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ABSTRACT 
This article aims at carrying out a parameter sensitivity analysis on a mathematical 

model for the charge transport in dielectrics, using the Sobol sensitivity method. The 

main point of the work is to perform a sensitivity analysis under the variation of some 

impacting experimental factors that are: the temperature, the applied electric field, and 

the charging time. Useful indications were obtained, coming from studying sensitivity 

under parameters variation. Indeed, this study helps in revealing the experimental 

conditions at which each model parameter is the most impacted. Then, , the sensitivity 

analysis results are used to determine the best starting points for optimization process 

in order to precisely and rapidly estimate each model parameter.  

   Index Terms — Dielectrics, charge transport model, optimization, sensitivity analysis 

 

 

1 INTRODUCTION 

VARIOUS physical models have been implemented to 

describe the mechanisms of charge generation and transport in 

solid dielectrics [1, 2, 3]. These models encompass charge 

generation, transport, trapping, recombination and take into 

account the bipolar nature of transport in insulators. They aim 

at predicting the time dependence of the charge distribution 

along with external charging and discharging currents, so in a 

transient regime. Most of the processes involved in this 

problem are nonlinear in field. Their development combines 

dielectrics physics inspired from semiconductor physical 

concepts developed decades ago with more recent numeric 

techniques for their resolution. In terms of computational 

approach for the resolution, particle models have been used in 

some cases as with non-homogeneous materials, for example 

[4], but in general, fluid models tend to be preferred. Here, the 

efforts have been put to the selection and implementation of 

numeric schemes enabling for example to lower numeric 

diffusion [5, 6]. Usually, parameters pertaining to charge 

transport model need to be precisely defined. It is the case for 

mobility, injection barrier, trapping coefficient, etc. However, 

most of these parameters cannot be determined by 

independent experiments and it is a heavy task to estimate 

parameter values that best fit experimental data. Optimization 

algorithms aim at systematizing this part of the modeling 

activity. Genetic algorithms for example have been 

implemented for that purpose [7]; but the computation time 

can be prohibitive, as the model has to be run with a 

substantial number of iterations. To facilitate the convergence 

of optimization algorithms, it is important to quantify the 

effect of each input variable on the output observations in 

order to limit the optimization to the most influential variables 

set. The method implemented in this work, based on Sobol’s 

analysis, guides the choice of the optimization algorithms by 

focusing on the main parameters affecting the charge transport 

model, which makes possible the resolution within an 

acceptable time. Particularly, this is done by providing a 

relevant starting point for each of the optimization processes 

aiming at determining each of the model parameters This work 

is presented as follows. In the following section 2, the charge 

transport model is detailed. Then, section 3 describes how a 

sensitivity analysis is performed using the Sobol method. 

Finally, section 4 presents the results obtained for the 

sensitivity study for the four parameters concerning two main 

outputs of the charge transport model: charge and current 

density. Both of these outputs are easily observed using 

experimental devices. 

2 THE CHARGE TRANSPORT MODEL  

The model examined here is a unipolar description of charge 

transport already presented in its bipolar version in [1]. This 

model considers two levels of charge traps: a deep trap level 

accounting for relatively long-lasting trapping of charges and 

a shallow level, which is associated with the effective mobility 

for mobile carriers. Charge carriers have a given probability to 

escape from deep traps by overcoming a potential barrier that 

is included in the de-trapping coefficients. Two kinds of 

species are considered, mobile and trapped carriers.  



