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GYROTROPIE ET ANISOTROPIE DES ROCHES :
SIMILITUDES ET DIFF�RENCES

Les principales caract�ristiques de la propagation des ondes dans
les milieux gyrotropes sont compar�es avec la propagation des
ondes dans les milieux azimutalement anisotropes. Les r�sultats
dÕune mod�lisation num�rique sont pr�sent�s pour trois mod�les
caract�ristiques dÕexploration sismique. Les deux premiers
mod�les sont des mil ieux anisotropes (de sym�trie
orthorhombique, groupe 2m) avec et sans gyrotropie. Le troisi�me
mod�le est un milieu gyrotrope transverse isotrope avec un axe de
sym�trie vertical. Ces calculs ont �t� r�alis�s pour la propagation
des ondes transversales le long de lÕaxe de sym�trie vertical. Pour
des trajets sismiques suffisamment courts (pour nos mod�les,
moins de 400 m), les sismogrammes � deux composantes (x, y)
sont similaires pour les trois mod�les. Pour des trajets plus longs,
la forme et la dur�e du signal diff�rent sensiblement pour les
mod�les 1 et 3.

Ceci a pour but de montrer (� lÕaide des donn�es exp�rimentales
et dÕun micromod�le) que la gyrotropie dans les roches existe, ou,
tout au moins, peut exister.

GYROTROPY AND ANISOTROPY OF ROCKS:
SIMILARITIES AND DIFFERENCES

The main features of wave propagation in gyrotropic media are
compared with wave propagation in anisotropic media. The results
of numerical modelling are presented for three typical seismic
exploration models. The first two models are azimuthally
anisotropic media (of orthorombic symmetry system, group 2m)
without and with gyration. The third model is a gyrotropic
transversely isotropic medium with a vertical symmetry axis. The
computations have been made for propagation of shear waves
along the vertical symmetry axis. For sufficiently short wave paths
(in our models less than 400 m) the two-component (x, y)
seismograms are similar for all three models. For longer paths both
signal shape and signal duration for the first and the third model
differ noticeably. 

Some evidence (experimental data and a micromodel) is given to
show that the gyrotropy of rocks does exist or, at least, can exist.

GIROTROPêA Y ANISOTROPêA DE LAS ROCAS :
SEMEJANZAS Y DIFERENCIAS

Las principales caracter�sticas de la propagaci�n de ondas en los
medios girotr�picos se comparan con la propagaci�n de ondas en
medios anisotr�picos. Los resultados de la construcci�n de
modelos num�ricos se presentan a partir de tres modelos t�picos
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de exploraci�n s�smica. Los dos primeros modelos son medios
azimutalmente anisotr�picos (de sistemas de simetr�a
ortorr�mbica, grupo 2m), sin y con giro. El tercer modelo es un
medio girotr�pico transversalmente isotr�pico con un eje de
simetr�a vertical. Los c�lculos han sido hechos para la propagaci�n
de ondas de cizallamiento a lo largo del eje de simetr�a vertical.
Para trayectos de onda suficientemente cortos (en nuestro
modelo, menos de 400 m), los dos sismogramas componentes
(x, y) son similares en los tres modelos. Para trayectorias m�s
largas, tanto la forma de la se�al como su duraci�n difieren
notablemente entre el primero y el tercer modelo.

Se entregan algunas evidencias (datos experimentales y un
micromodelo) para mostrar que existe, o que al menos puede
existir, la girotrop�a de las rocas.

INTRODUCTION

The polarization of shear waves is now a common
tool in seismic prospecting for cracked hydrocarbon
reservoirs. While in isotropic media the velocity of
shear wave Vs is independent of polarization, in
anisotropic media there are two shear waves (S1, S2)
with mutually perpendicular polarization and generally
different velocity. Azimuthal anisotropy of at least of
monoclinic symmetry is caused by vertically oriented
cracks. In such media one displacement vector lies
in the symmetry plane (parallel to the cracks) and the
other displacement vector is normal to this plane.
If there are two systems of mutually perpendicular
vertical cracks, the medium is orthorhombic and the
displacement vectors lie in the two symmetry planes.
For general acquisition geometries (i.e., the source-
receiver direction does not coincide with the normal to
a plane of symmetry or with one of the two normals if
they are two), each of the three components (x, y, z) is
the superposition of S1 and S2 waves propagating with
velocities and . In this paper, we show that a
similar two-component seismogram may correspond to
a gyrotropic wave propagation.

