, r, ‖f‖∞, U , δ, L, s,K, β. �

5.4 Proof of Proposition 16

By definition of the procedure, any selected bandwidth ĥ satisfies

∃(t1, . . . , td) ∈ Zd,∀k ∈ 1 : d, ĥk = βtkh0

The loop condition in the Reverse Step imposes for any active component k that at the
beginning of an iteration t ∈ Z− :

ĥ
(t)
k ≤ β.
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At most, ĥ
(t)
k is multiplied by β−1. Then after the last update of the component ĥk:

ĥk ≤ 1 = β−1β.

Now let us prove that on Ehp, the irrelevant components are deactivated at value hirr. It
suffices to show that during the initialization, the irrelevant components activate for Reverse
Step, i.e.:

Rc ⊂ Act(−1),

and in the case where h0 ≤ β, it suffices to prove that they remain active at all iterations
t ∈ −1 : tirr. Remember that tirr ∈ Z is defined such that: hirr = βtirrh0.

Note that if the irrelevant components remain active at all iteration t ∈ −1 : tirr, then

for k ∈ Rc, ĥ(t)
k = H

(t)
k = βth0. It corresponds to the definition of Hhp, since for all h ∈ Hhp,

t ∈ −1 : tirr and k ∈ Rc,
h

(t)
k = βth0.

Therefore, there exists h ∈ Hhp such that ĥ(t) = h(t) for all iterations t ∈ −1 : tirr.We will
then prove that for any h ∈ Hhp, t ∈ −1 : tirr and k ∈ Rc,

1Ehp
|Zh(t)k| ≤ λh(t)k.

Let us fix h ∈ Hhp, t ∈ −1 : tirr and k ∈ Rc. We decompose Zh(t)k as follows:

Zh(t)k =
(
Zh(t)k − Z̄h(t)k

)
+
(
Z̄h(t)k − EZ̄h(t)k

)
+ EZ̄h(t)k. (28)

We use:

• 1. of Lemma 20: Recall the notation ∆Z,h(t)k := Zh(t)k − Z̄h(t)k, then remark that

∀h′ ∈ HRev
hp ∪HDir

hp ,
∏d
k=1 h

′
k ≤ 1, and Ehp ⊂ Bern|Z̄|(h

(t), k) ∩ Ãn, therefore:

1Ehp

(
Zh(t)k − Z̄h(t)k

)
≤ 1

4
λh(t)k,

• the definition of BernZ̄(h(t), k): since Ehp ⊂ BernZ̄(h(t), k),

1Ehp

∣∣Z̄h(t)k − EZ̄h(t)k

∣∣ ≤ 1

2
λh(t)k,

• 2. of Lemma 19: since k ∈ Rc,
EZ̄h(t)k = 0.

Therefore:

1Ehp
|Zh(t)k| ≤

3

4
λh(t)k ≤ λh(t)k,

and so, every irrelevant component is active during Reverse Step until Iteration tirr. In
particular, we have proved that:

Ehp ⊂ {∀k ∈ Rc : ĥk = hirr}.
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Let us now prove that on Ehp,

d∏
k=1

ĥk ≥ βr
(log n)1+a

n
.

The loop condition in the Direct Step imposes that at the beginning of any iteration t ≥ 0:

d∏
k=1

ĥ
(t)
k ≥

(log n)1+a

n
.

For our algorithm, the bandwidth can only decrease during the Direct Step. Since on Ehp,
the irrelevant components are active the during Reverse Step, they are inactive during the
Direct Step. This is the reason why during the last iteration, only relevant components
could decrease and be multiplied by β. Therefore:

d∏
k=1

ĥk ≥ βr
(log n)1+a

n
,

which ends the proof of the inclusion (19) of Proposition 16.

Finally, we control P
(
Echp

)
. We first control the cardinal of Hhp by enumerating the

possible values for a component of a bandwidth in Hhp. For h ∈ Hhp and k ∈ R,

β(log n)1+an−1 ≤ hk ≤ 1,

thus:

|{hk : h ∈ Hhp}| =
∣∣{βth0 ∈ [β(log n)1+an−1, 1], t ∈ Z

}∣∣ ≤ 1+log 1
β

(
1

β(log n)1+an−1

)
≤ log 1

β
n

(for n large enough). For k ∈ Rc,
hk = hirr,

thus, we have
|{hk : h ∈ Hhp}| = 1.

Therefore:
|Hhp| ≤

(
log 1

β
n
)r
. (29)

Let us also control the cardinal of HRev
hp ∪ HDir

hp . The only supplementary bandwidths are
the ones whose irrelevant components are smaller than hirr. We consider the irrelevant
components as the relevant ones, and we obtain the rough bound∣∣HRev

hp ∪HDir
hp

∣∣ ≤ (log 1
β
n
)d
. (30)

By Assumption EfX , Condition (ii):

P
(
Ãcn
)
≤ exp(−(log n)1+a−1

2 ).
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We bound the events Bernf̄ (h)c’s and Bern|f̄ |(h)c’s using Lemma 18. Since for all h ∈ Hhp,

d∏
k=1

hk ≥ βr (logn)a+1

n ,

note that:

• Cond(h):
d∏

k=1

hk ≥ 4‖K‖2d∞
9δ2C2

σ

(logn)a

n is satisfied for any h ∈ Hhp for n large enough (when

log n ≥ 4‖K‖2d∞
9βrδ2C2

σ
). So, we have

P
(
Bernf̄ (h)c

)
≤ 2e−(logn)a .

• Moreover,

P
(
Bern|f̄ |(h)c

)
≤ 2e−Cγ|f |n

∏d
k=1 hk ≤ 2e−Cγ|f |β

r(logn)a+1
.

Similarly, we bound the probability of events BernZ̄(h)c’s and Bern|Z̄|(h)c’s using Lemma 19.

Note that for all h ∈ HRev
hp ∪HDir

hp :

• CondZ̄(h):
d∏

k=1

hk ≥ condZ̄
(logn)a

n is satisfied for n large enough (when logn ≥ condZ̄
βr ).

So, we have

P (BernZ̄(h, j)c) ≤ 2e
− δ
‖f‖∞, U

(logn)a

.

• Moreover,

P
(
Bern|Z̄|(h, j)

c
)
≤ 2e−Cγ|Z̄|n

∏d
k=1 hk ≤ 2e−Cγ|Z̄|β

r(logn)a+1

.

Therefore,

P
(
Echp

)
≤ P

(
Ãcn
)

+
∑
h∈Hhp

(
P
(
Bernf̄ (h)c

)
+ P

(
Bern|f̄ |(h)c

))

+
∑

h∈(HRev
hp ∪H

Dir
hp )

d∑
k=1

(
P (BernZ̄(h, k)c) + P

(
Bern|Z̄|(h, k)c

))
≤ e−(logn)1+a−1

2 +
∑
h∈Hhp

(
2e−(logn)a + 2e−Cγ|f |β

r(logn)a+1
)

+
∑

h∈(HRev
hp ∪H

Dir
hp )

d∑
k=1

(
2e
− δ
‖f‖∞, U

(logn)a

+ 2e−Cγ|Z̄|β
r(logn)a+1

)

≤ e−(logn)1+a−1
2

(
1 + 4

(
log 1

β
n
)r
e−(logn)

a−1
2 + 4d

(
log 1

β
n
)d
e
− δ
‖f‖∞, U

(logn)
a−1

2

)

≤ 2e−(logn)1+a−1
2 ,

for n large enough. �
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5.5 Proof of Proposition 17

We fix h ∈ Hhp and consider the event {ĥ = h}∩ Ehp. Let (t1, . . . , td) ∈ Zd such that for all
k ∈ 1 : d,

hk = βtkh0.

Given positive constants A and CA (to be opimized), we call CA (log n)A n−
1

2s+r the minimax
bandwidth level and we define t(A,CA) ∈ R such that

βt(A,CA)h0 = CA (log n)A n−
1

2s+r .

Using the definition (11) of h0, observe that t(A,CA) > 0 (for n large enough). To simplify
the notation (permutation of the labels), we consider:

R = 1 : r

and
t1 ≥ t2 ≥ · · · ≥ tr. (31)

5.5.1 Proof of Inequality (21)

The bias of f̄h(w) is denoted B̄h. Note that it does not depend on {hk}k∈Rc . Indeed, we
have

B̄h : = E
[
f̄h(w)

]
− f(w)

=

∫
u∈Rd

Kh(w − u)
fW (u)

fX(u1:d1)
du− f(w)

=

∫
u∈Rd

Kh(w − u)f(u)du− f(w)

=

∫
z∈Rd

(
d∏

k=1

K(zk)

)
[f(w − h · z)− f(w)] dz (32)

=

∫
z′∈Rr

(
r∏

k=1

K(z′k)

)[
fR
(
w1:r − h1:r · z′

)
− fR(w1:r)

]
dz′.

We consider the following disjunction of cases:

(Case A) without relevant component: R = ∅

(Case B) with small relevant bandwidth components: min
j∈R

tj ≥ t(A,CA)

(Case C) with at least one large relevant bandwidth component: ∃j ∈ R, tj < t(A,CA).

Then we control the bias in each case.

