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Abstract 

The use of DC transmission is particularly advantageous for long-distance transmission and 

interconnection of asynchronous AC networks. Several converter topologies can be used for HVDC. 

Multilevel Modular Converters (MMCs) are the most favored given their technological advantages 

over other converters topologies. Due to their industrial maturity, they have become essential for all 

AC / DC conversion. So far, they have always been studied with a voltage source on DC side. 

However, when the converter is equipped with DC breaker, a series inductor is associated to limit 

current variations. This has consequences in term of modeling and control determination. This article 

aims to propose a modification of the control law in order to take into account this inductor. To 

facilitate the control organization, the Energetic Macroscopic Representation (EMR) is used. 

Introduction 

The debate over AC or DC electric power transmission systems dates back to the late 19th century 

with the dispute between Thomas Edinson's DC system and Westinghouse's AC technology. As a 

result, AC transmission systems became the predominant technology adopted. It was not until the 

1930s, when the mercury arc valve was invented that the development of high voltage direct current 

(HVDC) transmission systems started [1]. In 1941, the first contract for a commercial HVDC system 

was placed and since then it became an alternative to AC transmission 

HVDC technology is also the best solution to meet the demand for long-distance power transmission 

technologies thanks to their technical and economic advantages [2]. The first conversion technologies 

for HVDC applications were based on current source converters (CSCs) using thyristors. The 

introduction of power semiconductors with open/close capabilities has made possible the development 

of voltage source converters (VSCs). Recently, the modular multilevel converter (MMC) shown in 

Figure.1 has been quickly seen in a wide variety of applications as a result of significant advantages 

over previous technologies while retaining the properties of a conventional VSC.  

With a sufficient number of levels, the output filter can be eliminated. In addition, since the switching 

frequency is lower for this converter, losses are reduced [3]. For the reasons stated, the MMC is a very 

interesting topology, not only for HVDC transmission, but also for other applications such as variable 

Modeling and Control of the Modular Multilevel Converter connected to an inductive
DC source using Energetic Macroscopic Representation

QORIA Taoufik

EPE'18 ECCE Europe ISBN: 978 - 9 - 0758 - 1528 - 3 - IEEE catalog number: CFP18850-ART P.1
Assigned jointly to the European Power Electronics and Drives Association & the Institute of Electrical and Electronics Engineers (IEEE)



speed drives, STATCOM, wind power generation. MMC technology has been widely accepted in the 

industry as it achieves high levels of power (1GW) and voltage (640kV). 

 
Fig.1: Modular Multilevel Converter structure 

In a point-to-point HVDC link, a DC fault results in the interruption of the link by opening the AC 

circuit breakers. In case of MTDC network, it is necessary to isolate the faulty link using DC breaker 

circuit which remains a major challenge until now. Thanks to the rapid progress of the technology, it is 

possible now to cut a direct current in a specific point of the network with the devices "Direct Current 

Circuit Breaker (DCCB) [4]". These latter are usually put in series with inductors of large values. It is 

possible, in this case, to represent the DC side of the converter by a voltage source in series with an 

inductor as shown in Figure 2. The purpose of this paper is not particularly concerned with faults, but 

it is focused on the impact of this inductor on the operation of the system and its consideration on the 

control law. It is also possible to generalize this study to an inductor coming from a DC transmission 

line [5]. 

 
Fig.2: Simplified diagram of the MMC connected to an inductive DC source. 

 

𝑣𝑔 𝐿𝑔, 𝑅𝑔 𝐿𝑎, 𝑅𝑎 

𝐿𝑔, 𝑅𝑔 
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The conventional control strategies developed for an MMC connected to a DC voltage source [6-10] 

are no longer valid in the case of a strong inductor present on the DC bus, since this latter strongly 

influences the stability of the system as the shows the simulation below (Fig.3). 

 

 
Fig.3: Conventional controls impact on the system stability 

As it can be seen, the stability is no longer ensured in the case of a negative power flow. For this 

reason, it is important and necessary to have a suitable model of the MMC to integrate the impact of 

this inductor and subsequently to develop a suitable control law. 