The concept of seismic gyrotropy has recently been
introduced [12-15]. Here we present briefly the main
features of elastic wave propagation in an anisotropic
gyrotropic geological medium and compare them with
the features of wave propagation in purely anisotropic
media. 

1 ON PHENOMENOLOGICAL THEORY OF
GYROTROPY

Optical gyrotropy (see, for example, [9, 5, 8 and 7])
is known since 1811 when F. Arago observed a rotation
of the polarization plane of light propagating along an
optical axis of quartz. By now the publications on
optical gyrotropy run into the hundreds, and the optical
gyrotropy is a powerful instrument in studying the fine
structure of matter in many fields, e.g., physics of
crystals, stereochemistry, biophysics, and biochemistry.
Acoustical gyrotropy [1, 19-21, 4 and 23], the analog of
optical gyrotropy, has been investigated much later,
since the sixties of our century; the first were, to our
knowledge, [1, 21, 19 and 20] and some others ([24, 25
and 6]), see [10]. Up to this point, the publications in
acoustic gyrotropy are not as numerous as they are in
optical gyrotropy. Nevertheless, the phenomenon
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attracts much attention and is interesting both from the
physical viewpoint and for its practical application.

Seismic gyrotropy can be regarded [12-15] as an
extension of acoustic gyrotropy to geological media.
Practically all the features of shear-wave polarizations
observed in many seismic field experiments can be
explained by a combination of two concepts: anisotropy
and gyrotropy.

For electromagnetic and acoustic waves, gyrotropy
of crystals is known as an exhibition of first-order
spatial dispersion, i.e., non-local response of a crystal to
a wave. Non-locality implies that in material equations
D = E E, s = Ce that relate the electric displacement D
to the electric field E and the stress s to the strain e,
respectively, D and s at a given point depend,
respectively, on the E and e not only at that point, but at
neighbouring points as well. This dependence is
expressed as a functional dependence E (w, k) for
electromagnetic waves and C (w, k) for the acoustical
analog. Here w is circular frequency, and k is the wave
vector of a plane harmonic wave with wave normal n
and phase velocity V (k = w n/V). The above functions
E (w, k) and C (w, k), are general in the sense that they
account for both time frequency and spatial dispersion. 

For seismic waves, we also accept, by analogy with
acoustic waves, that C = C (w, k). This assumption has
been verified by numerous experimental data on
polarizations of shear waves. As for causes of gyrotropy
on a microlevel, one concrete micromodel of rock
imitating sandy deposits of dissymmetric
microstructure will be demonstrated below. 

If the magnitude of the non-local part of the elastic
stiffness C is small, the stiffness may be expanded in a
power series in k:

(1)

In further considerations, we shall truncate this
expansion after the second term:

Cijkl (w, k) = cijkl(w) + ibijklm(w)km (2)

c = (cijkl) is the well known tensor of elastic stiffnesses
and b = (bijklm) is the gyration tensor. The fifth rank
tensor b = (bijklm) is invariant relative to the rotation
group and, hence, is not equal to zero only in acentric
groups of symmetry. Its inner symmetry is:

bijklm = bjiklm = bijlkm = bjilkm = bijklm = – bklijm

whereas the inner symmetry of the tensor c is:

cijkl = cjikl = cijlk = cjilk and cijkl = cklij

The dispersive term ibijklm (w) km in Eq. (2)
describes the effects which are called gyrotropy. 

Hooke's law in a gyrotropic medium is:

(3)

where ekl = (1/2) (¶uk/¶xi + ¶ui/¶xk). The equations of
motion ¶sij/¶xj = r¶2 ui/¶t2 become:

(4)

For plane waves u (r, t) = u0 A exp [iw (nr/V – t)]
propagating with phase velocity V in the direction of
the wave normal n and polarized along a unit vector A,
Equations (4) are:

(5)

or 

(6)

where Lik = cijkl r-1 nj nl, (Dik = iw V-1 r-1 bijklm nj ni nm).
The Equation (6) is the Christoffel equations for an

anisotropic gyrotropic medium, and the tensor (L + D)
is the appropriate Christoffel tensor. 