(Case A) Assume R = ∅. In particular, f is constant on the neighborhood U . Note that for
any z ∈ supp (K)d, w − h · z ∈ U . We then derive from Equation (32):

B̄h = 0.
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(Case B) Assume min
j∈R

tj ≥ t(A,CA). We apply 2. of Lemma 18

∣∣B̄h∣∣ ≤ CB̄

∑
j∈R

hsj = CB̄

∑
j∈R

(
βtjh0

)s
≤ CB̄ × r

(
βt(A,CA)h0

)s
= rCB̄CA

s (log n)As n−
s

2s+r

(Case C) Assume ∃j ∈ R, tj < t(A,CA). Then we consider

jA = min (j ∈ R : tj < t(A,CA)) .

In particular, for all j ≥ jA, the bandwidth components are larger than the minimax
level:

hj ≥ CA(log n)An−
1

2s+r . (33)

For the previously fixed bandwidth h (and its relevant deactivation times (t1, . . . , tr)),
we define the following intermediate bandwidths h(int,t), t ∈ R:

h
(int,t)
k =

{
βt∨tkh0 if k ∈ R
hk else.

Then we decompose the bias by splitting f(w− h · z)− f(w) (note that h(int,tr) = h):

B̄h =

∫
z∈Rd

(
d∏

k=1

K(zk)

)
[f(w − h(int,t(A,CA)) · z)− f(w)

+ f(w − h(int,tjA ) · z)− f(w − h(int,t(A,CA)) · z)

+
r∑

j0=jA+1

f(w − h(int,tj0 ) · z)− f(w − h(int,tj0−1) · z)]dz

= B̄h(int,t(A,CA)) + (B̄
h

(int,tjA
) − B̄h(int,t(A,CA))) +

r∑
j0=jA+1

(
B̄
h

(int,tj0
) − B̄

h
(int,tj0−1)

)
.

(34)

For the first term, note that h(int,t(A,CA)) satisfies the condition of (Case B), thus:∣∣B̄h(int,t(A,CA))

∣∣ ≤ rCB̄CA
s (log n)As n−

s
2s+r . (35)

Let us now control the other terms. The same arguments are used to control the
terms in the sum B̄

h
(int,tj0

) − B̄
h

(int,tj0−1) (for j0 ∈ (jA + 1) : r) and the second term

B̄
h

(int,tjA
) − B̄h(int,t(A,CA)) . To shorten the proof, the followings lines are also applied to

control the second term: for the added case j0 = jA, one just has to replace h
(int,tj0−1)

j

by h(int,t(A,CA)).

Let us now fix j0 ∈ jA : r and consider the path between h
(int,tj0−1)

j and h
(int,tj0 )

j .
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Namely for u ∈ [0, 1], we denote h[j0,u] := h(int,tj0−1) + u
(
h(int,tj0 ) − h(int,tj0−1)

)
. Re-

mark that, for any j ∈ 1 : d,

h
(int,tj0 )

j − h(int,tj0−1)

j 6= 0⇒
(
j ∈ R and βtj0∨tj 6= β(tj0−1)∨tj

)
⇒ (j ∈ R and tj < tj0 or tj < tj0−1)

⇒ (j ∈ R and tj ≤ tj0) .

The last implication is due to the fact that a component could not be deactived
between the consecutive deactivation times tj0 and tj0−1.

Then, we introduce the function g : u ∈ [0, 1] 7→ f(w − h[j0,u] · z) (for a fixed z ∈ Rd).
In particular, using the above remark:

g′(u) =
∑
j∈R
tj≤tj0

(
h

(int,tj0 )

j − h(int,tj0−1)

j

)
× zj∂jf(w − h[j0,u] · z).

Then we write:

f(w − h(int,tj0 ) · z)−f(w − h(int,tj0−1) · z)

= g(1)− g(0) =

∫ 1

u=0
g′(u)du

=
∑
j∈R
tj≤tj0

∫ 1

u=0

(
h

(int,tj0 )

j − h(int,tj0−1)

j

)
× zj∂jf(w − h[j0,u] · z)du.

Hence, we obtain

B̄
h

(int,tj0
) − B̄

h
(int,tj0−1) =

∫
z∈Rd

(
d∏

k=1

K(zk)

)
[f(w − h(int,tj0 ) · z)− f(w − h(int,tj0−1) · z)]dz

=
∑
j∈R
tj≤tj0

∫ 1

u=0

(
h

(int,tj0 )

j − h(int,tj0−1)

j

)∫
z∈Rd

(
d∏

k=1

K(zk)

)
zj∂jf(w − h[j0,u] · z)dz du

=
∑
j∈R
tj≤tj0

∫ 1

u=0

(
h

(int,tj0 )

j − h(int,tj0−1)

j

)
E
[
Z̄h[j0,u],j

]
du, (36)

using Equation (45):

E
[
Z̄h[j0,u],j

]
=

∫
Rd

(
d∏

k=1

K(zk)

)
zj∂jf(w − h[j0,u] · z)dz.

Now the idea is to control
∣∣∣E [Z̄h[j0,u],j

]∣∣∣ with the test at the iteration tj on |Z
h(tj),j

|.

More precisely, we will first apply Assumption C to move from
∣∣∣E [Z̄h[j0,u],j

]∣∣∣ to
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∣∣∣E [Z̄
h(tj),j

]∣∣∣. Then, we will apply Bernstein’s inequality to convert the control on∣∣∣Z
h(tj),j

∣∣∣ to a control on
∣∣∣E [Z̄

h(tj),j

]∣∣∣.
Let us fix j ∈ R such that tj ≤ tj0 . We distinguish the cases where the component j
is deactivated during the Reverse Step or when it happens during the Direct Step.

Subcase (C.a) tj ≥ 0, i.e.: j is deactivated during the Direct Step.
Let us show h[j0,u] 4 h(tj):

• for k ∈ Rc, since h
(int,tj0−1)

k = hk = h
(int,tj0 )

k ,

h
[j0,u]
k = hk.

Remember that the irrelevant components deactivate during the Reverse
Step, therefore they already have their final value during the Direct Step.
Formally, since tk < 0 ≤ tj , we have

h
[j0,u]
k = hk = βtkh0 = βtj∧tkh0 = h

(tj)
k .

• for k ∈ R, notice h(int,tj0−1) 4 h(int,tj0 ). Therefore:

h
[j0,u]
k ≤ h(int,tj0 )

k = βtj0∨tkh0

≤ βtj∧tkh0 = h
(tj)
k .

Then, we have proved h[j0,u] 4 h(tj). Using Assumption C:∣∣∣E [Z̄h[j0,u],j

]∣∣∣ ≤ ∣∣∣E [Z̄
h(tj),j

]∣∣∣ .
Subcase (C.b) tj < 0, i.e.: j is deactivated during Reverse Step.

As well as h′ 7→ B̄h′ , h
′ 7→ E

[
Z̄h′,j

]
is independent of the irrelevant components

of the bandwidth (see for instance Equation 45).
Then we modify the irrelevant components of h[j0,u] and use the value of the
irrelevant components of h(tj). Formally, we introduce the notation h{j0,u} such
that

h
{j0,u}
k =

{
h

[j0,u]
k if k ∈ R
h

(tj)
k else,

so that:

E
[
Z̄h[j0,u],j

]
= E

[
Z̄h{j0,u},j

]
.

Now we just have to verify h{j0,u} 4 h(tj):

• for k ∈ Rc, by definition of h{j0,u}:

h
{j0,u}
k = h

(tj)
k
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• for k ∈ R,

h
{j0,u}
k = h

[j0,u]
k

≤ h(int,tj0 )

k = βtj0∨tkh0

≤ βtj∨tkh0, since tj ≤ tj0 ,

≤ max
(
hk, β

tjh0

)
=: h

(tj)
k .

Then we have proved h{j0,u} 4 h(tj). Using Assumption C:∣∣∣E [Z̄h[j0,u],j

]∣∣∣ =
∣∣∣E [Z̄h{j0,u},j]∣∣∣ ≤ ∣∣∣E [Z̄h(tj),j

]∣∣∣ .
In each case (C.a and C.b), we have proved

∣∣∣E [Z̄h[j0,u],j

]∣∣∣ ≤ ∣∣∣E [Z̄
h(tj),j

]∣∣∣, then we

apply this inequality in Equation (36):

∣∣∣B̄
h

(int,tj0
) − B̄

h
(int,tj0−1)

∣∣∣ ≤ ∑
j∈R
tj≤tj0

∫ 1

u=0

(
h

(int,tj0 )

j − h(int,tj0−1)

j

) ∣∣∣E [Z̄h[j0,u],j

]∣∣∣ du (37)

≤
∑
j∈R
tj≤tj0

∫ 1

u=0

(
h

(int,tj0 )

j − h(int,tj0−1)

j

) ∣∣∣E [Z̄
h(tj),j

]∣∣∣ du
≤
∑
j∈R
tj≤tj0

(
h

(int,tj0 )

j − h(int,tj0−1)

j

) ∣∣∣E [Z̄
h(tj),j

]∣∣∣ . (38)

Then, the previous decomposition of the bias (34) leads to:

∣∣B̄h∣∣ ≤ ∣∣B̄h(int,t(A,CA))

∣∣+
r∑

j0=jA

∣∣∣B̄
h

(int,tj0
) − B̄

h
(int,tj0−1)

∣∣∣
≤ rCB̄CA

s (log n)As n−
s

2s+r +
r∑

j0=jA

∑
j∈R
tj≤tj0

(
h

(int,tj0 )

j − h(int,tj0−1)

j

) ∣∣∣E [Z̄
h(tj),j

]∣∣∣
≤ rCB̄CA

s (log n)As n−
s

2s+r +

r∑
j=jA

∣∣∣E [Z̄
h(tj),j

]∣∣∣ j∑
j0=jA

(
h

(int,tj0 )

j − h(int,tj0−1)

j

)
≤ rCB̄CA

s (log n)As n−
s

2s+r +

r∑
j=jA

∣∣∣E [Z̄
h(tj),j

]∣∣∣h(tj)
j , (39)

since the sum is telescoping, and by noticing that: h
(int,tj)
j = h

(tj)
j .
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Now, it remains to control
∣∣∣E [Z̄

h(tj),j

]∣∣∣ for j ∈ jA : r using the test at the iteration

tj on Z
h(tj),j

:

1Ehp∩{ĥ=h}

∣∣∣E [Z̄
h(tj),j

]∣∣∣ ≤ 1ĥ=h

∣∣∣Z
h(tj),j

∣∣∣+ 1Ãn∩Bern|Z̄|(h
(tj),j)

∣∣∣Z
h(tj),j

− Z̄
h(tj),j

∣∣∣
+ 1BernZ̄(h(tj),j)

∣∣∣Z̄
h(tj),j

− E
[
Z̄
h(tj),j

]∣∣∣
By construction of the CDRodeo procedure, if ĥ = h, then j is deactivated at
iteration tj , in other words:

1Ehp∩{ĥ=h}

∣∣∣Z
h(tj),j

∣∣∣ ≤ λ
h(tj),j

.

