
HAL Id: hal-02084214
https://hal.science/hal-02084214

Preprint submitted on 29 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Predicative proof theory of PDL and basic applications
Lev Gordeev

To cite this version:

Lev Gordeev. Predicative proof theory of PDL and basic applications. 2019. �hal-02084214�

https://hal.science/hal-02084214
https://hal.archives-ouvertes.fr

Predicative proof theory of PDL
and basic applications Draft, Feb. 2019

L. Gordeev
Tübingen University

lew.gordeew@uni-tuebingen.de

1 Extended abstract

Propositional dynamic logic (PDL) is presented in Schütte-style mode as one-
sided semiformal tree-like sequent calculus Seqpdl

ω with standard cut rule and
the omega-rule with principal formulas [P ∗]A. The omega-rule-free derivations
in Seqpdl

ω are finite (trees) and sequents deducible by these finite derivations are
valid in PDL. Moreover the cut-elimination theorem for Seqpdl

ω is provable in
Peano Arithmetic (PA) extended by transfinite induction up to Veblen’s ordinal
ϕω (0). Hence (by the cutfree subformula property) such predicative extension
of PA proves that any given [P ∗]-free sequent is valid in PDL iff it is deducible
in Seqpdl

ω by a finite cut- and omega-rule-free derivation, while PDL-validity of
arbitrary star-free sequents is decidable in polynomial space. The former also
implies a Herbrand-style conclusion that e.g. a given formula S = 〈P ∗〉A ∨ Z
for star-free A and Z is valid in PDL iff there is a k ≥ 0 and a cut- and
omega-rule-free derivation of sequent A, 〈P 〉1A, · · · , 〈P 〉kA,B where 〈P 〉iA is an
abbreviation for 〈P 〉 · · · 〈P 〉︸ ︷︷ ︸

i times

A. This eventually leads to PSPACE-decidability

of PDL-validity of S, provided that P is atomic and A is in a suitable basic
conjunctive normal form. Furthermore we consider star-free formulas A in dual
basic disjunctive normal form, and corresponding expansions S = 〈P ∗〉A ∨ Z
whose PDL-validity problem is known to be EXPTIME-complete. We show
that cutfree-derivability in Seqpdl

ω (hence PDL-validity) of such S is equivalent

to plain validity of a suitable “transparent” quantified boolean formula Ŝ. Hence
EXPTIME = PSPACE holds true iff the validity problem for any Ŝ involved
is solvable by a polynomial-space deterministic TM. This may reduce the former
problem to a more transparent complexity problem in quantified boolean logic.
The whole proof can be formalized in PA extended by transfinite induction along
ϕω (0) – actually in the corresponding primitive recursive weakening, PRAϕω(0).

2 Introduction and survey of results

Propositional dynamic logic (PDL) was derived by M. J. Fischer and R. Ladner
[6], [7] from dynamic logic where it plays the role that classical propositional
logic plays in classical predicate logic. Conceptually, it describes the properties
of the interaction between programs (as modal operators) and propositions that

1

are independent of the domain of computation. The semantics of PDL is based
on Kripke frames and comes from that of modal logic. Corresponding sound
and complete Hilbert-style formalism was proposed by K. Segerberg [15] (see
also [11], [9]). Gentzen-style treatment is more involved. This is because the
syntax of PDL includes starred programs P ∗ which make finitary sequential
formalism similar to that of (say) Peano Arithmetic with induction (PA) that
allows no full cut-elimination. In the case of PA, however, there is a well-known
Schütte-style solution in the form of infinitary (also called semiformal) sequent
calculus with Carnap-style omega-rule that allows full cut elimination, provably
in PA extended by transfinite induction up to Gentzen’s ordinal ε0 (cf. [3], [14]).
By the same token, in the case of PDL, we introduce Schütte-style semiformal
one-sided sequent calculus Seqpdl

ω whose inferences include the omega-rule with
principal formulas [P ∗]A and prove cut-elimination theorem using transfinite
induction up to Veblen’s predicative ordinal ϕω (0) (that exceeds ε0, see [17],
[5]). The omega-rule-free derivations in Seqpdl

ω are finite and sequents deducible
by these finite derivations are valid in PDL. Hence by the cutfree subformula
property we conclude that any given [P ∗]-free sequent is valid in PDL iff it
is deducible in Seqpdl

ω by a finite cut- and omega-rule free derivation, which
by standard methods enables better structural analysis of the validity of [P ∗]-
free sequent involved. 1 The latter is related to computational complexity of
decision problems in PDL. Namely, the satisfiability (and hence the validity)
problem in PDL is known to be EXPTIME-complete (cf. [7], [13]). Actually
the EXPTIME-completeness holds for PDL-validity of special [P ∗]-free basic
disjunctive normal expansions (abbr.: BDNE), whose negations express that
satisfying Kripke frames encode accepting computations of polynomial-space
alternating TM. Thus the conjecture EXPTIME = PSPACE holds true iff
PDL-validity of BDNE is decidable in polynomial space. We show that cutfree-
derivability in Seqpdl

ω (and hence PDL-validity) of any given BDNE, S, is equiv-

alent to the validity of a suitable “transparent” quantified boolean formula Ŝ.
Having this we conclude that EXPTIME = PSPACE holds true iff boolean
validity of any Ŝ involved is decidable by a polynomial-space deterministic TM.
Hence EXPTIME = PSPACE holds true iff Ŝ is equivalid with another
quantified boolean formula whose size is polynomial in the size of S, for ev-
ery S ∈ BDNE. This may reduce the former problem to a more transparent
complexity problem in quantified boolean logic, which will be investigated more
deeply elsewhere. The whole proof can be formalized in PA extended by trans-
finite induction along ϕω (0) – actually in the corresponding primitive recursive
weakening, PRAϕω(0).

1cf. e.g. Gentzen-style conclusion that any given false equation n=m (in particular 0 = 1)
is not valid in PA, since obviously it has no cutfree derivation.

2

3 More detailed exposition

3.1 Hilbert-style proof system PDL

Language L

1. Programs PRO (abbr.: P , Q, R, S, possibly indexed):

(a) include P-variables π0, π1, ...(abbr.: p, q, r, possibly indexed),

(b) are closed under modal connectives ; and ∪ and star operation ∗.

2. Formulas FOR (abbr.: A, B, C, D, F , G, H, E, etc., possibly indexed):

(a) include F-variables υ0, υ1, ... (abbr.: x, y, z, possibly indexed),

(b) are closed under implication → , negation ¬ and modal operation

F ↪→ [P]F , where P ∈ PRO. 2

Axioms (cf. e.g. [15], [9]): 3

(D1) Axioms of propositional logic.
(D2) [P] (A→ B)→ ([P]A→ [P]B)
(D3) [P] (A ∧B)↔ ([P]A ∧ [P]B)
(D4) [P ;Q]A↔ [P][Q]A
(D5) [P ∪Q]A↔ [P]A ∧ [Q]A
(D7) [P ∗]A↔ A ∧ [P] [P ∗]A
(D8) [P ∗] (A→ [P]A)→ (A→ [P ∗]A)
Inference rules:

(MP)
A A→ B

B

(G)
A

[P]A

3.2 Semiformal sequent calculus SEQPDL
ω

Definition 1 The language of Seqpdl
ω includes seq-formulas and sequents.

Seq-formulas are built up from literals x and ¬x by propositional connectives ∨
and ∧ and modal operations [P] and 〈P 〉 for arbitrary P ∈ PRO. Seq-negation
F is defined recursively as follows, for any seq-formula F .

1. x := ¬x, ¬x := x,

2. A ∨B := A ∧B, A ∧B := A ∨B.

3. 〈P 〉A := [P]A, [P]A := 〈P 〉A.

4. 〈P ∪Q〉A := [P ∪Q]A, [P ∪Q]A := 〈P ∪Q〉A.
2Boolean constants are definable as usual e.g. by 1 := v0 → v0 and 0 := ¬1.
3Standard axiom (D6) : [A?]B ↔ (A→ B) is obsolete in our ?-free language.

3

5. 〈P ;Q〉A := [P ;Q]A, [P ;Q]A := 〈P ;Q〉A.

In the sequel we use abbreviations 〈P 〉m :=

m times︷ ︸︸ ︷
〈P 〉 · · · 〈P 〉 and [P]

m
:=

m times︷ ︸︸ ︷
[P] · · · [P].

For any χ ∈ {0, 1}, let (P)χ :=

{
[P] , if χ = 1,
〈P 〉 , if χ = 0.

For any
−→
P = P1, · · · , Pk

(k ≥ 0) and f : [1, k]→ {0, 1} let
(−→
P
)
f

:= (P1)f(1) · · · (Pk)f(k). By
(−→
Q
)

,
〈−→
Q
〉

and
[−→
Q
]

we abbreviate
(−→
Q
)
f

for arbitrary f , f ≡ 0 and f ≡ 1, respectively.