Most of the authors model the DC bus as a voltage source [6-10], the first work close to our 

problematic was done by [11] relying on several considerations and hypotheses at the modeling level. 

This latter considers that the DC power is equitably distributed in the three legs. This hypothesis is 

true in the case where the system is symmetrical with a perfect balanced network. But in case of a 

converter with many components (like the MMC), the symmetry of the system cannot be ensured (ex: 

losses in arms). Moreover, the balance of the network is not guaranteed [12].  

The objective of this paper is to propose a new control law to keep the system stable for a high 

inductor value as the one considered in [4]. 

System modeling 

Average model of the Modular Multilevel Converter 

Given the large number of submodules (SMs), the study is based on the average model of the MMC 

considering that the capacitor voltages are well balanced [9]. Therefore, each arm is represented by an 

ideal DC / DC converter controlled by a modulation ratio defined as the ratio of the active submodule 

number divided by the total number of submodules, an equivalent capacitor of value 𝐶/𝑁 , and an 

equivalent voltage  𝑣𝑐𝑡𝑜𝑡
= 𝑣1 + 𝑣2 + 𝑣3 ……+ 𝑣𝑛. 

 

Fig. 4. Average model of the MMC-arm [9] 

Modeling and Control of the Modular Multilevel Converter connected to an inductive
DC source using Energetic Macroscopic Representation

QORIA Taoufik

EPE'18 ECCE Europe ISBN: 978 - 9 - 0758 - 1528 - 3 - IEEE catalog number: CFP18850-ART P.3
Assigned jointly to the European Power Electronics and Drives Association & the Institute of Electrical and Electronics Engineers (IEEE)



The modulated voltage and current of each arm 𝑣𝑚, 𝑖𝑚 are respectively expressed as follow: 

  

                                                         𝑣𝑚 = 𝑚. 𝑣𝑐𝑡𝑜𝑡
                                               (1) 

𝑖𝑚 = 𝑚. 𝑣𝑚                                                  (2) 

 

We can therefore deduce the evolution of the modulated current by the following equation: 

 

            𝑖𝑚 = 𝐶𝑡𝑜𝑡 .
𝑑

𝑑𝑡
(𝑣𝑐𝑡𝑜𝑡

)                                                (3) 

System equation 

According to Kirchhoff's law, two equations are obtained from the inner loop of the MMC allowing a 

first modeling (𝑥 =  𝑎, 𝑏, 𝑐):  
 

      
  𝑉⃗⃗⃗⃗ 𝑑𝑐

2
−

𝐿𝑑𝑐

2
.
𝑑𝑖 𝑑𝑐

𝑑𝑡
−

𝑅𝑑𝑐

2
. 𝑖 𝑑𝑐 − 𝑣 𝑚𝑢𝑥

− 𝐿𝑎 .
𝑑𝑖 𝑚𝑢𝑥

𝑑𝑡
− 𝑅𝑎 . 𝑖 𝑚𝑢𝑥

= 𝑣 𝑔𝑥
+ 𝐿.

𝑑𝑖 𝑔𝑥

𝑑𝑡
+ 𝑅. 𝑖 𝑔𝑥

− 𝑣 𝑛0      (4) 

 

−
�⃗⃗� 𝑑𝑐

2
+

𝐿𝑑𝑐

2
.
𝑑𝑖 𝑑𝑐

𝑑𝑡
+

𝑅𝑑𝑐

2
. 𝑖 𝑑𝑐 + 𝑣 𝑚𝑙𝑥

+ 𝐿𝑎.
𝑑𝑖 𝑚𝑙𝑥

𝑑𝑡
+ 𝑅𝑎 . 𝑖 𝑚𝑙𝑥 = 𝑣 𝑔𝑥

+ 𝐿.
𝑑𝑖 𝑔𝑥

𝑑𝑡
+ 𝑅. 𝑖 𝑔𝑥

− 𝑣 𝑛0      (5) 

 

The modeling of the AC side is done by the summation of the equations (4) and (5): 

 

