B. Rolfe, The Fibrotic Response to Implanted Biomaterials: Implications for Tissue Engineering, Regenerative Medicine and Tissue Engineering -Cells and Biomaterials, 2011.

W. M. Grill and J. Mortimer, Electrical properties of implant encapsulation tissue, Ann. Biomed. Eng, vol.22, issue.1, pp.23-33, 1994.

H. Mase, K. Tamura, A. Hiromoto, M. Hotta, S. Hotomi et al., Histopathological study of tissue reaction to pacemaker electrodes implanted in the endocardium, J Nippon Med Sch, vol.72, issue.1, pp.52-59, 2005.

S. Jong, T. A. Van-veen, J. M. De-bakker, M. A. Vos, and H. V. Van-rijen, Biomarkers of myocardial fibrosis, J. Cardiovasc. Pharmacol, vol.57, issue.5, pp.522-535, 2011.

G. C. Mcconnell, R. Butera, and R. Bellamkonda, Bioimpedance modeling to monitor astrocytic response to chronically implanted electrodes, J. Neural Eng, vol.6, 2009.

N. Akoum, C. Mcgann, G. Vergara, T. Badger, R. Ranjan et al., Atrial fibrosis quantified using Late Gadolinium Enhancement MRI is associated with sinus node dysfunction requiring pacemaker implant, J. Cardiovasc. Electrophysiol, vol.23, issue.1, pp.44-50, 2012.

K. Yokoyama, T. Kariyasu, S. Kuhara, M. Imai, and R. Ishimura, Influence of MRI-Conditional Cardiac Pacemakers on Quality and Interpretability of Images Acquired in 1.5-T Cardiac MRI, Int. J. Clin. Cardiol, vol.2, p.30, 2015.

W. M. Grill and J. Mortimer, Electrical properties of implant encapsulation tissue, Ann. Biomed. Eng, vol.22, issue.1, pp.23-33, 1994.

G. Amorós-figueras, E. Jorge, T. García-sánchez, and R. Bragós, Recognition of Fibrotic Infarct Density by the Pattern of Local Systolic-Diastolic Myocardial Electrical Impedance, vol.7, 2016.

R. Gonzalez-landaeta, O. Casas, and R. Pallas-areny, Heart Rate Detection From Plantar Bioimpedance Measurements, IEEE Transactions on Biomedical Engineering, vol.55, issue.3, pp.1163-1167, 2008.

K. Kim, A 24 µW 38.51 m?rms resolution bio-impedance sensor with dual path instrumentation amplifier, ESSCIRC 2017 -43rd IEEE European Solid State Circuits Conference, pp.223-226, 2017.

, Calculation principles of RTCA Software, Technical Note No. 2, xCELLigence System, 2010.

S. Gabriel, R. Lau, and C. Gabriel, The dielectric properties of biological tissues : II. Measurements in the frequency range 10 Hz to 20 GHz, Phys. Med. Biol, vol.41, pp.2251-2269, 1996.

G. Blanc, I. Epelboin, C. Gabrielli, and M. Keddam, Measurement of the elecrode impedance in a wide frequency range using pseudorandom noise, Electrochim. Acta, vol.20, issue.8, pp.599-601, 1975.

M. Cohn and A. Lempel, On Fast M-Sequence Transforms, IEEE Trans. Inf. Theory, vol.23, issue.1, pp.135-137, 1977.
DOI : 10.1109/tit.1977.1055666

I. Schneider, Broadband signals for electrical impedance measurements of long bone fractures, 18th Annu. Int. Conf, pp.1934-1935, 1996.

T. Sun, C. Van-berkel, N. G. Green, and H. Morgan, Digital signal processing methods for impedance microfluidic cytometry, Microfluid. Nanofluidics, vol.6, issue.2, pp.179-187, 2009.
DOI : 10.1007/s10404-008-0315-3

URL : https://eprints.soton.ac.uk/265944/1/adaptive_filtering_paper.pdf

R. Bragos, R. Blanco-enrich, O. Casas, and J. Rosell, Characterisation of dynamic biologic systems using multisine based impedance spectroscopy, Proc. 18th IEEE Instrum. Meas. Technol. Conf. Rediscovering Meas. Age Informatics (Cat. No.01CH 37188), vol.1, pp.44-47, 2001.

T. Breugelmans, E. Tourwé, J. B. Jorcin, A. Alvarez-pampliega, B. Geboes et al., Odd random phase multisine EIS for organic coating analysis, Prog. Org. Coatings, vol.69, issue.2, pp.215-218, 2010.
DOI : 10.1016/j.porgcoat.2010.04.008

B. Sanchez, G. Vandersteen, I. Martin, D. Castillo, A. Torrego et al., In vivo electrical bioimpedance characterization of human lung tissue during the bronchoscopy procedure. A feasibility study, Med. Eng. Phys, vol.35, issue.7, pp.949-957, 2013.

B. Sanchez and R. Bragos, Fast Electrical Impedance Spectroscopy for Moving Tissue Characterization Using Bilateral QuasiLogarithmic Multisine Bursts Signals, IFMBE Proc, vol.22, pp.1084-1087, 2008.

E. De-roux, M. Terosiet, F. Kolbl, M. Boissière, and E. ;-pauthe, Toward an Embedded OFDM-based System for Living Cells Study by Electrochemical Impedance Spectroscopy, Proceedings of IEEE HealthCom Conference, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01867065

S. B. Weinstein, M. Ebert, and P. , Data Transmission by Frequency-Division Multiplexing Using the Discrete Fourier Transform, Communication Technology, issue.19, pp.628-634, 1971.

S. Boyd, Multitone Signals with Low Crest Factor, IEEE Trans. Circuits Syst, vol.33, issue.10, pp.1017-1022, 1986.

A. K. Neetusood and M. Sharma, BER Performance of OFDM-BPSK and -QPSK over Nakagami-m Fading Channels, Proceeding of IEEE-IACC'2010, 2010.

, ECIS: Electric Cell-Substrate Impedance Sensing

, Sheets/Applied BioPhysics Technology and Product Guide.pdf, p.35, 2018.

Y. Li, W. Foster, and B. M. Deasy, Transforming Growth Factor-?1 Induces the Differentiation of Myogenic Cells into Fibrotic Cells in Injured Skeletal Muscle : A Key Event in Muscle Fibrogenesis, The American Journal of Pathology, vol.164, issue.3, pp.1007-1019, 2004.

S. Grimnes, O. Rikshospitalet, and N. Schwan, Interface phenomena and dielectric properties of biological tissue, vol.20, pp.2643-2653, 2002.

M. J. Powell, An efficient method for finding the minimum of a function of several variables without calculating derivatives, The computer journal, vol.7, issue.2, pp.155-162, 1964.