Formulas from FOR are represented as seq-formulas recursively by ¬F := F ,
F → G := F ∨G and, conversely, by F ∨G := ¬F → G, F ∧G := ¬ (F → ¬G),
〈P 〉F := ¬ [P]¬F . Sequents (abbr.: Γ, ∆, Π, Σ, possibly indexed) are viewed as
multisets (possibly empty) of seq-formulas. A sequent Γ = F1, · · · , Fn is called
valid iff so is the corresponding disjunction F1 ∨ · · · ∨ Fn. Plain complexity of
a given formula and/or program in L is its ordinary length (= total number of
occurrences of literals and connectives ∨, ∧ , ∪ , ; , ∗).

Definition 2 Ordinal complexity o(−) < ωω of formulas, programs and se-
quents in L is defined recursively as follows, where α++ β is the symmetric sum
of ordinals α and β.

1. o(x) = o(¬x) = o(p) := 0.

2. o(A ∨B) = o(A ∧B) := max {o(A) , o(B)}+ 1.

3. o(P ∪Q) := max {o(P) , o(Q)}+ 1, o(P ;Q) := o(P) ++ o(Q) + 1.

4. o(P ∗) := o(P) · ω, o(〈P 〉A) = o([P]A) := o(P) ++ o(A) + 1.

5. o(Γ) :=
∑
{o(A) : A ∈ Γ} .

Definition 3 Seqpdl
∞ includes the following axiom (Ax) and inference rules

(∨), (∧), 〈∪〉, [∪], 〈; 〉, [;], 〈∗〉, [∗], (Gen), (Cut) in classical one-sided sequent

formalism in the language L. In [∗] we allow
−→
Q =

[−→
Q
]

= ∅. 4 5

(Ax) x,¬x,Γ

(∨)
A,B,Γ

A ∨B,Γ
(∧)

A,Γ B,Γ

A ∧B,Γ

〈∪〉 〈P 〉A, 〈R〉A,Γ
〈P ∪R〉A,Γ

[∪]
[P]A,Γ [R]A,Γ

[P ∪R]A,Γ

〈; 〉 〈P 〉〈R〉A,Γ
〈P ;R〉A,Γ

[;]
[P][R]A,Γ

[P ;R]A,Γ

4We assume that all rules exposed have nonempty premises.
5[∗] has infinitely many premises. Ii is called the ω-rule.

4

〈∗〉

〈−→
Q
〉
〈P 〉mA,

〈−→
Q
〉
〈P ∗〉A,Γ〈−→

Q
〉
〈P ∗〉A,Γ

(m ≥ 0)

[∗]
· · ·

[−→
Q
]
[P]

m
A,Γ · · · (∀m ≥ 0)[−→

Q
]
[P ∗]A,Γ

(Gen)
A1, · · · , An

(p)χ1
A1, · · · , (p)χnAn,Γ

(n > 0)

if
n∑
i=1

χi = 1.

(Cut)
C,Γ C,Π

Γ ∪Π

For the sake of brevity we’ll drop “seq-” when referring to seq-formulas of
Seqpdl

ω . Γ is called derivable in Seqpdl
ω if there exists a (tree-like, possibly infi-

nite) Seqpdl
ω derivation ∂ with the root sequent Γ (abbr.: (∂ : Γ)). We assume

that Seqpdl
ω derivations are well-founded. The simplest way to implement this

assumption is to supply nodes x in ∂ with ordinals ord (x) such that ordinals
of premises are always smaller that the ones of the corresponding conclusions.
Having this we let h (∂) := ord (root (∂)) and call it the height of ∂.

In Seqpdl
ω , formulas occurring in Γ and/or Π are called side formulas, whereas

other (distinguished) ones are called principal formulas, of axioms or inference
rules exposed. These axioms and inferences, in turn, are called principal with
respect to their principal formulas. Principal formulas of (Cut) are also called
the corresponding cut formulas. We’ll sometimes specify (Gen) as (Gen)P to
indicate principal program P involved.

Theorem 4 (soundness and completeness) Seqpdl
ω is sound and complete

with respect to PDL. Moreover any PDL-valid sequent (in particular formula)
is derivable in Seqpdl

ω using ordinals < ω + ω =: ω · 2.

Proof. The soundness says that any sequent Γ that is derivable in Seqpdl
ω

is valid in Kripke-style semantics of PDL. It is proved by transfinite induction
on h (∂) of well-founded (∂ : Γ) involved. 6 Actually it suffices to verify that
every inference rule of Seqpdl

ω preserves Kripke validity, which is easy (we omit
the details; see also Remark 5 below).

The completeness is proved by deducing in Seqpdl
ω the axioms and inferences

(D1)− (D5), (D7) , (D8), (MP), (G) of PDL.
(D1) is deducible by standard method via extended axiom (Ax)

+
: F, F ,Γ

whose finite cutfree derivation is constructed by recursion on plain complexity
of F (in particular we pass by (Gen) from A,A to [P]A, 〈P 〉A,Γ).

6Plain (finite) induction is sufficient for [∗]-free derivations.

5

(D4) and (D5) are trivial, while (D2), (D3) , (D7) , (D8) are derivable as
follows.

(D2) : [P] (A→ B)→ ([P]A→ [P]B)
L≡ 〈P 〉

(
A ∧B

)
∨ 〈P 〉A ∨ [P]B.

(Ax)+

A,A,B
(Ax)+

B,A,B

A ∧B,A,B
(∧)

〈P 〉
(
A ∧B

)
, 〈P 〉A, [P]B

(Gen)

〈P 〉
(
A ∧B

)
∨ 〈P 〉A ∨ [P]B

(∨)

(D3) : [P] (A ∧B)↔ ([P]A ∧ [P]B)
L≡
(
〈P 〉

(
A ∧B

)
∨ ([P]A ∧ [P]B)

)
∧
(
[P] (A ∧B) ∨ 〈P 〉A ∨ 〈P 〉B

)
.

(Ax)+

A,B,A

A ∨B,A
(∨)

〈P 〉
(
A ∨B

)
, [P]A

(Gen)

(Ax)+

A,B,B

A ∨B,B
(∨)

〈P 〉
(
A ∨B

)
, [P]B

(Gen)

〈P 〉
(
A ∨B

)
, [P]A ∧ [P]B

〈P 〉
(
A ∨B

)
∨ ([P]A ∧ [P]B)

(∨) &

(Ax)+

A,A,B
(Ax)+

B,A,B

A ∧B,A,B
(∧)

[P] (A ∧B) , 〈P 〉A, 〈α〉B
(Gen)

[P] (A ∧B) ∨ 〈P 〉A ∨ 〈P 〉B
(∨)

(D7) : [P ∗]A↔ A ∧ [P] [P ∗]A
L≡
(
〈P ∗〉A ∨ (A ∧ [P][P ∗]A)

)
∧
(
[P ∗]A ∨A ∨ 〈P 〉〈P ∗〉A

)
.

(Ax)+

A, 〈P ∗〉A,A
〈P ∗〉A,A

〈∗〉

〈P ∗〉A ∨A
(∨)

(Ax)+

〈P 〉m+1
A, 〈P ∗〉A, [P]

m+1
A

· · · 〈P ∗〉A, [P]
m+1

A · · ·
〈∗〉

〈P ∗〉A, [P][P ∗]A
[∗]

〈P ∗〉A ∨ [P][P ∗]A
(∨)

〈P ∗〉A ∨ (A ∧ [P][P ∗]A)
(∧) &

(Ax)
+

A,A, 〈P 〉〈P ∗〉A

(Ax)+

[P]
m+1

A,A, 〈P 〉m+1
A, 〈P 〉〈P ∗〉A

[P]
m+1

A,A, 〈P 〉〈P ∗〉A · · ·
〈∗〉

[P ∗]A,A, 〈P 〉〈P ∗〉A
[∗]

[P ∗]A ∨A ∨ 〈P 〉〈P ∗〉A
(∨)

(D8) : [P ∗] (A→ [P]A)→ (A→ [P ∗]A)
L≡ 〈P ∗〉

(
A ∧ 〈P 〉A

)
∨A ∨ [P ∗]A.