We also apply:

• the definition of BernZ̄(h(tj), j):

1BernZ̄(h(tj),j)

∣∣∣Z̄
h(tj),j

− E
[
Z̄
h(tj),j

]∣∣∣ ≤ 1

2
λ
h(tj),j

,

• 1. of Lemma 20 (note in particular
∏d
k=1 h

(tj)
k ≤ 1):

1Ãn∩Bern|Z̄|(h
(tj),j)

∣∣∣Z
h(tj),j

− Z̄
h(tj),j

∣∣∣ = 1Ãn∩Bern|Z̄|(h
(tj),j)

∣∣∣∆
Z,h(tj)j

∣∣∣ ≤ 1

4
λ
h(tj),j

.

Therefore:

1Ehp∩{ĥ=h}

∣∣∣E [Z̄
h(tj),j

]∣∣∣ ≤ 1Ehp∩{ĥ=h}
7

4
λ
h(tj),j

.

Hence:

1Ehp∩{ĥ=h}
∣∣B̄h∣∣ ≤ 1{ĥ=h}

rCB̄CA
s (log n)As n−

s
2s+r +

r∑
j=jA

7

4
λ
h(tj),j

× h(tj)
j

 ,

≤ 1{ĥ=h}

rCB̄CA
s (log n)As n−

s
2s+r +

r∑
j=jA

7Cλ(log n)a/2

4
(
n
∏d
k=1 h

(tj)
k

)1/2

 .

(40)

Then we control
∏d
k=1 h

(tj)
k using the same disjunction of subcases as above:

Subcase (C.a) tj ≥ 0. At the iteration tj ≥ 0, the Direct Step has begun, thus the Reverse Step
is over. Since h ∈ Hhp, the irrelevant components have already their final value:
for all k ∈ Rc,

1 ≥ h(tj)
k = hk = hirr > β.

Moreover, during the Direct Step, at iteration tj , all components are lower
bounded by the current active bandwidth value βtjh0, i.e.: for any k ∈ R,

h
(tj)
k ≥ βtjh0.
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Recall that j ≥ jA, thus:

tj ≤ tjA ≤ t(A,CA).

It follows:

h
(tj)
k ≥ βt(A,CA)h0 = CA (log n)A n−

1
2s+r .

Therefore:
d∏

k=1

h
(tj)
k ≥ βd−r

(
CA (log n)A n−

1
2s+r

)r
.

Then the upper bound in Equation (40) becomes:

7Cλ(log n)a/2

4
(
n
∏d
k=1 h

(tj)
k

)1/2
≤ 7Cλ

4β
d−r

2 CA
r
2

(log n)
a−Ar

2 n−
1
2(1− r

2s+r )

= 7Cλ

4β
d−r

2 CA
r
2

(log n)
a−Ar

2 n−
s

2s+r .

Subcase (C.b) tj < 0. At iteration tj , only iterations of the Reverse Step have been performed.
Thus, the current bandwidth has only been increased. Therefore:

7Cλ(log n)a/2

4
(
n
∏d
k=1 h

(tj)
k

)1/2
≤ 7Cλ(log n)a/2

4
(
nhd0

)1/2 .

Remark that the lower bound on h0 (11) is exactly defined so, we have

7Cλ(log n)a/2

4
(
nhd0

)1/2 ≤ 7

4

(
(log n)a

n

) p
2p+1

.

Note that n
− p

2p+1 is smaller than the minimax optimal rate for any regularity
and any sparsity structure (except for the degenerate case where r = 0 and which
is solved separately: cf (Case A)):

n
− p

2p+1 = min
1≤r′≤d
1≤s′≤p

(
n
− s′

2s′+r′

)
.

When we reunite the two subcases, Inequality (40) becomes:

1Ehp∩{ĥ=h}
∣∣B̄h∣∣ ≤ rCB̄CA

s (log n)As n−
s

2s+r

+ r ×max

(
7Cλ

4β
d−r

2 CA
r
2

(log n)
a−Ar

2

n
s

2s+r

, 7
4

(
(log n)a

n

) p
2p+1

)
,

which concludes the proof of Inequality (21).
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5.5.2 Proof of Inequality (22)

Let us now prove the second inequality (22). By definition: Ehp ⊂ Bernf̄ (h). Thus, we have

1{ĥ=h}∩Ehp

∣∣f̄h(w)− E
[
f̄h(w)

]∣∣ ≤ σh := Cσ

√
(log n)a

n
∏d
k=1 hk

.

Two cases occur: in the first case, the deviation is controlled by a concentration inequality;
in the second case, we control the deviation by EZhj thanks to the tests on the Zhj ’s.

1. max
k∈R

tk ≤ t(A,CA). Then, ∀k ∈ R:

hk = βtkh0 > βt(A,CA)h0 = CA(log n)An−
1

2s+r .

Besides, for k ∈ Rc:
hk = hirr > β.

Therefore:

σh ≤ Cσ

√√√√ (log n)a

nβd−r
(
CA(log n)An−

1
2s+r

)r = Cσ
β(d−r)/2CA

r/2 (log n)(a−Ar)/2n−
s

2s+r .

2. max
k∈R

tk > t(A,CA). First remark that for any k ∈ 1 : d,

σh =
Cσ

Cλ
hk λhk.

Hence, it suffices to control the threshold in order to bound the deviation. Let us
consider j0 ∈ arg maxk∈R tk (actually assuming Equation 31 means that j0 = 1). In

particular, when ĥ = h, the component j0 is deactivated during the last iteration, and
during the Direct Step (recall that t(A,CA) > 0). Let us consider the penultimate
iteration, i.e. Iteration tj0 − 1. At this iteration, j0 is not deactivated, i.e.:

1ĥ=h

∣∣∣Z
h

(tj0
−1)

j0

∣∣∣ > 1ĥ=hλh(tj0
−1)

j0
.

Then we use 1. of Lemma 20. Note that
∏d
k=1 h

(tj0−1)

k ≤ 1, thus:

1Ehp

∣∣∣∆
Z,h

(tj0
−1)

j0

∣∣∣ ≤ 1

4
λ
h

(tj0
−1)

j0
.

Remember the definition of BernZ̄(h, j), thus

1Ehp

∣∣∣Z̄
h

(tj0
−1)

j0
− E

[
Z̄
h

(tj0
−1)

j0

]∣∣∣ ≤ 1

2
λ
h

(tj0
−1)

j0
.

Therefore:

1{ĥ=h}∩Ehp

∣∣∣E [Z̄
h

(tj0
−1)

j0

]∣∣∣ > 1{ĥ=h}∩Ehp

1

4
λ
h

(tj0
−1)

j0
. (41)

Let us compare h(tj0−1) to h. Recall h = h(tj0 ), since tj0 is the final iteration of our
algorithm. We have:

42



Greedy Conditional Density Estimation

• for k ∈ Rc, h(tj0−1)

k = hk. Indeed, tk < 0, hence the components k have been
deactivated before Iteration tj0 − 1, and have the same value for the last two
iterations.

• for k ∈ R, hk ≥ βh
(tj0−1)

k . Indeed, at worst, the component k was active during
Iteration tj0 − 1 and have been multiplied by β.

Therefore:
d∏

k=1

hk ≥ βr
d∏

k=1

h
(tj0−1)

k

and

hj0λhj0 = Cλ

√
(log n)a

n
∏d
k=1 hk

≤ β−
r
2h

(tj0−1)

j0
λ
h

(tj0
−1)

j0
.

To summarize, we have

1{ĥ=h}∩Ehp

∣∣f̄h(w)− E
[
f̄h(w)

]∣∣ ≤ 1{ĥ=h}∩Ehp
σh = 1{ĥ=h}∩Ehp

Cσ

Cλ
hj0λhj0

≤ 1{ĥ=h}∩Ehp
β−

r
2

Cσ

Cλ
h

(tj0−1)

j0
λ
h

(tj0
−1)

j0

≤ 1{ĥ=h}∩Ehp
4β−

r
2

Cσ

Cλ
h

(tj0−1)

j0

∣∣∣E [Z̄
h

(tj0
−1)

j0

]∣∣∣ .
Then we apply 2. of Lemma 19:∣∣∣E [Z̄

h
(tj0
−1)

j0

]∣∣∣ ≤ CEZ̄

(
h

(tj0−1)

j0

)s−1
.