𝑣𝑚𝑙𝑥
− 𝑣𝑚𝑢𝑥

+ 𝐿𝑎
𝑑

𝑑𝑡
(𝑖𝑚𝑙𝑥

− 𝑖𝑚𝑢𝑥
) + 𝑅𝑎 (𝑖𝑚𝑙𝑥

− 𝑖𝑚𝑢𝑥
) = 2(𝑣𝑔𝑥

+ 𝐿𝑔
𝑑

𝑑𝑡
(𝑖𝑔𝑥

) + 𝑅𝑔
𝑑

𝑑𝑡
(𝑖𝑔𝑥

)   (6) 

 

Considering the variable change as in [13], with  𝑖𝑢𝑥
= 𝑖𝑔𝑥

+ 𝑖𝑙𝑥 : 

 

 𝑣𝑣𝑥
=

𝑣𝑚𝑙𝑥
−𝑣𝑚𝑢𝑥

2
                                     (7) 

 𝑣𝑑𝑖𝑓𝑓𝑥 =
𝑣𝑚𝑙𝑥

+𝑣𝑚𝑢𝑥

2
                                      (8) 

𝑖𝑑𝑖𝑓𝑓𝑥 =
𝑖𝑙𝑥+𝑖𝑚𝑥

2
                                        (9) 

 

The fusion of equations (6) and (7) defines the equations vector of the state variables 𝑖𝑔𝑥
 : 

 

      𝑣𝑣𝑥
− 𝑣𝑔𝑥

= (
𝐿𝑎

2
+ 𝐿𝑔)

𝑑

𝑑𝑡
(𝑖𝑔𝑥

) + (
𝑅𝑎

2
+ 𝑅𝑔) (𝑖𝑔𝑥

)                     (10) 

 

Conventionally, the line currents are controlled in Park domain.  

In a similar way to the modeling of the AC side, the integration of (8) and (9) in the difference of the 

equations (4) and (5) allows the modeling of the DC bus: 

 

        
𝑉𝑑𝑐

2
− 𝑣𝑑𝑖𝑓𝑓𝑥 =

𝐿𝑑𝑐

2
.

𝑑

𝑑𝑡
(𝑖𝑑𝑐) + 

𝑅𝑑𝑐

2
(𝑖𝑑𝑐) + 𝐿𝑎.

𝑑

𝑑𝑡
(𝑖𝑑𝑖𝑓𝑓𝑥) + 𝑅𝑎(𝑖𝑑𝑖𝑓𝑓𝑥)                   (11)   

 

It is clear that the equation (11) contains coupled state variables since 𝑖𝑑𝑐 = 𝑖𝑑𝑖𝑓𝑓𝑎 + 𝑖𝑑𝑖𝑓𝑓𝑏
+ 𝑖𝑑𝑖𝑓𝑓𝑐 . 

This coupling is due to the presence of the inductor on the DC side. As a result, the differential 

𝑖𝑑𝑖𝑓𝑓𝑥  can no longer be controlled independently as in the case of an MMC connected to a DC voltage 

source. One solution consists in defining another model, compared to the one usually used for the 

MMC, by defining a new variable change allowing the decoupling of the system variables. 
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𝑑

𝑑𝑡
[

𝑖𝑑𝑖𝑓𝑓𝑎

𝑖𝑑𝑖𝑓𝑓𝑏

𝑖𝑑𝑖𝑓𝑓𝑐

] = −

[
 
 
 
 
𝐿𝑑𝑐

2
+ 𝐿𝑎 𝐿𝑎 𝐿𝑎

𝐿𝑎
𝐿𝑑𝑐

2
+ 𝐿𝑎 𝐿𝑎

𝐿𝑎 𝐿𝑎
𝐿𝑑𝑐

2
+ 𝐿𝑎]

 
 
 
 
−1

[
 
 
 
 
𝑅𝑑𝑐

2
+ 𝑅𝑎 𝑅𝑎 𝑅𝑎

𝑅𝑎
𝑅𝑑𝑐

2
+ 𝑅𝑎 𝑅𝑎

𝑅𝑎 𝑅𝑎
𝑅𝑑𝑐

2
+ 𝑅𝑎]

 
 
 
 