6

· · ·

∂m
⇓

〈P ∗〉
(
A ∧ 〈P 〉A

)
, A, [P]

m
A · · ·

〈P ∗〉
(
A ∧ 〈P 〉A

)
, A, [P ∗]A

[∗]

〈P ∗〉
(
A ∧ 〈P 〉A

)
∨A ∨ [P ∗]A

(∨) , where:

∂0 = 〈P ∗〉
(
A ∧ 〈P 〉A

)
, A,A (Ax)

+

∂1 =

(Ax)+

A, 〈P ∗〉
(
A∧〈P 〉A

)
, A, [P]A

(Ax)+

〈P 〉A, 〈P ∗〉
(
A∧〈P 〉A

)
, A, [P]A

A ∧ 〈P 〉A, 〈P ∗〉
(
A ∧ 〈P 〉A

)
, A, [P]A

(∧)

〈P ∗〉
(
A ∧ 〈P 〉A

)
, A, [P]A

〈∗〉

∂2 =

(Ax)
+

A,A, (· · ·)

(Ax)+

A,A, PA
(Ax)+

A, 〈P 〉A, [P]A

A,A ∧ 〈P 〉A, [P]A
(∧)

〈P 〉A, 〈P 〉
(
A ∧ 〈P 〉A

)
, [P]2A, (· · ·)

(Gen)

A ∧ 〈P 〉A, 〈P 〉
(
A ∧ 〈P 〉A

)
, (· · ·) , A, [P]2A

(∧)

〈P ∗〉
(
A ∧ 〈P 〉A

)
, A, [P]

2
A

〈∗〉

etc. via (∧), 〈∗〉 and (Gen).

Obviously these derivations don’t use (Gen) and require ordinal assignments
< ω+ω. Seqpdl

ω inferences (MP) and (G) are obviously derivable by (Cut) and
(Gen), respectively. These increase ordinals by one, which makes an arbitrary
Hilbert-style PDL deduction interpretable as a Seqpdl

ω derivation of the height
< ω · 2, as required.

Remark 5 The validity of (Gen) also follows from that of (D1), (D2), (D3)
and plain generalzation (G), e.g. like this:

A1, A2, · · · , An
L≡ A1 ∨A2 ∨ · · · ∨An

[P](A1 ∨A2 ∨ · · · ∨An)
L≡ [P](¬ (A2 ∨ · · · ∨An)→A1) ⇒

(D2)

[P](¬ (A2∨ · · ·∨An)→ [P]A1)
L≡ [P]A1∨〈P 〉(A2∨· · ·∨An)

⇒
(D1)

[P]A1 ∨ 〈P 〉(A2 ∨ · · · ∨An) ∨ Γ ⇒
(D3)

[P]A1∨〈P 〉A2∨· · ·∨〈P 〉An∨Γ
L≡ [P]A1,〈P 〉A2,· · · , 〈P 〉An,Γ

(G)

7

3.3 Cut elimination procedure

3.3.1 Auxiliary sequent calculus SEQPDL
ω+

Definition 6 Seqpdl
ω+ is a modification of Seqpdl

ω that includes the following
upgraded inferences 〈∪〉, [∪], 〈; 〉, [;].

〈∪〉

〈−→
Q
〉
〈P 〉A,

〈−→
Q
〉
〈R〉A,Γ〈−→

Q
〉
〈P ∪R〉A,Γ

[∪]

[−→
Q
]
[P]A,Γ

[−→
Q
]
[R]A,Γ[−→

Q
]
[P ∪R]A,Γ

〈 ; 〉

〈−→
Q
〉
〈P 〉〈R〉A,Γ〈−→

Q
〉
〈P ;R〉A,Γ

[;]

[−→
Q
]
[P][R]A,Γ[−→

Q
]
[P ;R]A,Γ

Obviously these upgrades are still sound in PDL and cut-free derivable in
Seqpdl

ω . Hence Seqpdl
ω and Seqpdl

ω+ are proof theoretically equivalent.

3.3.2 Derivable refinements

Lemma 7 The following inferences are derivable in Seqpdl
ω+ minus (Cut). More-

over, for any inversion
(∂ : ∆)

(∂	 : Γ)
involved we have h (∂) < h (∂) + ω. In(−−→

Gen
)

we assume that
−→
P = P1, · · · , Pk (k > 0), f1, · · · , fn : [1, k] → {0, 1}

and (∀j ∈ [1, k])
n∑
i=1

fi (j) = 1. Note that (Gen) is a particular case of
(−−→
Gen

)
.

(W)
Γ

Γ,Π
(weakening) (C)

A,A,Γ

A,Γ
(contraction)

(∨)
	 A ∨B,Γ

A,B,Γ
(∧)

	
1

A ∧B,Γ
A,Γ

(∧)
	
2

A ∧B,Γ
B,Γ

〈∪〉	
〈−→
Q
〉
〈P ∪R〉A,Γ〈−→

Q
〉
〈P 〉A,

〈−→
Q
〉
〈R〉A,Γ

[∪]
	
1

[−→
Q
]
[P ∪R]A,Γ[−→
Q
]
[P]A,Γ

[∪]
	
2

[−→
Q
]
[P ∪R]A,Γ[−→
Q
]
[R]A,Γ

〈 ; 〉	
〈−→
Q
〉
〈P ;R〉A,Γ〈−→

Q
〉
〈P 〉〈R〉A,Γ

[;]
	

[−→
Q
]
[P ;R]A,Γ[−→

Q
]
[P][R]A,Γ

8

[∗]	
[−→
Q
]
[P ∗]A,Γ[−→

Q
]
[P]

m
A,Γ

(m ≥ 0)

(−−→
Gen

) A1, · · · , An(−→
P
)
f1

A1, · · · ,
(−→
P
)
fn
An,Γ

(n > 0)

Proof. Induction on proof height and/or formula complexity. Cases (W),
(C) are standard. Note that (C) with principal (Gen) is trivial, e.g.

∂ :
(∂1 : A,A,B)

〈P 〉A, 〈P 〉A, [P]B,Γ
(Gen) ↪→ ∂C :

(
∂C1 : A,B

)
〈P 〉A, [P]B,Γ

(Gen) .

Case
(−−→
Gen

)
is an obvious iteration of (Gen).

Cases (∨)
	

, (∧)
	
1 , (∧)

	
2 are standard (and trivial) boolean inversions.

Case 〈∪〉	 ([∪]
	

analogous). We omit trivial case of principal inversion of
〈∪〉 and show only the crucial cases of principal (Gen) (in simple form):

∂ :
(∂1 : A,B,C)

〈P ∪R〉A, 〈P ∪R〉B, [P ∪R]C,Γ
(Gen) ↪→ ∂〈∪〉

	
:

(Gen)P
(∂1 : A,B,C)

〈P 〉A,〈R〉A,〈P 〉B,〈R〉B,[P]C,Γ

〈P 〉A,〈R〉A,〈P∪R〉B,[P]C,Γ
〈∪〉

(∂1 : A,B,C)

〈P 〉A,〈R〉A,〈P 〉B,〈R〉B,[R]C,Γ
(Gen)R

〈P 〉A,〈R〉A,〈P∪R〉B,[R]C,Γ

〈P 〉A,〈R〉A,〈P∪R〉B,[P∪R]C,Γ
[∪] ,

∂ :
(∂1 : 〈P ∪R〉A,B)

〈Q〉〈P ∪R〉A, [Q]B,Γ
(Gen) ↪→

∂〈∪〉
	

:

(
∂
〈∪〉	
1 : 〈P 〉A, 〈R〉A,B

)
〈Q〉〈P 〉A, 〈Q〉〈R〉A, [Q]B,Γ

(Gen) .

Case 〈 ; 〉	 ([;]
	

analogous). As above, we omit trivial case of principal
inversion of 〈 ; 〉 and show the crucial cases of principal (Gen) (in simple form):

∂ :
(∂1 : A,B,C)

〈P ;R〉A, 〈P ;R〉B, [P ;R]C,Γ
(Gen) ↪→

∂〈;〉
	

:

(∂1 : A,B,C)

〈P 〉〈R〉A, 〈P 〉〈R〉B, [P][R]C,Γ

(−−→
Gen

)
R,P

〈P 〉〈R〉A, 〈P ;R〉B, [P][R]C,Γ
〈; 〉

〈P 〉〈R〉A, 〈P ;R〉B, [P ;R]C,Γ
[;] ,

∂ :
(∂1 : 〈P ;R〉A,B,C)

〈Q〉〈P ;R〉A, 〈Q〉B, [Q]C,Γ
(Gen) ↪→

9

∂〈;〉
	

:

(
∂
〈;〉	
1 : 〈P 〉〈R〉A,B,C

)
〈Q〉〈P 〉〈R〉A, 〈Q〉B, [Q]C,Γ

(Gen) .

Case [∗]	 is analogous to (∧)
	
i , via trivial inversion of [∗]:

∂ :
(∂1 : A,B)

[P ∗]A, 〈P ∗〉B,Γ
(Gen) ↪→

∂[∗]	 :

(∂1 : A,B)

[P]
m
A, 〈P 〉mB, 〈P ∗〉B,Γ

(−−→
Gen

)
P · · ·P︸ ︷︷ ︸

m

[P]
m
A, 〈P ∗〉B,Γ

〈∗〉 ,

∂ :

(
∂1 :

[−→
R
]
[P ∗]A,B

)
[Q]
[−→
R
]
[P ∗]A, 〈Q〉B,Γ

(Gen) ↪→

∂[∗]	 :

(
∂

[∗]	
1 :

[−→
R
]
[P]

m
A,B,Γ

)
[Q]
[−→
R
]
[P]

m
A, 〈Q〉B,Γ

(Gen) .