Therefore:

1{ĥ=h}∩Ehp

∣∣f̄h(w)− E
[
f̄h(w)

]∣∣ ≤ 1{ĥ=h}∩Ehp
4β−

r
2

Cσ

Cλ
h

(tj0−1)

j0
× CEZ̄

(
h

(tj0−1)

j0

)s−1

≤ 4CEZ̄Cσβ
− r2

Cλ

(
βtj0−1h0

)s
=

4CEZ̄Cσβ
− r2−s

Cλ

(
βtj0h0

)s
≤ 4CEZ̄Cσβ

− r2−s

Cλ

(
βt(A,CA)h0

)s
≤ 4CEZ̄Cσβ

− r2−s

Cλ

(
CA(log n)An−

1
2s+r

)s
≤ 4CA

sCEZ̄Cσβ
− r2−s

Cλ
(log n)sAn−

s
2s+r .

Reuniting the two cases, we obtain Inequality (22):

1{ĥ=h}∩Ehp

∣∣f̄h(w)− E
[
f̄h(w)

]∣∣ ≤ 1{ĥ=h}∩Ehp
σh

≤ max

(
Cσ

β(d−r)/2CA
r/2 (log n)(a−Ar)/2,

4CA
sCEZ̄Cσβ

− r2−s

Cλ
(log n)sA

)
n−

s
2s+r .

�

43



Nguyen, Lacour, Rivoirard

5.6 Proof of Proposition 15

Let us evaluate the number of operations of our procedure. During the Reverse Step, each
bandwidth of Act(−1) can be multiplied by β−1 several times until the loop condition is
achieved:

(Act(t) 6= ∅)&(max ĥ
(t)
k ≤ β).

In particular, max ĥ
(t)
k ≤ 1. Since ĥ

(t)
k = h0β

−|tk|,

|tk| = log

(
ĥ

(t)
k

h0

)
/ log

(
β−1

)
≤ log(h−1

0 )

log(β−1)
= O

(
log(n)

d(2p+ 1)

)

using the lower bound on h0 (11). Thus, during this Reverse Step, note that only |Act(−1)|
components are updated and:

• the number of updates of the Zhj ’s is of order |Act(−1)|
d(2p+1) log(n) given the above remark,

• the computation of the Zhj ’s and the comparison to the threshold cost O(|Act(−1)|n)
operations.

Therefore at worst, there are O
(
|Act(−1)|2

d log(n)n
)

operation during the Reverse Step.

For the Direct Step, the stopping condition is

(
d∏

k=1

ĥ
(t)
k > (logn)1+a

n

)
, which is satisfied

for the penultimate iteration, hence:

d∏
k=1

ĥk > βd
(log n)1+a

n
.

We denote tk the deactivation times of ĥ, then

hd0β
∑d
k=1 tk > βd

(log n)1+a

n
,

which gives
d∑

k=1

tk <
log(β−d(log n)−(1+a)nhd0)

log(1/β)
.

Thus, during the Direct Step, note that only |Act(0)| components are updated and

• the total number of updates of the Zhj ’s is of order log 1
β

(n) given the above remark,

• the computation of the Zhj ’s and the comparison to the threshold cost O(|Act(0)|n)
operations.

Therefore at worst, there are O(|Act(−1)| log(n)n) operations during the Direct Step. Using
|Act(−1)|+ |Act(0)| ≤ d, the sum of these two steps leads to the proposition. �
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Appendix A. Lemmas

The following lemmas are mainly proved in (Nguyen, 2018). Note that some adjustments
have been made from their initial versions. In particular, we have refined points 2. of
Lemma 18 and of Lemma 19 to take into account the extension of our results to Hölder
smoothness. In the sequel, we only prove results of subsequent lemmas which were not
established in (Nguyen, 2018).

Lemma 18 (Lemma 5 of Nguyen, 2018: f̄h(w) behaviour) Under Assumption LX ,
for any bandwidth h ∈ (0, 1]d, and any i ∈ 1 : n,

1. Let CĒ := ‖f‖∞, U‖K‖d1. Then∣∣Ef̄h1(w)
∣∣ ≤ E

∣∣f̄h1(w)
∣∣ ≤ CĒ.

2. If f has only r relevant components R and belongs to Hd(s, L) and if the order p of
the kernel K is larger than or equal to s,∣∣B̄h∣∣ ≤ CB̄

∑
k∈R

hsk, (42)

with CB̄ > 0 a constant only depending on L, s and K.

3. Let Bernf̄ (h) := {|f̄h(w) − E[f̄h(w)]| ≤ σh}, where σh := Cσ

√
(logn)a

n
d∏
k=1

hk

with Cσ =

2‖K‖d2‖f‖
1
2
∞, U

δ
1
2

. If Cond(h):
d∏

k=1

hk ≥ 4‖K‖2d∞
9δ2C2

σ

(logn)a

n is satisfied, then:

P
(
Bernf̄ (h)c

)
≤ 2e−(logn)a .

4. Let Bern|f̄ |(h) := {
∣∣∣∣ 1
n

n∑
i=1
|f̄hi(w)| − E[|f̄h(w)|]

∣∣∣∣ ≤ CĒ}. Then

P
(
Bern|f̄ |(h)c

)
≤ 2e−Cγ|f |n

∏d
k=1 hk ,

with Cγ|f | := min
(
CĒ

2

Cσ2 ;
3δCĒ

4‖K‖d∞

)
.

Lemma 19 (Lemma 6 of Nguyen, 2018: Z̄hj behaviour) If K is chosen as in Sec-
tion 3.1, and under Assumption LX , for any j ∈ 1, . . . , d and any bandwidth h ∈ (0, h0]d,
we have the following results.
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1. Let CE|Z̄| := ‖f‖∞, U‖J‖1‖K‖d−1
1 . We have

E|Z̄h1j | ≤ CE|Z̄|h
−1
j .

2. If f has only r relevant components R, for j /∈ R:

EZ̄hj = 0,

and if in addition f belongs to Hd(s, L), for j ∈ R:

|E[Z̄h,j ]| ≤ CEZ̄h
s−1
j , (43)

where CEZ̄ :=
(∫
|zsK(z)|dz

) ‖K‖r−1
1 L

(s−1)! denoting (s−1)! := (s−q+1)(s−q+2) . . . (s−1).

3. Let BernZ̄(h, j) := {|Z̄hj − EZ̄hj | ≤ 1
2λhj}. If the bandwidth satisfies:

CondZ̄(h):
d∏

k=1

hk ≥ condZ̄
(logn)a

n , with condZ̄ := 4‖J‖2∞‖K‖
2(d−1)
∞

32‖f‖∞, U‖J‖22‖K‖
2(d−1)
2

,

then:

P (BernZ̄(h, j)c) ≤ 2e
− δ
‖f‖∞, U

(logn)a

.

4. Let Bern|Z̄|(h, j) := {| 1n
n∑
i=1
|Z̄hij | − E|Z̄h1j || ≤ CE|Z̄|h

−1
j }. Then,

P
(
Bern|Z̄|(h, j)

c
)
≤ 2e−Cγ|Z̄|n

∏d
k=1 hk ,

with Cγ|Z̄| := min

(
δC2

E|Z̄|

4‖f‖∞, U‖J‖22‖K‖
2(d−1)
2

;
3δCE|Z̄|

4‖K‖d−1
∞ ‖J‖∞

)
.

Lemma 20 For any h ∈ HRev
hp ∪ HDir

hp and any component j ∈ 1 : d, under Assump-

tions LXand EfX , if

√
d∏

k=1

hk ≤ 1, then

1. we have:

1Bern|Z̄|(hj)∩Ãn
|∆Z,hj | ≤

1

4
λhj

2. for CM∆ :=
4MXCĒ
δCσ

:

1Ãn∩Bern|f̄ |(h)
|∆h| ≤ CM∆σh.

Lemma 21 (Taylor’s theorem) Let g : [0, 1] → R be a function of class Cq. Then we
have:

g(1)− g(0) =

q∑
l=1

g(l)(0)

l!
+

∫ 1

t1=0

∫ t1

t2=0
· · ·
∫ tq−1

tq=0
(g(q)(tq)− g(q)(0))dtqdtq−1 . . . dt1.
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Appendix B. Proof of Inequality (42) in Lemma 18

We recall that the notation · means the multiplication term by term of two vectors, then
we have:

B̄h = Ef̄h(w)− f(w) =

∫
u∈Rd

(
d∏

k=1

K(h−1
k (wk − uk))

hk

)
f(u)du− f(w)

=

∫
z∈Rd

(
d∏

k=1

K(zk)

)
(f(w − h · z)− f(w))dz.

For any z ∈ Rd, let us introduce the notations z0 := w and for k ∈ 1, . . . , d, zk := w −∑k
j=1 hjzjej , where {ej}dj=1 is the canonical basis of Rd. Then, we write:

f(w − h.z)− f(w) =

d∑
k=1

f(zk)− f(zk−1) =
∑
k∈R

f(zk)− f(zk−1),

since for k /∈ R, f(zk) − f(zk−1) = 0. We apply Taylor’s theorem (cf Lemma 21) to the
functions gk : t ∈ [0, 1] 7→ f(zk−1 − thkzkek), k ∈ R:

f(zk)− f(zk−1) = gk(1)− gk(0) =

q∑
l=1

(-zkhk)
l

l!
∂lkf(zk−1) + Jk,

where we recall that q is the largest integer smaller than s and with

Jk :=

∫
0≤tq≤···≤t1≤1

(
g

(q)
k (tq)− g(q)

k (0)
)
dt1:q

= (-hkzk)
q

∫
0≤tq≤···≤t1≤1

(
∂qkf(zk−1 − tqhkzkek)− ∂qkf(zk−1)

)
dt1:q.

