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Abstract. New structurally tailored porous materials are nowadays used in many engineering 

applications due to several attractive properties. Knowledge of pressure losses or flow structures 

in such complex media and their relationship with geometrical parameters are thus critical for 

various applications. Precise determination of local flow behavior and macroscale properties of 

natural media (soils, biomass....) are increasingly needed. It is therefore important to simulate 

the complex and unsteady flows by reliable numerical methods and to determine intrinsic 

macroscopic hydraulic properties on porous structures. The availability of low cost, easy-to use 

High-performance computational resources lead to generalization of pore scale numerical 

simulations in various fields. The recent development of innovative scheme like LBM to 

overcome the classical drawback of commercial softwares (VF, EF) in achieving high accuracy, 

shows the potential of kinetic based methods for producing efficient and accurate solvers. An 

alternative vector kinetic method is proposed to solve Incompressible Navier-Stokes equations 

at pore scale and eventually determine permeability tensors of complex porous media. A moment 

based (vs discrete velocities), non-diffusive, explicit, parallel implementation was implemented 

and successfully used on several totally different complex geometries. Excellent results at low 

Re number were obtained, the method is thus well suited for permeability tensors determination 

of complex heterogeneous media. The code was validated against classical benchmark as well 

as experimental and numerical permeability data obtained on different porous media of variable 
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porosity namely (i) foams (virtual model structures and real samples), (ii) sandstone and (iii) 

wood. 
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1. Introduction 

Transport phenomena in different porous media have been studied for nearly two centuries. However, 

the works on high porosity porous media i.e. open-cell foams are still relatively scarce and recent 

analytical models used for conventional porous media such as packed bed of spheres are not directly 

applicable on foams (Kumar et al, 2014). Several studies characterizing hydraulic properties of foams 

have been undertaken to fill this gap. On the other hand, experimental and numerical results 

characterizing the pressure drop in the foams are highly dispersed (Bonnet et al, 2008). Because of 

advances in 3D imaging techniques, an emerging trend is the determination of intrinsic hydraulic 

parameters from flow laws on reconstructed geometries using 3D direct numerical simulations, often 

using commercial tools (Brun et al, 2009). These tools (e.g. Starccm+, Fluent, Comsol, Pam flow, 

OpenFoam, etc.) are mature, often allow modelling multiple physical phenomena, and benefit from long 

term development (more than half a century of continuous intense development for most commonly 

used numerical approaches like Finite Volumes or Finite Elements). They are nowadays standard 

engineering tools for many industrial problems as well as development or research ones. Nevertheless, 

such methods have some drawbacks, as the numerical diffusion, and recent development of both 

mathematical approaches and computational resource give room for emergence of new numerical 

methods, namely kinetic method.  

Kinetic methods for the simulation of compressible flows have been introduced in the eighties (e.g 

Pullin, 1980, Reitz, 1981, Mandal et al, 1989). The schemes were derived originally by using the idea 

of the rescaled Boltzmann Equation (BE): the compressible Euler equations can be obtained as the 

hydrodynamic limit of the BE (Levermore, 1991, Bardos, 1993). These schemes are called kinetic 

schemes, Boltzmann schemes, or BGK schemes (for Bhatnagar-Gross-Krook).  

The general structure of kinetic schemes that enables entropy compatibility for systems of 

conservation laws has later been established (Bouchut, 1999), and their equivalence with Flux Vector 

Splitting (FVS) schemes was proved in Bouchut, 2002. More general relaxation approximations for 

hydrodynamic systems were proposed in Chen et al, 1994. The use of kinetic schemes with a finite 

number of velocities (velocities on a lattice in several dimensions), or Lattice Boltzmann schemes have 

been considered for long, e.g. Boghosian et al, 1987, McNamara et al, 1988, Succi et al, 1989, 

d’Humières, 1992. The application of the kinetic method to diffusive problems was developed later (e.g. 

Elton et al, 1995, Jin et al, 1998, Bouchut et al, 2000). For incompressible Navier-Stokes equations, the 

kinetic method with a finite number of velocities (or Lattice Boltzmann method, LBM) has been 

intensively used (Succi, 2001). 
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Meanwhile, the simplicity of LBM has enabled it to be successfully applied to a wide range of 

problems (Aidun, 2010). LBM used for complex geometries structure such as foams is still challenging 

(Liu, 2015) and some limitations of the formalism such as numerical instability at low viscosities, 

(Lallemand et al, 2000) or boundary position dependence on variable viscosity, (e.g. Narváez et al, 2010) 

has been raised. A lot of efforts have been made to overcome these limitations. For example, dubbed 

regularized LBM has been developed to improve numerical stability (Succi, 2001). The multiple 

relaxation time (MRT) collision operator has been used to improve the numerical stability by separating 

the relaxation rates of the hydrodynamic (conserved) and non-hydrodynamic (non-conserved) moments 

(d’Humières et al, 2002). Unfortunately, it destroys the entropy compatibility.  

The use of special velocity lattices and particular Maxwellians that are not entropy compatible also 

contribute to the loss of robustness (Chikatamarla et al, 2009). Indeed, as it was shown in Yong et al, 

2005, usual LBM (as opposed to entropic LBM, see for instance Karlin et al, 1998, Succi et al, 2002) is 

not able to comply with any entropy theorem, and the study of stability must be performed with 

additional difficulties. 

Our work takes its roots in (Natalini et al, 2008) where a limited number of velocity directions are 

used, in accordance with (Bouchut, 2002). Even if we start from kinetic considerations, we use the 

approach of (Bouchut et al, 2006) to write a simple explicit finite volume/difference scheme on the 

macroscopic moments themselves, thus finally avoiding the kinetic aspects. This approach enables to 

analyze the accuracy in a simple way, and lead to simple, and physical interpretation of boundary 

conditions. Moreover, the implementation requires less memory consumption than a discrete velocities 

approach. Eventually the explicit scheme insures the good scalability of parallel software 

implementation. We end up with a BGK-FVS method that is second-order accurate without any special 

choice of the velocities and with standard forward Euler time stepping. Indeed, it is just the Lax-

Friedrichs scheme applied to a scaled compressible isentropic system. It satisfies a discrete entropy 

inequality under a CFL (Courant Friedrichs Lewy) condition involving only the viscosity, and a sub-

characteristic condition that can be interpreted as saying that a cell Reynolds number associated to the 

grid size is less than one.  

As compared to classical LBM type method, this one is non-diffusive, explicit, parallel and 

successfully used on several totally different complex geometries. Moreover, from practical point of 

view, the main advantages of our method are: 

• Boundary condition implementation is direct and easy (moment-based scheme). 

• Explicit stability conditions allow a priori evaluation of mesh/time step requirements. 

• The implementation requires less memory consumption than a discrete velocities approach, 

eventually the explicit scheme insures the good scalability of parallel software implementation. 
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• The moment base scheme is naturally written in term of physical quantities (obviously it could 

be made non-dimensional), which could help its use in other communities such as porous media 

or biomedical domain. 

This kinetic approach is presented and used to solve transport equations at local (pore) scale. The 

macroscopic permeability of the porous media is eventually obtained from volume averaging and 

correlated with morphological characteristics of different foam samples as well as 

complex/heterogeneous media. 

 

2. Numerical method 

We solve the Incompressible Navier-Stokes Equations (INSE): 

  {
𝜕𝒗

𝜕𝑡
+ 𝒗 ∙ 𝛻𝒗 = −𝛻𝑝 + 𝜈𝛻2𝒗

𝛻 ∙ 𝒗 = 0
, (1) 

With 𝒗 the velocity, 𝜈 the viscosity, and 𝑝 the pressure. We therefore developed a numerical method 

called "FVS-BGK" which comes from a rigorous use of the kinetic theory. The idea, summarized in 

Figure 1, is to solve a hyperbolic system of conservation law with a kinetic method based on a BGK 

collisional operator, approximated by a transport/projection algorithm. The time (explicit Euler) and 

space discretization are achieved on a constant cell approximation similar to a finite volume method. 

The discrete velocities are calculated using a 2-D point stencil on a regular structured mesh (e.g. 6 points 

for 3 dimensional problems). A parabolic rescaling is then applied to the kinetic variables to solve an 

Incompressible Euler system. Finally, the INSE diffusion term is added by matching the real fluid 

viscosity to the numerical diffusion of the scheme. The entropy existence is carefully analyzed at each 

construction step of this method, and gives directly a stability condition, which ensures the existence 

and uniqueness of the solution. This method is fully detailed in Bouchut et al, 2018. 

 

2.1. Kinetic relaxation to compressible models 

We first solve a hyperbolic system of conservation laws, defined as: 

  𝜕𝑡𝑾+∑
𝜕

𝜕𝑥𝑗
𝐹𝑗(𝑾)

𝐷
𝑗=1 = 0, (2) 

with 𝑾 the vector of unknown (density, velocity) and D the space dimension. We used a kinetic 

method based on a vectorial BGK (simpler collisional operator of the Boltzmann equation) (Krook et 

al, 1954). Those kinds of methods add a kinetic variable 𝜉, which describe the direction of the particle’s 

velocity. It can be written as: 
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  𝜕𝑡𝒇 +
1

𝜖𝑎𝑑𝑣
𝐯(𝜉) ⋅ ∇𝐱𝑓 =

1

𝜖𝑐𝑜𝑙𝑙
(𝑴[𝑾] − 𝒇), (3) 

with f the probability density function (pdf), 𝜖𝑎𝑑𝑣 and 𝜖𝑐𝑜𝑙𝑙 small positive parameters that will tend to 

zero in a special way. 𝑾 is a vector, corresponding to the moments of the Maxwellian equilibrium 𝑴. 