Note that (W), (C), (∨)
	

, (∧)
	
1 , (∧)

	
2 don’t increase derivation heights.

3.3.3 Cut elimination proper

We adapt familiar predicative cut elimination techniques ([14], [4], [12], [8], [2]).

Theorem 8 (Predicative cut elimination) The following is provable in PA
extended by transfinite induction up to Veblen-Feferman ordinal ϕω(0) > ε0.
Any sequent derivable in Seqpdl

ω is derivable in Seqpdl
ω+ minus (Cut). Hence

any PDL-valid sequent (formula) is derivable in the cut-free fraction of Seqpdl
ω+ ,

and hence also in Seqpdl
ω minus (Cut).

Proof. Our cut elimination operator ∂ ↪→ E (∂) satisfying deg (E (∂)) = 0 is
defined for any derivation ∂ in Seqpdl

ω+ by simultaneous transfinite recursion on
h (∂) and ordinal cut-degree deg (∂).

deg (∂) := max {0, sup {o(C) + 1 : C occurs as cut formula in ∂}}

Namely, for any inference rule (R) 6= (Cut) with

(∂ : Γ) =
(∂1 : Γ1)

Γ
(R) , (∂ : Γ) =

(∂1 : Γ1) (∂2 : Γ2)

Γ
(R)

or (∂ : Γ) =
· · · (∂m : Γm) · · · {m ≥ 0}

Γ
(R) = [∗]

10

we respectively let

(E(∂) :Γ)=
(E(∂1) : Γ1)

Γ
(R) or (E(∂) :Γ)=

(E(∂1) : Γ1) (E(∂2) : Γ2)

Γ
(R)

or (E(∂) : Γ) =
· · · (E(∂m) : Γm) · · · {m ≥ 0}

Γ
[∗] .

Otherwise, if (R) = (Cut) with

(∂ : Γ ∪Π) =
(∂1 : C,Γ)

(
∂2 : C,Π

)
Γ ∪Π

(Cut)

then we stipulate

(E(∂) : Γ ∪Π) =

(
E

(
R

(
(E(∂1) : C,Γ)

(
E(∂2) : C,Π

)
Γ ∪Π

(Cut)

))
: Γ ∪Π

)

with respect to a suitable cut reduction operation ∂ ↪→ R (∂) such that

deg (R (∂)) < deg (∂) if deg (∂1) = deg (∂2) = 0 ,

which makes E(∂), deg (E (∂)) = 0, definable by induction on deg (∂) and h (∂).
Now R (∂) is defined for any

(∂ : Γ ∪Π) =
(∂1 : C,Γ)

(
∂2 : C,Π

)
Γ ∪Π

(Cut)

by following double induction on ordinal complexity of C and max (h (∂1) , h (∂2)),
provided that deg (∂1) = deg (∂2) = 0.

1. Case C = L and C = L for L ∈ {x,¬x}. This case is standard. Namely,
L is principal left-hand side cut formula only if (∂1 : L,Γ) for Γ = L,Γ′. But
then

(
∂2 : L,Π

)
infers Γ ∪ Π = L,Γ′,Π by derivable weakening (W). That is,

graphically speaking, R (∂) is bottom up constructed by (1) substituting Π for
every side formula predecessor of the cut formula L while ascending ∂1 up to
its disappearance due to (Gen) or else principal appearance in (Ax) L,L,Γ′

followed by (2) adding Γ′ to every side formula predecessor of the cut formula
L while ascending ∂2.

2. Case C = A∨B and C = A∧B. Use derivable inversions (∨)
	
, (∧)

	
1 , (∧)

	
2 :

∂ :
(∂1 : A ∨B,Γ)

(
∂2 : A ∧B,Π

)
Γ ∪Π

(Cut) ↪→

R (∂) :=

(
∂

(∨)	

1 : A,B,Γ
) (

∂
(∨)	1
2 : A,Π

)
B,Γ ∪Π

(Cut) (
∂

(∨)	2
2 : B,Π

)
Γ ∪Π

(Cut) .

11

3. Case C =
〈−→
Q
〉
〈P ∪R〉A and C =

[−→
Q
]
[P ∪R]A. Analogous reduction to

(Cut)’s on
〈−→
Q
〉
〈P 〉A and

〈−→
Q
〉
〈R〉A by derivable inversions 〈∪〉	, [∪]

	
1 , [∪]

	
2 .

4. Case C =
〈−→
Q
〉
〈P ;R〉A and C =

[−→
Q
]
[P ;R]A. Immediate reduction to

(Cut) on
〈−→
Q
〉
〈P 〉〈R〉A by derivable inversions 〈 ; 〉	, [;]

	
.

5. Case C =
〈−→
Q
〉
F and C =

[−→
Q
]
F where

−→
Q = Q1 · · ·Qn (n > 0) and

(∀j ∈ [1, n])
(
Qj= pj or Qj = P ∗j

)
, while F 6= 〈Q〉F ′. The reduction is either

trivial, if ∂1 = (Ax)
+

, or else defined hereditarily with respect to left-hand side

non-principal subcases like

∂1 :
(∂′1 : C,Γ′)

C,Γ
(R) with ∂2 : [p]A,Π, when we let

R (∂) :=
(R (∂′) : Γ′ ∪Π)

Γ ∪Π
(R) for ∂′ :

(∂′1 : C,Γ′)
(
∂2 : C,Π

)
Γ′ ∪Π

(Cut) ,

or analogous non-principal subcases ∂1 :
(∂′1 : C,Γ′) (∂′′1 : C,Γ′′)

C,Γ
(R) ,

∂1 :
· · ·

(
∂(m) : C,Γ(m)

)
· · · (∀m ≥ 0)

C,Γ
[∗] ,

as well as the following principal subcases 5 (a), 5 (b), 5 (c).

5 (a). C =
〈−→
Q
〉
F =

〈−→
Q′
〉
〈P ∗〉A and

∂1 :

(
∂′1 :

〈−→
Q′
〉
〈P 〉mA,

〈−→
Q′
〉
〈P ∗〉A,Γ

)
〈−→
Q′
〉
〈P ∗〉A,Γ

〈∗〉 with ∂2 :
[−→
Q′
]
[P ∗]A,Π. Let

R (∂) :=(
R (∂′) :

〈−→
Q′
〉
〈P 〉mA,Γ ∪Π

) (
∂

[∗]�
2 :

[−→
Q′
]
[P]mA,Π

)
Γ ∪Π

(Cut) where

∂′ :

(
∂′1 :

〈−→
Q′
〉
〈P 〉mA,

〈−→
Q′
〉
〈P ∗〉A,Γ

) (
∂2 :

[−→
Q′
]
[P ∗]A,Π

)
〈−→
Q′
〉
〈P 〉mA,Γ ∪Π

(Cut) .

5 (b). C =
〈−→
Q
〉
F = 〈P ∗〉A and

∂1 :

(
∂′1 : A,

−→
B,D

)
〈P ∗〉A, 〈P ∗〉

−→
B, [P ∗]D,Γ′

= 〈P ∗〉A,Γ

(Gen) with ∂2 : [P ∗]A,Π. Then let

12

R (∂) :=
· · ·

(
∂′′m : 〈P ∗〉

−→
B, [P]mD,Γ′ ∪Π

)
· · · (∀m ≥ 0)

〈P ∗〉
−→
B, [P ∗]D,Γ′ ∪Π

= Γ ∪Π

[∗] where

∂′′m := (
∂′1 : A,

−→
B,D

)
〈P 〉mA, 〈P 〉m

−→
B, [P]mD, 〈P ∗〉

−→
B,Γ′

(−−→
Gen

) (
∂

[∗]�
2 : [P]mA,Π

)
〈P 〉m

−→
B, 〈P ∗〉

−→
B, [P]mD,Γ′ ∪Π

(Cut)

〈P ∗〉
−→
B, [P]mD,Γ′ ∪Π

〈∗〉 .

