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ABSTRACT11

Is the lattice Boltzmann method suitable to investigate numerically12

high-Reynolds-number magneto-hydrodynamic (MHD) flows? It is shown13

that a standard approach based on the Bhatnagar-Gross-Krook (BGK) collision14

operator rapidly yields unstable simulations as the Reynolds number increases. In15

order to circumvent this limitation, it is here suggested to address the collision16

procedure in the space of central moments for the fluid dynamics. Therefore, an17

hybrid LB scheme is introduced, which couples a central-moment scheme for the18

velocity with a BGK scheme for the space-and-time evolution of the magnetic field.19

This method outperforms the standard approach in terms of stability, allowing us20

to simulate high-Reynolds-number MHD flows with non-unitary Prandtl number21

while maintaining accuracy and physical consistency.22
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The use of the lattice Boltzmann (LB) method has become ubiquitous in many25

areas of computational fluid dynamics, and now represents a consolidate alternative26

to classical approaches based on the discretization of the incompressible Navier-Stokes27

equations [1–8]. In short, the flow is inferred from the motion of distributions28

of fictitious particles streaming and colliding along the links of a regular lattice.29

The LB method has practical advantages with respect to a continuum-based30

formulation. In particular, LB dynamics is governed by a first-order partial differential31

equation in which non-localities and non-linearities are well separated [5]. Conversely,32

the integration of the Navier-Stokes equations requires the evaluation of first33

and second-order derivatives, and possibly the application of a non-local Poisson34

solver to obtain the pressure field. Moreover, the computational complexity of the35

continuum-based approach becomes rapidly prominent and evident when the fluid36

dynamics encompasses additional physical features such as magnetic effects. In that37

case, the particulate nature of the LB approach offers some tangible advantages, as38

will be demonstrated in this article.39

The incompressible Navier-Stokes equations for magnetohydrodynamics (MHD)40

drive the evolution of an electrically conductive fluid of kinematic viscosity ν and41
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magnetic diffusivity η in the form42

∂tu + (u · ∇)u = −∇p
ρ

+ ν∆u +
j × b

ρ
43

∂tb = ∇× (u× b) + η∆b44

∇ · u = 045

∇ · b = 046

where ρ and u are the mass density and velocity of the fluid, respectively. The vector47

field b denotes the magnetic field and j = ∇ × b is the electric current. The fluid48

pressure p stems from the incompressibility constraint ∇ · u = 0. In comparison with49

the non-magnetic case, here it is mandatory to integrate a coupled set of non-linear50

partial differential equations for the velocity and magnetic fields, thus leading to heavy51

computations.52

Our motivation is to explore the possibility to use the LB method to investigate53

numerically high-Reynolds-number MHD flows with non-unitary Prandtl number. The54

earliest attempt to build a lattice gas automaton for MHD refers to [9] by Montgomery55

and Doolen. It is based on a magnetic vector potential formulation. The inclusion of the56

Lorentz force relies on the computation of a Laplacian operator with the consequent57

implementation of an additional non-local finite-difference procedure. Later, a purely58

local lattice gas model has been introduced by Chen et al. [10]. However, this modeling59

requires to solve a 36-state MHD Cellular Automaton system at each node of a60

two-dimensional hexagonal lattice, hence leading to a dramatic computational cost.61

Martinez et al. [11] have managed to reduce the number of states to twelve. In addition,62

an hybrid scheme coupling the LB approach with finite-difference discretization has63

been proposed by Succi et al. [12] for two-dimensional MHD, allowing for simulations64

with a magnetic Prandtl number, defined as the ratio between the kinematic viscosity65

and the magnetic diffusivity, fixed at unity.66

More recently, Dellar has demonstrated that the solution of the aforementioned set67

of MHD equations may be recovered by solving two coupled LB schemes based on68

the BGK collision operator [13]. The former involves densities of fictitious particles69

carrying amount of mass, namely fi in each direction, and accounting for the evolution70

of the mass density ρ and momentum ρu of the fluid. The latter involves particles71

carrying amount of magnetic field, namely gi in each direction, and addressing the72

dynamics of the magnetic field b. This algorithm overcomes the major limitations of73

the previous efforts. It is purely local, the magnetic Prandtl number Prm is not limited74

at unity and the computational cost is very affordable. This scheme will be considered75

below and used as a baseline for the development of an improved scheme dedicated to76

high-Reynolds-number MHD flows.77

Following [13], the D2Q9 and D2Q5 lattices are adopted for fi and gi, respectively.78