[

𝑖𝑑𝑖𝑓𝑓𝑎

𝑖𝑑𝑖𝑓𝑓𝑏

𝑖𝑑𝑖𝑓𝑓𝑐

] +

                                  

[
 
 
 
 
𝐿𝑑𝑐

2
+ 𝐿𝑎 𝐿𝑎 𝐿𝑎

𝐿𝑎
𝐿𝑑𝑐

2
+ 𝐿𝑎 𝐿𝑎

𝐿𝑎 𝐿𝑎
𝐿𝑑𝑐

2
+ 𝐿𝑎]

 
 
 
 
−1

[
 
 
 
 
𝑣𝑑𝑐

2
− 𝑣𝑑𝑖𝑓𝑓𝑎

𝑣𝑑𝑐

2
− 𝑣𝑑𝑖𝑓𝑓𝑏

𝑣𝑑𝑐

2
− 𝑣𝑑𝑖𝑓𝑓𝑐 ]

 
 
 
 

                                              (12) 

 

 

The matrix can be decomposed into left eigenvectors matrix denoted 𝑃, right eigenvectors matrix 

denoted 𝑃−1 and a diagonal matrix of eigenvalues D such as 𝐴 = 𝑃𝐷𝑃−1. 

The multiplication of the equation (12) by the matrix  𝑃−1 on both sides allows to obtain the following 

expression: 

   𝑃−1 𝑑

𝑑𝑡
(𝑖𝑑𝑖𝑓𝑓𝑥)  = 𝐷𝑃−1𝑖𝑑𝑖𝑓𝑓𝑥 + 𝑃−1𝐵(

𝑉𝑑𝑐

2
− 𝑣𝑑𝑖𝑓𝑓𝑥)                 (13) 

 

From this equation, a new variable change is defined: 

 

                                             𝑖𝑑𝑖𝑓𝑓𝑛𝑥
= 𝑃−1𝑖𝑑𝑖𝑓𝑓𝑥                                      (14) 

                       
𝑑

𝑑𝑡
(𝑖𝑑𝑖𝑓𝑓𝑛𝑥 

)  = 𝐷. 𝑖𝑑𝑖𝑓𝑓𝑛𝑥
+ 𝑇(

𝑉𝑑𝑐

2
− 𝑣𝑑𝑖𝑓𝑓𝑥)                                                (15) 

 

Where: 𝑇 = 𝑃−1𝐵, 𝑉𝑑𝑐𝑛
= 𝑇𝑉𝑑𝑐 𝑣𝑑𝑖𝑓𝑓𝑛 = 𝑇𝑣𝑑𝑖𝑓𝑓. 

Depending on this development, the combination of accumulation elements is now possible. Therefore 

the whole system is presented by 11 differential equations (11 state variables, 5 currents and 6 

voltages). These equations are completely decoupled. 

From the equations developed above, the MMC is presented using EMR tool [14] as shown in Fig.5: 

 

 

Fig. 5. EMR of the Modular Multilevel Converter 

System control 

Inner loop control 

The 11 state variables are controlled from 6 control inputs  𝑚𝑢/𝑙 similarly for an MMC connected to a 

DC voltage source. The goal of the control is to obtain balanced sinusoidal currents on the AC side of 

amplitude such 𝑃𝑟𝑒𝑓, 𝑄𝑟𝑒𝑓 and a continuous current in steady state on DC side. These objectives are 

mu/l

Vdc

DC

idc idiff
idiffn

vdiff

idiffn

vdiffn vmu/l

idiff iu/l

ig
igdq

igdq

vvdq

AC

imu/l

vctot

A 

B 
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achieved by controlling the new differential currents 𝑖𝑑𝑖𝑓𝑓𝑛  and line currents 𝑖𝑔𝑥
. The controllers used 

are the PI (Proportional Integral), it is also possible to use PR controllers (Proportional Resonant) [15]. 

The inner control law is deduced through a direct inversion of the model (Fig.6). 

  

Fig. 6. Inner loop control structure 

To avoid possible instability issues due to non-control of capacitor voltages 𝑣𝑐𝑡𝑜𝑡
, an energy-based 

control strategy is developed in order to obtain a maximum control structure. 

