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Abstract. Belief change within the framework of fragments of propo-
sitional logic is one of the main and recent challenges in the knowledge
representation research area. While previous research works focused on
belief revision, belief merging, and belief contraction, the problem of be-
lief update within fragments of classical logic has not been addressed
so far. In the context of revision, it has been proposed to refine exist-
ing operators so that they operate within propositional fragments, and
that the result of revision remains in the fragment under consideration.
This approach is not restricted to the Horn fragment but also applica-
ble to other propositional fragments like Krom and affine fragments. We
generalize this notion of refinement to any belief change operator. We
then focus on a specific belief change operation, namely belief update.
We investigate the behavior of the refined update operators with respect
to satisfaction of the KM postulates and highlight differences between
revision and update in this context.

Keywords: Belief change, belief update, fragments of propositional logic,
knowledge representation and reasoning.

1 Introduction

Belief update consists in incorporating into an agent’s beliefs new information
reflecting a change in her environment. The problem of belief update first ap-
peared in the domain of databases for updating deductive databases [18]. Sig-
nificant links quickly emerged with works developed in artificial intelligence on
belief change, especially on belief revision. Keller and Winslett [27], and later
Katsuno and Mendelzon [26] contributed to a better understanding regarding
the distinction between belief revision and belief update when they proposed a
common framework to represent these operations. Belief revision happens when
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‹‹ This paper extends and enhances a paper by the same authors presented at the
conference ECSQARU’15 and uses some parts of another one presented at ECAI’16.



new information is introduced in a static environment, while belief update oc-
curs in a changing environment. From a logical point of view, when the agent’s
beliefs are represented by a logical formula, revision makes the models of this
formula evolve as a whole towards the closest models of new information. In
contrast, update makes each model of this formula locally evolve towards the
closest models of new information.

Postulates characterizing the rational behavior of update operators have been
proposed by Katsuno and Mendelzon (KM) [26] in the same spirit as the seminal
AGM postulates [1] for revision. Belief update gave rise to several studies, in most
cases within the framework of propositional logic, and concrete belief update
operators have been proposed mainly according to a semantic (model-based)
point of view [19, 11, 16, 36, 3, 20, 23, 15, 29, 12].

Many studies focused on belief change within the framework of propositional
logic fragments, particularly on belief contraction [2, 37, 14], on belief revision
[4, 13, 38, 32, 6] and more recently on belief merging [7]. However, as far as we
know, the problem of belief update within fragments of propositional logic has
not been addressed so far, except for complexity results in the Horn case [17,
30]. The motivation of such a study is twofold. First, in many applications,
the language is restricted a priori. For instance, a rule-based formalization of
expert knowledge is much easier to handle for standard users. In the case of
update they expect an outcome in the same language. Second, some fragments of
propositional logic allow for efficient reasoning methods, and then an outcome of
update within such a fragment can be evaluated efficiently. It seems thus natural
to investigate how known update operators can be refined such that the result
of update remains in the fragment under consideration.

Formally, let L1 be a propositional fragment and given two formulas ψ, µ P L1,
the main obstacle hereby is that there is no guarantee that the outcome of an
update, denoted by ψ ˛ µ, remains in L1 as well. Let us consider the following
example inspired from the one used in [26] where the beliefs describe two objects
A and B inside a room. There is a table in the room and the objects may be
on the table or not. Suppose a means “object A is on the table” and b means
“object B is on the table”. Assume that the agent’s beliefs are represented by
the formula ψ “ a, which expresses that object A is on the table. Suppose a
robot is sent into the room with the instruction to achieve a situation in which
either object A or object B is not on the table. This change is represented by
the formula µ “  a _  b. The formulas ψ and µ are Horn formulas, however
updating ψ by µ in using Forbus’ [19] or Winslett’s operator [35] results in a
formula equivalent to φ “ pa_ bq^ p a_ bq, which is not a Horn formula and
is not equivalent to any Horn formula (because its set of models is not closed
under intersection, while this property characterizes Horn formulas, see [24])1.

In this paper, we generalize the notion of refinement, initially defined for
revision [6], to any belief change operator defined from LˆL to L where L denotes
propositional logic. A refinement adapts a belief change operator defined in a
propositional setting such that it can be applicable in a propositional fragment.

1 Note that in this example, revision and update do not coincide.
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The basic properties of a refinement are first to guarantee the outcome of the
belief change operation to remain within the fragment and second to approximate
the behavior of the original belief change operator, in particular to keep the
behavior of the original operator unchanged if the result already fits in the
fragment. We characterize these refined operators in a constructive way.

We exploit the notion of refinement for belief update operators. We then
study how refined belief update operators behave with respect to satisfaction of
the KM postulates that characterize rational update operators. Indeed, we show
that the basic KM postulates pU1q ´ pU4q are preserved for any refinement in
any fragment. We study the limits of the preservation of the other postulates,
as well. For this we focus on the refinements of Forbus’ and Winslett’s operators
within the Horn, Krom and affine fragments. Our approach handles a natural
extension that consists in investigating update when only the formula represent-
ing the initial agent’s beliefs, and not necessarily the formula reflecting the new
information, is in the fragment. All along this study we shed some light on subtle
differences between update and revision.