Here, two-dimensional modeling is considered for the sake of clarity, the extension to79

three dimensions being straightforward and outlined at the end of the article. The80

lattice directions are denoted by ci = [|cix〉, |ciy〉] with81

|cix〉 = [0, 1, 0, −1, 0, 1, −1, −1, 1]> ,82

|ciy〉 = [0, 0, 1, 0, −1, 1, 1, −1, −1]> ,83

where |•〉 denotes a column vector and the superscript > indicates the transpose of a84

vector. At position x and time t, the LB scheme advances the set of distributions in85
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a two-step procedure. Namely, a streaming step for fluid particles86

fi(x + ci∆t, t+ ∆t) = f coll
i (x, t)

is consecutive to a collision step

f coll
i (x, t) = fi(x, t)− ων [fi(x, t)− feqi (x, t)] .

The so-called BGK approximation refers to this simple form of the collision operator,
which expresses as the relaxation with the same rate of all distributions towards
absolute equilibrium. Similarly, for the magnetic particles

gi(x + ci∆t, t+ ∆t) = gcoll
i (x, t)

with

gcoll
i (x, t) = gi(x, t) + ωη [geqi (x, t)− gi(x, t)] .

Here and henceforth, the index i spans the directions i = 0 · · · 8 (D2Q9 lattice) and
i = 0 · · · 4 (D2Q5 lattice) for the distributions fi and gi, respectively. The relaxation
frequencies ων and ωη are related to the kinematic viscosity and magnetic diffusivity
of the fluid by

ν =

(
1

ων
− 1

2

)
c2
s

and

η =

(
1

ωη
− 1

2

)
θ2

with c2
s = θ2 = 1

3 in lattice units. In this framework, the variable cs (and θ) refers to87

the characteristic speed of the particles and may be associated to some extent with a88

lattice sound speed. Since, nearly-incompressible flows are concerned, the related Mach89

number Ma = |u|/cs � 1. Let us recall that in the lattice Boltzmann method, the90

incompressible limit ρ = ρ0 is approached with δρ/ρ0 = O(Ma2) [14]. The equilibrium91

distributions are given by92

feqi = wiρ

[
1 +

ci · u
c2
s

+
(ci · u)2

2c4
s

− u · u
2c2
s

]
93

+
wi
2c4
s

[
1

2
|ci|2|b|2−(ci · b)2

]
(1)94

geqiβ = Wi

[
bβ +

cαi
θ2

(uαbβ − uβbα)
]

(2)95

where α and β span the Cartesian coordinates. The weighting factors are w0 = 4/9,
w1...4 = 1/9, w5...8 = 1/36 for the fluid dynamics, whereas W0 = 1/3 and W1...4 = 1/6
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for the magnetic field. Finally, the macroscopic fields are inferred locally by

ρ =

8∑
i=0

fi, ρu =

8∑
i=0

fici, b =

4∑
i=0

gi. (3)

Paul Dellar has demonstrated that this LB scheme was compliant with the MHD96

equations in the continuous limit through a Chapman-Enskog expansion [13].97

This original scheme is now tested against the Orszag-Tang vortex problem [13,15].98

This test case has become a popular benchmark representative of many features of99

turbulent MHD flows, such as magnetic reconnection, formation of jets and dynamic100

alignment. The deterministic initial conditions allows for a direct comparison between101

several numerical modeling. Precisely, the flow of an electrically conductive fluid102

develops in a square periodic box of size L = 2π m with the initial fields103

u(x, 0) = u0 [− sin y, sinx] (4)104

b(x, 0) = b0 [− sin y, sin 2x] (5)105

with the reference magnitudes u0 = b0 = 2 in physical units. The initial density is106

uniform with ρ(x, 0) = 1 kg/m3. In our simulations, each dimension is discretized into107

N = 1024 grid points. The grid resolution is therefore ∆x = L/N ≈ 6 × 10−3 m and108

the time step is fixed at ∆t = 5 × 10−5 s. In lattice units, this yields the reference109

velocity u0 = 2×∆t/∆x ≈ 1.6× 10−2 and the Mach number Ma ≡ u0/cs ≈ 3× 10−2.110

The Reynolds number is defined (in lattice units) as Re = u0N/ν. Moreover, the111

magnetic Prandtl number is set to Prm ≡ ν/η = 1. Five runs have been performed by112

varying Re between 500 and 5000. In Fig. 1, the time evolution of the maxima of the113

electric current jmax(t) = maxx|j(x, t)| is displayed. Notice that the current has only114

one non-zero component j. Furthermore, the LB method allows us to compute the115

current locally and directly from the distributions, thus avoiding the use of additional116

time-consuming finite-difference operators [16].