Energy based control 

The energy based control strategy relies mainly on the power conservation law in each arm: 

< 𝑃𝑢 >=< 𝑣𝑚𝑢𝑥
. 𝑖𝑢𝑥

>=< 𝑣𝑚𝑥
. 𝑖𝑚𝑢𝑥

>     (16) 

< 𝑃𝑙 >=< 𝑣𝑚𝑙𝑥 . 𝑖𝑙𝑥 >=< 𝑣𝑙𝑥 . 𝑖𝑚𝑙𝑥 >     (17) 

Knowing that: < 𝑃 >=<
𝑑

𝑑𝑡
𝑊 >=

𝐶𝑡𝑜𝑡

2
 
𝑑

𝑑𝑡
(𝑣𝑐𝑡𝑜𝑡

2 ) 

The integration of the variable change (7) (8) and (9) in the equations (16) and (17) allows a first 

average energy modeling of arms: 

 

<
𝑑

𝑑𝑡
𝑊𝑢𝑥

>=< (𝑣𝑑𝑖𝑓𝑓𝑥 − 𝑣𝑣𝑥
) (𝑖𝑑𝑖𝑓𝑓𝑥 +

1

2
 𝑖𝑔𝑥

) >   (18) 

<
𝑑

𝑑𝑡
𝑊𝑙𝑥 >=< (𝑣𝑑𝑖𝑓𝑓𝑥 + 𝑣𝑣𝑥

) (𝑖𝑑𝑖𝑓𝑓𝑥 −
1

2
 𝑖𝑔𝑥

) >   (19) 

 

The sum "Σ" and the difference "Δ" of (18) and (19): 

 

                     
𝑑

𝑑𝑡
𝑊𝑥

Σ =< 2𝑣𝑑𝑖𝑓𝑓𝑥 . 𝑖𝑑𝑖𝑓𝑓𝑥 − 𝑣𝑣𝑥
. 𝑖𝑔𝑥

>    (20) 

                                  
𝑑

𝑑𝑡
𝑊𝑥

Δ =< 𝑣𝑑𝑖𝑓𝑓𝑥 . 𝑖𝑔𝑥
− 2𝑣𝑣𝑥

. 𝑖𝑑𝑖𝑓𝑓𝑥 >                           (21) 

  

The differential current is defined as the sum of a DC component and an AC component: 

 

𝑖𝑑𝑖𝑓𝑓𝑥 = 𝑖𝑑𝑖𝑓𝑓𝑥𝐴𝐶
+ 𝑖𝑑𝑖𝑓𝑓𝑥𝐷𝐶

     (22) 

mu/l

Vdc
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idc idiff idiffn
vdiff

idiffn

vdiffn vmu/l

idiff iu/l
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igdq

igdq

vvdq
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vdiffn*
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We do the same for the new defined variables: 

𝑖𝑑𝑖𝑓𝑓𝑥𝑛
= 𝑖𝑑𝑖𝑓𝑓𝑥𝑛𝐴𝐶

+ 𝑖𝑑𝑖𝑓𝑓𝑥𝑛𝐷𝐶
                         (23) 

Where  < 𝑖𝑑𝑖𝑓𝑓𝑥𝐴𝐶
>= 0 and < 𝑖𝑑𝑖𝑓𝑓𝑥𝑛𝐴𝐶

>= 0. 

 

In steady state 𝑣𝑑𝑖𝑓𝑓𝑥 ≈
𝑉𝑑𝑐

2
,  and  𝑣𝑣 ≈ 𝑣𝑔. These considerations lead to two equations allowing the 

control of the fictitious AC differential currents through the control of the energy difference  𝑊𝑥
Δ 

between upper and the lower arms, and the control of the fictitious DC differential currents through 

the control of the energy sum 𝑊𝑥
Σ: 

 
𝑑

𝑑𝑡
𝑊𝑥

Σ =< 𝑉𝑑𝑐 . 𝑖𝑑𝑖𝑓𝑓𝑥𝑛𝐷𝐶
. 𝑃 − 𝑣𝑔𝑥

. 𝑖𝑔𝑥
>                        (24) 

𝑑

𝑑𝑡
𝑊𝑥

Δ =< −2𝑣𝑔𝑥
. 𝑖𝑔𝑥

− 2𝑣𝑔𝑥
. 𝑖𝑑𝑖𝑓𝑓𝑥𝑛𝐴𝐶

. 𝑃 >                             (25) 

 

Unlike conventional controls where the energy of the arms is controlled individually, the presence of a 

strong inductor in the DC side creates an energy coupling between the arms of the MMC.  