 

 

Two outputs of this model are investigated in this study: the 

charge density and the current density. These outputs are 

estimated using Poisson's equation, continuity equation and 

transport equation (orientation polarization and diffusion 

processes are neglected): 
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The term ( , )s x t is the source term. Such equations relate the 

spatial changes in the current density for a given specie to the 

changes in carrier concentration through trapping, de-trapping 

or others physical processes. There are two equations for the 

source of equation (2): one for the mobile carriers 
1( , )s x t and 

one for trapped carriers
2 ( , )s x t : 
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where: 

 ( , )j x t is the transport current associated with mobile 

carriers of density ( , )µn x t and charge e , 

 µ  is the mobility, 

 ( , )E x t  is the electric field, 

 ( , )µn x t  mobile carrier density, 

 ( , )tn x t  is the trapped carrier density, 

 ( , ) ( , ) ( , )µ tn x t n x t n x t   is the total carrier density, 

 B  is the trapping coefficient, 

 
0tn  is the trap density which verifies in the presented case 

3

0. 100 .te n C m , 

 D  is the de-trapping coefficient which is of the form: 
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 T  is the temperature, 

 
trw  is the de-trapping barrier, 

 231.381 10Bk    J/K is the Boltzmann's constant, 

 v  is the attempt to escape frequency, which has been set 

to 12 1.
6.2 10Bk T

s
h

   at room temperature. 

These equations have a specific form for the interfaces, and 

they are complemented by boundary conditions (e.g. applied 

electric field, etc.). 

Notably, the charge generation is supposed to result from 

injection at the electrodes according to a corrected Schottky 

law (there is no injection when the electric field at the 

electrode is null): 
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where: 

 w  is the barrier to injection, 

 
0 ( ) (0, )E t E t  is the electric field at the electrode, 

 6 2 21.2 10A Am K   , is the Richardson constant. 

 

Finally, the material considered in this study is a low-density 

polyethylene (LDPE) material, in film form of thickness

200D µm . 

3 STATE OF ART IN SENSITIVITY 
ANALYSIS 

3.1 SENSITIVITY ANALYSIS AND ITS 
QUANTIFICATION 

Consider a mathematical model that uses a set of 

independent random inputs 
1( , , )nX X X K  to determine a 

random output Y (or response) via a deterministic function f : 
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Practically, f can be very complex (e.g. system of partial 

differential equations) and usually it is evaluated using a black 

box (a computer code) which can be time consuming  in terms 

of computation. In different modeling processes, it is essential 

to determine which inputs contribute most to the output 

variability and which of them are insignificant so that they can 

be ignored during first investigation steps. 

In this manner, Sensitivity Analysis (SA) has gained a 

considerable attention, as it assesses how variations in the 

model output can be apportioned to different input sources. 

This leads to the determination of how the output is dependent 

on each of the inputs. Usually SA methods are classified in 

three groups: 

 Screening methods [8] that analyze qualitatively the 

sensitivity of the output. These methods are based on the 

discretizing of the inputs into levels. They aim at 

identifying the non-influential inputs using a small number 

of model evaluations. 

 Local sensitivity [9] which evaluate quantitatively the 

impact of a small variation of the input around a fixed 

value. Each input is varied one at a time, while holding the 

others at some local values. 

 Global sensitivity [10] which analyze quantitatively the 

output variability by varying all the inputs over their whole 

ranges. This approach is mainly based on the 

decomposition of the output variance in terms of   inputs 

variances. 

Quantitative sensitivity analysis methods usually present 

sensitivity of the inputs in terms of sensitivity indexes. Since 

the aim of the present work is to make possible the 



 

 

determination of an optimally calibrated model, the global 

Sobol sensitivity method has been chosen in order to ensure an 

optimization process on the whole variation range of input 

parameters. The following example places an emphasis on the 

sensitivity index.  

3.2 PREAMBLE: THE LINEAR MODEL   

Suppose that f is linear: 
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Because the input variables are supposed to be independent, 

the variance can be written as:  
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where 2 ( )i iVar X  is the part of the variance ( )Var Y  due to 

the variable
iX . The sensitivity of Y  with respect to 

iX  can be 

simply quantified by the ratio of the part of the total variance 

due to 
iX on the total variance:  

  
2 ( )

0,1
( )

i iVar X

Var Y


  (10) 

 

This ratio is usually called Standardized Regression 

Coefficient  iSRC  and it represents the part of ( )Var Y that is 

due to
iX . In case where f is non-linear, such a coefficient 

can be calculated using Sobol's method.   