The Equation (6) is a system of uniform equations
which has non-trivial solution if its determinant is equal
to zero:

(7)

The determinant det (Lik + Dik – V2dik) = 0 is a
polynomial of the third degree in V2 if the terms LikD

2
kl

are disregarded. Equation (7) has three (positive) roots,
the eigenvalues of the matrix. Then the solution of
Equation (6) are three vectors A for three values (three
eigenvalues and three eigenvectors of the matrix
(Lik + Dik – V2dik), i.e., there are three waves as in an
anisotropic medium without gyration). With the terms
LikD

2
kl included, we have a polynomial of the fourth

degree, and hence four solutions V2
r, Ar (r = 1,...,4)

satisfy the system of Equation (6); four waves may be
considered as a solution of Equation (4). However, the
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parameters of the fourth wave are influenced also by the
terms dijklmnkkklkmkn in the series expansion of
Equation (1), which were omitted at the very beginning
of our consideration.

The analysis of three-wave solution of Equation (4)
shows that one wave is quasi-longitudinal (qP), and the
other two waves are quasi-transverse (qS1, qS2). The
phase velocities of all three waves slightly differ from
the velocities in the medium without gyration (b = 0).
The main distinction from propagation in non-
gyrotropic media is in polarizations which are no longer
linear but elliptical. The ellipticity for qP wave is small,
but for the two qS waves it can be large enough to be
noticeable and result in significant consequences. Such
a consequence is a rotation of the plane of shear-wave
polarization due to right and left handed circular
polarizations of waves qS1, qS2 having velocities 

. This pheno-
menon occurs in media of symmetry group ¥ ¥ for all
directions of propagation and along acoustic axes of
threefold or higher symmetry in other acentric
symmetry groups.

2 THE MAIN FEATURES OF GYROTROPIC
PROPAGATION (NUMERICAL
MODELLING)

To illustrate the main characteristics of shear waves
in gyrotropic media, numerical modelling was

performed. Since our main purpose is in providing
examples of seismograms similar to those for non-
gyrotropic but azimuthally anisotropic media, the
following models have been chosen (Fig. 1). The first
two models have orthorhombic symmetry, i.e., they are
azimuthally anisotropic; model 1 is without gyration (it
may be of any group symmetry within orthorhombic
system), and model 2 is a gyrotropic one (it belongs to
acentric group symmetry 2m). The stiffness tensors for
both models are the same. The model 3 is transversely
isotropic gyrotropic with a vertical symmetry axis. 

Propagation along the vertical symmetry axis has
been studied in all three models (Fig. 1). The source is
situated inside the ground at the depth 2.4 km, and ten
two-component receivers (x, y) are positioned above
the source along a vertical profile at distances from
r = 0.4 km to r = 2.2 km. The vector of the force in the
source is in the y-direction of the xyz coordinate system.
The directions of axes of this coordinate system are
connected with the observation system and have been
chosen arbitrarily. 

In the models 1 and 2 the x-axis of the coordinate
system xyz makes an angle y = 30° with the X1-axis of
the system connected to the orthorhombic medium. The
other two axes (X2, X3) of the crystallophysic coordinate
system X1 X2 X3 of the medium are oriented as follows:
the X3-axis is vertical, i.e., it coincides with the z-axis,
and the X2-axis makes the angle y = 30° with the y-axis
of the system xyz; both coordinate systems xyz and
X1X2X3 are right handed (Fig. 1).

V V V V Vs s1 20 0 0= + = - <<d d d ,  and
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Figure 1

Models 1-3: A - orthorhombic medium model 1: non-gyrotropic, model 2: gyrotropic; B - gyrotropic transversely isotropic medium with a
vertical symmetry axis. 



In model 3 the symmetry axis X3 of the transversely
isotropic gyrotropic medium is directed along z-axis.
The direction X3 is an axial one, it controls the
directions of circulation in two quasi-transverse waves
(clockwise in the first- fast-wave and counter-clockwise
in the second- slow-wave or vice versa).