The paper is organized as follows. We start with some preliminaries. In Sec-
tion 2.1 we recall some basic facts about propositional logic. In Section 2.2 we
define the fragments of propositional logic we are interested in. In Section 2.4 we
give a short reminder of belief update. Section 3 deals with refinements in the
general context of belief change. In Section 4 we focus on refinements of update
operators. Finally we conclude in Section 5.

2 Preliminaries

2.1 Propositional logic

Let L be the language of propositional logic built on an infinite countable set of
variables (atoms) denoted by V and equipped with standard connectives Ñ, _,
^,  , the exclusive or connective ‘, and constants J, K. A literal is an atom
or its negation. A clause is a disjunction of literals. A clause is called Horn if
at most one of its literals is positive; Krom if it consists of at most two literals.
A ‘-clause is defined like a clause but using exclusive - instead of standard -
disjunction.

We identify LHorn (resp., LKrom , Laffine) as the set of all formulas in L being
conjunctions of Horn clauses (resp., Krom clauses, ‘-clauses).

Let U be a finite set of atoms. An interpretation over U is represented either
by a set m Ď U of atoms (corresponding to the variables set to true) or by its
corresponding characteristic bit-vector of length |U |, the atoms being considered
in lexicographical order. For instance if we consider U “ tx1, . . . , x6u, the inter-
pretation x1 “ x3 “ x6 “ 1 and x2 “ x4 “ x5 “ 0 will be represented either by
tx1, x3, x6u or by p1, 0, 1, 0, 0, 1q.

For any formula φ, let Varpφq denote the set of variables occurring in φ.
As usual, if an interpretation m defined over U satisfies a formula φ such that
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Varpφq Ď U , we call m a model of φ. By Modpφq we denote the set of all models
(over U) of φ.

A formula ψ is complete over U if Varpψq Ď U and if for any µ P L such
that Varpµq Ď U , we have ψ |ù µ or ψ |ù  µ. In an equivalent way, a satisfiable
formula ψ is complete over U 2 if it has exactly one model over U . Moreover,
ψ |ù φ if Modpψq Ď Modpφq and ψ ” φ if Modpψq “ Modpφq. For fragments
L1 Ď L, we use TL1pψq “ tφ P L1 | ψ |ù φu.

2.2 Characterizable fragments of propositional logic

Let B be the set of Boolean functions β : t0, 1uk Ñ t0, 1u with k ě 1, that are
symmetric (i.e. for all permutations σ, βpx1, . . . , xkq “ βpxσp1q, . . . , xσpkqq), and
0- and 1-reproductive (i.e. for every x P t0, 1u, βpx, . . . , xq “ x). Examples of such
functions are: The binary AND function denoted by ^, the ternary MAJORITY
function, maj3px, y, zq “ 1 if at least two of the variables x, y and z are set to 1,
and the ternary XOR function ‘3px, y, zq “ x‘ y ‘ z.

Recall that we consider interpretations also as bit-vectors. We thus extend
Boolean functions to interpretations by applying coordinate-wise the original
function. So, if m1, . . . ,mk P t0, 1u

n, then βpm1, . . . ,mkq is defined by

pβpm1r1s, . . . ,mkr1sq, . . . , βpm1rns, . . . ,mkrnsqq,

where mris is the i-th coordinate of the interpretation m. The next definition
gives a general formal definition of closure.

Definition 1. Given a set M Ď 2U of interpretations and β P B, we define
ClβpMq, the closure of M under β, as the smallest set of interpretations that
contains M and that is closed under β, i.e. if m1, . . . ,mk P ClβpMq, then
βpm1, . . . ,mkq P ClβpMq.

For instance it is well-known that the set of models of any Horn formula is closed
under ^, and actually this property characterizes Horn formulas.
Closures satisfy monotonicity: if M Ď N , then ClβpMq Ď ClβpN q. Moreover, if
|M| “ 1, then ClβpMq “M (because by assumption β is 0- and 1-reproducing);
finally, we always have ClβpHq “ H.

We can now use these concepts to identify fragments of propositional logic.
Additionally, we want fragments to fulfill some natural properties and for tech-
nical reasons we require closure under conjunction.

Definition 2. Let β P B. A set L1 Ď L of propositional formulas is a β-fragment
(or a characterizable fragment) if: (i) For all ψ P L1, Modpψq “ ClβpModpψqq.
(ii) For all M Ď 2U with M “ ClβpMq there exists ψ P L1 with Modpψq “M.
(iii) If φ, ψ P L1 then φ^ ψ P L1.

2 When U is not mentioned, it implicitly means that U is the set of variables occurring
in formulas under consideration

4



We will often (implicitly) use the following fact: Let µ be a formula in L and
L1 be a β-fragment. Let µ̃ be a formula in L1 such that Modpµ̃q “ ClβpModpµqq
(such a formula exists according to (ii) in Definition 2). Then TL1pµq “ TL1pµ̃q.