3.3 SOBOL’S METHOD IN SENSITIVITY ANALYSIS  

Now consider a non-linear function f whose analytic form 

is unknown. The effect of an input variable 
iX on the output 

Y can be detected by studying the variation of Y   if the 

variable 
iX  is fixed at some value

ix , i.e. the conditional 

variance of  Y  with respect to 
iX  is expressed by

( )i iVar Y X x .  Indeed, comparing this conditional variance 

to the total variance of  Y  gives an indication of the impact of

Y on the output Y .  If ( )i iVar Y X x  is approximately equal 

to ( )Var Y  this means that 
iX  has no significant effect on the 

output. However, if ( )i iVar Y X x is much smaller that 

( )Var Y this means that
iX  has an apparent effect on the output. 

The problem of this indicator is the choice of the value
ix , as 

iX may possesses different values over its range of variation.   

However, this is solved by considering the expectation over 

the all-possible values of
iX , i.e.  iE Var Y X   . 

By considering the total variance formula: 

     ( ) i iVar Y Var E Y X E Var Y X      (11) 

 

So the quantity   iVar E Y X , instead of  iE Var Y X   , 

can be also an indicator for the sensitivity of Y with respect to 

the input
iX . However, large values of   iVar E Y X , 

compared to ( )Var Y , indicate high sensitivity of 
iX , while 

small values indicate less sensitivity.  

Thus, sensitivity index for Y  with respect to 
iX  can be 

defined by: 
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This index, which quantifies the sensitivity of the output Y

to the input variable
iX , is called first-order sensitivity index 

by Sobol [11] or correlation ratio by McKay [12]. Note that, in 

the linear case, 
i iS SRC . In [11], 

iS  was introduced using 

the decomposition: 
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with: 
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Thus, the variance of Y  can be decomposed as a sum of 

partial variances: 
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with:  
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Using this decomposition, it is possible to define the second-

order indexes: 
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which express the sensitivity of Y to the interaction between 

iX  and 
jX , that is, the sensitivity of Y  to

iX and 
jX which is 

not taken into account in the first order Sobol indexes. 

Analogously one can proceed for the higher order indexes. For 

example:  
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expresses the sensitivity of Y to the interaction between
iX ,

jX  and 
kX  which is not taken into account by first and 

second order indexes. Note that the sum of all the n indexes is 

equal to 1 and the closer to 1 an index is, the more important 



 

 

the variable is. However, the number of indexes (from order 1 

to order n), is equal to 2n-1. Thus, calculating and interpreting 

all the indexes become impossible when n is too large. To 

overcome this problem, the total sensitivity indexes T

iS have 

been introduced [13]. These indexes, which describe the total 

contribution of an input 
iX (including all its interactions) to 

the output Y , are defined as the sum of all Sobol sensitivity 

indexes involving
iX : 
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where 
#

i iI IU  denotes the union of all the sets of indexes 

iI containing the index i . For instance, consider a problem 

with three input variables, then: 

 1 12 13 123

T

iS S S S S     (20) 

 

In most applications only first order, second order and total 

indexes are calculated. However, computing these indexes 

requires the computation of the conditional variance using the 

model function f . Practically, only numerical methods are 

used [14, 15] and mainly Monte Carlo approaches. Note that, 

for a model f with n inputs and an m-sample of the input 

variables, the estimation of all the sensitivity indexes requires 

m  2
n
 calls of f . However, estimating only first indexes and 

total indexes requires m (2n+1) calls of f . Consequently, the 

best strategy consists in computing first 
iS  and T

iS . If the gap 

T

i iS S is important, then second order indexes 
ijS are 

computed. Practically, an estimation of Sobol indexes for a 

model with less than 10 inputs requires m=10000 samples. 