For equation (3) to be consistent with (2), we must impose the following conditions to 𝑴 (which are the 

mass and flux conservation): 

  ∫𝑴[𝑾](𝜉)𝑑𝜉 = 0, (4) 

  ∫ 𝑣𝑗(𝜉)𝑴[𝑾](𝜉)𝑑𝜉 = 𝐹𝑗(𝑾), (5) 

naming 𝐹𝑗 the flux of 𝑾.  

The challenging task is then to define 𝑴 so that the model conserves the good properties of the 

original kinetic scheme, i.e. a convex entropy 𝜂, as well at the continuous level than at discrete level. 

The chosen form of 𝑴 is linear with respect to 𝑾 and 𝐹𝑗. The existence of the associated entropy 𝜂 (and 

her flux) will give a special condition, called sub-characteristic condition, which will greatly simplify 

the stability analysis of the scheme. 

 

2.2. Discrete scheme 

We will solve equation (3) by a transport-projection algorithm (Bouchut, 2002). The idea is that in 

equation (3), if 𝜖𝑐𝑜𝑙𝑙 tends toward zero, a bounded solution implies that 𝒇 tends toward 𝑴[𝑾]. Therefore, 

at each step, 𝒇 is Maxwellian, and thus we can rewrite equation (3) with a change of variables: 

    {
𝜕𝑡𝒘+  𝑣(𝜉) ⋅ ∇𝑥𝒘 = 𝟎,

∀𝜉,𝒘(𝑡𝑛, 𝒙, 𝜉) = 𝑾𝑛(𝒙).
 (6) 

This algorithm has some interesting features; the most important one is that all the kinetic variables 

will be eliminated in the final scheme, using only the dimensional macroscopic physical variables 

(density, velocity). We consider a Cartesian mesh, with a discrete velocity set of 2 times D velocities 

for 𝜉, and constant data in each cell as in the finite volume method. Then the transport/projection 

algorithm is interpreted as a Flux Vector Splitting (FVS) method. That means that the flux is 

decomposed in separated directions: 𝑭𝑗(𝑾) = 𝑭𝑗
+(𝑾) + 𝑭𝑗

−(𝑾). We have chosen the Lax-Friedrichs 

decomposition in order to define Fj
±(W) (Bouchut, 2018). This will enable to import the continuous 

kinetic entropy condition to the discrete level. The resulting scheme, using the above discretization, 

becomes: 
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  {
𝑾𝒊

𝑛+1 −𝑾𝒊
𝑛 +

Δ𝑡

Δ𝑥
∑ (𝑭

𝒊+
𝒆𝑗

2

𝑛 − 𝑭
𝒊−
𝒆𝑗

2

𝑛 )𝐷
𝑗=1 = 𝟎,

𝑭
𝒊+
𝒆𝑗

2

𝑛 = 𝑭𝑗
+(𝑾𝒊

𝑛) + 𝑭𝑗
−(𝑾𝒊+𝒆𝑗

𝑛 ).
 (7) 

2.3. Parabolic rescaling 

We search the limit of equation (2) using two different steps. We first set 𝜖𝑎𝑑𝑣 ≈ √𝜖𝑐𝑜𝑙𝑙, which 

explains why we call it the “parabolic rescaling”. We can note that when 𝜖𝑐𝑜𝑙𝑙 → 0, 𝜖𝑎𝑑𝑣 is greater than 

𝜖𝑐𝑜𝑙𝑙. We can then fix 𝜖𝑎𝑑𝑣 and let 𝜖𝑐𝑜𝑙𝑙 tends toward zero. This limit is well known (Bouchut et al, 

2000), and the system in this asymptotic limit tends toward a classical system of conservation laws: 

  {
𝜕𝑡𝜌 + ∇𝒙 ⋅ (𝜌𝒖) = 0,

𝜕𝑡(𝜌𝒖) + ∇𝒙 ⋅ (𝜌𝒖⊗ 𝒖 +
𝑃(𝜌)−𝑃(𝜌)

𝜖𝑎𝑑𝑣
2 𝑰) = 𝟎,

 (8) 

with 𝜌 the reference density. We choose the state equation as: 

  𝑃(𝜌) = 𝑐𝑠
2𝜌 (9) 

with 𝑐𝑠 the speed sound. We want the solution to be bounded when 𝜖𝑎𝑑𝑣 tends toward zero, therefore 

equation (8) and (9) lead to keep 𝜌 in the neighbourhood of 𝜌: 𝜌 = 𝜌 + 𝑂(𝜖𝑎𝑑𝑣
2 ) 

Defining p as the physical pressure by: 

    𝜌 → 𝜌̅,
𝑃(𝜌)−𝑃(𝜌̅)

𝜖2
→ 𝜌̅𝑝. (10) 

Therefore equation (7) becomes the Incompressible Euler equations: 

  {
𝜕𝑡𝜌 + ∇𝒙 ⋅ (𝜌𝒖) = 0,

𝜕𝑡(𝜌𝒖) + ∇𝒙 ⋅ (𝜌𝒖⊗ 𝒖 + 𝑝𝑰) = 𝟎.
 (11) 

2.4. Adding diffusion 

To obtain incompressible Navier-Stokes equations (INSE), we need to add the diffusive term. We 

define the numerical diffusion coming out from the discrete numerical scheme, and fix it accordingly 

the free parameters of the current scheme to the desired physical diffusion leading to the following 

formula (consistency): 

  𝜖 =
𝑐Δ𝑥

2𝜈
. (12) 

As the scheme is explicit in time, CFL can be described as: 

  2𝐷
𝜈Δ𝑡

Δ𝑥2
≤ 1. (13) 
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Finally, the numerical scheme in terms of density and dimensioned physical velocity is written as: 

  

{
 
 
 

 
 
 𝜌𝒊

𝑛+1 = (1 − 2𝐷
𝜈Δ𝑡

Δ𝑥2
) 𝜌𝒊

𝑛 +
𝜈Δ𝑡

Δ𝑥2
∑ 𝜌𝑖−𝑒𝑗

𝑛 +
Δ𝑥

2𝜈
(𝜌𝒖𝑗)𝒊−𝒆𝒋

𝑛 + 𝜌𝒊+𝒆𝒋
𝑛 −

Δ𝑥

2𝜈
(𝜌𝒖𝑗)𝒊+𝒆𝒋

𝑛𝐷
𝑗 ,

(𝜌𝒖)𝒊
𝑛+1 = (1 − 2𝐷

𝜈Δ𝑡

Δ𝑥2
) (𝜌𝒖)𝒊

𝑛

+
𝜈Δ𝑡

Δ𝑥2
∑ ((𝜌𝒖)𝒊−𝒆𝑗

𝑛 +
Δ𝑥

2𝜈
(𝜌𝒖𝑗𝒖)𝒊−𝒆𝑗

𝑛 +
2𝜈

Δ𝑥

𝑃(𝜌𝒊−𝒆𝒋
𝑛 )

𝑐2
𝒆𝑗

𝐷
𝑗

+(𝜌𝒖)𝒊+𝒆𝑗
𝑛 +

Δ𝑥

2𝜈
(𝜌𝒖𝑗𝒖)𝒊+𝒆𝑗

𝑛 +
2𝜈

Δ𝑥

𝑃(𝜌𝒊+𝒆𝑗
𝑛 )

𝑐2
𝒆𝑗) .

 (14) 

For each moment the sum over j corresponds to the projection step (𝑓 is forced to be Maxwellian). 

Finally, considering the Cell Reynolds Number: 

  𝑅𝑒𝑚 =
Δ𝑥

2𝜈
max
𝑖,𝑗=1…𝐷

|𝑢𝑖𝑗|. (15) 

The sub-characteristic stability condition is then:  

  
𝑐𝑠

1−𝑅𝑒𝑚
≤ 𝑐. (16) 

The initialization of parameters is as follows: we fix 𝜖 = 1 (this parameter having no influence in the 

final scheme), we find c with the consistency equation (12), we then fix the ratio 𝑐𝑠/𝑐 = 1 (numerical 

tests proved this choice to provide good accuracy) giving the last parameter 𝑐𝑠.  

The formulation, which is written in term of moments, encompass the kinetic origin of the continuous 

scheme. The pdfs are Maxwellian at each time step, thus allowing us to write the transport-projection 

scheme in term of physical macroscopic variables. Eventually, the scheme (equation 14) is implemented 

similarly to a classical FVM one (see figure 1). 

As the scheme is only written in term of moments, the boundary conditions are treated as in FVM or 

finite difference method. For applying Dirichlet boundary conditions, we use the standard ghost cells 

method. Some well-chosen values are assigned on an extra cell outside the domain. For example, the 

wall boundary condition corresponds to setting zero Dirichlet condition to the normal velocity. The 

ghost cell method is also used for the Neumann boundary condition. The Combinations of Dirichlet and 

Neumann conditions are also possible, like setting Dirichlet conditions for some components of W, and 

Neumann to the other components (see Bouchut, 2018 for details). 