Many fragments of propositional logic allow for efficient reasoning methods.
When representing knowledge, storing beliefs as a formula of a known tractable
class is thus of interest. The most famous characterizable fragments, which are
the largest in which satisfiability is tractable, are: LHorn which is an ^-fragment,
LKrom which is a maj3-fragment and Laffine which is a ‘3-fragment [24, 34].

An immediate generalization of our framework to fragments characterized by
a closure property under a finite number of functions (and not only one), leads
to infinitely many fragments, which are organized in a lattice, known as Post’s
lattice [31]. The complexity of many computational tasks has been studied in
these fragments (see [9] for a survey). The complexity of reasoning tasks within
the Krom fragment has been recently investigated [8].

2.3 Belief Revision

Belief revision consists in incorporating a new belief, changing as few as possible
of the original beliefs while preserving consistency. More formally, a revision
operator denoted by ˝, is a function from LˆL to L that maps two formulas ψ
(the initial agent’s beliefs) and µ (new information) to a new formula ψ ˝µ (the
revised agent’s beliefs).

In the AGM paradigm [1], postulates were proposed for belief revision when
beliefs are modeled by a theory (or belief set), Katsuno and Mendelzon reformu-
lated them when a theory is represented by a propositional formula. We recall
the KM postulates for belief revision [25].

Let ψ,ψ1, ψ2, µ, µ1, µ2 P L.
(R1) ψ ˝ µ |ù µ.
(R2) If ψ ^ µ is satisfiable, then ψ ˝ µ ” ψ ^ µ.
(R3) If µ is satisfiable, then so is ψ ˝ µ.
(R4) If ψ1 ” ψ2 and µ1 ” µ2, then ψ1 ˝ µ1 ” ψ2 ˝ µ2.
(R5) pψ ˝ µq ^ φ |ù ψ ˝ pµ^ φq.
(R6) If pψ ˝ µq ^ φ is satisfiable, then also ψ ˝ pµ^ φq |ù pψ ˝ µq ^ φ.

The meaning of these postulates is the following. Postulate (R1) specifies that
the added formula belongs to the revised belief set. Postulate (R2) is concerned
with following issue: if the added formula does not contradict the initial belief
set then the revised belief set is represented by the conjunction of the added
formula and the formula representing the initial belief set, in other words if the
incorporation of new knowledge does not cause problem, we just add the new
belief to the existing knowledge. Postulate (R3) ensures that no inconsistency
is introduced in the revised belief set. Postulate (R4) expresses the principle of
irrelevance of the syntax, and (R5) and (R6) state that revising by the conjunc-
tion of two pieces of information amounts to a revision by the first one and a
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conjunction of the second one whenever possible (whenever the second piece of
information does not contradict any belief resulting from the first revision).

Katsuno and Mendelzon showed that a revision satisfying the AGM postu-
lates is equivalent to a total preorder on interpretations, which reflects a plau-
sibility ordering on interpretations. More formally, a faithful assignment is a
function that maps any propositional formula ψ to a pre-order over interpreta-
tions ďψ such that:

1) If ω |ù ψ and ω1 |ù ϕ, then ω “ψ ω
1.

2) If ω |ù ψ and ω1 ­|ù ψ, then ω ăψ ω
1.

3) If ψ1 ” ψ2 then ďψ1
“ďψ2

.

They provided the following representation theorem.

Theorem 3. [25] A revision operator ˝ satisfies the postulates (R1)–(R6) if
and only if there exists a faithful assignment that maps each formula ψ to a total
preorder ďψ such that Modpψ ˝ µq “ MinpModpµq,ďψq.

2.4 Belief Update

Belief update consists in incorporating into an agent’s beliefs new information
reflecting a change in her environment. More formally, an update operator, de-
noted by ˛, is a function from LˆL to L that maps two formulas ψ (the initial
agent’s beliefs) and µ (new information) to a new formula ψ ˛ µ (the updated
agent’s beliefs). We recall the KM postulates for belief update [25].

Let ψ,ψ1, ψ2, µ, µ1, µ2 P L.
(U1) ψ ˛ µ |ù µ.
(U2) If ψ |ù µ, then ψ ˛ µ ” ψ.
(U3) If ψ and µ are satisfiable then so is ψ ˛ µ.
(U4) If ψ1 ” ψ2 and µ1 ” µ2, then ψ1 ˛ µ1 ” ψ2 ˛ µ2.
(U5) pψ ˛ µq ^ φ |ù ψ ˛ pµ^ φq.
(U6) If pψ ˛ µ1q |ù µ2 and pψ ˛ µ2q |ù µ1, then ψ ˛ µ1 ” ψ ˛ µ2.
(U7) If ψ is complete, then pψ ˛ µ1q ^ pψ ˛ µ2q |ù ψ ˛ pµ1 _ µ2q.
(U8) pψ1 _ ψ2q ˛ µ ” pψ1 ˛ µq _ pψ2 ˛ µq.
(U9) If ψ is complete and pψ ˛ µq ^ φ is satisfiable,

then ψ ˛ pµ^ φq |ù pψ ˛ µq ^ φ.