 

3.4 PRELIMINARY EXAMPLE 

 Through the example given below, a Sobol sensitivity 

analysis is presented with application to the flux of injected 

charge at an electrode defined by equation (7). For this 

analysis, the injection 
0( , , )injj T w E  is seen as a function 

depending on the temperature  273.15 ,  373.15K KT  , the 

injection barrier height  1 , 2eV eVw and the electric field at 

the electrode
1 1

0 10 . , 100 .E kV mm kV mm     . To follow the 

notations introduced above, each of the variables T , w and 

0E is denoted respectively by
1X , 

2X and
3X . Accordingly, 

their first order Sobol indexes are denoted by
1S , 

2S  and
3S , 

and similarly the higher order Sobol indexes. Results obtained 

by sensitivity analysis using Sobol approach are presented in 

Figure 1. 

Figure 1a (respectively 1b and 1c) represents the value of T

iS  

(respectively 
iS and 

ijS ) versus the number of evaluations of 

the injection function. From these three figures, it can be seen 

that the two values of each index converge after 10
5
 

evaluations.  

Figure 1d represents as histograms the values of first 
iS , 

second 
ijS  and total indexes T

iS . For instance, the first 

histogram 
iS represents the values of

1S , 
2S  and

3S . From this 

histogram, it can be concluded that injection is highly 

sensitive to the injection barrier w and, to a lesser extent, to 

the temperature T . However, it is obvious that 
iS is far from 1 

(about 23%) while T

iS  is close to 1. Consequently, the 

variability of the injection is highly affected by the 

interactions between T , w  and
0E . This behavior is confirmed 

by the 
ijS  which underlines that the interaction between T and 

w plays a predominant role in Var(inj). Indeed, for this case, 

Sobol indexes are higher than 70% meaning that the 

contribution of these both parameters induced a great 

influence on the injection flux. Thus, it is concluded that 

injection process exists due to the couple temperature and 

barrier height of injection. Moreover, the high level of 
ijS

indicates that the interactions between the coupleT
0E  and w , 

0E  are negligible. To summarize, the injection function is 

highly affected by w and the interaction between w andT . 

4 PARAMETER SENSITIVITY ANALYSIS 

4.1 MODEL AS BLACK BOX  

In this application, the charge transport model is viewed as a 

black box with its input and output. This black box, 

represented by the function f , includes all the partial 

differential equations described previously.   

The input is represented by a set of physical constants used 

to describe the mechanisms of charge generation and transport 

in the solid insulation. In this work, the concerned inputs 

physical parameters are: the barrier height to injection, 

mobility of carriers, trapping and de-trapping coefficients (see 

Table 1). 

The output is the main outcomes obtained by the model: 

charge density (
1Y ) and current density (

2Y ). Only these two 

outputs are considered because they are easily observable 

using experimental devices. 

 
Table 1. Inputs and their ranges of variation 

Input Notation Unit 
Lower 

Bound 

Upper 

Bound 

Barrier height for 
injection w 1X  eV 1.1 1.2 

Mobility µ 2X  m2.V-1.s-1 10-14 10-12 

Trapping coefficient 
B 3X  s-1 5 10-4 10 

De-trapping barrier 

height wtr 
4X  eV 0.73 1 

 

Table 1 shows the variation range of the set of parameters. 

The associated ranges of the inputs are specified in order to 

give a physical sense of the results. Moreover, inputs ranges 

are kept large enough to ensure a consistent and broad 

representation of outputs, and thus allowing a tractable 

computation of the Sobol indexes. Note that the inputs ranges 

are not unit intervals, so it is assumed that a renormalization 



 

 

                     

(a) Total indices for Y=jinj(T,w,Elect) (b) First order indices for Y=jinj(T,w,Elect)  

 

                           

(c) Second order indices for Y=jinj(T,w,Elect) (d) Sobol indices for Y=jinj(T,w,Elect)  

 

Figure 1. Sobol indices of different orders of the injection charge as a function of the temperature, injection barrier height and the electric field 

can be achieved and, after rescaling, each interval is supposed 

to be [0, 1]. Accordingly, each input can be conceived as a 

uniformly distributed random variable over the interval [0, 1], 

with all the inputs mutually independent.  