10

100

0.1 1

j m
a
x

time

Figure 1. Orszag-Tang vortex problem. LB simulations based on the BGK collision operator [13]. Time

evolution of the current maxima at Re = 500 (continuous line), 1000 (dashed), 2500 (dotted) and 5000

(dashed-dotted). At the highest Re, an instability occurs at t ≈ 0.52 s. For the same Re, a finer grid consisting
of 15362 grid points (red dashed-dotted) allows us to extend the life time of the simulation. However, a blow-up

eventually occurs at t ≈ 0.99 s.

117
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The three lowest values of Re lead to stable simulations (see Fig. 1). As expected, the118

maxima grow exponentially in the earliest stage [17,18]. However, a sudden blow-up119

is experienced at t ≈ 0.52 s at Re = 5000. This observation is consistent with previous120

results in [19], where marked difficulties were found to carry numerical experiments121

beyond t = 0.6 s. A refinement of the grid with 1536 grid points per direction partially122

alleviates the onset of instability, which is now delayed at time t ≈ 0.99 s. Let us123

mention that the time step has also been reduced in order to keep the Mach number124

constant. In conclusion, it is found that within the BGK approximation large-time125

behavior can be investigated only by adopting very fine grid resolutions, thus leading126

to very expensive computations. This constraint becomes prohibitive when simulating127

high-Reynolds-number MHD flows.128

The poor performance of the LB scheme under the BGK approximation appears129

more evident in Fig. 2. The maximal attainable Reynolds number for the Orszag-Tang130

problem is reported as a function of the magnetic Prandtl number Prm. It is found131

that this approach is unsuitable to simulate high-Reynolds and low-Prandtl numbers132

phenomena, in particular for liquid metals with Prm ∼ 10−5.

0
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10−6 10−4 10−2 1

R
e

(×
10
−

3
)

Prm

Figure 2. Orszag-Tang vortex problem. LB simulations based on the BGK collision operator [13]. Maximal

attainable Reynolds number as a function of the magnetic Prandtl number.

133

The previous observed limitations are related to the very nature of the scheme.
Despite its simplicity, effectiveness and large popularity, the BGK collision operator
is known to suffer from numerical instabilities when large velocity gradients arise in
the flow. Two main factors contribute to this deficiency: The uncontrolled growth
of ghost (beyond hydrodynamics) modes [20,21] and the lack of sufficient Galilean
invariance [22–28]. By decomposing the collision kernel in a space of raw moments,
the multiple-relaxation-time model has proved to increase the stability by properly
relaxing high-order moments [29]. However, the lack of Galilean invariance still persists
[30]. A possible alleviation of this latter may be addressed by the entropic LBM [31],
which was also adopted to investigate MHD turbulence [32]. More recently, a different
idea has been proposed by Geier et al. [33] suggesting to relax the moments in a
reference frame that moves with the fluid. This can be simply achieved by shifting the
lattice velocities by the local fluid velocity, that is

|c̄ix〉 = |cix − ux〉 and |c̄iy〉 = |ciy − uy〉. (6)

In this case, the involved quantities are called central moments (CMs). This method134
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is also referred to as “cascaded” LB scheme, since the post-collision state of any135

central moment depends only on moments of lower order thus generating a pyramidal136

hierarchical structure [34–38]. The numerical implementation of the cascaded LB137

scheme is known to be cumbersome. Nevertheless, some recent attempts have138

demonstrated that a simplified version of the CMs-based scheme (in a non-orthogonal139

basis) may be derived, entailing easier implementations [39–41]. This approach is here140

applied in the context of high-Reynolds-number MHD flows for the fluid particles.141