These postulates have been discussed in several papers (see for example [23]).
Postulate pU1q says that the models of the updated agent’s beliefs have to be
models of new information. Postulate pU4q states the irrelevance of syntax. Pos-
tulate pU5q expresses minimality of change. The three postulates pU1q, pU4q and
pU5q directly correspond to the belief revision postulates pR1q, pR4q and pR5q
respectively. Postulate pU2q differs from pR2q, the latter stating that if ψ ^ µ is
satisfiable then ψ ˝ µ ” ψ ^ µ. A consequence of pU2q for update is that once
an inconsistency is introduced in the initial beliefs there is no way to eliminate
it [25]. Note that this is not the case for belief revision. Furthermore, pU3q is a
weaker version of pR3q. The latter states that if µ is satisfiable then so is ψ ˝ µ,
while in order to ensure the consistency of the result of update pU3q requires an
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additional condition, namely that the initial beliefs be consistent as well. Postu-
lates pU6q, pU7q and pU8q are specific to update operators. The eighth postulate
pU8q, which means that an update operator should give each of the models of
the initial beliefs equal consideration, is considered as the most “uncontrover-
sial” one. Finally, pU9q is a weaker version of pR6q, it is similar but restricted to
complete formulas ψ.

Katsuno and Mendelzon showed that an update operator corresponds to a set
of preorders on interpretations. More formally, a pointwise faithful assignment
is a function that maps any interpretation m to a pre-order over interpretations
ďm, such that for any interpretation m1, if m1 ‰ m then m ăm m1. They
provided the following representation theorem.

Theorem 4. [26] An update operator ˛ satisfies the postulates (U1)–(U9) if and
only if there exists a pointwise faithful assignment that maps each interpretation
m to a total preorder ďm such that Modpψ˛µq “

Ť

mPModpψq minpModpµq,ďmq.

An update operator ˛ satisfies the postulates (U1)–(U8) if and only if there
exists a pointwise faithful assignment that maps each interpretation m to a partial
preorder ďm such that Modpψ ˛ µq “

Ť

mPModpψq minpModpµq,ďmq.

The representation theorems, Theorem 3 and Theorem 4, pinpoint the differ-
ences between revision and update. Update stems from a pointwise minimization,
model by model of ψ, while revision stems from a global minimization on all the
models of ψ. Update operators, for each model m of ψ, select the set of models
of µ that are the closest to m, while revision operators select the set of models
of µ that are the closest to the set of models of ψ. Note that when there exists
only one model of ψ (which is the case when ψ is complete) revision and update
coincide.

The following example illustrates the difference between revision and update.

Example 5. We come back to the example given in the introduction where the
beliefs describe two objects A and B inside a room. The agent’s beliefs are repre-
sented by the formula ψ “ a, which expresses that object A is on the table. Let us
recall that a robot is sent into the room with the instruction to achieve a situation
in which either object A or object B is not on the table. This change is represented
by the formula µ “  a_ b. We have ψ, µ P L with Modpψq “ ttau, ta, buu and
Modpµq “ ttau, tbu,Hu. Let m,m1 be two interpretations, m∆m1 denotes the
symmetric difference between m and m1. The global minimization of the cardi-
nality of the symmetric difference between the models of ψ and the models of µ
provides Modpψ ˝ µq “ ttauu. In contrast, the minimization of the cardinality
of the symmetric difference between each model of ψ and the models of µ gives
Modpψ ˛ µq “ ttau, tbuu. Note that revision selects tau as the only model of the
changed beliefs. However after the robot’s action, all we know is that either object
A or object B is not on the table. There is no reason to conclude that only object
B is not on the table as does revision, which excludes the situation where object
A is not on the table.

Several update operators have been proposed. We now recall the two best known
model-based update operators on which we will focus, namely Forbus’ and
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Winslett’s operators. In these model-based update operators the closeness be-
tween models relies on the symmetric difference between models, that is the set
of propositional variables on which they differ.

Forbus’ operator was introduced in [19] in the context of qualitative physics.
This operator is analogous to Dalal’s revision operator [10] and measures min-
imality of change by cardinality of model change. More formally, let ψ and µ
be two propositional formulas, and m and m1 be two interpretations, m∆m1

denotes the symmetric difference between m and m1 and |∆|minm pµq denotes
the minimum number of variables in which m and a model of µ differ and is
defined as mint|m∆m1| : m1 P Modpµqu. Forbus’ operator is now defined as:
Modpψ ˛F µq “

Ť

mPModpψqtm
1 P Modpµq : |m∆m1| “ |∆|minm pµqu. This operator

satisfies (U1)-(U8) [25] and (U9) [23]. This update operator is illustrated in the
following example.

Example 6. Let ψ, µ P L such that Modpψq “ tta, b, cu, ta, b, c, d, euu and
Modpµq “ ttb, cu, tc, du, ta, b, du, tcu, tdu, tbu,Hu. The result of update could be
read in Table 1. Each line of the table gives the cardinalities of the symmet-
ric differences between the corresponding model of ψ and the models of µ. The
minimal cardinalities are written in bold. Hence Modpψ˛F µq “ ttb, cu, ta, b, duu.