In order to estimate the Sobol's indexes it is necessary to 

provide the outputs as scalars. Concerning the output
1Y , which 

is normally a net carrier density profile and a function of the 

position in the insulation and of the time, the scalar is obtained 

by integrating the net charge over the space and time as 

follows: 

 1
polt D

Y ndxdt    (21) 

For the current density
2Y , the scalar output is obtained by: 

 2
polt

Y j dt   (22) 

5 RESULTS  

Figures 2 to 5 show the evolution of the Sobol indexes  

respectively for the barrier height to injection, the mobility, 

the trapping coefficient and the de-trapping barrier height for 

two different outputs: charge density (full symbols) and 

current density (open symbols). In each figure, results are 

obtained based on three protocols applied to a LDPE film of 

thickness D=200 µm: 

 First protocol (red curve): Sobol indexes are estimated 

using data under a DC electric field of 30 kV.mm
-1

 applied 

for charging and discharging times of 20 min. The 

sensitivity analysis is carried out considering that 

experimental data is acquired over a temperature range of 

[0, 90°C]. 



 

 

 

Figure 2. Evolution of the first order Sobol indexes of barrier height to 

injection 

 

 

Figure 3. Evolution of the first order Sobol indexes of the mobility 

 

 Second protocol (blue curve): Sobol indexes are 

estimated using the same material under a temperature of 

40°C and for charging and discharging times of 20 min. 

The sensitivity analysis is realized considering an applied 

electric field varying over the range [10, 80 kV.mm
-1

]. 

  Third protocol (green curve): Sobol indexes are 

estimated under a temperature of 40°C and an applied 

electric field of 30kV.mm
-1

. The sensitivity analysis is 

performed considering charging and discharging times 

varying over the range [1, 60 min]. 

In the results analysis,  the influence of a given parameter on 

charge or current density are considered  as negligible if the 

indexes do not exceed 20%  (hatched area on the figures). 

Indeed, a Sobol index below 20% is considered as an 

indication that the chosen experiment protocol does not give 

sufficient information to estimate the selected parameter with 

an optimization algorithm. This is an analysis in relative 

values of the effect. A low index value mean than other 

variables of the model contribute more to the output.  

5.1 SENSITIVITY ANALYSIS OF BARRIER HEIGHT 
TO INJECTION 

Figure 2 concerns the influence of the barrier height to 

injection, w  in equation (7), on current and charge density. 

It appears that, for the model and protocol parameters 

considered, the barrier to injection does not influence much 

the current density. For this output, Sobol indexes are below 

10% whatever the protocol used. Comparatively, Sobol 

indexes exceed 50%, meaning a great influence, on the charge 

density at low temperature (below 30°C) or in charging at 

short time (less than 10 min). For both cases, it means that the 

impact on barrier to injection on deposited charge is 

important.  

The fact that this parameter is influential at the beginning of 

polarization is in phase with the experimental observation. 

Indeed, when an electric field is applied, charges are injected 

at the vicinity of the electrodes. The presence of these charges 

close to the electrode induces a decrease of the electric field at 

the interface over time and so a decrease of the injection flux. 

Therefore, the influence over longer times is less important. 

Roughly, it corresponds to space charge limited process, 

which also explains why the barrier to injection is not strongly 

influential on the external current, which corresponds to the 

space-averaged trapped current [16]. To explain the great 

influence of the injection barrier on charge density at low 

temperature it is necessary to have a look at the Schottky law 

equation (7). This law can be divided into two terms: a term 

linked to a thermal injection and another term concerning the 

effect of electric field on the charge injection: 

2

Thermal injection term linked to electric field

( , , ) exp exp 1
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(23) 

 

Results obtained show that thermal injection does not affect 

so much the charge density at low temperature, only the term 

linked to the electric field at the injecting electrode is 

predominant on the charge behavior. At high temperature, the 

term linked to the electric field becomes negligible, implying 

that the temperature effect on the injection current is mainly 

due to the first term of Schottky law namely the thermal 

injection effect. 