 

3. Macroscopic equations 

3.1. Darcy equation 

The first observations of monophasic flows through sand soils (Darcy, 1856) have shown that there 

is a linear relationship between the pressure drops and the filtration velocity at low Reynolds. The Stokes 
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equation can be averaged (neglecting the Brinkman correction and gravity) for Darcy's law (Whitaker, 

1986): 

  −𝐾𝐷̿̿ ̿̿ 𝛻〈𝑃〉
𝑓  = 𝜇𝑓〈𝑉〉, (17) 

where  𝜇𝑓 is the fluid viscosity and 〈𝑉〉 is the average fluid velocity over all the volume of the sample, 

𝐾𝐷̿̿ ̿̿  is the permeability tensor It is a second order symmetric positive and definite tensor, it’s an intrinsic 

property of the medium and a constant throughout the domain it also does not depend on the shape of 

the domain. 

3.2. Extraction of the permeability tensor 

To identify 𝐾𝐷̿̿ ̿̿  (a positive defined symmetric tensor) we use the method described in Bear, 1972 and 

Renard, 2001. A block shaped domain meshed with constant size cartesian 3D mesh was built for each 

sample either from CAD or tomographic images. We then solve the flow problem (INSE) at pore scale 

then extract the averaged velocity and pressure gradients. In 3D, one solution at pore scale for a given 

situation with given boundary condition leads to a system of 3 equations with 3 unknowns (the 

components of 𝐾𝐷̿̿ ̿̿  ). We use equation 15 to write:  

  

[
 
 
 
 
 
 
 
 
 
𝐾𝑥𝑥
𝐾𝑥𝑦
𝐾𝑥𝑧
𝐾𝑦𝑥
𝐾𝑦𝑦
𝐾𝑦𝑧
𝐾𝑧𝑥
𝐾𝑧𝑦
𝐾𝑧𝑧 ]

 
 
 
 
 
 
 
 
 

=  

[
 
 
 
 
 
 
 
 
 
∇𝑃𝑥

1 ∇𝑃𝑦
1 ∇𝑃𝑧

1

0 0 0
0 0 0

    
0 0 0
∇𝑃𝑥

1 ∇𝑃𝑦
1 ∇𝑃𝑧

1

0 0 0

   

0 0 0
0 0 0
∇𝑃𝑥

1 ∇𝑃𝑦
1 ∇𝑃𝑧

1

∇𝑃𝑥
2 ∇𝑃𝑦

2 ∇𝑃𝑧
2

0 0 0
0 0 0

    
0 0 0
∇𝑃𝑥

2 ∇𝑃𝑦
2 ∇𝑃𝑧

2

0 0 0

   

0 0 0
0 0 0
∇𝑃𝑥

2 ∇𝑃𝑦
2 ∇𝑃𝑧

2

∇𝑃𝑥
3 ∇𝑃𝑦

3 ∇𝑃𝑧
3

0 0 0
0 0 0

    
0 0 0
∇𝑃𝑥

3 ∇𝑃𝑦
3 ∇𝑃𝑧

3

0 0 0

   

0 0 0
0 0 0
∇𝑃𝑥

3 ∇𝑃𝑦
3 ∇𝑃𝑧

3
]
 
 
 
 
 
 
 
 
 
−1

[
 
 
 
 
 
 
 
 
 
 
 
𝑉𝑥
1

𝑉𝑦
1

𝑉𝑧
1

𝑉𝑥
2

𝑉𝑦
2

𝑉𝑧
2

𝑉𝑥
3

𝑉𝑦
3

𝑉𝑧
3]
 
 
 
 
 
 
 
 
 
 
 

.  (18) 

In system 17, subscripts 𝑥, 𝑦, 𝑧 describe the directions while superscripts 1,2,3 describe the numerical 

simulation performed each time in each direction. In case of isotropic foams, diagonal components of 

permeability tensors are equal while the other components are zero.  

To obtain the tensor, we need to solve 3 flow problems with different orientations of the mean flow 

imposed by the boundary condition, we then have to solve a linear system of 9 equations and 9 

unknowns.  We choose to prescribe pressure difference between two opposite faces of the domain while 

other faces were set as symmetry planes. This was done 3 times with the pressure difference imposed 

successively along x, y and z. 

 

3.3. Determination of principal directions 
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Two additional treatments are introduced to check the quality of the results and eventual bias induced 

by the extraction method: 

• We suppress the « numerically induced» very low gradients (< 1/1000 main gradient) to 

avoid the apparition of non-physical term linked to matrix inversion. These terms appear in 

directions perpendicular to the main flow. Generally speaking, this phenomenon occurs for 

weakly anisotropic objects. The order of magnitude of these gradients is comparable to the 

numerical accuracy of the results. In some cases, taking them into account leads to non-

physical results. Their suppression is natural in these cases. We systematically assess the 

impact of their removal on the final result. It has been found that only the non-diagonal terms 

were changed. 

• We force the symmetry of the permeability tensor. The equations (19) below are combined 

with the system (18), thus leading to 9 equations 6 unknown over-determined system (20).  

  {

𝐾𝑥𝑦 = 𝐾𝑦𝑥
𝐾𝑥𝑧 = 𝐾𝑧𝑥
𝐾𝑦𝑧 = 𝐾𝑧𝑦

,  (19) 

  𝐾𝐷̿̿ ̿̿ =

[
 
 
 
 
 
 
𝐾𝐷

𝑥𝑥

𝐾𝐷
𝑥𝑦

𝐾𝐷
𝑥𝑧

𝐾𝐷
𝑦𝑦

𝐾𝐷
𝑦𝑧

𝐾𝐷
𝑧𝑧 ]
 
 
 
 
 
 

= 𝜇𝑓

[
 
 
 
 
 
 
 
 
 
 
∇𝑃𝑥

1 ∇𝑃𝑦
1 ∇𝑃𝑧

1

0 ∇𝑃𝑥
1 0

0 0 ∇𝑃𝑥
1

0 0 0
∇𝑃𝑦

1 ∇𝑃𝑧
1 0
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. (20) 

We systematically compare the 3 tensors (full tensor (FT), symmetric (S), without small 

gradient(WSG)) and results are always similar. Note that the overdetermined system is solved to the last 

square sense. For all tested cases, the diagonal terms do not change significantly (usually less than 0.1%) 

while the other terms may change more significantly.  

In all cases, we compute eigenvalues 𝜆𝑖 and associated Eigenvectors 𝒘𝑖 of the tensor which constitute 

principal values and direction of the permeability (Bear, 1972): 

  𝐾̿𝐷 × 𝒘𝑖 = 𝜆𝑖𝒘𝑖. (21) 

This decomposition is useful for comparing the tensor characterizing different samples as the value 

in the (arbitrary defined) basis of original samples are not comparable. We will also test the 
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orthogonality of the 𝒘𝑖 vectors. If these are orthogonal, then in the basis composed of the 𝒘𝑖 vectors, 

the permeability tensor will be orthotropic, with 𝜆𝑖 as elements of the diagonal. 

Moreover, the values of 𝒘𝑖 will give an information about the orientation of the original basis (i.e. 

the basis associated to the real sample and its 3D images) compared to the one composed of the 

eigenvectors. As it is generally impossible to know beforehand the orientation of permeability tensor, 

the basis used during either experiments or 3D image acquisition is arbitrary oriented relative to the 

permeability one. Determining principal basis give the real orientation of the permeability tensor and 

allow direct comparison between samples or measurement methods as well as correlate anisotropy of 

such tensor to physical phenomena.  

 

3.4. First application example: Permeability tensor of sandstone 

We consider a sandstone sample of porosity 13.5 % (see section 4.3 for details). The first step is to 

solve system (18). We obtain: 

  𝐾̿𝐹𝑇 = (
9.75 0.355 0.236
0.293 7.76 −0.138
0.791 0.149 7.49

) × 10−13 𝑚2, (22) 

with the eigenvalue/eigenvector decomposition in table 1. The second step is to nullify the very low 

gradient induced by residual numerical noise. We then have the following permeability tensor: 

  𝐾̿𝑊𝑆𝐺 = (
9.75 0.354 0.236
0.293 7.76 −0.139
0.791 0.149 7.49

) × 10−13 𝑚2, (23) 

with the eigenvalue/eigenvector decomposition in table 2. In this case, the tensor is nearly identical 

to the previous one as expected because numerical noise is low on these calculations. Note that in both 

case the tensors are not symmetrical. This is due to numerical error during inversion, linked to the low 

degree of anisotropy and the fact that principal direction basis is close to the image one. Finally, we 

force the symmetry of the tensor (system 20). Then new tensor is then: 

  𝐾̿𝑆 = (
9.78 0.306 0.508
0.306 7.74 −0.0092
0.508 −0.0092 7.49

) × 10−13 𝑚2, (24) 

with the eigenvalue/eigenvector decomposition in table 3. For all the cases, we checked that the 

eigenvector basis is orthogonal, giving the final permeability tensor: 

  𝐾̿𝐷 = (
9.92 0 0
0 7.71 0
0 0 7.37

) × 10−13 𝑚2, (25) 
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in the {𝒘1, 𝒘2, 𝒘3} basis. See Table 9 for eigenvalues and eigenvectors. 

The tensors obtained using the 3 cases are close; indeed, forcing the symmetry induce a small change 

(~1%) on diagonal terms. Nevertheless, this tensor is symmetric by nature thus the difference are 

probably dues to numerical error during inversion process. 

As the λi are relatively close (only 25.8% of relative difference), we can conclude that the sandstone 

is only slightly anisotropic (and this anisotropy is generally not characterized in experimental studies 

due to technical limitations). Moreover, it appears clearly that permeabilities along 𝒘2 and 𝒘3 are very 

close, which mean that the sample structure characteristic size is significantly different only along the 

other direction 𝒘1. This could be linked to the formation of this natural rock under influence of gravity 

that lead to a compression along one direction.  