5 (c). C =
〈−→
Q
〉
F = 〈p〉A and

∂1 :

(
∂′1 : A,

−→
B,D

)
〈p〉A, 〈p〉

−→
B, [p]D,Γ′

= 〈p〉A,Γ

(Gen) with ∂2 : [p]A,Π. Then we let

R (∂) :=

(
R′ (∂′1, ∂2) : 〈p〉

−→
B, [p]D,Π

)
〈p〉
−→
B, [p]D,Γ′ ∪Π

= Γ ∪Π

(W) ,

where R′ (∂′1, ∂2) is defined by induction on h (∂2) – either trivially, if ∂2 =
(Ax)

+
, or hereditarily, in the non-principal subcases, while in the principal

subcases

∂2 :

(
∂′2 : A,

−→
G
)

[p]A, 〈p〉
−→
G,Π′

= [p]A,Π

(Gen) and ∂2 :

(
∂′2 :
−→
G,H

)
[p]A, 〈p〉

−→
G, [p]H,Π′′

= [p]A,Π

(Gen)

we respectively let

R′ (∂1, ∂2):=

(
∂′1 : A,

−→
B,D

) (
∂′2 : A,

−→
G
)

−→
B,D,

−→
G

〈p〉
−→
B, [p]D, 〈p〉

−→
G,Π′

= 〈p〉
−→
B, [p]D,Π

(Gen)

(Cut) and

R′ (∂1, ∂2) :=

(
∂′2 :
−→
G,H

)
〈p〉
−→
G, [p]H, 〈p〉

−→
B, [p]D,Π′′

= 〈p〉
−→
B, [p]D,Π

(Gen) , as desired.

Obviously R reduces the cut degree of ∂. That is, in each case 1–5 we
have deg (R (∂)) < deg (∂) < ωω, provided that both ∂1 and ∂2 involved are

13

cutffree. Moreover it’s readily seen that nodes in R (∂) can be augmented with
ordinals such that

h (R (∂)) < h (∂1) ++ h (∂2) + ω < h (∂) · 2 + ω .

Having this one can define ordinal assignments also for (slightly modified) cut-
free derivations E (∂) such that for any ∂ with deg (∂) < ωα it holds

h (E (∂)) < ϕ (α, h (∂)) ,

which for deg (∂) < ωω and h (∂) < ω · 2 (cf. Theorem 4) yields

h (E (∂)) < sup
n<ω

ϕ (n, ω · 2) = ϕ (ω, 0) = ϕω(0)

(see Appendix A for a detailed presentation). It is readily seen that the entire
proof is formalizable in PAϕω(0), i.e. PA extended by schema of transfinite
induction along (canonical primitive recursive representation of) ordinal ϕω(0).
7

Corollary 9 Let Γ be any sequent that does not contain occurrences [P ∗] and
suppose that Γ is derivable in Seqpdl

ω . Then Γ is derivable in a subsystem of
Seqpdl

ω , called Seqpdl
1 , that does not contain inferences [∗] and/or (Cut). Note

that every derivation in Seqpdl
1 is finite. Consequently, any given [P ∗]-free

seq-formula is valid in PDL iff it is derivable in Seqpdl
1 .

Proof. This is obvious by the subformula property of cutfree derivations.

Remark 10 Here and below we argue in PAϕω(0) that is a proper extension
of PA, as ϕω (0) > ε0. Actually by standard arguments the whole proof is
formalizable in the corresponding primitive recursive weakening, PRAϕω(0).

3.4 Herbrand-style conclusions

Let L0 be the star-free sublanguage of L. Denote by Seqpdl
0 the (finite) L0-

subsystem of Seqpdl
1 .

Theorem 11 Let Σ = 〈P ∗〉A,Π with A,Π ∈ L0. Suppose that Σ is derivable

in Seqpdl
ω . Then there exists a k ≥ 0 such that Σ̂k := A, 〈p〉A, · · · , 〈p〉kA,Π is

derivable in Seqpdl
0 .

Proof. The nontrivial implication Seqpdl
ω ` Σ ⇒ Seqpdl

0 ` Σ̂k follows
by standard arguments from the cut elimination theorem by induction on the
height of the corresponding finite cutfree proof ∂ of Σ in Seqpdl

ω . Since no [P ∗]

7ϕω(0) = D
(
ωΩ+ω

)
according to ordinal notations used in [8].

14

occurs in Σ, no 〈P ∗〉A can be principal formula in (Gen). Thus the only crucial
case is when some 〈P ∗〉A is principal formula in

〈∗〉 〈P
∗〉A, 〈P 〉mA,Σ
〈P ∗〉A,Σ

which by the induction hypothesis yields k such that 〈P 〉mA, Σ̂k is derivable in

Seqpdl
0 . By (C) or (W) this yields the derivability of Σ̂k′ for k′ := max (k,m).

Remark 12 By the same token, for any [P ∗]-free seq-formula F , one can suc-

cessively replace all subformulas 〈P ∗〉A by appropriate disjunctions
k∨
i=0

〈P 〉iA

such that F is PDL-valid iff the resulting expansion F̂ is derivable in Seqpdl
0 .

3.4.1 PSPACE refinement

Denote by L01 a sublanguage of L0 containing only atomic programs p = πi and
let L00 be the PRO-free fraction of L01. Note that program operations “;” and
“∪” are definable in L01 via (P ;Q)A := (P)(Q)A, 〈P ∪Q〉A := 〈P 〉A ∨ 〈Q〉A
and [P ∪Q]A := [P]A ∧ [Q]A. Let Seqpdl

01 be the following L01-restriction of
Seqpdl

0 (that proves the same L01-sequents as Seqpdl
0).

(Ax) x,¬x,Γ

(∨)
A,B,Γ

A ∨B,Γ
(∧)

A,Γ B,Γ

A ∧B,Γ

(Gen)
A1, · · · , An

(p)χ1
A1, · · · , (p)χnAn,Γ

(n > 0)

if
n∑
i=1

χi = 1.

Note that any L00-formula A is derivable in Seqpdl
01 iff it is valid in propositional

logic, and hence, by contraposition, Seqpdl
01 0 A iff |= ¬A (i.e. ¬A is satisfiable).

Lemma 13 (p -inversion) Suppose that [p]A1, · · · , [p]Aj , 〈p〉B1, · · · , 〈p〉Bk,Γ,
where Γ=(q1)C1, · · · , (ql)Cl,Π for qj 6= p, and Π ∈ L00, is derivable in Seqpdl

01 .
Then so is either Γ or Ai, B1, · · · , Bk, for some i ∈ [1, j], without increasing the
height of the former derivation.

Proof. By straightforward induction on the derivation height. In the crucial
principal case we have

(Gen)
Ai,∆

[p]A1, · · · , [p]Ak, 〈p〉B1, · · · , 〈p〉Bl

15

where 0 < i ≤ k and ∆ ⊆ B1, · · · , Bl, which by derivable (W) yields the

required derivability of Ai, B1, · · · , Bl.

Theorem 14 The derivability in Seqpdl
01 is a PSPACE problem.

Proof. For the sake of brevity we consider L01 formulas containing at most
one atomic program p = π0. Furthermore, we refine the notion of Seqpdl

01

derivability by asserting that a sequent ∆ 6= (Ax) is the conclusion of a rule
(R) if one of the following priority conditions 1–3 is satisfied.

1. (R) = (∨).

2. (R) = (∧) and no disjunction A∨B occurs as formula in ∆; thus ∆ is not
a conclusion of any (∨).

3. No disjunction A∨B or conjunction A∧B occurs as formula in ∆. Thus
∆ is not a conclusion of any (∨) or (∧), i.e. ∆ = (p)ξ1

F1, · · · , (p)ξnFn for
n∑
i=1

ξi ≥ 1. In this case we stipulate that ∆ is the conclusion of (R) if one

of the following two conditions holds:

(a)
n∑
i=1

ξi = 1 and F1, · · · , Fn is the premise of (R) = (Gen).

(b)
n∑
i=1

ξi > 1 and there exists j ∈ [1, n] with ξj = 1 such that either

∆(j) := Fj ∪{Fl ∈ ∆ : ξl = 0} or ∆(−j) := ∆ \ {Fj} is the premise of
(R). (Note that we have (R) = (Gen) and (R) = (W) in the former
and in the latter case, respectively.)

Having this we consider derivations in the refined Seqpdl
01 as at most binary-

branching trees ∂ whose nodes are labeled with sequents of L01. Actually, for
any given L01-sequent Σ it will suffice to fix one distinguished proof search tree
∂0 with root sequent Σ that is defined by bottom-up recursion while applying
the conditions 1–3 in a chosen order as long as possible. It is readily seen by
inversions in Lemmata 7, 13 that Σ is derivable in Seqpdl

01 iff ∂0 proves Σ, i.e.
every maximal path in ∂0 is locally correct with respect to 1–3. Moreover,
by the obvious subformula property we conclude that the depth, d (∂0), and
maximum sequent length, max {|∆| : ∆ ∈ ∂0}, of ∂0 are both proportional to
|Σ|. Hence every maximal path in ∂0 can be encoded by a L01-string of the
length proportional to |Σ| whose local correctness is verifiable by TM in O (|Σ|)
space. The corresponding universal verification runs by counting all maximal
paths successively, still in O (|Σ|) space, which completes the proof.