The elastic and gyration constants for models 1-3 are
given in Table 1 (in the coordinate system X1X2X3). The
stiffness matrix c is related to the tensor c in the usual
manner. To characterize gyrotropy, the symmetrized
gyration tensor and its dual, the fourth rank pseudo-
tensor g are used. The tensor g and the symmetrized
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TABLE 1

Matrices of elastic and gyration constants
(cij r-1, gij r-1 km2s-2)

Model 1

Matrix of elastic constants

9.747 1.775 2.377 0.0 0.0 0.0

1.775 5.957 2.347 0.0 0.0 0.0

2.377 2.347 7.491 0.0 0.0 0.0

0.0 0.0 0.0 2.007 0.0 0.0

0.0 0.0 0.0 0.0 2.437 0.0

0.0 0.0 0.0 0.0 0.0 2.386

Model 2

Matrix of elastic constants

9.747 1.775 2.377 0.0 0.0 0.0

1.775 5.957 2.347 0.0 0.0 0.0

2.377 2.347 7.491 0.0 0.0 0.0

0.0 0.0 0.0 2.007 0.0 0.0

0.0 0.0 0.0 0.0 2.437 0.0

0.0 0.0 0.0 0.0 0.0 2.386

Matrix of gyration constants

0.15 0.00 0.00 0.24 0.00 0.00 0.18 0.00 0.00 0.00

0.00 0.16 0.00 0.00 0.23 0.00 0.00 0.19 0.00 0.00

0.00 0.00 0.17 0.00 0.00 0.25 0.00 0.00 0.20 0.00

Model 3

Matrix of elastic constants

7.737 3.137 2.697 0.0 0.0 0.0

3.137 7.737 2.697 0.0 0.0 0.0

2.697 2.697 7.491 0.0 0.0 0.0

0.0 0.0 0.0 2.217 0.0 0.0

0.0 0.0 0.0 0.0 2.217 0.0

0.0 0.0 0.0 0.0 0.0 2.300

Matrix of gyration constants

0.03 0.00 0.00 0.01 0.00 0.00 0.02 0.00 0.00 0.00

0.00 0.03 0.00 0.00 0.02 0.00 0.00 0.01 0.00 0.00

0.00 0.00 0.02 0.00 0.00 0.04 0.00 0.00 0.03 0.00



gyration tensor b are related to each other by formulae: 
gsilm = w/(2V) dsjkbijklm, w/(V) bijklm = djksgsilm [23 and
12], where dsjk is the Levi-Civita symbol. The inner
symmetry of the symmetrized tensor b differs from
that of the tensor b: the symmetrized tensor is
antisymmetric in the permutation of the second and
third indices and is symmetric in the permutation of
the remaining three indices. The tensor g is
symmetric in the permutation of the second, third and
fourth indices and has 30 independent components
[23]. The gyration constant matrix g is related to the
tensor g as follows:

g1111 g1222 g1333 g1122 g1233 g1311 g1133 g1211 g1322 g1123

g2111 g2222 g2333 g2122 g2233 g2311 g2133 g2211 g2322 g2123

g3111 g3222 g3333 g3122 g3233 g3311 g3133 g3211 g3322 g3123

Seismograms were computed by the ray method
using algorithms and programs described in [17]. The
two-component seismograms (Yx,Yy) are shown
in Figure 2. The force direction in the source is Y
(along the y-axis in Fig. 1) as it was mentioned above.
The impulse in the source is a symmetric impulse F(t)
= exp(–bt2) cos wt where b = [w2/(4p2)] ln R depends
on R—ratio of the greatest, central, maximum to the
nearest one; R is equal to 2.5, and the impulse is
taken 2.5 periods long; f = 20 Hz.