The present study focuses only on Darcian regime although the inertial effects can be significant 

even at low Reynolds number and a Forchheimer law (quadratic relation between velocity and pressure 

gradient) may be a more accurate model for fluid flow. It is necessary to determine permeability in 

Darcy regime and check the flow regime based on explored velocity range to choose the flow law in a 

coherent way (Kumar et al, 2014). In case of non-Darcy flow, equation (16) could be used considering 

an apparent (velocity dependent) permeability tensor. This latter is constituted by the sum of two tensors, 

the first one being the Darcian permeability tensor, and the second one relative to the inertia effects (see 

Soulaine, 2014 for a detailed discussion). The procedure used here could thus still be applied and the 

flow law parameters are essentially extracted in the same way although some additional complexity 

arise due to the inertia terms dependency on both magnitude and relative orientation of the velocity.  

We validate the computed permeability against literature permeability data (see Hugo et al, 2012; 

Vicente et al, 2006; Zinszner et al, 2007 and Talon et al, 2006) for two different kinds of samples: a high 

porosity metallic foam (manufactured medium) as well as a sample of low porosity natural medium, a 

Fontainebleau sandstone. We then study the influence of geometrical anisotropy (elongation) on the 

permeability tensor using Kelvin-like structure unit cells, which are simultaneously elongated and 

compressed differently for each direction. Finally, we study the permeability tensor of a piece of wood 

(redwood tree).  

 

4. Global hydraulic results 

The pore scale numerical method has been extensively validated against classical CFD 

(Computational Fluid Dynamics) benchmarks such as Poiseuille flow and Taylor-Green vortex problem, 

which are analytical ones (Jobic, 2016). We also use numerical Benchmarks as the backward facing step 

flow and the Von Karman vortex shedding over a square obstacle. Those benchmarks results showed 

that this method is well suited for relatively low Reynolds number (less than 100) to achieve excellent 
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accuracy on relatively “small” meshes. At higher Reynolds, the cell number should be increased 

(equation 15), and therefore computing cost may become prohibitive compared to other methods.  

We perform some extensive calculations on real domains reconstructed from micro-tomographic 

images (μCT) as well as over idealized domains, which are by construction already discrete and fixed. 

The original image resolution defines the maximum Reynolds number compatible with adequate 

accuracy. And thus, limit the present work to the Darcy regime. The dimension of representative volume 

element (side >5 cell size) to perform numerical simulations was chosen to optimize results’ reliability 

and computational time (see Brun et al, 2009). The simulations were stopped when 𝐾𝐷 converge 

asymptotically with less than 0.1% variation. Moreover, we also systematically checked mass in-balance 

at pore scale both over the entire domain (i.e. between inlet and outlet) and between several cross 

sections inside the domain. Additionally, we also analyzed qualitatively the local velocity pattern 

looking for local aberrations (e.g. in highly deformed zone of natural media).  

 

4.1. Periodic-idealized Kelvin-like cell 

The final purpose of this work is to find a good correlation between some quantitative easily 

measurable geometrical parameters and the intrinsic permeability property without carrying out 3D 

numerical calculation on a case-by-case basis. (see Kumar et al, 2017). 

To produce such correlations, a permeability database has to be created along with a morphological 

one. A representative simplified structure (here kelvin-like unit cell) was chosen, then several key 

geometric parameters such as strut cross-section, porosity, strut and cell size, were varied individually. 

On each of these virtual samples, we solve Navier-Stokes equations and extract macro-scale properties. 

At first, we study structure with constant diameter struts then extend this analysis to variable cross-

section along the strut axis. 

 

4.1.1. Constant cross section ligament  

The computational domain is built from a 3D CAD model generated using the inbuilt function of 

commercial software, StarCCM+. The foam structure is constructed simply by extruding a sketch along 

the edge of a truncated octahedron. The sketch (circle of diameter 𝑑𝑠 corresponding to strut diameter) 

is set at the midpoint between 2 nodes of polyhedron and orthogonal to the node-to-node line. It was 

then swept along this half-strut skeleton up to the node. This procedure is repeated from the four half-

struts intersecting at a node. Then, the planes bisecting each angle -constituted by a pair of struts and 

parallel to the third one- were used to slice the excess length of each strut. These 4 half struts structure 

were iteratively duplicated by symmetry along the original sketches until a whole cell (plus additional 

outward half-struts) was constituted. Further, a Boolean intersection with the cubic unit cell is realized. 



 

 

 

14 

 

This procedure was fully parameterized in terms of strut diameter and cell size (Figure 2-left). As the 

influence of the unit cell size own permeability -K~ 𝑑𝑑𝑐𝑒𝑙𝑙
2  - is already well known, (see. Bonnet, 2008) 

the node-to-node length (𝐿𝑁 = √2 mm) is kept fixed for entire calculations giving a fixed cell size 

(𝑑𝑐𝑒𝑙𝑙 = 2√2𝐿𝑁 =4 mm). 

Based on the construction method described above, strut diameter has been used as a control 

parameter to generate foams of chosen porosities. This allows creating only (in a periodic unit cell) 36 

struts that are along the edge of the truncated octahedron. Note that, the strut ligament diameter does not 

vary along its axis (Figure 2-left). Upon increasing the diameter of the strut, one would reach a point 

where the structure degenerate and will not be a foam anymore (i.e. the centerline skeleton of the created 

shape will differ from the truncated octahedron, and some faces between adjacent pores may collapse). 

We increase progressively the size of strut diameter until the shape degenerates. This point is referenced 

as a limiting porosity, below which Kelvin-like foam structure having circular cross-section does not 

exist anymore.  

The morphological parameters of virtual Kelvin-like foam structures are numerically measured from 

CAD data (surface and volume of the structure) and thus, do not induce any significant bias (see Table 

4). Note that, the same base mesh size (mesh cells average size) is used for all CFD calculations. 

Nevertheless, the mesh is constructed for each strut size and local refinement is used to capture properly 

the geometrical features of the sample. 

 

4.1.2.  Influence of mesh resolution 

We carried out a detailed study of mesh convergence. There are 2 different aspects that play a role 

in this case. The CAD mesh used to generate the geometry and the cartesian regular grid on which VFS-

BGK calculations are done. This latter is dependent on the quality of the CAD one. As expected, coarse 

meshing does not provide accurate results as morphological errors are very important. Then the results 

converge with mesh resolution. Finally, over-meshing lead to adverse results mainly linked to numerical 

limits of the CAD mesher (numerical accuracy, and creation of poorly conformed cells in small acute 

zones. These latter lead to generations of unrealistic very small surface corrugations). Consequently, the 

procedure reaches the point where geometrical structure is poor and INSE solver becomes prohibitively 

time consuming.  

The first step is to verify the impact of the geometric discretized resolution (voxel size) on porosity 

(ε0), surface porosity (𝜀𝑠𝑢𝑟𝑓), specific surface area (ac) and permeability (KD) values of the Kelvin-like 

foam sample of cylindrical strut shape (𝜀0 = 0.6 and 0.95) as presented in Figure 3 

It can be observed that the morphological parameters start to converge at higher resolution to capture 

precisely the 3D foam structure reported in the works of (Kumar et al, 2014). On the other hand, the 
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main flow topology is well captured despite the lack of resolution (stairs effect as shown in Figure 4). It 

is a well-known phenomenon (see Inamuro et al, 1997; Clague et al, 2000; Bernsdorf, 2008), which 

comes from the fact that the specific surface area is nearly the same for all resolutions. 

As expected, the calculated permeability converges when mesh resolution increases. To perform 

parametric studies, a domain constituted of 1603 mesh cells is chosen to perform CPU/memory cost 

optimized numerical simulations without compromising significantly accuracy of the data (see Table 6). 

 

4.1.3.  Variable cross section ligament  

We extended our analysis to variable diameter ligament (Figure 3). The foam structure is constructed 

in the same way than the constant diameter one. The only difference being that the initial sketch (circle 

of diameter 𝑑𝑠,2 corresponding to strut diameter at the middle of strut) is set at the midpoint between 2 

nodes and orthogonal to the strut axis. It was then swept along this half-strut skeleton with a draft angle 

up to the node. Again, his procedure was fully parameterized in terms of strut diameter, cell size and, 

draft angle (Figure 2-right). Here, the draft angle is positive and mean outward draft during extrusion. 

It thus led to produce a structure with a bigger strut diameter (𝑑𝑠,1) near the node junction while a smaller 

diameter (𝑑𝑠,2) at the middle of the ligament. Such ligament occupies a large volume at node intersections 

while a small volume at the center of the ligament. This allows us to vary for example the strut size 

(average) at constant porosity and cell size by changing the draft angle. We also now dispose of 

representative cells for the most commonly encountered type of solid foams commercially available and 

used in various industry fields. 

Remark: Measurements on real foam samples from different producer clearly shows that according 

to the manufacturing process (e.g. coating for ceramic one, electrodeposition for metals) solid foam may 

or may not exhibit “lump” in the vicinity of node junction. Also, several strut cross sections could be 

produced, and variations of strut diameter are observed or not, either from intentional manufacturing 

technique (in case of additive fabrication for example) or simply as a consequence of a cost optimized 

production for specific applications. 

The morphological parameters i.e. strut diameter at the middle of ligament (𝑑𝑠,2), porosity (𝜀𝑜), 

specific surface area (𝑎𝑐), and pore diameter (𝑑𝑝) of 32 virtual Kelvin-like foam samples using classical 

CAD approach are measured (see Table 5). 