Modpψq Modpµq

{b,c} {c,d} {a,b,d} {c} {d} {b} H
{a,b,c} 1 3 2 2 4 2 3

{a,b,c,d,e} 3 3 2 4 4 4 5

Table 1. Example for ˛F

Winslett’s operator, also called PMA (Possible Models Approach) [35] was
introduced for reasoning about actions and change. This operator is analogous
to Satoh’s revision operator [33] and interprets minimal change in terms of set
inclusion instead of cardinality on model difference. More formally, ∆min

m pµq
denotes the minimal difference between m and a model of µ and is defined as
minĎptm∆m

1 : m1 P Modpµquq. Winslett’s operator is now defined as: Modpψ˛W
µq “

Ť

mPModpψqtm
1 P Modpµq : m∆m1 P ∆min

m pµqu. This operator satisfies

pU1q ´ pU8q [25] but does not satisfy pU9q [28].
Winslett’s operator ˛W behaves differently from Forbus’ operator ˛F as il-

lustrated in the following example.

Example 7. Let ψ, µ P L from Example 6. The result of update could be read in
Table 2. Each line of the table gives the symmetric differences between the cor-
responding model of ψ and the models of µ. The minimal subsets with respect to
set inclusion are written in bold. Hence Modpψ˛W µq “ ttb, cu, tc, du, ta, b, duu ‰
Modpψ ˛F µq.
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Modpψq Modpµq

{b,c} {c,d} {a,b,d} {c} {d} {b} H

{a,b,c} {a} {a,b,d} {c,d} {a,b} {a,b,c,d} {a,c} {a,b,c}
{a,b,c,d,e} {a,d,e} {a,b,e} {c,e} {a,b,d,e} {a,b,c,e} {a,c,d,e} {a,b,c,d,e}

Table 2. Example for ˛W

In this paper, we are interested in update operators which are tailored for
certain fragments. We say that ˛ satisfies the postulates (Ui) pi P t1, . . . , 9uq in
a fragment L1 Ď L if these postulates hold when restricted to formulas from L1.

3 Refinements of belief change operators

Refinements have been defined within the context of belief revision [6] and may
be naturally considered for any belief change operation.

The idea is to use well-established belief change operators in order to define
rational belief change operators that are well-suited for characterizable fragments
of propositional logic. Given a propositional fragment L1 and a propositional
belief change operator 4, a refinement of 4 consists of a new operator N, which
is built from 4 and not too different from 4, that operates within L1 and is
such that the result of change remains in L1. Roughly speaking the goal is that
the difference of behavior between 4 and N obeys a kind of principle of minimal
change in the sense that if the original operator 4 gives a result that is already
in the fragment, then the refined operator should do nothing more, and in any
case it should not increase the logical consequences of the original result. In the
following we first define formally a few natural basic properties for refinements,
then we show how such refinements can be explicitly obtained.

Definition 8. Let L1 be a propositional fragment and 4 : L ˆ L Ñ L a belief
change operator. We call an operator N : L1 ˆ L1 Ñ L1 a 4-refinement for L1 if
it satisfies the following properties, for each ψ,ψ1, µ, µ1 P L1.

– consistency: ψNµ is satisfiable if and only if ψ4µ is satisfiable.
– equivalence: If ψ4µ ” ψ14µ1 then, ψNµ ” ψ1Nµ1.
– containment: TL1pψ4µq Ď TL1pψNµq.
– invariance: If ψ4µ P L1, then TL1pψNµq “ TL1pψ4µq.

Let us briefly discuss these properties. The first two conditions are rather
independent from L1, but relate the refined operator N to the original belief
change 4 in certain ways. To be more precise, consistency states that the refined
operator N should yield a consistent belief change exactly if the original operator
4 does so. Equivalence means that the definition of the N-operator should not be
syntax-dependent, belief changes which are equivalent w.r.t 4 are also equivalent
w.r.t. N. Containment ensures that N can be seen as a form of approximation
of 4 when applied in the L1 fragment, while invariance states that in case 4
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behaves as expected (i.e., the belief change is contained in L1) there is no need
for N to do something additional.

When considering a model-based operator 4 it seems that such a refinement
can be obtained as follows. Let L1 be a β-fragment and ψ and µ two formulas in
L1. Let 4 be a model-based belief change operator. In order to set a refinement,
we first compute the set of models of ψ4µ, denoted by M, we then apply a
mapping to M in order to obtain a set of models N that is a set of models of
a formula in L1. We call such a mapping a β-mapping since N has to be closed
under β. In the following we prove that indeed all possible refinements can be
obtained that way.

This characterization of all possible refinements requires the definition of the
notion of β-mapping.

Definition 9. Given β P B, we define a β-mapping, fβ, as an application from

sets of models into sets of models, fβ : 22
U
ÝÑ 22

U
, such that for every M Ď 2U :

1. ClβpfβpMqq “ fβpMq, i.e., fβpMq is closed under β.
2. fβpMq Ď ClβpMq.
3. if M “ ClβpMq, then fβpMq “M.
4. If M ‰ H, then fβpMq ‰ H.