2.1 The Seismogram for Orthorhombic
Symmetry Medium (Model 1)

The y, x traces (Yy, Yx) are the superpositions of the
two shear waves S1, S2 propagating along the symmetry
axis z (X3) with different ray velocities 
and polarizations. Since along symmetry axes ray
velocities are equal to phase velocities, the symbol V
is used in the following for ray velocities though
above it was used for phase velocities. The
displacements in the fast wave, S1, are in X1-direction,
and in the slow wave, S2, they are in X2-direction. The
arrivals of S2-wave are marked on the records with
short vertical lines. One can see that at the receiver
1 (r = 0.4 km) the S2-wave is later than S1-wave by
half of a period; in the middle of the receiver set, at
the receiver 5 (r = 1.2 km), the time difference reaches
two periods, and for the last receiver 10 (r = 2.2 km)
the waves S1, S2 are fully separated because the time

difference becomes nearly 2.5 periods, i.e., it is a little
greater then the duration of the impulse.

Figure 2

Two-component (Yy, Yx) seismograms of shear waves for
propagation along the symmetry axes of media with
parameters given in Table 1. A: non-gyrotropic orthorhombic
medium (y = 30°); B: gyrotropic orthorhombic medium
(y = 30°); C: gyrotropic transversely isotropic medium with
vertical axis of symmetry.
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2.2 The Seismogram for Orthorhombic
Symmetry Gyrotropic Medium
(Model 2)

The gyrotropy is expected to slightly change the
velocities of shear waves S1, S2 propagating along the
two-fold symmetry axis and to convert the linear
polarizations into elliptical ones. The velocity of the
fast wave S1 slightly increases, and the velocity of the
slow S2-wave slightly decreases:

The ellipticity (a ratio of small-axis length to large-
axis length) is approximately equal to 0.35 for both
waves. 

The differences between the non-gyrotropic and
gyrotropic propagation can be seen from the
seismograms in Figure 2 (A) and (B). At first glance, it
seems that the two seismograms are very similar.
However, more careful correlation between the
corresponding traces in Figure 2 (A) and (B) shows that
the differences are consistent with the expectations. 

Some records differ noticeably in pattern; see, for
example, traces Yx with numbers 2, 3, 6, 7, 9, 10. These
and other differences can be seen more distinctly in
Figure 3 where the traces Yy, Yx for the nearest, the
central and the most distant reception points are shown.
The nearest records, at the distance r = 0.4 km,
practically do not differ. The records at the distance
r = 1.2 km are also rather similar with the exception of
the short time interval after the first arrival of the
second (slower) wave, particularly on the record Yx.
At the greatest distance r = 2.2 km, the waves S1, S2 in
the gyrotropic medium are very well separated
(dt » 1.2 T, where T is a visible period) whereas in the
non-gyrotropic medium the separation is much less
distinct (dt » 0.3 T). 

One more difference of records in Figure 2 (A) and
(B) is that in (B) the signal lasts longer than in (A). The
reason is in that in the gyrotropic medium the first wave
arrives earlier and the second wave later than in the case
of the same medium without gyration.

I I I Id dV V V Vs s s s1 1 2 2
0 012 0 015/ . ,  / .= =
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Traces numbers 1, 5, 10 of seismograms given in Figure 2: A - model 1, B - model 2, C - model 3.



2.3 The Seismogram for the Transversely
Isotropic Gyrotropic Medium with
Vertical Symmetry Axis (Model 3)

This model has been chosen to demonstrate the most
interesting feature of gyrotropic propagation, the
rotation of the plane of polarization of shear waves, i.e.,
a turn of displacement vector uy (generated by
Y-source) after passing through such a medium. The
turn angle a can be determined from the ratio of
amplitudes on x and y traces: a » tan-1 ux/uy. Exact
equality holds for harmonic oscillations. If a wave is
harmonic, the ratio ux/uy is:

(8)

where (j1 – j2) is the phase difference of the two shear
waves with circular right and left-handed polarizations,
and , are their velocities
which are equal to the velocity VS0

in the same medium
without gyration by addition and subtraction,
respectively, of the gyrotropic correction d; r is a
distance source-receiver. 

In the model under consideration, the velocities of
propagation of shear waves along z-axis are

the visible
frequency f = w/(2p) = 20 Hz. Substituting these
values in Equation (8) one obtains the following
values of turn angle a:

r = 0.4 km (receiver 1) a = tan-1 0.1525 » 8.7°;
r = 1.2 km (receiver 5) a = tan-1 0.4928 » 26.2°;
r = 2.2 km (receiver 10) a = tan-1 1.0980 » 47.7°.