Remark 15 Arguing along more familiar lines we can turn ∂0 into a Boolean
circuit with (binary) AND, OR and (unary) ID gates, where ID(x) := x for
x ∈ {0, 1}, such that AND, OR and ID correspond to the above conditions 2,

16

3 (b) and 1 and/or 3 (a), respectively. The corresponding truth evaluations
val (−) are defined as usual via val (∆) := 1 (true) iff ∆ = (Ax), for every leaf
∆. Then val (Σ) = 1 iff ∂0 proves Σ, as required. 8

3.4.2 Special cases

Recall that by (a particular case of) Theorem 11, for any Σ = 〈p∗〉A,Π with
A ∈ L01,Π ∈ L00 the following holds. Suppose that Σ is derivable in Seqpdl

ω .

Then there exists a k ≥ 0 such that Σ̂k := A, 〈p〉A, · · · , 〈p〉kA,Π is derivable in
Seqpdl

01 . It turns out that in some cases it’s possible to estimate the minimum

k and hence the corresponding
∣∣∣Σ̂k∣∣∣.

Definition 16 Let p = π0 be fixed. Call basic conjunctive normal form (abbr.:

BCNF) any L01-formula
m∧
i=1

(
Bi ∨ 〈p〉Ci ∨

ni∨
j=1

[p]Di,j

)
for m > 0, ni ≥ 0 and

Bi, Ci, Di,j ∈ L00 ∪ {∅}. Formulas 〈p∗〉A ∨ Z for A ∈ BCNF and Z ∈L00 are
called basic conjunctive normal expressions (abbr.: BCNE).

Theorem 17 Let A =
m∧
i=1

(
Bi ∨ 〈p〉Ci ∨

ni∨
j=1

[p]Di,j

)
∈ BCNF, k ≥ 0, Âk :=

A, 〈p〉A, · · · , 〈p〉kA and Σ̂k := Âk,Π for Π ∈ L00. If Σ̂k is derivable in Seqpdl
01

then so is Σ̂n+1 too, where n =
m∑
i=1

ni.

Proof. For i ∈ [1,m] let ∆i := {[p]Di,j : 1 ≤ j ≤ ni}. So Lemma 13 yields

` Σ̂0 ⇔ ` A,Π⇔
m∧
i=1

` Bi, 〈p〉Ci,∆i,Π

⇔

(
m∧
i=1

)` Bi,Π ∨
 ni∨
j=1

 ` Ci, Di,j

where “ `” stands for “ Seqpdl

01 `”, and hence

0 Σ̂0 ⇔ 0 A,Π⇔
(
m∨
i=1

)(
0 Bi,Π ∧

(
ni∧
j=1

)
0 Ci, Di,j

)
.

By the same token, for any s ≥ 0 we let 〈p〉Âs := 〈p〉 (A ∨ 〈p〉A ∨ · · · ∨ 〈p〉sA)

8This proof is dual to familiar proof of polynomial space solvability of QSAT (cf. e,g. [10]).

17

and arrive at

` Σ̂s+1 ⇔ ` Âs+1,Π⇔ ` A, 〈p〉Âs,Π

⇔
m∧
i=1

` Bi, 〈p〉Ci,∆i, 〈p〉Âs,Π

⇔

(
m∧
i=1

)` Bi,Π ∨
 ni∨
j=1

 ` Âs, Ci, Di,j

which yields

0 Σ̂s+1 ⇔ 0 Âs+1,Π⇔
(
m∨
i=1

)(
0 Bi,Π ∧

(
ni∧
j=1

)
0 Âs, Ci, Di,j

)
.

Thus for any k ≥ 0, the assertion 0 Σ̂k is equivalent to the existence of a labeled
rooted refutation tree Tk of the height k + 1 such that the following conditions
1–3 hold, where sequents ` (x) are the labels of x ∈ Tk (ρ being the root).

1. ` (ρ) = Π.

2. 0 ` (x) holds for every leaf x ∈ Tk.

3. For any inner node x ∈ Tk there exists i ∈ [1,m] such that x has mi + 1
ordered children: x0 (the son) with label ` (x0) = Bi, ` (x) and x1, · · · , xmi
(the daughters) labeled ` (xj) = Ci, Di,j , respectively; moreover xj (j ≥ 0)
is a leaf iff it is either a son or else a daughter of the depth k + 1.

Since daughters are subsequents of their sons, condition 2 is equivalent to

2*. 0 ` (x) holds for every node x ∈ Tk.

Now if k ≤ n+ 1 then Σ̂k ⊆ Σ̂n+1, and hence ` Σ̂k implies ` Σ̂n+1. Further-

more, from 0 Σ̂n+1 we’ll infer (∀s > n) 0 Σ̂s and conclude by contraposition

that (∃k) ` Σ̂k implies (in fact is equivalent to) ` Σ̂n+1, as required. So assume

0 Σ̂n+1. We prove the existence of the refutation trees Ts, s > n, by recursion
on s. Basis case k = n+1 holds by the assumption. To pass from Ts to Ts+1 we
argue as follows. Let x ∈ Ts be any leaf-daughter and θ = (ρ, y1, · · · , ys = x)
the corresponding maximal path, in Ts. Since θ contains at most n < s different
labels ` (yı) = Ci, Di,j (i ∈ [1,m], j ∈ [1, ni]), there exist a (say, minimal) pair
0 < r < t < s such that ` (yr) = ` (yt). Let T(s,x,r,t) be a tree that arises from
Ts by substituting its subtree rooted in yr for a one rooted in yt. T(s,x,r,t) is

higher than Ts – so let T
(x)
s+1 be a subtree of T(s,x,r,t) consisting of the nodes

of the depths ≤ s + 1. Proceeding this way successively with respect to all
leaf-daughters x ∈ Ts while keeping in mind condition 2* we eventually obtain
a refutation tree Ts+1 of the height s+ 1, as required.

By Remark 10 and Theorem 11, the following are provable in PRAϕω(0).

18

Corollary 18 Let A ∈ BCNF, n and Π be as above. Then Σ := 〈p∗〉A,Π is

derivable in Seqpdl
ω iff Σ̂n+1 := Ân+1,Π is derivable in Seqpdl

01 .

Corollary 19 Let S ∈ BCNE. Problem PDL ` S, i.e. PDL-validity of S, is

solvable by deterministic TM in O
(
|S|2

)
space.

Proof. For A as above we have n < |A|, and hence
∣∣∣Ân+1

∣∣∣ = O
(
|A|2

)
. This

yields
∣∣∣Ân+1, Z

∣∣∣ = O
(
|A|2 + |Z|

)
= O

(
|S|2

)
. Now by Theorem 4 followed by

Theorems 11, 17 we have

PDL ` S ⇔ Seqpdl
ω ` S ⇔ Seqpdl

01 ` Ân+1, Z

while problem Seqpdl
01 ` Ân+1, Z is solvable in O

(∣∣∣Ân+1, Z
∣∣∣)=O

(
|S|2

)
space.

Definition 20 Call basic disjunctive normal form (abbr.: BDNF) any L01-

formula
m∧
i=1

(
Bi ∨ 〈p〉Ci ∨

ni∨
j=1

[p]Di,j

)
for m > 0, ni ≥ 0 and Bi, Ci, Di,j

∈ L00 ∪ {∅}. Formulas 〈p∗〉A ∨ Z for A ∈ BDNF and Z ∈L00 are called basic
disjunctive normal expressions (abbr.: BDNE).

Problem 21 Let S ∈ BDNE. Is problem PDL ` S solvable by deterministic
TM in |S|-polynomial space?

3.4.3 More on BDNE

PDL-satisfiability problem for certain statements AcceptsM,x = [p∗]V ∧W
for V ∈ BCNF, W ∈ L00 – expressing that satisfying Kripke frames encode
accepting computations of polynomial-space alternating TM – is known to be
EXPTIME-complete (cf. [1] and [9]: Theorem 8.5, et al; see also [16]). Hence
so is also the dual PDL-validity problem for the corresponding negations S :=
AcceptsM,x = 〈p∗〉A ∨ Z ∈ BDNE. 9 So the affirmative solution to Problem
21 would infer EXPTIME = PSPACE (and vice versa, since general PDL-
validity is EXPTIME-complete).

Now consider a given S := 〈p∗〉A ∨ Z for A ∈ BDNF and E ∈ L00, where

for brevity we let A = F0 ∨
s∨
i=1

(Fi ∧ [p]Gi) ∨
t∨

i=s+1

(Fi ∧ 〈p〉Hi), cf. Footnote

9 and Appendix B. We wish to present the assertion PDL ` S in a suitable
“transparent” quantified boolean form. To this end, by de Morgan laws, we first
convert A ∈ BDNFto R =

∧
ξ∈Ξ

Rξ ∈ BCNF, where Rξ = Bξ∨〈p〉Cξ∨
∨
j∈Jξ

[p]Dξ,j

9It suffices to set A := F0 ∨
s∨

i=1
(Fi ∧ [p]Gi) ∨

t∨
i=s+1

(Fi ∧ 〈p〉Hi), see Appendix B.