 

4.1.4.  Results and discussion 

The current numerical results obtained from VFS-BGK on structured grid were compared against 

numerical results of Kumar et al, (2014) obtained on commercial software (StarCCM+) on polyhedral 

unstructured mesh. 



 

 

 

16 

 

The classical formula of Ergun, 1952: 𝐾𝐷 =
𝐷𝑝
2𝜖3

150∗(1−𝜖)2
 (where 𝐷𝑝 is equivalent particle diameter) is 

also compared to these results as it is often used for foam permeability prediction. This latter was 

originally developed for packed bed of spheres and there is no real agreement in literature about its use 

(and exact formulation) for the case of foam. Most commonly, permeability was linked to two 

parameters i.e. pore size and porosity for isotropic and commercially available foams. 

Table 7 present several calculated permeability values using FVS-BGK method on constant as well 

as variable cross section of foam samples.  

Our data are in perfect agreement with those from Kumar and Topin, 2014 for the constant strut 

Kelvin cells (Figure 5). We can note that (Kumar et al, 2014) used a nonstandard Darcy formalism, by 

considering the mean pressure gradient on the bulk phase, not on the fluid phase (see equation 16). 

Therefore, a scaling factor (surface porosity) has been applied to their results to retrieve the permeability 

value with the exact definition. On figure 5 the porosity offset between the 2 dataset is due to the 

difference in geometric discretization of the original images and is a function of resolution. The proposed 

discretization method causes errors at the walls according to the resolution where original solid-fluid 

interfaces are not aligned with voxel faces (figure 4).  

The second important point is that the Ergun-like formulation clearly (i) is out of range and (ii) do 

not follow the same trend than measured/calculated data and thus, cannot be applied -in this form- to 

open-cell foams. Note that on Figure 5 the Ergun formula values are out of range and have been 

graphically rescaled to compare the shape of the curve with the actual data. 

Several experimental works are reported in term of Ergun ’like formulation. As the available foam 

sample cover a very narrow range of porosity (typically 0.85 -0.95) - also pore/struts shape may depend 

on cell diameter - no experimental study covers a wide range of porosity. Thus, for the limited accessible 

range, the Ergun formulation was adapted using a specific “pore diameter” -different depending on case 

study - and the discrepancy between Ergun formulation and Foam permeability behavior in respect with 

porosity was not apparent.  

 

4.2. Real high porosity foam samples  

Metallic foams are a class of materials that are attractive for numerous applications, as they present 

high porosity, high effective thermal conductivity of the solid phase and of the bulk samples. Moreover, 

they also promote mixing and have excellent specific mechanical properties. Metallic foams are thus 

used in the field of compact heat exchangers, reformers, two-phase cooling systems, and spreaders. 

Foams have also been used in high-power compact batteries and catalytic-reactor applications such as 

fuel cell systems (see e.g. METFOAM, 2015). 
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A commercial foam sample (NC 1723 Recemat foam see Figure 6a) has been chosen as previous 

experimental and numerical studies of pressure drop are available (Bonnet, 2008, Brun, 2009). The 

geometry has been reconstructed from the µCT tomographic images using 198x198x342 voxels.  

It appears clearly that these foams present a rather low specific surface, a large pore diameter, and a 

very high porosity in comparison to classical porous media. It has been demonstrated (Vicente et al, 

2006) that the cells are spatially organized (common mean orientation) but some defects appear in this 

arrangement. Cells of different orientation and size materialize these defects. They appear to 

accommodate topological constraints associated with plateau border angles, space filling, and 

constraints produced by manufacturing processes. The corresponding computing domain incorporates 

those defects, in order to include the representative elementary volume (REV), as in (Brun et al, 2009). 

It is important to note that, we have the used the same real sample for the experimental and numerical 

studies. The numerical domain is however a fraction of the experimental one. This is due to the chosen 

voxel size for µCT imaging (necessary to capture strut geometry), which leads to a limited field of view. 

A representative elementary volume of 1.1 × 1.1 × 2 cm3 was used. 

We compare our results against different literature data: 

1. Experimental data (Bonnet et al, 2008), extrapolated by a Forchheimer law, which finds 𝐾𝐹 =

2.23 × 10−8 m2 (here, 𝐾𝐹 represents Forchheimer permeability and is not Darcian 

permeability, see Kumar and Topin, 2017). 

2. Numerical data, also using a Forchheimer law, giving 𝐾𝐹 = 2.8 × 10
−8 m2 for an LBM code, 

and 𝐾𝐹 = 5.6 × 10
−8 m2 for a Finite Volume code (E. Brun, 2009). The discrepancy between 

this latter value and the other one is attributed to data treatment and boundary conditions 

handling. 

 

Using BGK-FVS scheme, we found 𝐾𝐷 = 3.03 × 10
−8 m2(see figure 6). An excellent agreement is 

obtained with both experimental and numerical results. Note that the pressure gradient versus velocity 

curve is a perfect line (R2 = 1.00, Figure 6b), as expected for Darcian regime, showing that the viscous 

flow is indeed well captured. In literature, the reported permeability (either experimentally or 

numerically obtained) is often Forchheimer permeability (see Kumar and Topin, 2017), while the 

permeability obtained here is Darcian permeability. It is difficult to assess accurately the bias between 

Darcian and Forchheimer permeability, which explains the small differences. However, as the raw data 

generated using the in-house Finite Volume code are available, we calculate the Darcian permeability 

from original pressure and velocities data in order to obtain a more representative comparison with our 

calculations. We obtain 𝐾𝐷 = 2.98 × 10
−8 𝑚2 (figure 7). The relative difference for this permeability 

and the one obtains with the BGK-FVS method is at about 1.6%, showing an excellent agreement. 
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Applying the methodology described in Section 3 for the determination of the permeability tensor, 

we find, the permeability tensor in the basis {𝒘1, 𝒘2, 𝒘3}: 

  𝐾̿𝐷 = (
3.32 0 0
0 3.13 0
0 0 3.14

) × 10−8 𝑚2. (26) 

We have max
𝑖,𝑗,𝑖≠𝑗

|𝑤𝑖 ∙ 𝑤𝑗| = 1.86 × 10
−13 𝑚2. That means that the principal basis composed of the 

eigenvectors is orthogonal, and, the basis orientation is very close to the one of the tomographic images. 

As the foam cells come from the bubbles produced during the foaming of the original polymer precursor 

that are aligned with the main direction of original bloc (and gravity) this indicates (for this sample) that 

the manufacturing process respect this orientation. A careful visual analysis of all our sample sheets has 

shown that their faces are nearly parallel to cell alignment.  

The values of the eigenvalues and eigenvectors can be found in Table 8. As the diagonal terms of the 

tensor 𝜆𝑖 are very close (only 5.7% of relative difference), we can conclude that the NC1723 sample is 

only slightly anisotropic. From geometrical point of view this foam is also nearly isotropic and cells are 

slightly elongated along one direction only (see. Brun, 2009). The structure of permeability tensor that 

exhibit the same trend is clearly governed by the pore characteristic size along its principal axes. 

 

4.3. Low porosity natural media sample 

The Fontainebleau sandstone is often used as a benchmark, because of the exceptional quality of the 

porosity/permeability relation (27) given by Zinszner et al, 2007.  

A µCT image of 5003.voxel – 3x3x3 mm3, spatial resolution 6 𝜇𝑚 – was acquired from a core sample 

of porosity 14.5%. After normalization and filtering, the grey-level density 3D image was binarized to 

segment pore and solid volume using a threshold set at the minimum between the two peaks of the gray 

level histogram (Talon et al, 2006). The binarized sample presents a porosity of 14.1%. The difference 

with the core bulk porosity could be attributed to both heterogeneity of the sample (µCT image is only 

a small fraction of the core) and bias linked to the thresholding process.  

We then use a bloc of side 1.2 𝑚𝑚3 - porosity 13.5%- about 1/8 of the original image, to produce a 

2003 cells mesh (figure 8a). The flow problem was solved, and permeability tensor was extracted (see 

section 3). 

We can compare the permeability values to literature experimental data or correlation. An 

experimental law corresponding to a Fontainebleau sandstone is given in (Zinszner, 2007), which is: 

  log 𝐾𝐷 = 𝑎(log 𝜖)
3 + 𝑏(log 𝜖)2 + 𝑐(log 𝜖) + 𝑑, (27) 
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with the parameters values in Table 10. In this expression, the porosity 𝜖 is expressed in percentages 

and gives the permeability in 𝑚𝐷. Talon et al, 2006 give the confidence interval of this law 

(RMSE=0.31), for porosity 14.5%.  

For example, it gives the following experimental permeability, for a porosity of 13.5%, 𝐾𝑒𝑥𝑝 =

5.68 ± 1.76 × 10−13 𝑚2. We have however no information on the flow direction used to create the 

power law function. Permeability values associated to the porosity of the sample at different stage of the 

analysis have been synthesized in Table 11.  

On Figure 9, we compare the permeabilities computed with the BGK-FVS method with the 

experimental values given by Talon, (2006). Unfortunately, our method could not be tested against the 

other samples that were not available for a more detailed comparison. The calculated values are in good 

agreement with experimental one, although these latter are widely spread and exhibit some clear 

uncertainties both for porosity and permeability. 

 

4.4. Application to anisotropic tailored media (orthotropic case)  

Based on the comparison and validations performed on idealized and real open cell foams of different 

porosities, the proposed method gives reliable permeability values. It can thus be very interesting to 

obtain permeability tensors on orthotropic foams, as available literature data are very scarce (see Hugo, 

2012). Moreover, anisotropic materials could be used to optimize many components or system. For 

example, tailoring high permeability in one direction while keeping a slightly lower one in the other 

would be very interesting for heat sink design (e.g. electronic cooling applications). 