Figure 2 (C) shows the increase of the ratio ux/uy
from the receiver 1 to the receiver 10. This increase of
x-component amplitude relatively to the y-component
can be more clearly seen in Fig. 3 (C). The ratios ux/uy
are approximately equal to those given above for a
harmonic wave of frequency f = 20 Hz. 

The main conclusion from the comparison of two-
component (x, y) seismograms for models 1-3 is that
they can be rather similar if the wave path is 
sufficiently short, in the considered case r £ 0.4 km for
frequencies of order 20 Hz and Vs » 1.5 km s-1.
However, x,y-patterns for orthorombic symmetry
(model 1) depend on the azimuth of the horizontal axis
(X1) relative to the x-axis of the coordinate system of
the observer. If a medium is transversely isotropic

gyrotropic with a vertical X3-axis (model 3), x, y
seismograms are the same for all azimuths. The
influence of gyrotropy on propagation along X3
symmetry axis of a medium of orthorombic symmetry
is recognizable with great difficulty. In real media,
attenuation affects the propagation of two shear
waves and changes the above described x, y -patterns.

3 SOME EVIDENCES OF SEISMIC
GYROTROPY

3.1 Experimental Data

Seismic gyrotropy could have been observed already in
the sixties in many experiments in which shear and
converted PS waves were recorded on two (x, y) or three
components (x, y, z) if the concept of seismic gyrotropy
had then already existed. Two phenomena characterize
seismic gyrotropy: turn of a displacement vector (rotation
of polarization plane) and elliptical polarizations. The first
phenomenon occurs only in gyrotropic media and
therefore is easier detectable. The turn angle is in direct
ratio to gyration constant, frequency, and path length and
in inverse ratio to the cube of the shear wave velocity in
the same medium without gyration:

(9)

D is a quadratic gyrotropic addition to
, and [14 and 15].

Equation (9) can be brought into the form:

(10)

with dimensionless parameter 

Direct proportionality between turn angle a and
frequency f was yet observed in 1976 by I.S. Chichinin
[26]. The vibrator worked in a harmonic regime at the
frequencies  20, 30, ..., 80 Hz. The displacement vector
of a direct shear wave recorded in the borehole in
alluvial deposits of Ural river at a depth of 83 m was
rotating with increasing frequency. The plane of
polarization turned in the whole by » 50°. Later the
dependence a (f) was studied at borehole investigations
for alluvial deposits of the river Ob (near Tomsk) and
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its tributary Chulym (near Almyakovo) for depths
0-18 m [22, 12, 14]. The data are shown in Figure 4. As
in the earlier experiment [26], the angle increases with
increasing frequency, but not monotonously. 

The dependence a (r) is shown in Figure 5. It was
found in the above experiments, for the frequency
f = 100 Hz. Rotation power, or specific rotation, is
found to be » 1 ¸ 1.5°/m. This result is rather stable. 

Figure 4

Dependence of turn angle a on frequency f for two
frequency ranges: A, vibrator source; B, impulse source.

Figure 5

Dependence of turn angle a on distance r.

The values of gyration constant have also been
determined. Since all real media are attenuative, one
observed in experiments the rotation of an ellipse, not
of a displacement vector (Fig. 6). The ellipse rotates by
the same angle as the vector [12 and 14]. To take
attenuation into account, one can write for velocities

, :

(11)

The attenuation coefficients of waves S1, S2 are
functions of constants a, b introduced in (11):

(12)

Figure 6

Ellipse as a sum of two circular oscillations of opposite directions
with not equal amplitudes and velocities.