As explained above the underlying idea of functions fβ is to start from a
set of models Modpψ4µq and to return a set of models fβpModpψ4µqq, thus
defining a refinement of the operator 4. The outcome has to be closed under β
(1) since we want to get a belief change into formulas from the β-fragment, and
should not add any further interpretations (2) in order to satisfy containment,
cf. Definition 8. Since we want to capture refinements of operators there is no
need to change the behavior of the original operator as long as it provides a result
in the desired fragment (3). Property (4) takes care of consistency, cf. Definition
8.

Thus, the concept of β-mapping allows us to define a family of refined oper-
ators for the fragments of propositional logic as follows.

Definition 10. Let 4 : L ˆ L ÝÑ L be a belief change operator and L1 Ď L
be a β-fragment of propositional logic with β P B. For a β-mapping fβ, we
denote with 4fβ : L1 ˆ L1 ÝÑ L1 the belief change operator for L1 defined as
Modpψ4fβµq :“ fβpModpψ4µqq. The class r4,L1s contains all operators 4fβ

where fβ is a β-mapping.

The next proposition is central in reflecting that the above class captures all
refined operators we had in mind. A similar result was obtained in [6] for basic
(revision) operators, i.e., operators satisfying J4µ ” µ. This assumption was
used to prove that any 4-refinement can be defined through a β-mapping. We
give here an alternative proof that does not rely on this assumption.

Proposition 11. Let 4 : L ˆ L ÝÑ L be a belief change operator and L1 Ď L
be a characterizable fragment of propositional logic. Then, r4,L1s is the set of
all 4-refinements for L1.

10



Proof. Since L1 is a characterizable fragment it is also a β-fragment for some
β P B. We first show that any operator from the class r4,L1s is a 4-refinement
of L1.
Let 4fβ P r4,L1s. We have to show that it satisfies the properties of Definition
8. Consistency for 4fβ : Let ψ, µ P L1. If Modpψ4µq ‰ H then Modpψ4fβµq “
fβpModpψ4µqq ‰ H by Property 4 in Definition 9. In case, Modpψ4µq “ H,
we make use of the fact that ClβpHq “ H holds for all β P B. By Property 2 in
Definition 9, we get Modpψ4fβµq “ fβpModpψ4µqq Ď ClβpModpψ4µqq “ H.
Equivalence for 4fβ is clear by definition and since fβ is defined on sets of
models.
To show containment for 4fβ , let φ P TL1pψ4µq, i.e., φ P L1 and Modpψ4µq Ď
Modpφq. We have ClβpModpψ4µqq Ď ClβpModpφqq by monotonicity of Clβ .
By Property 2 of Definition 9, Modpψ4fβµq Ď ClβpModpψ4µqq. Since φ P
L1 we have ClβpModpφqq “ Modpφq. Thus, Modpψ4fβµq Ď Modpφq, i.e., φ P
TL1pψ4fβµq.

Finally, we require invariance for 4fβ : In case ψ4µ P L1, we have
ClβpModpψ4µqq “ Modpψ4µq since L1 is a β-fragment. By Property 3 in
Definition 9, we have Modpψ4fβµq “ fβpModpψ4µqq “ Modpψ4µq. Thus
TL1pψ4fβµq “ TL1pψ4µq as required.

For the converse, let N be a 4-refinement for L1. We show that N P r4,L1s.
Let f be defined as follows for any set M of interpretations: fpHq “ H and
for M ‰ H, if there exists a pair pψM, µMq of formulas from L1 such that
ModpψM4µMq “M, then we define fpMq “ ModpψMNµMq, otherwise fpMq “

ClβpMq. Thus the refined operator N behaves like the operator 4f .
We show that such a mapping f is a β-mapping. Note that since N is a β-

refinement, it satisfies the property of equivalence, thus the actual choice of the
pair pψM, µMq is not relevant, i.e., given M, and pairs pψM, µMq, pψ

1
M, µ1

Mq

such that ModpψM4µMq “ Modpψ1
M4µ1

Mq “ M, we have that ψMNµM is
equivalent to ψ1

MNµ
1
M. Thus, f is well-defined.

We continue to show that the four properties in Definition 9 hold for f .
Property 1 is ensured since for every M, fpMq is closed under β. Indeed, either
fpMq “ ModpψMNµMq and since ψMNµM P L1 its set of models is closed under
β, or fpMq “ ClβpMq. Let us show Property 2 , i.e., fpMq Ď ClβpMq for any
set of interpretations M. It is obvious when M “ H (then fpMq “ H), as
well as when fpMq “ ClβpMq. Otherwise fpMq “ ModpψMNµMq and since N
satisfies containment ModpψMNµMq Ď ClβpModpψM4µMq. Therefore in any
case we have fpMq Ď ClβpMq. For showing Property 3 let us consider M ‰ H

such that M “ ClβpMq. If fpMq “ ClβpMq, then fpMq “ M. Otherwise,
fpMq “ ModpψMNµMq where ψM, µM P L1 such that ModpψM4µMq “ M.
Since N satisfies invariance ModpψMNµMq “ M. Thus, in any case, fpMq “

M. Property 4 is ensured by consistency of N.

Hence, β-mappings allow us to define refined belief change operators. We give
some examples of β-mappings in the next section (see Section 4.2) and study
how they perform to refine update operators.