Finally, Figure 2 also shows that the barrier height to 

injection is not affecting the charge density at T=40 °C, 

irrespective of the field. Sobol indexes are always below 10%. 

5.2 SENSITIVITY ANALYSIS OF THE MOBILITY 

Figure 3 concerns the influence of the mobility, µ in equation 

(1), on the current and the charge density. The indexes are in 

general low (most of results are in the hatched area) so, 

according to the results, it seems difficult to find a suitable 

experimental protocol for optimization purpose. The 

temperature seems to be the most influencing both outputs: 

charge and current density. A temperature higher than 70°C 

allows having a Sobol index higher than 20%. 

To explain this feature, it is necessary to explain more 

precisely the model of charge transport used. As detailed 

previously, two kinds of carriers are considered, in this model, 

being either trapped or mobile and they are provided only by 

injection at the electrodes. Conduction takes place via a 



 

 

  

Figure 4. Evolution of the first order Sobol indexes of the 

de-trapping barrier height 

 

 

Figure 5. Evolution of the Sobol indexes of the trapping coefficient 

 

constant effective mobility µ, traducing the transport of 

carriers through shallow levels that are related to the structural 

disorder of the polymer. Deep trapping, mainly due to 

chemical disorder, is described using a unique level of deep 

traps for each kind of carriers, coefficient B in equation (4) 

and (5). Charges have a certain probability to escape from 

deep traps, coefficient D in equation (6), by overcoming a 

potential barrier, wtr. Based on this physical description, 

results show that this model gives more importance to the 

charges in shallow traps than in deep traps at high 

temperature. Indeed, for a temperature higher than 70°C, the 

effective mobility becomes sufficiently sensitive (Sobol 

indexes exceed 20%) to well estimate this parameter. An 

explanation could be that at high temperature the fraction of 

charges in shallow traps is higher. 

5.3 SENSITIVITY ANALYSIS OF DE-TRAPPING 
BARRIER HEIGHT 

The results related to the deep trap depth, or de-trapping 

barrier height, parameter wtr in equation (6) are summarized in 

Figure 4. For temperature higher than 50°C, the influence of 

charge trapping coefficient decreases considering charge 

density as output. The same happens for the current above 

80°C. From room temperature 20°C up to 70°C, the charge 

density is impacted by the release of charges from deep traps 

while for a temperature higher than 70°C the charge density is 

linked to the mobility of charges in shallow traps. For a 

temperature below 20°C, the charge density is only related to 

the injection phenomenon, since charges tend to be close to 

the electrodes and to remain there, Figure 2. 

The influence of de-trapping barrier height on charge density 

increases over time to reach 70% at one hour of charging time 

for a given temperature of 40°C and a given applied electric 

field of 30 kV.mm
-1

. However, this parameter does not 

influence so much the current density, Sobol indexes are 

below 10% whatever the protocols used except at high 

temperature. Thus, it is concluded here that in general, long 

charging times are preferred for improving sensibility to the 

de-trapping coefficient.  

5.4 SENSITIVITY ANALYSIS OF THE TRAPPING  

Figure 5 presents the influence of the trapping coefficient, 

parameter B in equation (4) and (5), on current and charge 

density. Very clearly here, this parameter has little effect on 

the charge or current density. Whatever the protocols used, 

Sobol indexes are always below 10%. It is not very easy to 

explain this feature because trapping and de-trapping 

phenomena are obviously linked by nature. 