The gyration constant a and attenuation constant b
are determined from the system of equations:

where:

If the ratio B/A of the axes of the ellipse and the
orientation a of the major axis are known, one can find
the constants. The following estimates of ratios a/V0,
b/V0 have been found for the upper part of the ground
(0-20 m) in the seismic frequency range (10-100 Hz)
[22 and 14]:

(13)

At geoacoustic frequencies (of order » 500 Hz), the
ratios a/V0, b/V0 for the same depth interval are [18]:

(14)

Using refracted waves we could estimate the ratios
a/V0, b/V0 for the depth interval 50-300 m in the
frequency range 20-30 Hz. S1 and S2 waves exited by Y
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and Z vibrator sources have been observed at the
distances 260-1080 m. The experiments were
performed near Chulym river near the site of the
borehole investigations for studying gyrotropy in the
uppermost of the underground. We found for depth
interval ~ 50-200 m the following ratios [16]:

(15)

The data in Equations (13), (14) and (15) are consis-
tent. The values of ratio b/V0 lead to the realistic values
of attenuation. In a gyrotropic medium, there are two
attenuation coefficients b1, b2, see Equation (12). It was
found in observations of refracted waves SV, SH that,
due to gyration, bSV = 0.0046 m-1, bSH = 0.0048 m-1.

Thus, the shallow subsurface is characterized by the
values a/V0 » 0.01-0.03, b/V0 » 0.01-0.35. Over the
same depth range, the velocity changes from
150-250 m/s to 500 m/s. The rotation power is equal to
» 1-1.5°/m. For rocks at greater depths, the rotation
power is expected to be less than for near-surface
formations because it is in inverse ratio to cube of the
velocity, if D = const (Eq. (9)), and inverse to the
velocity V0, if D/V0

2 = const (Eq. (10)). Therefore, to
compute seismograms for S-wave propagation along

symmetry axis in a gyrotropic medium (model 3,
Fig. 1B) for the depth interval 0.4 km-2.2 km, the
elastic and gyration constants were taken as follows: 

c33 r-1 = 2.217,   g3333 r-1 = 0.02 (km2s-2).

In this case, one has for the ratio a/V0:
a/V0 = 0.007/1.489 » 0.005 and, hence, D/V0

2 » 0.010;
V0 = 1.489km s-1. This yields a rotation power
of 0.02°/m.

3.2 Model of grainy rocks of
dissymmetric microstructure

3.2.1 Constructing the model

In describing this model, we follow the papers [3
and 2], where it is presented in more detail. The model
considered here has first been suggested—together with
two other gyrotropic models—in [15]. 

To construct a model of grainy rock possessing gyro-
tropic properties, we “spoil” a regular cubic packing of
spheres in the following manner (Fig. 7): in each
column centres of spheres are so displaced that their
projections on a horizontal plane XY lie on an arc of a
circle of radius R, all being displaced in one direction:

a/V0  » 0.02, b/V0  » 0.01
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Constructing of the “grainy” medium with broken symmetry. A: a regular cubic packing of spheres and a column of spheres; B: a column of
spheres in the disturbed packing of spheres and projections on XY plane of centres of spheres.



clockwise or counter-clockwise. The displacements of
spheres ought to be very small with central angles of
the order dj » 0.01-0.00001°. This condition provides
turn angles of shear-wave displacement vectors of the
same order as in experiments which were briefly
discussed in the previous subsection. 

The dissymmetric model for collections of grains is
obtained by translation the “spoilt” column in the
X- and Y- directions. The introduced dissymmetry of
the model leads to the same dissymmetry in positions
for top and bottom contact points of spheres as it is
shown in Figure 8.

The relative positions of contact points T, B on the
grain surface can be characterized by the azimuthal
angle dj and the polar angle q. The angle Ð T*O*B*

between the points T* and B*, projections of points T, B
on a horizontal plane, is equal to p-dj. The two
parameters q and dj are dissymmetry parameters for a
grain of radius R0.

The dissymmetric model is built on the principle of
spiral, by analogy with the models in optics and
acoustics (see, for example, micromodels of quartz and
tellurium ([7 and 6]). The discrepancy is that the
azimuthal angle dj is extremely small, and therefore a
movement not along a spiral is imitated, but along a
rather limited part of a spiral, namely along a part of a
half-spire. In other words, it can be said that the
dissymmetric model is built in accordance with the
principle “an azimuthal turn plus translation”.

3.2.2 Solution of Dirichlet problem inside a grain

The task is to clarify whether the spiral model rotates
the polarization plane of a shear wave. A radius of a
sphere is much less than a wavelength (R0 << l),
therefore the problem of wave propagation can be
reduced to the problem of a static equilibrium of a
sphere, an element of the model.