We denote Ik :=
∫
z∈Rd

(
d∏

k′=1

K(zk′)

)
Jkdz and for any z ∈ Rd, we denote z−k ∈ Rd−1 the

vector z without its kth variable, then we obtain:

B̄h =
∑
k∈R

∫
z∈Rd

(
d∏

k′=1

K(zk′)

)(
Jk +

q∑
l=1

(-hk)
l

l!
∂lkf(zk−1)zlk

)
dz

=
∑
k∈R

(
Ik +

q∑
l=1

IIk,l

)
,

where

IIk,l : =

∫
z−k∈Rd−1

∏
k′ 6=k

K(zk′)

 (-hk)
l

l!
∂lkf(zk−1)

∫
zk∈R

zlkK(zk)dzkdz−k

=
(-hk)

l

l!

∫
z−k∈Rd−1

∂lkf(zk−1)

∏
k′ 6=k

K(zk′)

 dz−k ×
∫
t∈R

tlK(t)dt = 0,
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since K is of order p ≥ s > q. So,

B̄h =
∑
k∈R

Ik.

Now we control |Jk|:

|Jk| ≤ |hkzk|q
∣∣∣∣∣
∫

0≤tq≤···≤t1≤1

[
∂qkf(zk−1 − tqhkzkek)− ∂qkf(zk−1)

]
dt1:q

∣∣∣∣∣
≤ |hkzk|q

∫
0≤tq≤···≤t1≤1

L|tqhkzk|s−qdt1:q =
L(hk|zk|)s

s(s− 1) . . . (s− q)
.

So:

|Ik| =

∣∣∣∣∣
∫
z∈Rd

(
d∏

k′=1

K(zk′)

)
Jkdz

∣∣∣∣∣ ≤ L‖K‖d−1
1 ‖(·)sK(·)‖1

s(s− 1) . . . (s− q)
hk

s.

Finally, ∣∣B̄h∣∣ ≤ CB̄

∑
k∈R

hsk, (44)

with CB̄ :=
L‖K‖d−1

1 ‖(·)sK(·)‖1
s(s−1)...(s−q) . �

Appendix C. Proof of Inequality (43) in Lemma 19

Let j ∈ R. Denoting J : R→ R the function t 7→ tK ′(t) +K(t), we can write

Z̄h,j =
1

n

n∑
i=1

−J(
wj−Wij

hj
)
∏
k 6=j

K(wk−Wik
hk

)

fX(Xi)hj
∏d
k=1 hk

.

Then, taking the expectation,

E[Z̄hj ] = − 1

hj

∫
Rd
J(zj)

∏
k 6=j

K(zk)

 f(w − h · z)dz.

To simplify the notations, we assume R = 1 : r. Then, by integration by part

E[Z̄h,j ] =

∫
Rd

(zjK(zj))

∏
k 6=j

K(zk)

 ∂jf(w − h · z)dz

=

∫
Rr

(∏
k∈R

K(zk)

)
zj∂jfR(w1:r − (h.z)1:r)dz1:r, (45)

where fR is the restriction of f to the first r components (remember that for any u ∈ Rr and
any v ∈ Rd−r fR(u) := fR(u, v) does not depend on v). Let us denote by Gj,z,h : [0, 1]→ R
the function

t 7→ ∂jfR(w1 − h1z1, . . . , wj − thjzj , . . . , wr − hrzr).
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Then

E[Z̄h,j ] =

∫
Rr

(∏
k∈R

K(zk)

)
zjGj,z,h(1)dz1:r

=

∫
Rr

(∏
k∈R

K(zk)

)
zj{Gj,z,h(1)−Gj,z,h(0)}dz1:r,

since the order p of K satisfies: p ≥ s > q ≥ 1. Next we use the Taylor expansion given by
Lemma 21:

Gj,z,h(1)−Gj,z,h(0) =

q−1∑
l=1

G
(l)
j,z,h(0)

l!
+R′j,z,h,q−1, (46)

where R′j,z,h,q−1 :=
∫ 1
t1=0

∫ t1
t2=0· · ·

∫ tq−2

tq−1=0(G
(q−1)
j,z,h (tq−1)−G(q−1)

j,z,h (0))dtq−1dtq−2 . . . dt1. But

G
(l)
j,z,h(t) = (-hjzj)

l∂l+1
j fR(w1 − h1z1, . . . , wj − thjzj , . . . , wr − hrzr).

Then, the first q − 1 terms in the r.h.s. of (46) vanish since
∫
zl+1
j K(zj)dzj = 0. Now, we

will bound the integral remainder of (46). Using that f belongs to Hd(s, L), for all t ∈ [0, 1],∣∣∣G(q−1)
j,z,h (t)−G(q−1)

j,z,h (0)
∣∣∣ ≤ |hjzj |q−1L|thjzj |s−q,

since w − h · z + (1− t)hjzjej ∈ U . Hence

|R′j,z,h,q−1| ≤
∫ 1

t1=0

∫ t1

t2=0
· · ·
∫ tq−2

tq−1=0

∣∣∣G(q−1)
j,z,h (tq−1)−G(q−1)

j,z,h (0)
∣∣∣ dtq−1dtq−2 . . . dt1

≤ L(hj |zj |)s−1

∫ 1

t1=0

∫ t1

t2=0
· · ·
∫ tq−2

tq−1=0
ts−qq−1dtq−1dtq−2 . . . dt1 =

L(hj |zj |)s−1

(s− 1)!
,

denoting (s− 1)! := (s− q + 1)(s− q + 2) . . . (s− 1). Finally,

|E[Z̄h,j ]| =

∣∣∣∣∣
∫
Rr

(∏
k∈R

K(zk)

)
zjR

′
j,z,h,q−1dz1:r

∣∣∣∣∣ ≤
∫
Rr

(∏
k∈R
|K(zk)|

)
|zj |

L(hj |zj |)s−1

(s− 1)!
dz1:r

≤
Lhs−1

j

(s− 1)!

 ∏
k∈R\{j}

‖K‖1

∫
R
|zj |s|K(zj)|dz1:r ≤ CEZ̄h

s−1
j ,

denoting CEZ̄ :=
(∫

R |z|
s|K(z)|dz

)
‖K‖r−1

1 L/(s− 1)!. �

Appendix D. Proof of Lemma 20

Before establishing the upper bounds, let us control 1Ãn

∥∥∥ fX−f̃X
f̃X

∥∥∥
∞, U1

. First, using As-

sumption LX :

δ := inf
u∈U1

fX(u) > 0,
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remark that: for any u ∈ U1,

1Ãn f̃X(u) ≥ 1Ãn

(
fX(u)− ‖fX − f̃X‖∞,U1

)
≥ 1Ãn

(
δ −MX

(log n)
a
2

√
n

)
by Condition (ii),

≥ 1Ãn
δ

2
(for n large enough).

Therefore:

δ̃X := inf
u∈ U1

f̃X(u) ≥ 1Ãn
δ

2
,

which leads to:

1Ãn

∥∥∥∥∥ fX − f̃X

f̃X

∥∥∥∥∥
∞, U1

≤ 1Ãn

∥∥∥fX − f̃X

∥∥∥
∞, U1

δ̃X

≤ 2MX

δ

(log n)a/2

n1/2
. (47)

Let us now prove the first upper bound.

1. We still denote, for any bandwidth h, any component k and any observation i,

Z̄hik :=
∂

∂hk

(
Kh(w −Wi)

fX(Xi)

)
,

such that Z̄hk = 1
n

n∑
i=1

Z̄hik, with {Z̄hik}ni=1 i.i.d.. Then we can write:

∆Z,hk := Zhk − Z̄hk =
1

n

n∑
i=1

(
fX
f̃X

(Xi)− 1
)
Z̄hik =

1

n

n∑
i=1

(
fX−f̃X

f̃X
(Xi)

)
Z̄hik. (48)

Note that since K is compactly supported, if Xi /∈ U1,

Z̄hik = 0.

Hence:

|∆Z,hk| ≤
∥∥∥ fX−f̃X

f̃X

∥∥∥
∞, U1

× 1

n

n∑
i=1

|Z̄hik|

≤
∥∥∥ fX−f̃X

f̃X

∥∥∥
∞, U1

×

(
E
[∣∣Z̄h1k

∣∣]+
1

n

n∑
i=1

∣∣Z̄hik∣∣− E
[∣∣Z̄hik∣∣]

)
.

Using the above Inequality (47) and the upper bounds 1. and 4. of Lemma 19:

1Ãn∩Bern|Z̄|(h,k)
|∆Z,hk| ≤

(
2MX

δ

(log n)a/2

n1/2

)
× 2CE|Z̄|h

−1
k

≤ 1

4
λh,k :=

Cλ

4

(log n)a/2

n1/2hk

(
d∏

k′=1

hk′

)1/2
,
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if

(
d∏

k′=1

hk′

)1/2

≤ δCλ
16MXCE|Z̄|

. Note that MX is determined in order to satisfy:

δCλ

16MXCE|Z̄|
= 1.

Hence the condition on the bandwidth becomes:(
d∏

k′=1

hk′

)1/2

≤ 1.