Orthotropic anisotropy of the original foam sample was realized by elongating and compressing 

simultaneously in two orthogonal directions by a factor √𝛺 and 1/√𝛺 respectively while the third 

direction is kept unaffected to conserve porosity. Some anisotropic Kelvin-like foam samples presenting 

circular strut shape are shown in Figure 10, as well as fluid velocity field (sections in the x, y and z-

directions).  

The calculations were repeated imposing the flow successively along the three directions to 

determine permeability tensors. Results are presented in Figure 11 and Table 12. First, the case where 

Ω = 1 is isotropic by construction, meaning that Kxx = Kyy = Kzz. Moreover, also by construction, the 

basis composed of the eigenvectors is identical to the one of the computing domains, namely {e1, e2, 

e3}. We have then Kxx = Kw1, Kyy = Kw2, Kzz = Kw3. 

The result’s interpretation of the permeability variation as a function of the deformation is complex 

as the geometry and the foam angles are varying for each case. It can however be observed that: 
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• for Ω ∈ [1,2], the x-direction permeability increases with elongation deformation, while along the 

other two directions (i.e. y and z) the permeability decreases (due to the compression 

deformation). 

• for Ω ∈ [2,9], the permeabilities along all directions are decreasing. This could come from the 

increase of the specific surface area or the effect of struts orientations and cross section 

deformation. 

These first results validate the use of the BGK-FVS method for this class of problems; a systematic 

study of deformation vector on permeability tensor is carried out and will be the object of further 

publication. 

 

4.5. Complex real geometries: determination of a wood sample properties 

4.5.1. Generation of computing domain from raw images 

We obtained the image data from LBNL (Lawrence Berkeley National Laboratory) in the frame of 

the ESM effort at NASA, thanks to Francesco Panerai. It is microtomographic images of redwood 

sample coming from Mendocino forest, California. The whole sample contains 18003 cells, which 

represent a volume of 5.8 mm3 (see raw images on Figure 12a for example). Obviously, there is no 

certainty that this particular sample is representative enough to extract properties of the wood as a 

material. On the other hand, it could be used to check our INSE solver capability as well as our method 

of permeability characterization on a complex medium.  

Binarization from direct thresholding on the raw data gives unsatisfactory results, as shown in Figure 

12b. We can observe a lot of small isolated white voxels (false solid voxels). These speckles come from 

artefact during image acquisition and need to be suppressed to correctly reconstruct the sample 

geometry. 

We used the iMorph (http://www.imorph.fr/, Brun et al, 2008) software developed at IUSTI, in order 

to clean up the data and reconstruct the 3D topology. The first treatment was to apply a median filter, 

which suppress the speckle noise, and then we only conserved the connected components, thus 

suppressing the free unconnected false solid voxels that are obviously artefacts. 

Moreover, as shown in Figure 12a, the images seem mis-oriented compared to the wood apparent 

structure. A rotation (50 degrees) around z axis has been applied to align visible structure with basis 

directions. We show with Figure 12c an example of cleaned images. One could clearly observe the 

suppression of the unwanted voxels. 

As it is a recurrent problem in µCT reconstruction, it is interesting to highlight the sensibility of the 

porosity value to the threshold level during binarization. We plot the cumulative normed histogram of 

the gray level of the sample image (Figure 13). We observe a strong porosity variation (from 85.7% up 

http://www.imorph.fr/
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to 89%) for a 5% variation of the threshold. Choosing the right threshold is tricky (as there is often no 

independent comparable porosity data) and this value has a great influence on the resulting mesh. 

Eventually, the whole sample computational domain represents 23 billion of unknowns (18003 cells 

with four unknowns per cells), which is difficult to solve considering the current available computing 

power. 

We have therefore chosen to work on subdomain of smaller size and cut three different domain, at 

different location of the sample. The first one is a cube of 150 cells edges. As expected, the computing 

time is very low (37 minutes on 96 processors). The post-processing is easy. However, this subdomain 

is not representative of the sample (it is not a Representative Element Volume, REV).  

The second subdomain is a cube of 200 cells edges and is taken at another (non-overlapping) arbitrary 

location. The last one is a cube of 600 cells edges that overlaps partially the previous ones, which 

represent the third of the original sample along each direction or 1/27 of sample volume; see Table 13 

for a general presentation of the samples).  

For each subdomain, we study its homogeneity, and determine the permeability tensor to check the 

properties at different scale and try to quantify the representative elementary volume size for such 

material. 

 

4.5.2.  Subdomain 1: 1503 cells 

The homogeneity of the subdomain was analyzed first. We extract 2D porosity of 3 planes that were 

swept across the entire domain. This operation was realized for 3 perpendicular planes corresponding to 

each face of the subdomain. The results are reported on figure 14a, the abscissa is the position of the 

plane relative to its original position. 

We first note that the porosity variation of the z direction has less amplitude than the other two. This 

comes from the fact that the vessels (or pores) are organized by cells that transport the sap in the 

hardwoods. They are located longitudinally in the timber and may or may not be juxtaposed. In our 

sample, they are oriented in the z direction. 

Moreover, we clearly observe, still in Figure 14a, that near the corner of the sample away from the 

origin, the porosity is abnormally high. As shown on Figure 15a, this is due to a default in the subdomain 

-a big hole- leading to two different structures in the region of interest. The first one has a kind of 

regularity in the vessel organization, the other part contains only the hole. Plotting the contour of the 

flow in this subdomain confirms (Figure 15b) that the velocity is higher in the region containing the 

hole. As this default is a local artefact and not a feature of the whole sample, this first subdomain is 

probably not representative of the whole sample. 
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Applying the methodology described before for the determination of the permeability tensor, and for 

simplicity rename the {𝒘1, 𝒘2, 𝒘3} basis by {x,y,z}. The permeability tensor in this basis is then: 

  𝐾̿𝐷 = (
1.43 0 0
0 6.65 0
0 0 9.72

) × 10−11 𝑚2, (28) 

with the values of the eigenvalues and eigenvectors in Table 14. The anisotropy, as expected, is very 

high, with more than 30% difference between the z and y direction, and a ratio superior to six between 

the z and x direction. The flow is much easier in the z direction, the one of the vessels. There is however 

a significant difference between the x and y direction. This indicates that opening size measured in plane 

x-z are smaller than in plane y-z. This is probably linked to the natural growth of the wood 

microstructure. These results indicate that we are able to solve INSE equations and extract a permeability 

tensor from a complex heterogeneous sample.  

 

4.5.3.  Subdomain 2: 2003 cells 

The homogeneity of the 200 cells edge’s subdomain was again checked (Figure 14b). We observe 

two small special regions, where the porosity is quite low, at around 75%. However, those two regions 

are very limited in space compared to the subdomain size (and some similar region were found at other 

location in the whole sample). Unlike the previous one, this subdomain is not composed of two regions, 

and look way more homogeneous, as a confirmation of the homogeneity study. Moreover, the porosity 

along the z axis is quite regular, between 84 and 88 %, which is an expected behavior due to vessels 

orientation along z direction (see Figure 16a). We can conclude that this subdomain is probably 

representative of the whole sample, at least more representative than the previous one. 

Figure 16b -with a different view angle from 16a to show a small hole in the sample- shows iso-

contours of the velocity magnitude field for a pressure gradient (and thus a main flow) imposed along z 

direction. These iso-contours are mainly tubular, the flow is similar to Poiseuille flow in parallel tube as 

expected from the wood structure. Nevertheless, patterns, characteristic of tube connection, are visible 

near the front vertical edge of the view.  

Figure 17 shows iso-contours of velocity magnitude for a gradient imposed in transverse direction. 

In this case, we lose the tubular behavior of the velocity magnitude, for a more erratic one. The fluid 

crosses the sample by passing from one vessel to the other across opening (of smaller dimension than 

the vessel) that are not aligned.  

We determined the permeability tensor in the {x,y,z} basis: 

  𝐾̿𝐷 = (
2.22 0 0
0 3.83 0
0 0 7.72

) × 10−11 𝑚2, (29) 



 

 

 

23 

 

with the values of the eigenvalues and eigenvectors in Table 15. This tensor is slightly different from 

previous one. There is nearly a factor two between the z and y direction, and a factor 4 between the z 

and x direction. We can still recover the fact that the vessels are oriented in the z direction. We can 

conclude that our method captures well the main feature of flow field and relation of permeability tensor 

with geometrical feature even for complex situations. 

 

4.5.4.  Subdomain 3: 6003 cells 

The same analysis was repeated to the biggest subdomain. Figure 14c shows a different porosity 

behavior than the previous ones, as the variation around the mean porosity value is clearly lower. The 

subdomain 1 and 2 present porosities varying between 73% and 93%. For subdomain 3, the porosity 

variation amplitude is nearly 2.5 time lower (82% to 90%). This clearly indicates that the first 2 

subdomains are representative of a local zone and not of the whole sample. 

The x and y directions present oscillations around the z axis, retrieving again the vessels orientation 

in the z direction (see Figure 18a). 

We do not observe high porosity peaks; the biggest subdomain is more regular than the smaller ones 

(local defaults); in particular it contains no hole. We can conclude that this sample is fairly 

homogeneous.  