11



4 Update operators within fragments

The previous section presented refinements for any belief change operation. We
now focus on refinements for belief update. We recall that a belief update oper-
ator is a function ˛ : Lˆ L to L that maps a formula ψ representing the initial
agent’s beliefs and a formula µ encoding a change in her environment to a new
formula ψ ˛ µ representing the updated agent’s beliefs.

In this section we first present some update operators that are well-suited for
any characterizable fragment (Section 4.1). Then we turn to update operators
that require refinements. We first propose some β-mappings (Section 4.2) and
then study the logical properties of the refined operators they define (Section
4.3). Finally we address the question of refining update operators so that they
can handle the case where only the formula representing the agent’s beliefs is in
the fragment (Section 4.4).

4.1 Dependence-based update operators

There exists a family of update operators that is well-suited for any characteri-
zable fragment, i.e. that provides a result in the fragment, namely dependence-
based update operators [23].
More formally, a dependence is a function that assigns each atom a a set of
atoms deppaq. This dependence function is extended to formulas by deppµq “
Ť

aPVarpµq deppaq.

Herzig’s update operator [23] is a dependence-based update operator denoted
by ˛HZ and defined by

Modpψ ˛HZ µq “ tm
1 P Modpµq|Dm P Modpψq : m∆m1 Ď deppµqu.

Hegner’s operator [22], denoted by ˛H , is a special case of Herzig’s operator
where deppµq “ Varpµq, and thus is defined by

Modpψ ˛H µq “ tm1 P Modpµq|Dm P Modpψq : m∆m1 Ď Varpµqu.

The following proposition shows that these two update operators are well-suited
for any characterizable fragments.

Proposition 12. Let L1 be a characterizable fragment of propositional logic.
Given two formulas ψ, µ P L1, then ψ ˛HZ µ P L1 (in particular, ψ ˛H µ P L1).

Proof. Let L1 be a β-fragment, ψ and µ two formulas of L1. Let n1, ..., nk P
Modpψ˛HZ µq. According to the definition of Herzig’s operator, there exist mod-
els m1, ...,mk P Modpψq, such that for each i “ 1, ..., k, we have ni∆mi Ď deppµq.
Consider βpn1, ..., nkq∆βpm1, ...,mkq. If x R deppµq then for each i, we have
nipxq “ mipxq, and thus, βpn1pxq, ..., nkpxqq “ βpm1pxq, ...,mkpxqq. There-
fore, βpn1, ..., nkq∆βpm1, ...,mkq Ď deppµq. Moreover, we have µ P L1, thus
βpn1, ..., nkq P Modpµq. Similarly, ψ P L1, thus βpm1, ...,mkq P Modpψq. Hence,
βpn1, ..., nkq P Modpψ ˛HZ µq. Therefore, Modpψ ˛HZ µq is closed under β, hence
ψ ˛HZ µ P L1.

12



The following example illustrates the behavior of these dependence-based update
operators.

Example 13. Let ψ “  a^ b and µ “ a be Horn formulas. We have Modpψq “
tHu, Modpµq “ ttau, ta, buu and Varpµq “ tau. Suppose deppµq “ ta, bu, we
have Modpψ ˛HZ µq “ ttau, ta, buu and Modpψ ˛H µq “ ttauu. Therefore, the
result of update is also in LHorn .

All update operators considered in this paper proceed as follows to compute
the update of ψ by µ: a model m1 of µ is a model of the updated beliefs if there
is a model m of ψ such that the “distance” between m and m1, measured by
their symmetric difference m∆m1, satisfies some property. An important feature
of the dependence-based update operators, not shared by Forbus and Winslett’s
operators, is that the property m∆m1 has to satisfy depends on µ, and not on
m.

We now turn to update operators that are not directly suited for fragments of
propositional logic and for which refinements make sense. Thanks to Proposition
11, given ˛ an update operator, the family of all its possible update refinements,
[˛,L1], is the set of operators ˛fβ where fβ is a β-mapping. For this reason we
first present different β-mappings and next study the logical properties of the
refined operators they define.

4.2 Examples of refined belief update operators

We now give some examples of β-mappings. In the following, let 4 : LˆLÑ L
be a belief change operator, and L1 Ď L be a fragment of propositional logic
such that L1 is a β-fragment for some β P B.
A natural β-mapping is the Clβ function that leads to the definition of a
closed-based refined belief change operator denoted by 4Clβ and given by
Modpψ4Clβµq “ ClβpModpψ4µqq.

The following examples illustrate the closed-based refinement for several propo-
sitional fragments.

Example 14. Let ψ and µ be Horn formulas such that Modpψq “

tta, b, cu, ta, b, c, d, euu and Modpµq “ ttb, cu, tc, du, ta, b, du, tcu, tdu, tbu,Hu as
in Example 6. Such formulas exist since their sets of models are closed under
intersection. We have Modpψ ˛F µq “ ttb, cu, ta, b, duu and Modpψ ˛W µq “
ttb, cu, tc, du, ta, b, duu that are not closed under intersection. So, neither ψ ˛F µ
nor ψ ˛W µ is in LHorn . The refined operators ˛Cl^F and ˛Cl^W are defined as

Modpψ˛Cl^F µq “ Cl^pModpψ˛F µqq “ ttb, cu, ta, b, du, tbuu and Modpψ˛Cl^W µq “
Cl^pModpψ ˛W µqq “ ttb, cu, tc, du, ta, b, du, tbu, tcu, tdu,Hu.