2. We still denote, for any bandwidth h and any observation i,

f̄hi(w) :=
Kh(w −Wi)

fX(Xi)
,

such that f̄h(w) = 1
n

n∑
i=1

f̄hi(w), with {f̄hi(w)}ni=1 i.i.d. Then we can write:

∆h := f̂h(w)− f̄h(w) =
1

n

n∑
i=1

(
fX
f̃X

(Xi)− 1
)
f̄hi(w) =

1

n

n∑
i=1

(
fX−f̃X

f̃X
(Xi)

)
f̄hi(w).

(49)
Note that since K is compactly supported, if Xi /∈ U1,

f̄hi(w) = 0.

Hence:

|∆h| ≤
∥∥∥ fX−f̃X

f̃X

∥∥∥
∞, U1

× 1

n

n∑
i=1

|f̄hi(w)|

≤
∥∥∥ fX−f̃X

f̃X

∥∥∥
∞, U1

×

(
E
[∣∣f̄h1(w)

∣∣]+
1

n

n∑
i=1

∣∣f̄hi(w)
∣∣− E

[∣∣f̄hi(w)
∣∣]) .

Using the above Inequality (47) and the upper bounds 1. and 4. of Lemma 18:

1Ãn∩Bern|f̄ |(h)
|∆h| ≤

(
2MX

δ

(log n)a/2

n1/2

)
× 2CĒ

=
4MXCĒ

δCσ
σh

(
d∏

k′=1

hk′

)1/2

≤ CM∆σh.

�
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Appendix E. Proof of Proposition 9

The proof is very similar to the Proposition 1 of (Nguyen, 2018). The main modification is
due to the tighter log exponent in Condition (ii) and the enlarged neighborhood U1 of x.
We introduce the classical kernel density estimator f̃KX : for any u ∈ Rd1 and a bandwidth
hX ∈ R∗+ to be specified later,

f̃KX(u) :=
1

nX .h
d1
X

nX∑
i=1

d1∏
j=1

K

(
uj − X̃ij

hX

)
, (50)

where K : R → R is a kernel which is compactly supported, of class C1 and of order
pX ≥ d1

2(c−1) , where we recall that c > 1 is defined by nX = nc. We first show that there
exists CX > 0 such that for any ξ > 0:

P

(
‖fX − f̃KX‖∞, U1 > CX

(log n)
1+ξ

2

√
n

)
≤ O

(
nd1+1
X exp

(
−(log n)1+ξ

))
. (51)

Then we set
f̃X ≡ f̃KX ∨ n−

1
2 ,

and we shall prove that this estimator satisfies Condition (i) and Condition (ii) for f̃X .
Let us prove Inequality (51). Let us first explicit f̃KX ’s behaviour. Following Lemma 22

gives a pointwise concentration inequality and a control of the bias of f̃KX on U1. We
introduce an enlarged neighborhood of U1:

U ′1 :=
{
u′ = u− hXz : u ∈ U1, z ∈ supp(K)

}
.

Lemma 22 (f̃KX behaviour) The estimator f̃KX satisfies the following results:

1. If there exists qX ∈ N such that fX is CqX on U ′1 and such that K has qX − 1 zero
moments, then there exists a positive constant C′biasX

such that∥∥∥Ef̃KX − fX

∥∥∥
∞, U1

≤ C′biasX
hqXX .

2. For any ξ > 0, any u ∈ U1 and any λ > 0 such that:

4CvarX

(log n)1+ξ

nXh
d1
X

≤ λ2 ≤ 9CvarX
2

‖K‖2d1∞
,

where CvarX := ‖K‖d1
2 ‖fX‖

1
2

∞, U ′1
,

P
(∣∣∣̃fKX(u)− Ef̃KX(u)

∣∣∣ > λ
)
≤ 2 exp

(
−(log n)1+ξ

)
.

This lemma is proved in Appendix F. We define p′X = min(p′, pX), so that: fX is of class
Cp
′
X and the first p′X − 1 moments of K vanish. Therefore, we can apply 1. of Lemma 22:∥∥∥Ef̃KX − fX

∥∥∥
∞, U1

≤ C′biasX
h
p′X
X .
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Therefore: ∥∥∥f̃KX − fX

∥∥∥
∞, U1

≤
∥∥∥f̃KX − Ef̃KX

∥∥∥
∞, U1

+
∥∥∥Ef̃KX − fX

∥∥∥
∞, U1

≤
∥∥∥f̃KX − Ef̃KX

∥∥∥
∞, U1

+ C′biasX
h
p′X
X ,

and we have for any threshold λ:

P
(∥∥∥f̃KX − fX

∥∥∥
∞, U1

≥ λ
)
≤ P

(∥∥∥f̃KX − Ef̃KX

∥∥∥
∞, U1

≥ λ− C′biasX
h
p′X
X

)
. (52)

We have then reduced the problem to a concentration inequality of f̃KX in sup norm. In
order to move from a supremum on U1 to a maximum on a finite set of elements of U1, let
us construct an ε-net {u(l)}l of U1, in the meaning that for any u ∈ U1, there exists l such
that ‖u− u(l)‖∞ := max

k=1:d1

|uk − u(l)k| ≤ ε. We denote A > 0 such that:

supp(K) ∪ supp(K) ⊂
[
−A

2 ,
A
2

]
.

Set N(ε) is the smallest integer such that 2εN(ε) ≥ A, and for l ∈ (1 : N(ε))d1 , u(l) such
that its j-th component is equal to:

u(l)j := xj −
A

2
+ (2lj − 1)ε.

Then {u(l)}l∈(1:N(ε))d1 is an ε-net of U1. Therefore in order to obtain Inequality (51), we

only need to obtain the concentration inequality for each point of {u(l) : l ∈ (1 : N(ε))d1}
and to control the difference of the function f̃KX − Ef̃KX evaluated at the point u and at the
nearest point of u in the ε-net. More formally, we have to control the following supremum

sup
u∈ U1

min
l∈(1:N(ε))d1

∣∣∣̃fKX(u)− Ef̃KX(u)− f̃KX(u(l)) + Ef̃KX(u(l))
∣∣∣ .

For this purpose, we obtain (from Taylor’s Inequality): for any u, v ∈ Rd1 ,∣∣∣∣∣
d1∏
k=1

K(uk)−
d1∏
k=1

K(vk)

∣∣∣∣∣ ≤ d1‖K′‖∞‖K‖d1−1
∞ ‖u− v‖∞.

Therefore, for any u, v ∈ U1:∣∣∣̃fKX(u)− f̃KX(v)
∣∣∣ ≤ 1

nX .h
d1
X

nX∑
i=1

∣∣∣∣∣
d1∏
k=1

K(uk−X̃ikhX
)−

d1∏
k=1

K(vk−X̃ikhX
)

∣∣∣∣∣
≤ d1‖K′‖∞‖K‖d1−1

∞
‖u− v‖∞
hd1+1
X

.

Since {u(l) : l ∈ (1 : N(ε))d1} is an ε-net of U1:

sup
u∈ U1

min
l∈(1:N(ε))d1

∣∣∣̃fKX(u)− f̃KX(u(l))
∣∣∣ ≤ d1‖K′‖∞‖K‖d1−1

∞
ε

hd1+1
X

,
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and also:

sup
u∈ U1

min
l∈(1:N(ε))d1

∣∣∣Ef̃KX(u)− Ef̃KX(u(l))
∣∣∣ ≤ d1‖K′‖∞‖K‖d1−1

∞
ε

hd1+1
X

.

Therefore:

sup
u∈ U1

min
l∈(1:N(ε))d1

∣∣∣̃fKX(u)− Ef̃KX(u)− f̃KX(u(l)) + Ef̃KX(u(l))
∣∣∣ ≤ 2d1‖K′‖∞‖K‖d1−1

∞
ε

hd1+1
X

.

We denote Cdiff := 2d1‖K′‖∞‖K‖d1−1
∞ . We then obtain the following inequality:∥∥∥f̃KX − Ef̃KX

∥∥∥
∞, U1

≤ max
l∈(1:N(ε))d1

∣∣∣̃fKX(u(l))− Ef̃KX(u(l))
∣∣∣

+ sup
u∈ U1

min
l∈(1:N(ε))d1

∣∣∣̃fKX(u)− Ef̃KX(u)− f̃KX(u(l)) + Ef̃KX(u(l))
∣∣∣

≤ max
l∈(1:N(ε))d1

∣∣∣̃fKX(u(l))− Ef̃KX(u(l))
∣∣∣+ Cdiff

ε

hd1+1
X

.

Then Inequality (52) becomes: for any threshold λ,

P
(∥∥∥f̃KX − fX

∥∥∥
∞, U1

≥ λ
)
≤ P

(∥∥∥f̃KX − Ef̃KX

∥∥∥
∞, U1

≥ λ− C′biasX
h
p′X
X

)
≤ P

(
max

l∈(1:N(ε))d1

∣∣∣̃fKX(u(l))− Ef̃KX(u(l))
∣∣∣ ≥ λ− C′biasX

h
p′X
X − Cdiff

ε

hd1+1
X

)

≤ N(ε)d1 max
l∈(1:N(ε))d1

P

(∣∣∣̃fKX(u(l))− Ef̃KX(u(l))
∣∣∣ ≥ λ− C′biasX

h
p′X
X − Cdiff

ε

hd1+1
X

)
. (53)

It then remains to apply 2. of Lemma 22 for each u(l), l ∈ (1 : N(ε))d1 . We set the following
settings:

• hX := n
− c−1
c.d1

X ;

• ε := h
1+

d1
2

X n
− 1

2
X ;

• λ := 2λX , where λX is defined by:

λX := 2
√

CvarX (log n)
1+ξ

2 h
− d1

2
X n

− 1
2

X = 2
√

CvarX (log n)
1+ξ

2 n
− 1

2c
X ,

where we recall that CvarX := ‖K‖d1
2 ‖fX‖

1
2

∞, U ′1
.