From Figure 18b, we can observe that the flow contour of the velocity magnitude is mainly tubular 

as expected, the vessels being oriented in the z direction. We find the permeability tensor is the {x,y,z} 

basis: 

  𝐾̿𝐷 = (
1.44 0 0
0 4.08 0
0 0 7.51

) × 10−11 𝑚2, (30) 

with the values of the eigenvalues and eigenvectors in Table 16. The anisotropy is comparable to the 

previous smaller samples.  

 

4.5.5.  Representative Element Volume considerations 

The question is then: is the 6003 cells subdomain enough to approximate the permeability of the 

whole sample? 

First, subdomain 3 is homogeneous, which at first may looks good, but as we have seen before it 

does not have holes that the whole sample has. Cutting a smaller part of it should possess the same 

"imperfections". Secondly, it is interesting to plot the evolution of the diagonal permeability tensor 

elements, namely Kxx, Kyy and Kzz for the samples. From Figure 19, we can observe that the variation for 

Kzz and Kyy is less than 10% from subdomain 2 to subdomain 3. Kxx seems to vary, for more than 32% 
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from subdomain 2 to subdomain 3. It is therefore difficult to say if this subdomain size is a reasonable 

REV. In order to check the global behavior for the intermediate structures, we generate and analyze a 

sample of 3503 voxel cut in the 6003 one. The obtained permeability tensor is similar to those of 

subdomain 2 and 3. 

To conclude on REV considerations, the whole imaged sample is of about 6 mm edges, while the 

diameter of the tree is between 3 to 4.5 meters (average values). Therefore, the permeability values may 

be strongly dependent on the sample position. 

As the BGK-FVS tools is well adapted to deal with such complex geometry, a detailed and systematic 

study will be carried out in order to extract representative properties of the wood using several (i.e. 

sampled at different tree position) and bigger (i.e. constituting a “true” REV) samples. 

 

5. Conclusion 

We designed a kinetic BGK equation which corresponds to a hyperbolic system. Then, we used a 

transport-projection method to approximate the RHS of the designed BGK, enabling to use a moment-

based equation rather than discrete velocities ones. As this method can be seen as a Flux Vector Splitting 

one, we analyzed the moment-based equation with the tools of the FVS method, without involving any 

kinetic model. The entropy is kept at each step of the formal developments, from the continuous scheme 

to the discrete level. Then, the consistency and accuracy of the BGK-FVS method for application to 

INSE equations leads to flux/moment derivative conditions. These latter are satisfied by adjusting a free 

parameter and eventually allows to obtain second-order accuracy. In other words, we controlled the 

known diffusivity of the discrete scheme by adjusting it to the physical viscosity. The stability analysis 

is ensured with the entropy, which imposes that the computed moments remain in the stability region of 

the open set of admissible moments. Finally, the discrete entropy inequality holds under three different 

stability conditions: one coming from the CFL of the time discretization of the hyperbolic system, two 

from the stability region: the cell Reynolds number and the sub-characteristic condition. This means that 

the grid size must be small enough to satisfy all of them. However, the implementation requires less 

memory consumption than a discrete velocities approach, eventually the explicit scheme insure the good 

scalability of parallel software implementation. 

We have shown that this new numerical scheme is well suited for accurate calculation of pressure 

and velocity field and find natural application in determination of macroscopic properties of complex 

geometries samples. Current numerical results showed that the new method characterizes precisely the 

Darcian permeability tensors, demonstrating its accuracy and robustness, for various porous media, from 

high to low porosities, both natural and manufactured media such as wood, soil or metallic foams. Those 

3D complex structures may come from either binarized microtomographic images or CAD geometry, 
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which can have small imperfections, leading to meshing difficulties for commercial software. Moreover, 

such softwares use numerical schemes that may have difficulties in presence of isolated -closed- pores. 

We have seen that the BGK-FVS method does not have these two problems, showing excellent results 

in different media. In the present form, our proposed method is limited to intrinsic permeability of 

different porous media. The development of inertial effects is currently under development and will be 

presented in the near future. 
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Figure 1: Block-diagram of the FVS-BGK scheme: A hyperbolic system of conservation laws is solved by a kinetic 

method using a BGK operator. The RHS of the designed BGK is approximated by a transport/projection algorithm, which 

can be interpreted as a flux vector splitting, enabling a moment-based scheme; the space discretization is done by a Finite 

Volume scheme, and the velocity discretization by a fixed set of discrete velocity. Then, after a parabolic rescaling we obtain 

the incompressible Euler equation, and diffusion is added by making a controlled numerical diffusion matching the physical 

viscosity, solving finally the Navier-Stokes equations. Entropy is conserved at each step, from the continuous scheme to the 

discrete level. 

 

 

 

Figure 2: Presentation of a node and four struts of a foam sample (left) constant cross section of diameter, 𝑑𝑠 and half strut 

length, 𝐿𝑠/2; (center) node to node length, 𝐿𝑁; (right) variable cross section of diameter, 𝑑𝑠,2 at the middle of the ligament and 

half strut length 𝐿𝑠*/2. 
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𝜖 = 0.65, 𝑑𝑟𝑎𝑓𝑡 𝑎𝑛𝑔𝑙𝑒 = 0° 

 
𝜖 = 0.65, 𝑑𝑟𝑎𝑓𝑡  𝑎𝑛𝑔𝑙𝑒 = 20° 

  

 
𝜖 = 0.95, 𝑑𝑟𝑎𝑓𝑡  𝑎𝑛𝑔𝑙𝑒 = 0° 

 
𝜖 = 0.95, 𝑑𝑟𝑎𝑓𝑡 𝑎𝑛𝑔𝑙𝑒 = 20° 

Figure 3: Left: constant struts diameter Kelvin-like cell. Right: variable strut diameter Kelvin-like cell. All cases  

𝑑𝑐𝑒𝑙𝑙 =4mm (Mesh Resolution 1603 points). Upon increasing the draft angle, solid phase accumulates preferentially in the 

vicinity of node rather than near the middle of strut cross-section. 
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(a1) (a2) (a3) (a4) 

    

(b1) (b2) (b3) (b4) 
Figure 4: Velocity field in a cross section perpendicular to main flow axis located at the middle of a unit cell for various 

resolutions, from 403 to 3203 voxels, and porosity (𝜖 =0.6 up and 0.95 down) 

 

 

 

Figure 5: Validation and comparison of Darcian permeability variations as a function of porosity for a given cell size 

(𝑑𝑐𝑒𝑙𝑙 =4mm), with variable and constant strut sections. Note that Ergun formula values are out of range and have been 

graphically rescaled in order to compare the shape of the curve with the actual data. 
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Figure 6. Left: 3-D reconstruction and flow field in a NC1723 foam sample (𝜀𝑜 =0.87); Right: Extraction of 

permeability by linear regression and comparison with literature. 
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Figure 7: Delimitation of Darcy and Forchheimer regime for water in NC1723, data from the homemade Finite Volume 

code. Darcian Permeability value superimposed. Fluid water. 

 

 

 
 

(a) (b) 

Figure 8: Permeability of a low porosity sandstone sample. (a) Pore scale calculated flow field. domain: 

200 × 200 × 201 voxels, 𝜖 = 13.5%, (b) permeability determination, BGK-FVS data. We found an excellent linear fit, with 

𝑅2 = 1.0 
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Figure 9: BGK-FVS permeability results compared to experimental data and literature correlation; sandstone sample 

of porosity 13.5% 
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Figure 10: Kelvin-like samples (circular strut) for various elongations; Pore scale fluid flow result shown on the last 

figure (streamlines and velocity magnitude cut off) 
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Figure 11: Permeability tensors diagonal components versus elongation factor Ω. Kelvin like foam sample. 

 

   

(a) (b) (c) 
Figure 12: Redwood structure micro-tomographs (a) Raw image (b) Direct thresholding on the raw data-> gives a lot 

of false solid voxels (c) Thresholding after a cleaning stage (removal of non-connected components). The remaining small 

white voxels are connected to other slices.  
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Figure 13: Impact of thresholding on porosity: sensibility study. For a threshold variation 

of 5%, we obtain a variation of about 2% of porosity in the vicinity of chosen threshold value. 
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(a) 

 

(b) 

 

(c) 

Figure 14: 2D Porosity variations along each direction: (a) subdomain 1(1503 cells). The z 

direction has less porosity variation than the other 2, giving the visual result that the wood fibers 

are oriented in this direction. (b) subdomain 2 (2003 cells). Some small dense regions appear 

(c) subdomain 3 (6003 cells). A more homogeneous distribution is observed.  
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(a) (b) 

Figure 15: Subdomain 1 (1503 cells). (a) Structure, the wood fibers are oriented up to the z direction. There 

is a hole in the structure. (b) Pore scale flow pattern. The image view-angle is different; see the hole in the wood 

structure. 3D iso-contours of velocity magnitude. The main flow is in the same direction than the wood fibers. 

Pressure difference imposed along z 
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(a) (b) 

Figure 16: Subdomain 2 (2003 cells): (a) The wood fibers are oriented up to the z direction. (b) Iso-contours of velocity 

magnitude for a different view-angle. The flow presents a tubular aspect as expected from the vessels structure. Pressure 

difference imposed along z 
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Figure 17: Subdomain 2. Iso-contours of velocity magnitude for a different 

view-angle. The flow presents a rather convoluted path. Pressure difference 

imposed along x. 
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(a) (b) 

Figure 18: Subdomain 3 (6003 cells). (a) The wood fibers are oriented up to the z direction. (b) Iso-contours of velocity 

magnitude for a different view-angle. The flow presents a tubular aspect as expected from the vessels structure. Pressure 

difference imposed along z 
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Figure 19: Evolution of the diagonal component of permeability tensor versus the subdomain size. 