Let the forces Q1, Q2, |Q1|=|Q2|= Q be applied at the
top (T) and the bottom (B) points of each sphere
(Fig. 9), and let, for simplicity, these forces be radial.
The forces Q1, Q2 have horizontal components, and
therefore we have a possibility to model shear-wave
propagation along z-axis. 

The equilibrium equation for a sphere is:

divsij = (l + m) grad div u + mDu = 0

where l, m are the Lame constants of the grain material.
A solution of this equation inside the sphere was
searched for in Papkovich form [11]. The algorithm has
been built for computing displacement vectors, their
first and second derivatives and components of stress
tensor. It could be shown that in such a dissymmetric
medium a displacement vector does turn. The means to
determine gyrotropy constants for the constructed
model was found and gyration constants have been
computed [3, 15, 2]. The dependence of gyration
constants on the dissymmetry parameters and grain
material was also studied. 
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Figure 9

The forces Q1, Q2 applied to the grain surface at the points T and
B; xyz is a local coordinate system connected with a grain.



3.2.3 Modelling of rotation of polarization plane 

Consider modelling of S-wave propagation along the
Z-axis, and let the wave be polarized originally (for
Z = 0) in Y-direction so that U = |U|e2, where U is a
polarization vector of the wave. For the case
considered, the rotation of the vector U means that it
should acquire a X-component [12 and 14]. The tangent
of the turn angle F of the polarization vector U = Ux e1
+ Uy e2 is determined by the ratio Ux/Uy: tanF = Ux/Uy.

Consider the “initial” grain (with a number k = 1) in
the column of spheres of the dissymmetric model. The
polarization vector U for the first grain (at Z = 0) is
directed along Y-axis as it is shown in Figure 10.

Figure 10

Polarization vector U for the first grain (Z = 0) and for the
k-th grain (Z = h). O’l and O’2 are projections of the grain
centres on the circle of radius R.

The “abnormal” component of the displacement is
not formed yet: Ux = 0, and the turn angle of the
polarization vector is equal to zero: F = 0. The vector U
on the k-th grain (at Z = h) has got a X-component
(Fig. 10), and the angle F became = F tan-1 (Ux/Uy).
The angle F increases monotonously in the wave
propagation from grain to grain in the interval from
k = 0 to k = n. All grains give the identical contribution
to the total turn angle of the polarization vector U.

3.2.4 Results of calculations

For the dissymmetric model in Figure 9, the displace-
ments ux and uy were computed. Parameters of the
model are: radius of a grain R0 = 10-4 m, Lame constants
m = 108 Nm-1, l = 2m, the applied force Q = 10-2 N and
the dissymmetry parameters q = 10°, dj = 0.06°.

Calculations show that polarization vector turns by an
angle 1° at the depth Z = 0.8 cm. Thus, to provide
rotation power of shear-wave polarization plane equal 1°
per metre, as it is observed in experiments, it is sufficient
to have a thin gyrotropic layer, for this case, h = 0.8 cm
(or fourty rows of grains 0.02 cm in diameter) in a layer
of 1m thick. This means that, on the average, nearly
every hundredth grain in the column should be displaced
in the manner mentioned. As this takes place, the other
grains may form a regular cubic packing or to be
displaced in such a way that for each grain with
dissymmetry parameter dj there will be a grain with dj
+ p for the summary turn be equal to zero. 

The model must be dissymmetric in a statistical
sense. The most correct approach is a probabilistic one.
In this case, the dissymmetry parameters of the model
are random values. The probability-density curve for the
angle dj must be asymmetric relatively a value dj = 0.

CONCLUSIONS

The comparison of gyrotropic and non-gyrotropic
propagation of shear waves in media of interest for
seismic prospecting offers a clearer view of how to
distinguish gyrotropy and anisotropy. The distinction is
most difficult when a shear wave passes through a layer
of insufficient thickness. For a medium with
Vs = 1.5 km/s and frequencies of about 20 Hz such
difficulties can exist when layers are less than
200-400 m thick. This problem will be investigated in
the near future.
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