By introducing the basis

T̄ = [t̄0, . . . , t̄i, . . . , t̄8] , (7)

with142

t̄0 = [1, 1, 1, 1, 1, 1, 1, 1, 1]>,143

t̄1 = |c̄ix〉, t̄2 = |c̄iy〉,144

t̄3 = |c̄2
ix + c̄2

iy〉, t̄4 = |c̄2
ix − c̄2

iy〉,145

t̄5 = |c̄ixc̄iy〉, t̄6 = |c̄2
ixc̄iy〉,146

t̄7 = |c̄ixc̄2
iy〉, t̄8 = |c̄2

ixc̄
2
iy〉, (8)147

a suitable set of central moments is represented by

|ki〉 = [k0, . . . , ki, . . . , k8]> , (9)

with

|ki〉 = T̄>|fi〉 (10)

and |fi〉 = [f0, f1, f2, f3, f4, f5, f6, f7, f8]>. Each moment relaxes to an equilibrium148

state, keqi , defined by replacing fi with feqi in Eq. (10). The resulting expressions of149

the equilibrium CMs are150

keq0 = ρ,151

keq1 = 0,152

keq2 = 0,153

keq3 =
2

3
ρ,154

keq4 = b2y − b2x,155

keq5 = −bxby,156

keq6 = −ρu2
xuy +

uy
2

(
b2x − b2y

)
+ 2uxbxby,157

keq7 = −ρuxu2
y +

ux
2

(
b2y − b2x

)
+ 2uybxby,158

keq8 =
ρ

9

(
27u2

xu
2
y + 1

)
+
u2
x − u2

y

2

(
b2x − b2y

)
159

− 4uxuybxby. (11)160

One can immediately notice the presence of some terms accounting for the magnetic
field, stemming from the second term at the right-hand side of Eq. (1). The collision

6



operator reads

k?i = ki + ωi (keqi − ki) with i = 3 . . . 8, (12)

where ωi is the relaxation frequency associated with the moment ki. The superscript161

? refers to post-collision values. To be compliant with the MHD equations in the162

continuous limit, only the frequencies related to k4 and k5 need to be specified as163

a function of the fluid kinematic viscosity. Specifically, ν = (
1

ων
− 1

2
)c2
s with ω4 =164

ω5 = ων . The frequency ω3 is related to the bulk viscosity, whereas ω6, ω7 and ω8165

are associated to higher-order ghost moments and can be set equal to unity, i.e. these166

moments are fixed at their equilibrium value after the collision step. Let us note that167

k0, k1 and k2 are invariant with respect to the collision and are not involved in the168

collision step.169

The post-collision central moments eventually yield the post-collision populations
by inverting the mapping Eq. (10):

|f?i 〉 =
(
T̄>
)−1
|k?i 〉, (13)

with |k?i 〉 = [ρ, 0, 0, k?3, . . . , k
?
8]> and |f?i 〉 = [f?0 , . . . , f

?
8 ]>. The collision step is170

followed up with a streaming of the populations towards their neighboring nodes on171

the lattice1. Note that this scheme only involves the evolution of the fi’s for the172

fluid particles. The evolution of the magnetic distributions gi relies on the standard173

BGK collision operator, hence resulting in an hybrid scheme that combines CMs and174

multi-time relaxation for the fluid density and momentum, and single-time relaxation175

for the magnetic field.176

The tests at variable Re and fixed Prm = 1 previously performed with the BGK177

collision operator (see Fig. 1) are now reproduced by implementing our hybrid LB178

scheme. In Fig. 3, the current maxima are displayed.179

10

100

0.1 1 10

j m
a
x

time

Figure 3. Orszag-Tang vortex problem. Hybrid LB simulation: Time evolution of the current maxima at

Re = 500 (continuous line), 1000 (dashed), 2500 (dotted) and 5000 (dashed-dotted).

It can be immediately appreciated that the stability is drastically enhanced. In180

1In the Supplementary Material, a script CentralMoments_MHD.m is attached allowing the reader to derive the

entire formulation.
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practice, a grid consisting of 10242 points now allows us to overcome the limit t ≈181

0.99 s, for which a finer space-and-time resolution had led to a blow-up with the BGK182

scheme. After an exponential growth, a faster self-similar increase is experienced with183

jmax ∼ t3. It should be noted that this drastic change is slightly anticipated for larger184

Re. After reaching the peak value, the curves decrease with large oscillations. The185

decay is less prominent at high Re. These LB results are fully consistent with the186

previous reports in [42,43].187

Accuracy is now examined by straightforward comparisons with the pseudo-spectral188

data reported in the seminal Orszag-Tang’s paper [15]. The time evolution of the189

kinetic, magnetic and total energies of the flow is well captured in Fig. 4(a). The190

growth of the magnetic energy and the evolution of the dissipation rate are shown for191

various values of ν = η in Fig. 4(b) and Fig. 4(c). Overall, a good agreement can be192

appreciated between the present results and findings in [15] for the global behavior193