Kz and Ky show good convergence, whereas Kx seems to vary. Globally a REV size of 2003 voxels 

seems acceptable.  
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Table 1: Eigenvalues and eigenvectors for the permeability tensor of the sandstone 

sample, direct extraction method without treatment 𝑲̿𝐹𝑇 

𝜆1(10
−13) 𝒘𝟏  𝜆2(10

−13) 𝒘𝟐  𝜆3(10
−13) 𝒘𝟑 

9.87 

-0.941  

7.71 

-0.320  

0.175 

-0.110 

-0.163  0.853  0.496 

0.175  -0.037  -0.984 

 

 

 

Table 2: Eigenvalues and eigenvectors for the permeability tensor of the sandstone 

sample, direct extraction method with small gradient cancelation 𝑲̿𝑊𝑆𝐺 

𝜆1(10
−13) 𝒘𝟏  𝜆2(10

−13) 𝒘𝟐  𝜆3(10
−13) 𝒘𝟑 

9.87 

-0.941  

7.71 

-0.320  

7.43 

-0.110 

-0.163  0.853  0.496 

0.175  -0.037  -0.984 

 

 

 

Table 3: Eigenvalues and eigenvectors for the permeability tensor of the sandstone 

sample, forced symmetry extraction method 𝑲̿𝑆 

𝜆1(10
−13) 𝒘𝟏  𝜆2(10

−13) 𝒘𝟐  𝜆3(10
−13) 𝒘𝟑 

9.92 

0.970  

7.71 

0.202  

7.37 

0.135 

0.227  -0.951  -0.210 

0.086  0.234  -0.968 
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Table 4: Morphological parameters of virtual Kelvin-like 

foam, circular struts, constant cross-section. 

𝜀𝑜(−) 𝑎𝑐 (𝑚
−1) 𝑑𝑝 (𝑚𝑚) 𝑑𝑠 (𝑚𝑚) 

0.60 982 0.694 1.212 

0.65 979 0.822 1.110 

0.70 960 0.951 1.006 

0.75 926 1.083 0.900 

0.80 873 1.223 0.789 

0.85 796 1.372 0.669 

0.90 686 1.541 0.534 

0.95 515 1.749 0.367 

 

 

Table 5: Morphological parameters of various virtual Kelvin-

like foam with variable cross-section of the struts. 

𝜃(°) 𝑑𝑠,2(𝑚𝑚) 𝜀𝑜(−) 𝑎𝑐(𝑚
−1) 𝑑𝑝(𝑚𝑚) 

2.5 0.7885 0.78 878.7 1.1298 

5.0 0.7885 0.76 887.1 1.0786 

7.5 0.7885 0.75 899.9 1.0402 

10.0 0.7885 0.73 918.0 1.0125 

12.5 0.7885 0.71 942.0 0.9940 

15.0 0.7885 0.69 973.1 0.9841 

17.5 0.7885 0.67 1012.5 0.9823 

20.0 0.7885 0.65 1061.7 0.9884 

2.5 0.3673 0.94 559.9 1.6297 

5.0 0.3673 0.92 599.8 1.5498 

7.5 0.3673 0.91 638.5 1.4889 

10.0 0.3673 0.89 678.4 1.4443 

12.5 0.3673 0.87 721.1 1.4132 

15.0 0.3673 0.85 768.4 1.3945 

17.5 0.3673 0.83 822.5 1.3875 

20.0 0.3673 0.81 885.5 1.3919 
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Table 6: Mesh influence on morphology and permeability to quantify geometric discretization 

errors 

 Resolution Morphological properties 

Exact 

porosity 

sample 

Voxel size 

(10−5 m) 
Mesh cells Porosity (𝜖0) 

Spe. Surface 

area, ac (m-1) 

Permeability 

(10−7 m2) 

𝜖 = 0.95 

10.0 403 0.938 754 2.28 

5.00 803 0.938 782 2.10 

2.50 1603 0.942 814 2.16 

1.25 3203 0.946 795 2.23 

𝜖 = 0.6 

10.0 403 0.533 1331 0.111 

5.00 803 0.567 1412 0.144 

2.50 1603 0.583 1440 0.160 

1.25 3203 0.591 1456 0.169 
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Table 7: Morphological parameters and permeability values of virtual foam samples (obtained 

with the FVS-BGK method). 

 VFS-BGK StarCCM+ 

Type of 

foams 

Porosity, 𝜀𝑜 

 (−) 

Permeability,  

𝐾𝐷 (10−8 𝑚2) 

Porosity, 𝜀𝑜 

 (−) 

Permeability,  𝐾𝐷 

(10−8 𝑚2) 

Foam 

samples 

based on 

constant 

strut 

diameter, 

angle 0° 

0.631 3.65 0.65 4.26 

0.683 4.90 0.7 5.59 

0.736 6.50 0.75 7.28 

0.786 8.56 0.8 9.52 

0.837 11.30 0.85 12.56 

0.890 15.50 0.9 17.05 

0.943 22.80 0.95 24.79 

Foam 

samples 

based on 

variable 

strut 

diameter, 

angle 20° 

0.518 1.85   

0.564 2.50 0.58 2.42 

0.612 3.32   

0.660 4.38 0.68 4.98 

0.709 5.76 0.73 6.50 

0.760 7.63 0.78 8.35 

0.815 10.30 0.83 11.95 

0.875 14.80 0.89 16.26 

 

 

Table 8: Eigenvalues and eigenvectors for the permeability tensor of the NC1723 

sample 

𝜆1(10
−8) 𝒘𝟏  𝜆2(10

−8) 𝒘𝟐  𝜆3(10
−8) 𝒘𝟑 

3.32 

-0.944  

3.13 

0.331  

3.14 

0 

0.331  0.944  -0.001 

0  0.001  1 
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Table 9: Eigenvalues and eigenvectors for the permeability tensor of the 

Fontainebleau sandstone sample 

𝜆1(10
−13) 𝒘𝟏  𝜆2(10

−13) 𝒘𝟐  𝜆3(10
−13) 𝒘𝟑 

9.92 

0.970  

7.71 

0.086  

7.36 

0.227 

0.135  -0.968  -0.209 

0.202  0.234  -0.951 

 

 

 

 

 

 

 

 

 

 

 

  

Table 10: Parameters of the experimental law 

a b c d 

11.7 -40.29 51.6 -20.22 

Table 11. Permeability values for the power law function (20) applied to different porosity values 

 Porosity (𝜖) 
Permeability       

(10−13 m2) 

confidence interval 

(10−13 m2) 

Sandstone core 14.5 7.17 [4.95,9.40] 

𝜇Tomo sample 14.1 6.55 [4.52,8.58] 

Computing domain 13.5 5.68 [3.92,7.44] 
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Table 12: Permeability diagonal terms of a virtual orthotropic foam sample for 

various elongations. 

𝛺 (-) 𝜀𝑜 (-) 
𝐾𝐷

𝑥𝑥  

(10−8 m2) 

𝐾𝐷
𝑦𝑦  

(10−8 m2) 

𝐾𝐷
𝑧𝑧  

(10−8 m2) 

1 0.786 8.598 8.598 8.598 

1.2 0.785 9.640 8.554 7.640 

1.4 0.784 10.31 8.421 6.712 

1.6 0.783 10.74 8.275 6.023 

1.8 0.782 11.10 8.109 5.482 

2 0.781 11.30 7.962 5.071 

2.25 0.784 11.45 7.846 4.727 

2.5 0.783 11.42 7.650 4.411 

2.75 0.783 11.39 7.455 4.154 

3 0.779 10.90 7.091 3.821 

3.5 0.779 10.34 6.596 3.441 

4 0.779 10.01 6.367 3.180 

5 0.777 8.871 5.535 2.828 

9 0.771 6.134 3.695 2.175 
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Table 13: General presentation of the studied wood samples 

Name 
Voxel size 

(10−6 m) 
Porosity (%) 

Edge size  

(10−4 m) 

Sample 1 

3.22 

0.8699 4.83 

Sample 2 0.8699 6.44 

Sample 3 0.8562 19.3 

 

 

 

Table 14: Eigenvalues and eigenvectors for the permeability tensor of the 1503 cells 

redwood sample 

𝜆1(10−11) 𝒘𝟏  𝜆2(10−11) 𝒘𝟐  𝜆3(10−11) 𝒘𝟑 

1.43 

-0.988  

6.65 

-0.152  

9.72 

-0.014 

-0.146  0.969  -0.199 

-0.044  0.194  0.980 

 

 

 

Table 15: Eigenvalues and eigenvectors for the permeability tensor of the 2003 cells 

redwood sample 

𝜆1(10−11) 𝒘𝟏  𝜆2(10−11) 𝒘𝟐  𝜆3(10−11) 𝒘𝟑 

2.22 

-0.995  

3.83 

-0.093  

7.72 

0.037 

-0.094  0.994  -0.050 

0.032  0.053  0.998 

 

 

 

Table 16: Eigenvalues and eigenvectors for the permeability tensor of the 6003 cells 

redwood sample 

𝜆1(10−11) 𝒘𝟏  𝜆2(10−11) 𝒘𝟐  𝜆3(10−11) 𝒘𝟑 

1.44 

-0.991  

4.08 

-0.135  

7.51 

0.007 

-0.135  0.991  -0.009 

0.006  0.010  1.000 

 

 

 

 

 