An explanation could be provided by the equations used 

where de-trapping phenomenon is modeled with an 

exponential equation (6) which is not the case for the trapping 

equation (4) and (5). The difference could also come from the 

range used for each parameter even if lower and upper bounds 

are chosen first to be certain to keep physical sense to the 

conditions, second to have a large range of inputs in order to 

assume a broad and consistent representation of the output 

data, and lastly to have tractable computation.  

Another key point is to consider the Sobol indexes of order 

2. Contrary to the order 1, this order considers mutual 

interactions of every two inputs.  

The results, not shown here, indicate that the mutual 

interactions between the trapping coefficient and the other 

parameters gives always a Sobol index less than 20%. In 

conclusion, considering the windows of experimental 

protocols (in time, field and temperature) and the observations 

investigated here (charge density and current) it will be very 

difficult to estimate this parameter with a good approximation. 

Last but not least, in the model a fixed trap density is used, 

as set in previously implemented versions of the model [1, 17, 

18]. A part from the fact that this may represent a very low 

density of defects (3.2  10
14

 /cm
3
), it may limit the role of 

trapped charges in the net charge distribution and in the 

current. Forthcoming versions of the model should incorporate 

the possibility that the trap depth can be adjustable. 

6 DESIGNING EXPERIMENTS FOR 
OPTIMAL PARAMETERS IDENTIFICATION 

By analyzing these results, a strategy of study can be 

designed for parameters optimization. Indeed, optimization 

algorithms are used to find a set of parameters able to 



 

 

minimize the deviations between experimental data and 

simulation data. Experimental data commonly used are the net 

density of charges as measured by the pulsed electro-acoustic 

method (PEA) and external charging and discharging current 

measurements [19]. Simulated data are those produced by the 

bipolar charge transport model previously explained. 

Based on the parameters sensitivity analysis it is possible to 

find suitable experimental conditions to obtain optimized 

estimation of parameters used in the studied charge transport 

model. The measurements are assumed to be realized using a 

LDPE material, in film form of thickness D = 200 µm, and 

that the experimental conditions on temperature and field 

given in section 5 are accessible. Then, according to the 

analysis, the following guidelines can provide a good 

approach to estimate the model parameters: 

 Estimation of barrier height of injection: map of the net 

charge density under an applied field of 30 kV.mm
-1

, a 

temperature of 20°C and charging and discharging times of 

20 min. 

 Estimation of mobility: current measurement with the 

same experimental protocol than previously except for the 

temperature of dielectric material that should be higher 

than 70°C. 

  Estimation of the de-trapping barrier height: space 

charge measurement with a temperature from 30°C to 

70°C, a field of 30 kV.mm
-1 

or more; a time of 20 min or 

more. 

Then, the obtained experimental results could be inserted in 

an optimization algorithm in order to find the new set of 

parameters. Unfortunately, no straightforward optimal 

conditions appear for identifying the trapping coefficient. 

Analysis is in progress to understand why Sobol's coefficients 

are so low in this case. Recombination processes, and 

electroluminescence as its pending experimental information, 

were not incorporated in the model. This could be a route to 

resolve the uncertainty. 

7 CONCLUSION 

A global sensitivity analysis, based on Sobol’s method, has 

been implemented in order to estimate the influence of each 

parameter of a charge transport model on two main outputs: 

the charge density and the current density. The procedure has 

been tested on four variable parameters as model inputs. The 

approach provides an estimation on the possibility to correctly 

parameterize the physical model with given observations 

accessible under a set of experimental conditions. It is shown 

that the barrier height to injection, for example, is best-

estimated considering data at short stressing time whereas the 

de-trapping barrier height comes out with good confidence at 

high field/long stressing time. For the trapping coefficient, no 

ideal conditions on temperature and field could be identified. 

The reason can be that the trap density is relatively low, in 

such a way that trapping processes have little impact on the 

net charge density. 

Combined with the results of this global Sobol sensitivity 

method, an optimization process can be run using different 

valuable starting points. This is particularly interesting to 

ensure speed and accuracy in the convergence of the global 

optimization process aiming at determining valuable model 

parameters  
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