In particular, since we take pX ≥ d1
2(c−1) and we assume p′ ≥ d1

2(c−1) , then p′X = min(p′, pX) ≥
d1

2(c−1) . Hence we obtain for n large enough:

C′biasX
h
p′X
X = C′biasX

n
− p
′
X (c−1)

c.d1
X

≤ C′biasX
n
− 1

2c
X

≤ 1

2
λX =

√
CvarX (log n)

1+ξ
2 n
− 1

2c
X
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and also, since c > 1:

Cdiff
ε

hd1+1
X

= Cdiffh
− d1

2
X n

− 1
2

X = Cdiff n
− 1

2c
X

≤ 1

2
λX =

√
CvarX (log n)

1+ξ
2 n
− 1

2c
X .

Hence, we have

λ− C′biasX
h
p′X
X − Cdiff

ε

hd1+1
X

≥ λX ,

and Inequality (53) becomes:

P
(∥∥∥f̃KX − fX

∥∥∥
∞, U1

≥ λ
)
≤ N(ε)d1 max

l∈(1:N(ε))d1
P
(∣∣∣̃fKX(u(l))− Ef̃KX(u(l))

∣∣∣ ≥ λX) . (54)

We apply 2. of Lemma 22: we verify (since nX = nc)

4CvarX

(log n)1+ξ

nXh
d1
X

= λ2
X = 4CvarX (log n)1+ξn−1

≤ 9CvarX
2

‖K‖2d1∞
, (for n large enough),

then we obtain

P
(∣∣∣̃fKX(u(l))− Ef̃KX(u(l))

∣∣∣ > λX

)
≤ 2 exp

(
−(log n)1+ξ

)
.

Thus Inequality (54) becomes:

P
(∥∥∥f̃KX − fX

∥∥∥
∞, U1

≥ λ
)
≤ 2N(ε)d1 exp

(
−(log n)1+ξ

)
. (55)

Let us control 2N(ε)d1 :

2N(ε)d1 = 2

⌈
A

2ε

⌉d1

= 2

 A

2h
1+

d1
2

X n
− 1

2
X


d1

= o
(
nd1+1
X

)
Therefore, we have obtained the desired concentration inequality (51). Now we consider
f̃X ≡ f̃KX ∨ n−1/2, therefore f̃X satisfies Condition (i). Let us show it also satisfies Condition
(ii), for n large enough. We first show:{∥∥∥f̃KX − fX

∥∥∥
∞, U1

< λ

}
⇒

{∥∥∥f̃X − fX

∥∥∥
∞, U1

< λ

}
. (56)

Assume that for any u ∈ U1,
∣∣∣̃fKX(u)− fX(u)

∣∣∣ < λ. Let us fix u ∈ U1. Three cases occurs:

(a) When f̃KX(u) ≥ n−
1
2 , then f̃X(u) := f̃KX(u), and obviously:∣∣∣̃fX(u)− fX(u)

∣∣∣ < λ.
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(b) When f̃KX(u) < n−
1
2 and fX(u) ≥ n−

1
2 , then since f̃X(u) = n−

1
2 > f̃KX(u),∣∣∣̃fX(u)− fX(u)

∣∣∣ ≤ ∣∣∣̃fKX(u)− fX(u)
∣∣∣ < λ.

(c) When f̃KX(u) < n−
1
2 and fX(u) < n−

1
2 , then f̃X(u) = n−

1
2 , so for n large enough:∣∣∣̃fX(u)− fX(u)

∣∣∣ ≤ n− 1
2 < λ.

Therefore these three cases show Implication (56), and thus, from Equation (55), we obtain:

P
(∥∥∥f̃X − fX

∥∥∥
∞, U1

≥ λ
)
≤ P

(∥∥∥f̃KX − fX

∥∥∥
∞, U1

≥ λ
)
≤ 2N(ε)d1 exp

(
−(log n)1+ξ

)
.

Now, to obtain Condition (ii), for ξ such that 1 + a−1
2 < 1 + ξ < a,

λ = 4
√

CvarX (log n)
1+ξ

2 n−
1
2 ≤MX(log n)

a
2n−

1
2 (for n large enough). (57)

Therefore:

P
(∥∥∥f̃X − fX

∥∥∥
∞, U1

≥MX(log n)
a
2n−

1
2

)
≤ P

(∥∥∥f̃X − fX

∥∥∥
∞, U1

≥ λ
)

≤ 2N(ε)d1 exp
(
−(log n)1+ξ

)
≤ exp

(
−(log n)1+a−1

2

)
,

that is Condition (ii). �

Appendix F. Proof of Lemma 22

The result 1. of Lemma 22 is proved in Lemma 4 of (Nguyen, 2018). To prove 2. of
Lemma 22, let us fix ξ > 0. Then, we simply apply Bernstein’s Inequality (see Lemma 10
in Nguyen, 2018). We define for any u ∈ U1 and for i ∈ 1 : n

f̃KX,i(u) :=
1

hd1
X

d1∏
j=1

K

(
uj − X̃ij

hX

)
.

Observe that the f̃KX,i(u)’s are i.i.d. Then we pick up the following bounds from (Nguyen,
2018, p. 23): ∣∣∣̃fKX,1(u)

∣∣∣ ≤ MhX := ‖K‖d1
∞h
−d1
X .

Var
(

f̃KX,1(u)
)
≤ vhX := CvarXh

−d1
X ,

(we recall CvarX := ‖K‖2d1
2 ‖fX‖∞, U ′1). Therefore: for any λ > 0,

P
(∣∣∣̃fKX(u)− Ef̃KX(u)

∣∣∣ > λ
)
≤ 2 exp

(
−min

(
nXλ

2

4vhX
,

3nXλ

4MhX

))
.
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Let us show that when

4CvarX

(log n)1+ξ

nXh
d1
X

≤ λ2 ≤ 9CvarX
2

‖K‖2d1∞
,

then, we have

(log n)1+ξ ≤ nXλ
2

4vhX
≤ 3nXλ

4MhX

.

Indeed,

nXλ
2

4vhX
≤ 3nXλ

4MhX

⇔ λ ≤ 3vhX
MhX

=
3CvarX

‖K‖d1∞

⇔ λ2 ≤
9C2

varX

‖K‖2d1∞

and

(log n)1+ξ ≤ nXλ
2

4vhX
⇔ 4CvarX (log n)1+ξ

nXh
d1
X

≤ λ2.

Therefore when

4CvarX

(log n)1+ξ

nXh
d1
X

≤ λ2 ≤ 9CvarX
2

‖K‖2d1∞
,

P
(∣∣∣̃fKX(u)− Ef̃KX(u)

∣∣∣ > λ
)
≤ 2 exp

(
−min

(
nXλ

2

4vhX
,

3nXλ

4MhX

))
= 2 exp

(
−nXλ

2

4vhX

)
≤ 2 exp

(
−(log n)1+ξ

)
.

�

Appendix G. Minimax Rates Under Relaxation of Assumption C

Subsequent Theorem 23 is a variation of Theorem 12. We relax the assumption C of bias
convexity by an assumption of bias monotony :

Assumption M
For all j ∈ R, for all h and h′ ∈ (R∗+)d such that h � h′, hj |E[Z̄h,j ]| ≤ h′j |E[Z̄h′,j ]|, where

Z̄h,j is defined as Zh,j in (8) but with true fX replacing f̃X .

The previous assumption consists in replacing the condition |E[Z̄h,j ]| ≤ |E[Z̄h′,j ]| of
Assumption C by the weaker condition hj |E[Z̄h,j ]| ≤ h′j |E[Z̄h′,j ]|, which allows more room
in the monotony assumption, in particular when components of h are much smaller than
components of h′. Notice that hjE[Z̄h,j ] is proportional to the difference of bias in the
direction j (cf Equation 59). The new result is as follows:

Theorem 23 For any r ∈ 0 : d, 1 < s ≤ p and L > 0, if f has only r relevant components
and belongs to Hd(s, L), then under Assumptions LX , EfXand M, the pointwise risk of

57



Nguyen, Lacour, Rivoirard

the RevDir CDRodeo estimator f̂ĥ(w) is bounded as follows: for any l ≥ 1, for n large
enough,

E
[∣∣∣f̂ĥ(w)− f(w)

∣∣∣l]1/l

≤ C

(
(log n)(2+a)

n

) s
2s+r

(58)

where C only depends on d, r,K, β, δ, L, s, ‖f‖∞, U .

Remark 24 Compared to the logarithmic term (log n)
sa

2s+r in the original result (Theo-

rem 12), the price to pay is the extra factor (log n)
2s

2s+r .

Proof In the following, the notations of Section 5.1 and 5.5.1 are re-used.

Analyzing the proof of Theorem 12, observe that Assumption C is only used to obtain
the bound (21) of the bias term

∣∣B̄h∣∣ on {ĥ = h} ∩ Ehp for all h ∈ Hhp. So, to obtain
Theorem 23, we only have to bound

∣∣B̄h∣∣ with the relaxed assumption, then adjust the new
bias-variance tradeoff. In the sequel, we just specify the modifications from the original
proof.

Following the proof of the bound (21) (see Section 5.5.1), the first change occurs in
Subcases (C.a) and (C.b).