(or L2-norm) of the flow and its derivatives. To further validate the accuracy of our194

numerical scheme, the L∞-norm of the vorticity and electric current is compared in195

Table 1 to those obtained in a high-resolution pseudo-spectral simulation at Re ≈ 628196

at Prm = 1 [13]. The current and vorticity maxima are registered at time instants197

t = 0.5 s and t = 1 s. The latter is evaluated as ζmax = maxx|ζ(x)| with ζ = ∇ × u198

being the vorticity. The relative discrepancy (in percents) with the pseudo-spectral199

values is denoted by err. It appears that the relative error slightly increases in time,200

which may be related to the rise of very large gradients both in the magnetic and201

velocity fields, as time advances. However, the agreement remains very satisfactory.202

t (s) [13] Present err(%)

jmax
0.5 18.24 18.24 0
1 46.59 46.65 0.13

ζmax
0.5 6.758 6.756 0.03
1 14.20 14.18 0.14

Table 1. Orszag-Tang vortex problem at Re ≈ 628 (Prm = 1). Reference spectral values from [13] and our

results for the peak values of the electric current, jmax, and vorticity, ζmax, at two representative time instants.

The distribution of the kinetic and magnetic energies among resolved wavenumbers203

is represented by the power-density spectra E(k). This latter is defined as the amount204

of energy in the shell k ≤ |k′|< k + 1. A direct comparison has been made with205

the spectra reported by Politano et al. in [44] for the same Orszag-Tang vortex206

problem solved by a pseudo-spectral method. The Reynolds number is sufficient high to207

ensure a fully developed turbulence over a broad range of (inertial) scales. Specifically,208

Re ' 12600 with the kinematic viscosity and magnetic diffusivity ν = µ = 10−3 in209

physical units. For a fair comparison, the grid size is the same, namely, 1024 × 1024210

in both simulations. The existence of an inertial range with a power-law scaling is211

visible for both fields in Fig. 5(a) and Fig. 5(b) together with a rapid decline at212

large wavenumbers due to dissipation. The LB spectra agree fairly well with the213

pseudo-spectral results in the inertial range, especially for the magnetic field. However,214

some obvious discrepancies are observed in the dissipation range. One may argue that215

the LB simulation, which is only second-order accurate in space, under-resolves the216

gradients of velocity and magnetic field, and therefore underestimates the dissipation217

rate. This results in an build-up of energy at large wavenumbers. The power-density218

spectra of kinetic and magnetic enstrophies are considered in Fig. 5(c). The enstrophy219

power-density spectrum is defined as Ω(k) = k2E(k) and thus enhances gradient220

statistics. As previously, we observe that the spectral properties of both velocity and221

8



magnetic gradients are well resolved in the inertial range but suffers from numerical222

errors at the largest wavenumbers where dissipation prevails. As already mentioned in223

the literature, the dominance of the magnetic over the kinetic enstrophy is observed224

at all wavenumbers.225
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Figure 4. Orszag-Tang vortex problem in two dimensions. The symbols denote pseudo-spectral data whereas

lines correspond to the present LB results. (a) Time evolution of the kinetic (solid line, triangles), magnetic

(dashed line, circles) and total (dotted line, squares) energies of the flow with initial condition u0 = b0 = 1
and ν = η = 0.02 in physical units. (b) Time evolution of the magnetic energy Em(t)/Em(0) with a seed

magnetic field. The initial condition satisfies u0 = 1 and (b0/u0)2 = 10−4 with ν = η = 0.01 (solid line,
squares), ν = η = 0.02 (dashed line, circles) and ν = η = 0.04 (dotted line, triangles). (c) Time evolution

of the dissipation rate with initial conditions u0 = b0 = 1 and ν = µ = 0.08 (continuous line, squares),

ν = µ = 0.04 (dashed line, circles), ν = µ = 0.02 (dotted line, triangles), ν = µ = 0.01 (dashed-dotted line,
inverted triangles).