19

for Ξ := {ξ = (ξ (1) , · · · , ξ (t))} with ξ (i) ∈ {1, 2}, for every 1 ≤ i ≤ t, while

Bξ : = F0 ∨
∨
{Fi : 1 ≤ i ≤ t ∧ ξ (i) = 1} ,

Cξ : =
∨
{Hi : s < i ≤ t ∧ ξ (i) = 2} ,

Dξ,j : = Gj for j ∈ Jξ := {i : 1 ≤ i ≤ s ∧ ξ (i) = 2} .

Clearly PDL ` A↔ R (also by PDL-equivalence 〈p〉H∨〈p〉H ′ ↔ 〈p〉(H ∨H ′)).
Note that |Ξ| = 2t and |Rξ| < |A|, for every ξ ∈ Ξ.

By the cut-elimination theorem PDL ` S is equivalent to Seqpdl
ω ` 〈p∗〉R,Z,

which by Theorem 17 is equivalent to Seqpdl
01 ` R̂n+1, Z, where

R̂n+1 = R, 〈p〉R, · · · , 〈p〉n+1
R

for n :=
∑
ξ∈Ξ

|Jξ| < s · |Ξ| = s2t. Hence arguing as in the proof of Theorem 17

we arrive at

PDL ` S ⇔ Seqpdl
01 ` R̂n+1, Z ⇔ f(s2t + 1, Z) = 1

where f is boolean-valued function defined for every i ≥ 0 and formula X ∈ L00,
|X| < |S|, by the following recursive clauses 1–2, where “` Y ” stands for plain
boolean validity of Y , for any given Y ∈ L00 (see above Ch. 3.4.1).

1. f(0, X) = 1⇔
∧
ξ∈Ξ

(
` (Bξ ∨X) ∨

∨
j∈ξ
` (Cξ ∨Dξ,j)

)

2. f(i+ 1, X)=1⇔
∧
ξ∈Ξ

(̀
(Bξ ∨X) ∨

∨
j∈Jξ

f(i, Cξ ∨Dξ,j)=1

)

Moreover, every “` Y ” involved is expressible in quantified boolean logic as
∀x1 · · · ∀xqY , where {x1, · · · , xq} is the set of propositional variables occurring
in Y . Having this done, by recursion on i according to clauses 1–2 we obtain a
desired quantified boolean formula Ŝ such that

PDL ` S ⇔ f(s2t + 1, Z) = 1⇔ QBL ` Ŝ

(QBL being the canonical proof system for valid quantified boolean formulas).

Conclusion 22 For any S ∈ BDNE there exists a “transparent” quantified
boolean formula Ŝ that is valid iff S is valid in PDL. Moreover, since PDL-
validity of BDNE is EXPTIME-complete, EXPTIME = PSPACE holds true
iff the validity problem for any Ŝ involved is solvable by a polynomial-space
deterministic TM.

20

Remark 23 The size of Ŝ is exponential in that of S, 10 while quantified boolean
validity (and/or satisfiability) is known to be PSPACE-complete (cf. e.g. [10]).

Hence EXPTIME = PSPACE holds iff Ŝ is equivalid with another quantified
boolean formula whose size is polynomial in the size of S, for every S ∈ BDNE.
This interrelation will be investigated more deeply elsewhere.

References

[1] P. Blackburn, M. de Rijke, Y. Venema, Modal Logic, Cambridge UP
(2001)

[2] W. Buchholz, A simplified version of local predicativity, in Proof Theory:
A Selection of Papers from the Leeds Proof Theory Programme
1990, Cambridge UP, 114–147 (1992)

[3] R. Carnap, Logische Syntax der Sprache (1934) (Engl. translation: The
logical Syntax of Language, NY: Humanities, 1937)

[4] S. Feferman, Systems of predicative analysis I, JSL 29, 1–30 (1968)

[5] S. Feferman, Systems of predicative analysis II: Representations of ordinals,
JSL 33, 193–220 (1968)

[6] M. J. Fischer, R. E. Ladner, Propositional modal logic of programs, Proc.
9tg Symp. theory of Comput, ACM, 286–294 (1977)

[7] M. J. Fischer, R. E. Ladner, Propositional Dynamic Logic of Regular Pro-
grams, Journal of computer and system sciences 18, 194–211 (1979)

[8] L. Gordeev, Proof-theoretic analysis: weak systems of functions and classes,
APAL 38, 1–122 (1988)

[9] D. Harel, D. Kozen, J. Tiurin, Dynamic Logic, MIT Press (2000)

[10] C. H. Papadimitriou, Computational Complexity, Addison-Wesley PC
(1995)

[11] R. Parikh, The completeness of propositional dynamic logic, Math. Foun-
dations of Computer Science, LN in Comp. Sci. 64, 403–415 (1978)

[12] W. Pohlers, Proof Theory: An Introduction, LN in Mathematics 1409,
Springer (1989)

[13] V. Pratt, A near-optimal method for reasoning about action, Journal of
Computer and System Sciences 20, 231–254 (1980)

[14] K. Schütte, Proof theory, Grundlehren der mathematischen Wis-
senschaften 225, Springer (1977)

10This is in contrast to analogous polynomial BCNE case, see Corollary 19.

21

[15] K. Segerberg, A completeness theorem in the modal logic of programs, No-
tices of AMS 24, 522 (1977)

[16] E. Spaan, Complexity of Modal Logics, PhD Thesis, Amsterdam (1993)

[17] O. Veblen, Continuous increasing functions of finite transfinite ordinals,
Transactions of AMS 9, 280–292 (1908)

4 Appendix A: Ordinal assignments

4.1 Ordinal arithmetic

We use basic properties 1–8 of Veblen’s ordinals (abbr.:α,β,γ,δ) ([17], [5], [12]).

1. Basic relation < is linearly ordered.

2. Symmetric sum is associative and commutative.

3. 0 < 1 = ω0, ω = ω1, ωβ = ϕ (0, β).

4. α++ 0 = α, α < β → α++γ < β ++γ ++δ.

5. α < β → ϕ (α, γ) < ϕ (β, γ) ∧ ϕ (γ, α) < ϕ (γ, β).

6. α ≤ β < ϕ (γ, δ)→ α++β < ϕ (γ, δ).

7. α < β ∧ γ < ϕ (β, δ)→ ϕ (α, γ) < ϕ (β, δ) ∧ ϕ (α,ϕ (β, δ)) = ϕ (β, δ).

8. α ≤ ωα, 0 < α→ ωϕ(α,β) = ϕ (α, β).

ϕ (α, β) is also denoted by ϕα(β). Note that ε0 = ϕ1 (0) < ϕω(0) < Γ0.
In the rest of this chapter we freely use these properties without explicit

references.

4.2 Cut elimination ∂ ↪→ E (∂)
For the sake of brevity we’ll slightly refine our inductive definition of E(∂). To

this end we upgrade R to R+ :
(
∂ | β

ρ+ωa ∆
)
↪→
(
R+(ρ, α, ∂) |ϕ(α,β)

ρ ∆
)

. That

is, for any ρ > 0, α and (∂ : ∆) with deg (∂) < ρ+ωa we define (R+(ρ, α, ∂) : ∆)
such that deg (R+(ρ, α, ∂)) < ρ and h (R+(ρ, α, ∂)) < ϕ (α, h (∂)). Then for any
∂ with cuts we let

E (∂) := R+(1, α, ∂), where α := min
{
β : deg (∂) < ωβ

}
and conclude that deg (E (∂)) = 0 and h (E (∂)) < ϕ (α, h (∂)).

Now R+(ρ, α, ∂) is defined for any ∂ with deg (∂) < ρ + ωa as follows by
double induction on α and h (∂). Let (R) be the lowermost inference in ∂.
If (R) is not a (Cut) on C with o(C) + 1 ≥ ρ then R+(ρ, α, ∂) arises from

22

∂ by substituting R+(ρ, α, ∂i) for the lowermost subdeductions ∂i (recall that
h (∂i) < h (∂)). Otherwise, we have

(∂ : Γ ∪Π) =
(∂1 : C,Γ)

(
∂2 : C,Π

)
Γ ∪Π

(Cut)

where ρ ≤ o(C) + 1 ≤ deg (∂) < ρ+ ωa. Let(
∂̂ : Γ ∪Π

)
:=

(R+ (ρ, α, ∂1) : C,Γ)
(
R+(ρ, α, ∂2) : C,Π

)
Γ ∪Π

(Cut)

and consider two cases.