It is remarkable from equation (24) that the total energy stored in each arm depends mainly on the 

power exchange between the power 𝑝𝑎𝑐, which depends on the direct component 𝑖𝑔𝑑, and the power 

𝑝𝑑𝑐 which depends on the DC component of the differential current.  

Only the average value of the AC power will be taken into account in the energy model, therefore, the 

fluctuating power is neglected. The compensation by the instantaneous AC power introduces an 

undesired AC component into the differential currents, even if it reduces the ripple across the 

equivalent capacitor voltages [9]. 

The reference of line currents is defined from the measurement of the grid voltage and the 

active/reactive power of reference. 

The control law of the energy based model (eq.24 and 25) is obtained by a direct model inversion: 

 

Fig. 7. Maximal control structure of the Modular Multilevel Converter 

Simulation and results 

To validate the proposed control law, the simulations were performed on Matlab/Simulink. 

The parameters used are indicated on Tab.1. These latter come from the HVDC INELF link [16], and 

the inductor value used on the DC side comes from the reference [4]. 
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Only the variables at the input and at the output of the converter are presented in Fig. 8. At first, the 

power set point is initialized to zero until t = 0.2s, then P = 1GW is imposed until t = 0.6s, then -1GW 

until t = 1s. 

 

Table I. System parameters 

𝑃𝑛 1 𝐺𝑊 𝑅𝑎 50 𝑚𝐻 

𝑉𝑟𝑒𝑠 192 𝑘𝑉 𝐿𝑎 50 𝑚𝐻 

𝑓𝑟𝑒𝑠 50 𝐻𝑧 𝑅𝑑𝑐 300 𝑚Ω 

𝑉𝑑𝑐 640 𝑘𝑉 𝐿𝑑𝑐 300 𝑚𝐻 

𝑅 60 𝑚𝐻 𝐶𝑡𝑜𝑡 25 𝜇𝐹 

𝐿 60 𝑚𝐻   

 

It is remarkable that DC and AC powers follow the reference with a negligible difference due to Joule 

losses (the switches are supposed perfect). The line currents are sinusoidal and well balanced, and the 

DC side current side is continuous in steady state for each power set point. The system remains stable 

even with high 𝐿𝑑𝑐 value which was not the case for the control of the MMC connected to a voltage 

source (Fig.3).  

 

 

 

 

 

Fig. 8. Input and output variables of the converter 

Figure 9 shows internal variables of the converter. It can be seen that the arms currents consist of a DC 

component and an AC component, the sum of the differential currents is equal to the DC current and 

the average values of the differential currents are almost equal, which means that the power is evenly 

distributed on the converter arms. The voltages across the capacitors are centered on their 640kV 

reference value. 
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The initial results of the simulation show that the system is stable since all state variables are well 

controlled. 

 

 

 

 

Fig. 9. Internal variables of the converter 

Conclusion 

The first part of this paper allowed detailing the structure of the Modular Multilevel Converter, poses 

the issue related to the presence of an inductor in its DC bus, explains its operating principle, and its 

mathematical model. This part showed at first, the coupling of the system states due to the presence of 

the inductive node, thus, a methodology to solve this problem was proposed. The second part dealt 

with the converter control (line currents, the differential currents and the energy stored in the 

equivalent capacitors). Unlike other control strategies, all state variables have been controlled to avoid 

system instability. This ensures a good dynamic behavior and increases the system robustness.  

Appendix 

ENERGETIC MACROSCOPIC REPRESENTATION (EMR) [14] 

EMR is a systemic extension of COG, based on the interaction principle.  
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