The LB scheme integrates the fluid dynamics at a mesoscopic level by dealing
with populations of particles moving in the different lattice-directions at the speed
of sound. It is therefore important to check that within a subvolume of the flow,
the macroscopic energy budget is consistently recovered when averaging over all
populations of particles. At the macroscopic level, the total energy evolves as

∂E

∂t
= −∇ ·

((
1

2
ρ|u|2+p

)
u− (u× b)× b

)
+ ρν u ·∆u + η b ·∆b (14)

with E = 1
2ρ|u|2+1

2 |b|2 being the sum of the kinetic and magnetic energies. By226

integrating this equation over a subvolume, it is expected that the variation of energy227

in the subvolume results from the fluxes across the boundaries of the subvolume,228

stemming from the divergence term in Eq. (14), and the sink of energy due to the229

kinetic and magnetic dissipations (last two terms). This energy budget is clearly well230

verified in our LB simualtion, as shown in Fig. 6.231

The capability to handle non-unitary magnetic Prandtl numbers is now examined.232

Therefore, the previous simulation is repeated with Prm = 0.5, 1, 2. This is achieved233

by varying the magnetic diffusivity. In Fig. 7, the space-averaged magnetic energy234

9



(a)

(b)

(c)

Figure 5. Comparisons between LB and pseudo-spectral data for the Orszag-Tang vortex problem in two

dimensions. The grid size is 1024 × 1024 in both simulations. The Reynolds number is Re ' 12600 and the
magnetic Prandtl number is Prm = 1. (a) kinetic power-density spectra (b) magnetic power-density spectra

(c) kinetic and magnetic enstrophy power-density spectra (from LB simulation only).
10



Figure 6. Orszag-Tang vortex problem at Re = 5000. The time variation of the total energy in a subvolume
of size L/2 × L/2 is consistently related to the total contribution of the fluxes across the boundaries of the

subvolume and the energy dissipation within the subvolume.

Em = 1
N2

∑
x|b(x)|2, kinetic energy Ek = 1

N2

∑
x|u(x)|2 and total energy E = Em+Ek235

are plotted as a function of time. The adoption of a constant ν explains the substantial
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Figure 7. Orszag-Tang vortex problem at Re ≈ 628. Time evolution of the space-average kinetic (continuous
lines), magnetic (dotted lines) and total (dashed-dotted lines) energies with Prm = 0.5 (black), 1 (red) and

2 (blue). The kinetic energy does not experience a large influence. Conversely, the magnetic energy increases

with Prm due to the reduction of the magnetic diffusivity η.

236

insensitivity of the kinetic energy to the variation of Prm. Conversely, the magnetic237

energy, and the total energy as a consequence, undergoes large variations. In particular,238

Em increases with Prm as the magnetic diffusivity reduces. Independently from the239

magnetic Prandtl number, a significant transfer of energy operates between the240

magnetic field and the flow, which is fully consistent with the original observations241

reported by Orszag and Tang in [15].242

Further insights are available in Fig. 8(a), where the space-averaged magnetic243

enstrophy is reported as a function of time. This quantity is computed as Em =244

1
N2

∑
x j(x)2. After reaching a maximum at t ≈ 1.2 s, the curves corresponding to245

Re = 500 and Re = 1000 rapidly decay as ∼ t−2 with oscillations reflecting those246

experienced for the current maxima. As the Reynolds number increases, a plateau247

11



is observed after the initial growth. The local maximum at t ≈ 3.5 s for the flow248

at Re = 5000 justifies the peak of jmax at that time instant. Eventually, all the249

enstrophies decay with a comparable rate under the effect of the overall dissipation.250

Fig. 8(b) shows the overall dissipation rate ε = νEk+ηEm, where the kinetic enstrophy

(a)
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Figure 8. Orszag-Tang vortex problem. (a) Time evolution of the magnetic enstrophy at Re = 500 (continuous
line), 1000 (dashed), 2500 (dotted) and 5000 (dashed-dotted). (b) Time evolution of the overall dissipation rate.

251

is Ek = 1
N2

∑
x ζ(x)2, ζ = ∇ × u being the vorticity. In the earliest stage, the252

dissipation increases as Re decreases, highlighting a strong incidence of fluid and253

magnetic diffusivities. The dissipation rate exhibits a peak at the beginning of the254

flow. This initial increase is related to the development of small-scale structures in255

the velocity and magnetic fields. After this transient stage, ε reaches a plateau with256

a common value for the highest Reynolds numbers. This feature supports Pouquet’s257

hypothesis that the dissipation rate should converge towards a finite non-zero limit as258

ν = η → 0 in the developed regime [45]. This plateau is very apparent for the flow at259