Case α = 0. Let R+(ρ, α, ∂) = R+(ρ, 0, ∂) := R
(
∂̂
)

. Recall that

deg
(
R
(
∂̂
))

< deg
(
∂̂
)

= o(C) + 1 ≤ deg (∂) < ρ+ 1

and hence deg (R+(ρ, α, ∂)) = deg
(
R
(
∂̂
))

< ρ. On the other hand

h
(
R
(
∂̂
))

< h
(
R+(ρ, α, ∂1)

)
++ h

(
R+(ρ, α, ∂2)

)
+ ω

≤ ωh(R
+(ρ,α,∂1)) ++ ωh(R

+(ρ,α,∂2)) + ω

< ωh(∂̂) = ϕ
(

0, h
(
∂̂
))

which yields h (R+(ρ, α, ∂))=h
(
R
(
∂̂
))

<ϕ
(

0, h
(
∂̂
))

, as desired.

Case α > 0. Thus ωa = ωα1 + · · · + ωαn for α > α1 ≥ · · · ≥ αn (by
Cantor’s normal form). In this case we apply inductive hypotheses successively
for α1, · · · , αn and let

R+(ρ, α, ∂) := R+
(
ρ, α1,R+

(
ρ1, α2, · · · ,R+

(
ρn−1, αn, ∂

)))
where ρ0 := ρ and (∀i > 0) ρi+1 := ρi + ωαi+1 . Then deg (R+(ρ, α, ∂)) < ρ and
h (R+(ρ, α, ∂)) < ϕ (α1, · · · , ϕ (αn, h (∂))) < ϕ (α, h (∂)), as desired.

4.3 Formalization

We fix a chosen “canonical” primitive recursive ordinal representation

O =
〈
0, 1, ω,<,+,++, ω(−), ϕ (−,−)

〉
(also known as system of ordinal notations) in the language of PA that is
supposed to be well-ordered by < up to ϕω (0) (at least). To formalize the latter
assumption we extend standard formalism of PA by the transfinite induction
axiom (schema) for arbitrary arithmetical formulas, TIO (ϕω(0)). The extended

23

proof system is abbreviated by PAϕω(0). Derivations ∂ used in the proofs are
interpreted as primitive recursive trees whose nodes x are labeled with sequents
and ordinals ord (x) < ϕω(0). Having this it is easy to formalize in PAϕω(0) the
whole cut elimination proof; note that the operators R, R+ and E involved are
constructively defined and TIO (ϕω(0)) is used in the corresponding termination-
and-correctness proofs only. Actually we can restrict TIO (ϕω(0)) to primitive
recursive induction formulas thus reducing PAϕω(0) to PRAϕω(0).

5 Appendix B: Formula AcceptsM,x
11

5.1 Semantics

Consider a given polynomial-space-bounded k-tape alternating Turing machine
M on a given input x of length n with blanks over M ’s input alphabet; ` and a
are the left and right endmarkers, respectively. Formula AcceptsM,x involves
the single atomic program Next, atomic propositions Symbolai and Stateqi
for each symbol a in M ’s tape alphabet, q a state of M ’s finite control, and
0 ≤ i ≤ n, and an atomic proposition Accept. Then AcceptsM,x has the
property that any satisfying Kripke frame encodes an accepting computation
of M on x. In any such Kripke frame, states u represent configurations of M
occurring in the computation tree of M on input x = x1, · · · , xn; the truth
values of Symbolai and Stateqi at state u give the tape contents, current state,
and tape head position in the configuration corresponding to u. The truth value
of Accept will be 1 iff the computation beginning in state u is an accepting
computation according to the rules of alternating Turing machine acceptance.
Then M accepts x iff AcceptsM,x is satisfiable. AcceptsM,x is EXPTIME-
complete (cf. [9]: Theorem 8.5) and hence so is the negation AcceptsM,x.

5.2 Formal definition

Let Γ be M ’s tape alphabet and Q the set of states; there is a distinguished
start-state s ∈ Q and left/right annotations `, r /∈ Q. Let U ⊆ Q and E ⊆ Q
be the sets of universal and existential states, respectively. Thus U ∪ E = Q
and U ∩E = ∅. For each pair (q, a) ∈ Q× Γ let ∆ (q, a) be the set of all triples
describing a possible action when scanning a in state q. Working in L we let

AcceptsM,x := Acc ∧Start∧[Next*](Config∧Move∧Acceptance)

where Acc(ept), State
(−)
(−), Symbol

(−)
(−) ∈ VAR, Next∈ PRO while Start,

Config, Move and Acceptance are defined as follows.
1. Start := States0 ∧

∧
1≤i≤n

Symbolxii ∧
∧

n+1≤i≤nk
Symbol�i .

2. Config :=

11This is a recollection of [9]: 8.2.

24

∧
0≤i≤n+1

∨
a∈Γ

(
Symbolai ∧

∧
a6=b∈Γ

Symbol
b

i

)
∧ Symbol`0 ∧ Symbol

a
n+1∧

∨
0≤i≤n+1

∨
q∈Q

Stateqi ∧
∧

0≤i≤n+1

∨
q∈Q∪{`,r}

(
Stateqi ∧

∧
q 6=p∈Q∪{l,r}

State
p

i

)
∧∧

0≤i≤n

∧
q∈Q∪{`}

(
State

q

i ∨ State`i+1

)
∧

∧
0≤i≤n+1

∧
q∈Q∪{r}

(
State

q

i ∨ Stateri−1

)
.

3. Move :=∧
0≤i≤n+1

(
State

`

i ∨ State
r

i ∨
∧
a∈Γ

(
Symbol

a

i ∨ [Next]Symbolai

))
∧

∧
0≤i≤n+1

∧
a∈Γ
q∈Q

Symbol

a

i ∨ State
q

i∨
∧

(p,b,d)∈∆(q,a)

〈Next〉
(
Symbolbi ∧ Statepi+d

)
∧

[Next]

(∨
(p,b,d)∈∆(q,a)

(
Symbolbi ∧ Statepi+d

))

.

4. Acceptance :=(∧
0≤i≤n+1

∧
q∈E

State
q

i ∨
((
Acc ∨ [Next]Acc

)
∧
(
Acc ∨ 〈Next〉Acc

)))
∧(∧

0≤i≤n+1

∧
q∈U

State
q

i ∨
((
Acc ∨ 〈Next〉Acc

)
∧
(
Acc ∨ [Next]Acc

)))
.

Hence

AcceptsM,x =

Acc ∨ Start ∨〈Next*〉
(
Config ∨Move ∨Acceptance

)
is equivalent to 〈p∗〉A ∨ Z for p = Next, E = Acc ∨ Start ∈ L00 and

A = F0 ∨ (F1 ∧ [p]G1) ∨ (F2 ∧ [p]G2) ∨
∨
α∈R

(Fα ∧ [p]Gα) ∨ (F3 ∧ 〈p〉G3)

∨ (F4 ∧ 〈p〉G4) ∨
∨
β∈T

(Fβ ∧ 〈p〉Gβ) ∨
∨
γ∈S

(Fγ ∧ 〈p〉Gγ) ∈ BDNF

where:
R = {α = (i, a, q, (p, b, d)) ∈ [n+ 1]× Γ×Q×∆ (q, a)},
T = {β = (i, a) ∈ [n+ 1]× Γ},
S = {γ = (i, a, q) ∈ [n+ 1]× Γ×Q},

F0 =
∨

0≤i≤n+1

∧
a∈Γ

(
Symbol

a

i ∨
∨

a 6=b∈Γ

Symbolbi

)
∨ Symbol

`
0∨Symbolan+1

∨
∧

0≤i≤n+1

∧
q∈Q

State
q

i ∨
∨

0≤i≤n+1

∧
q∈Q∪{`,r}

(
State

q

i ∨
∨

q 6=p∈Q∪{l,r}
Statepi

)
∨∨

0≤i≤n

∨
q∈Q∪{`}

(
State

q

i ∧ State`i+1

)
∨

∨
0≤i≤n+1

∨
q∈Q∪{r}

(
State

q

i ∧ Stateri−1

)
,

25

F1 =
∧

0≤i≤n+1

∧
q∈E

State
q

i∧ Acc, G1 = Acc,

F2 =
∧

0≤i≤n+1

∧
q∈U

State
q

i ∧Acc, G2 = Acc,

F3 =
∧

0≤i≤n+1

∧
q∈E

State
q

i ∧ Acc, G3 = Acc,

F4 =
∧

0≤i≤n+1

∧
q∈U

State
q

i∧Acc, G4 = Acc,

Fα = Symbolai ∧ State
q

i , Gα = Symbol
b

i ∨ State
p

i+d,

Fβ = State`i∧ Stateri∧ Symbolai , Gβ = Symbol
a

i ,

Fγ = Symbolai ∧ State
q

i , Gγ =
∨

(p,b,d)∈∆(q,a)

(
Symbol

b

i ∨ State
p

i+d

)
.

Note that |〈p∗〉A ∨ E| is at most quadratic in |AcceptsM,x|.
——————————————————————————————

26