Subcase (C.a): Since h[j0,u] 4 h(tj), we apply Assumption M instead of using Assumption C:

h
[j0,u]
j

∣∣∣E [Z̄h[j0,u],j

]∣∣∣ ≤ h(tj)
j

∣∣∣E [Z̄
h(tj),j

]∣∣∣ .
Subcase (C.b): Since h{j0,u} 4 h(tj) and j ∈ R, we apply Assumption M:

h
[j0,u]
j

∣∣∣E [Z̄h[j0,u],j

]∣∣∣ = h
{j0,u}
j

∣∣∣E [Z̄h{j0,u},j]∣∣∣ ≤ h(tj)
j

∣∣∣E [Z̄
h(tj),j

]∣∣∣ .
Then, in the right hand side of (37), we artificially factorize (and divide) by h

[j0,u]
j , then

apply the previous inequality to obtain instead of Inequality (38):

∣∣∣B̄
h

(int,tj0
) − B̄

h
(int,tj0−1)

∣∣∣ ≤ ∑
j∈R
tj≤tj0

∫ 1

u=0
h

[j0,u]
j

∣∣∣E [Z̄h[j0,u],j

]∣∣∣× (h(int,tj0 )

j − h(int,tj0−1)

j

) du

h
[j0,u]
j

≤
∑
j∈R
tj≤tj0

h
(tj)
j

∣∣∣E [Z̄
h(tj),j

]∣∣∣× (h(int,tj0 )

j − h(int,tj0−1)

j

)∫ 1

u=0

du

h
[j0,u]
j

=
∑
j∈R
tj≤tj0

h
(tj)
j

∣∣∣E [Z̄
h(tj),j

]∣∣∣× (log
(
h

(int,tj0 )

j

)
− log

(
h

(int,tj0−1)

j

))
.

(59)
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Then remember we have to replace h(int,tjA−1) by h(int,t(A,CA)) given our slight abuse of
notation, so:

r∑
j0=jA

∣∣∣B̄
h

(int,tj0
) − B̄

h
(int,tj0−1)

∣∣∣ ≤ r∑
j0=jA

∑
j∈R
tj≤tj0

h
(tj)
j

∣∣∣E [Z̄
h(tj),j

]∣∣∣× (log
(
h

(int,tj0 )

j

)
− log

(
h

(int,tj0−1)

j

))

≤
r∑

j=jA

h
(tj)
j

∣∣∣E [Z̄
h(tj),j

]∣∣∣ j∑
j0=jA

(
log
(
h

(int,tj0 )

j

)
− log

(
h

(int,tj0−1)

j

))
≤

r∑
j=jA

h
(tj)
j

∣∣∣E [Z̄
h(tj),j

]∣∣∣ (log
(
h

(tj)
j

)
− log

(
h

(int,t(A,CA))
j

))
≤

r∑
j=jA

h
(tj)
j

∣∣∣E [Z̄
h(tj),j

]∣∣∣ (− log h
(int,t(A,CA))
j

)
.

From line 2 to line 3, the sum is telescoping and notice that h
(int,tj)
j = h

(tj)
j . For the last

line, note that:

CA(log n)An−
1

2s+r ≤ h(int,t(A,CA))
j ≤ h(tj)

j ≤ 1.

Indeed, for the first and second inequalities, notice that tj < t(A,CA) (Case C); for the last
inequality, the procedure only explores bandwidth components no larger than 1. So, for n
large enough:

0 ≤ log
(
h

(tj)
j

)
− log

(
h

(int,t(A,CA))
j

)
≤ 0− log

(
CA(log n)An−

1
2s+r

)
≤ log n.

Therefore, the control (39) of
∣∣B̄h∣∣ becomes:

∣∣B̄h∣∣ ≤ rCB̄CA
s (log n)As n−

s
2s+r + (log n)

r∑
j=jA

∣∣∣E [Z̄
h(tj),j

]∣∣∣h(tj)
j .

Using final arguments of Section 5.5.1, we obtain

1Ehp∩{ĥ=h}
∣∣B̄h∣∣ ≤ rCB̄CA

s (log n)As n−
s

2s+r

+ r log n×max

(
7Cλ

4β
d−r

2 CA
r
2

(log n)
a−Ar

2

n
s

2s+r

, 7
4

(
(log n)a

n

) p
2p+1

)
.

To obtain the final result, we now follow the proof of Theorem 12 until Equation (25), then
we apply our new bound of |B̄h|, which adds a factor log n in the last term. Thus, we have
to modify the optimization of A: the optimal value is now A = 2+a

2s+r . This leads to the new

logarithmic exponent s(2+a)
2s+r .
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Appendix H. Numerical Results

In this section, we extend the numerical results of Section 4 by providing supplementary
graphs. In Section H.1, we provide an illustration of the curse of dimensionality without
sparsity structure. Section H.2 presents an example with sparsity in the response variables.
In Section H.3, we complete the calibration of the parameter a for different sample sizes.

H.1. Curse of Dimensionality for Example (a)

The following figure illustrates the difficulties to face with the curse of dimensionality when
data have no sparsity structure, as it is the case in Example (a). Figure 10 provides the
boxplots of 50 simulated samples of size n = 100 000 with varying dimension d1 from 1
to 11.

Without sparsity our method struggles providing good estimates as soon as the dimen-
sion is larger than 5. To the best of our knowledge, all classical kernel procedures cope with
same difficulties.

3 4 5 6 7 8 9 10 11 12 13

0

1

2

3

4

5
True f(w)

c
o

n
d

. 
d

e
n

s
ity

d

Estimation with increasing dimension
RevDir, Model 3,n=1e+05, B=50, y=(0,0.4), x=0

Figure 10: Estimation with increasing dimension. Boxplots of the estimates f̂ĥ(w) in func-
tion of d, given 50 samples of size n = 100 000 for Example (a). In greenish
shades: the estimates of Example (a). The purple dashed horizontal segment is
the true value f(w) (evaluated for x = 0 and y = (0, 0.5)).
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H.2. Sparsity in the Response Variables

We provide here an example with sparsity in the response variables. We consider a modifi-
cation of Example (b), namely we consider

Xi1
iid∼ N (0, 1)

Yi1|Xi1
iid∼ N (3X3

i1, 0.5
2),

to which we add two independent uniform response variables:

Yi2
iid∼ U[−2;2]

Yi3
iid∼ U[−2;2].

The conditional density of Yi1 given Xi1 = x

y1 7→ fY1|X=x(x, y1) (60)

is the Gaussian density with mean 3x3 and variance 0.25. Adding the uniform variables
transforms the conditional density as follows:

fY1:2|X(x, y1, y2) =
1[−2,2](y2)

4
× fY1|X=x(x, y1) (61)

fY1:3|X(x, y1, y2, y3) =
1[−2,2](y2)1[−2,2](y3)

16
× fY1|X=x(x, y1). (62)

In this example, the second and third components of the response variable are irrelevant
(except on the boundary of the interval [−2; 2]). For the estimation, we decompose the
above conditional densities as in Equation (15) of Section 4.3.1 and for the same purposes.
Figure 11 provides direction-by-direction reconstructions of CDRodeo estimates around
the point w = (0, 0, 0, 0). For the sake of simple comparison in the influence of the sparsity
in Figure 11, the conditional density estimators are renormalized by 4 when d2 = 2 and
16 when d2 = 3. In the same manner, the true conditional density is renormalized as well.
Sparsity of the response variables is well detected by our procedure with the selection of large
bandwidth for directions y2 and y3. This detection ensures that the curse of dimensionality
deteriorates only slightly the numerical results and gives satisfying performances.

H.3. Graphs for the Tuning of a.

This section contains the supplementary graphs of the calibration of the parameter a. Like
in Figure 3, we display for Examples (a), (b) and (c), the absolute error of our estimates
(abbreviated AE) in function of a for the extra sample sizes n ∈ {10 000; 50 000; 200 000}.
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Figure 11: Estimation with sparsity in the response variables. The black straight line cor-
responds to the true renormalized conditional density varying along 4 directions:
along x1 top left, along y1 top right, y2 bottom left, along y3 bottom right. In
red: the pointwise estimates of fY1|X(x, y1), in blue: those of fY1:2|X(x, y1, y2)
(multiplied by 4), in green: those of fY1:3|X(x, y1, y2) (multiplied by 16).
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f(wk)) given B = 3 samples (differentiated by line type) at fixed dimension
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Figure 13: Tuning of a for Example (a) with n = 50 000. Same description as for Figure 12.
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Figure 14: Tuning of a for Example (a) with n = 100 000. Same description as for Figure 12.
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Figure 15: Tuning of a for Example (a) with n = 200 000. Same description as for Figure 12.
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Figure 16: Tuning of a for Example (b) with n = 10 000. Same description as for Figure 12.
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Figure 17: Tuning of a for Example (b) with n = 50 000. Same description as for Figure 12.
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Figure 18: Tuning of a for Example (b) with n = 100 000. Same description as for Figure 12.
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Figure 19: Tuning of a for Example (b) with n = 200 000. Same description as for Figure 12.
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Figure 20: Tuning of a for Example (c) with n = 10 000. Same description as for Figure 12.
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Figure 21: Tuning of a for Example (c) with n = 50 000. Same description as for Figure 12.
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Figure 22: Tuning of a for Example (c) with n = 100 000. Same description as for Figure 12.
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Figure 23: Tuning of a for Example (c) with n = 200 000. Same description as for Figure 12.
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