Re = 5000. In agreement with [15], this suggests that a flow singularity with ζ →∞,260

i.e. flow structures of arbitrarily small size may occur at a finite time when Re→∞.261

In Fig. 9, the contour plot of the electric current at salient time instants give a262

better insight of the dynamics of the magnetic field. At t = 1 s, the field exhibits few263

folds. A straight current sheet passes through the center of the domain, where the264

maximum is located. This central current sheet goes unstable and very thin structures265

develop in the flow. At t = 5 s, folds seem to surround two big oculi separated by the266
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central sheet, which it is now stabilized. As the time advances, these two big zones are

Figure 9. Evolution of the electric current at Re = 5000 at salient time instants, i.e. t = 1 s (top left),

3.5 s (top right), 5 s (bottom left) and 9 s (bottom right). The maximal current is initially located in the
central current sheet. The current field undergoes instabilities and many folds arise. Eventually, the central

sheet becomes stable again and small-scale structures disappear progressively.

267

progressively damped by the diffusivities. An Alfenization of the flow, i.e. u = ±b, is268

expected in the region of high concentration of folds [42]. A quantitative assessment269

of this effect can be obtained by evaluating the correlation coefficient between the270

velocity and magnetic fields as r =
2u · b
u2 + b2

. The map of its absolute value is plotted271

at t = 3.5 s in Fig. 10. We observe that the correlation is more marked in the vicinity272

of the current sheets, whereas u and b remain mostly uncorrelated in the rest of the273

domain. This effect is very well captured by our LB simulation. Finally, our proposed274

scheme shows an impressive stability even for low values of the magnetic Prandtl275

number. In fact, we are able to simulate scenarios with vanishing Prm (as ν → 0)276

without experiencing the limitations stemming from the adoption of the BGK model.277

The possibility to extend the formulation of our hybrid LB scheme to three278

dimensions is now outlined. In that case, the D3Q27 and D3Q7 lattices should be279

used for the distributions fi and gi, respectively. For the magnetic field, the LB scheme280

shall still rely on the BGK collision operator with θ2 = 1/4 and the weights Wi related281

to the D3Q7 lattice. For the velocity field, the scheme should be handled according282

to the CMs-based scheme recently introduced in [40]. In short, it consists of building283

the matrix T̄ in the D3Q27 velocity space and to compute pre-collision, equilibrium284
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Figure 10. Absolute value of the correlation coefficient r at time instant t = 3.5 s. The flow shows strong

correlation in the proximity of current sheets.

and post-collision CMs accordingly. The overall construction of the algorithm remains285

unaltered.286

In conclusion, we have demonstrated the feasibility of the LB method to investigate287

high-Reynolds MHD flows at non-unitary Prandtl number with an hybrid scheme.288

Specifically, it is fruitful to decompose the collision stage entering in the dynamics289

of the fluid velocity in the space of central moments in order to overcome the290

stability limitations affecting the BGK scheme. In two-dimensions, we have shown291

that this hybrid scheme enables to reproduce very accurately the key features292

of the Orszag-Tang vortex problem. Its implementation is not awkward and the293

generalization to three dimensions is rather straightforward. Eventually, it is worth294

mentioning that it is here shown that decomposing the collision operator in the space of295

central moments and relaxing non-hydrodynamical moments to statistical equilibrium296

provides some tangible advantages from a numerical viewpoint without notably297

deprecating the physical consistency of the scheme. Alternatively, some variants of298

the standard LB approach based on some enriched collision operator accounting299

for high-order statistical moments have recently been proved to better handle300

strong departure from equilibrium in hydrodynamic and thermodynamic behaviors301

in various complex flows [46–48]. It would be interesting to compare our rather302

rustic approach with such more elaborated (but more demanding computationally)303

mesoscopic modeling.304

Supplementary material305

A script is provided in the Supplementary Material (D2Q9_CentralMoments_MHD.m)306

allowing the reader to perform all the symbolic manipulations to obtain the proposed307

scheme.308
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under the Program “Investissements d’Avenir” operated by the French National311

Research Agency. The research leading to these results has received funding312

from the People Programme (Marie Curie Actions) of the European Union’s313

Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n◦314

PCOFUND-GA-2013-609102, through the PRESTIGE programme coordinated by315

Campus France.316

14



This article is based upon work from COST Action MP1305, supported by COST317

(European Cooperation in Science and Technology). The authors are grateful to318

W.J.T. Bos and N. Plihon for useful hints about magneto-hydrodynamic turbulence.319

References320

[1] McNamara GR, Zanetti G. Use of the boltzmann equation to simulate lattice-gas321

automata. Phys Rev Lett. 1988;61(20):2332.322

[2] Higuera F, Succi S, Benzi R. Lattice gas dynamics with enhanced collisions. Europhys323

Lett. 1989;9(4):345–349.324

[3] Benzi R, Succi S, Vergassola M. The lattice Boltzmann equation: Theory and applications.325

Phys Rep. 1992;222(3):145–197.326

[4] Chen S, Doolen G. Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech.327

1998;30(1):329–364.328

[5] Succi S. The lattice Boltzmann equation for fluid dynamics and beyond. Clarendon; 2001.329

[6] Chen H, Kandasamy S, Orszag S, et al. Extended boltzmann kinetic equation for turbulent330

flows. Science. 2003;301(5633):633–636.331

[7] Succi S. Lattice Boltzmann 2038. Europhys Lett. 2015;109(5):50001–50007.332

[8] Succi S. Chimaera simulation of complex states of flowing matter. Phil Trans R Soc A.333

2016;374(2080):20160151.334

[9] Montgomery D, Doolen GD. Magnetohydrodynamic cellular automata. Phys Lett A. 1987;335

120(5):229–231.336

[10] Chen H, Matthaeus W, Klein L. An analytic theory and formulation of a local337

magnetohydrodynamic lattice gas model. Phys Fluids. 1988;31(6):1439–1455.338

[11] Mart́ınez DO, Chen S, Matthaeus WH. Lattice boltzmann magnetohydrodynamics. Phys339

Plasmas. 1994;1(6):1850–1867.340

[12] Succi S, Vergassola M, Benzi R. Lattice boltzmann scheme for two-dimensional341

magnetohydrodynamics. Phys Rev A. 1991 Apr;43:4521–4524. Available from: http:342

//link.aps.org/doi/10.1103/PhysRevA.43.4521.343

[13] Dellar PJ. Lattice kinetic schemes for magnetohydrodynamics. J Comput Phys. 2002;344

179(1):95–126.345

[14] Dellar PJ. Incompressible limits of lattice boltzmann equations using multiple relaxation346

times. J Comput Phys. 2003;190(2):351–370.347

[15] Orszag SA, Tang CM. Small-scale structure of two-dimensional magnetohydrodynamic348

turbulence. J Fluid Mech. 1979;90(01):129–143.349

[16] Pattison M, Premnath K, Morley N, et al. Progress in lattice boltzmann methods350

for magnetohydrodynamic flows relevant to fusion applications. Fusion Eng Des. 2008;351

83(4):557–572.352

[17] Frisch U, Pouquet A, Sulem PL, et al. The dynamics of two-dimensional ideal mhd. J353

Mec Theor et Appl. 1983;1:191–216.354

[18] Klapper I, Rado A, Tabor M. A lagrangian study of dynamics and singularity formation355

at magnetic null points in ideal three-dimensional magnetohydrodynamics. Phys Plasmas.356

1996;3(11):4281–4283.357

[19] Grauer R, Marliani C. Current-sheet formation in 3d ideal incompressible358

magnetohydrodynamics. Phys Rev Lett. 2000;84(21):4850.359

[20] Chen H, Teixeira C, Molvig K. Digital physics approach to computational fluid dynamics:360

Some basic theoretical features. Int J Mod Phys C. 1997;08(04):675–684.361

[21] Latt J, Chopard B. Lattice boltzmann method with regularized pre-collision distribution362

functions. Math Comput Simulat. 2006;72(2–6):165 – 168.363

[22] Qian YH, Orszag SA. Lattice bgk models for the navier-stokes equation: Nonlinear364

deviation in compressible regimes. Europhys Lett. 1993;21(3):255.365

[23] Nie XB, Shan X, Chen H. Galilean invariance of lattice boltzmann models. EPL. 2008;366

15



81(3):34005.367

[24] Chen Y, Ohashi H, Akiyama M. Thermal lattice bhatnagar-gross-krook model without368

nonlinear deviations in macrodynamic equations. Phys Rev E. 1994 Oct;50:2776–2783.369

[25] Qian YH, Zhou Y. Complete galilean-invariant lattice bgk models for the navier-stokes370

equation. Europhys Lett. 1998;42(4):359.371
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