We give now an example that holds both in the Horn and the Krom fragments.

Example 15. Consider ψ “ a^b^c and µ “ p a_ bq^p b_ cq^p a_ cq.
These two formulas are both Horn and Krom. Their respective set of models
Modpψq “ tta, b, cuu and Modpµq “ ttau, tbu, tcu,Hu are closed under intersec-
tion and under majority. We have Modpψ˛F µq “ Modpψ˛W µq “ ttau, tbu, tcuu,
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which is closed neither under intersection nor under majority. So ψ ˛F µ is nei-
ther in LHorn nor in LKrom . The refined operators ˛Cl^F and ˛Cl^W are defined

as Modpψ ˛Cl^F µq “ Modpψ ˛Cl^W µq “ ttau, tbu, tcu,Hu. The refined operators

˛
Clmaj3

F and ˛
Clmaj3

W operate similarly.

We now give an example in the affine fragment.

Example 16. Let ψ and µ be affine formulas such that Modpψq “

tta, b, cu, ta, duu and Modpµq “ ttau, tb, cu, ta, bu, tcuu. Such formulas exist since
these sets of models are closed under the ternary XOR function. We have
Modpψ ˛F µq “ Modpψ ˛W µq “ ttau, ta, bu, tb, cuu, which is not closed un-
der the ternary XOR function. So ψ ˛F µ is not in Laffine . The refined operators

˛
Cl‘3

F and ˛
Cl‘3

W for Laffine are defined as Modpψ ˛
Cl‘3

F µq “ Modpψ ˛
Cl‘3

W µq “
ttau, ta, bu, tb, cu, tcuu.

Given a total order over interpretations, another β-mapping is the Minβ
function that selects the minimal model in this order when the set of models is
not closed.

Definition 17. Let β P B and ď be a fixed total order on the set 2U of inter-
pretations. We define the function Minβ as

MinβpMq “

"

M if ClβpMq “M
tminďpMqu otherwise

The Minβ function allows us to define a min-based refined belief change operator,
denoted by 4Minβ and given by Modpψ4Minβµq “ MinβpModpψ4µqq.

Example 18. Let ψ, µ P LHorn from Example 14. Recall that Modpψ ˛F µq “
ttb, cu, ta, b, duu and Modpψ ˛W µq “ ttb, cu, tc, du, ta, b, duu. Consider the fol-
lowing order over interpretations: tc, du ă tb, cu ă ta, b, du. We thus have
Modpψ ˛Min^

F µq “ Min^pModpψ ˛F µqq “ ttb, cuu and Modpψ ˛Min^

W µq “
Min^pModpψ ˛W µqq “ ttc, duu.

The two β-mappings Clβ and Minβ represent two extreme functions, the former
selecting the closure of the set of interpretations M, the latter selecting only one
interpretation of M.

In between these extremes there is a variety of possible β-mappings. As an
example we define an intermediary function, denoted by Proxβ , which selects a
closed subset of interpretations of ClβpMq that is the closest to M.
For M ‰ H, let FpMq be the set of nonempty subsets of ClβpMq which are
closed under β. This set is defined more formally as follows.

FpMq “ tN | H Ă N Ď ClβpMq and N “ ClβpN qu.

Let FppMq be the set of elements of FpMq that are the closest to M (in terms
of cardinality of the symmetric difference). This set is defined more formally as
follows, for all M ‰ H.

14



FppMq “ tN P FpMq | @ N 1 P FpMq, |M∆ N | ď |M∆ N 1|u

We assign to any fixed total order over interpretations a lexicographic order over
subsets of interpretations, denoted byďlex. The following example illustrates this
assignment.

Example 19. Let m1, m2 and m3 be models such that m1 ď m2 ď m3. Con-
sider the two sets of models M1 “ tm1,m3u and M2 “ tm2u. These sets are
respectively represented by their characteristic vector, 101 and 010, therefore,
M2 ďlex M1.

We now formally define the Proxβ function as follows.

Definition 20. Let β P B, let ď be a fixed total preorder over interpretations,
ďlex its corresponding lexicographic order over subsets of interpretations and
M Ď 2U a set of interpretations. The function Proxβ is defined as follows:

ProxβpMq “

$

&

%

M if ClβpMq “M
ClβpMq if ClβpMq ‰M and ClβpMq P FppMq

tminďlexpFppMqqu otherwise

Indeed, Proxβ is a β-mapping and the refined belief change operator denoted
by ˛Proxβ is given by Modpψ4Proxβµq “ ProxβpModpψ4µqq.

Example 21. We come back to Example 14 in the Horn frag-
ment, where Modpψq “ tta, b, cu, ta, b, c, d, euu and Modpµq “

ttb, cu, tc, du, ta, b, du, tcu, tdu, tbu,Hu. We consider the following order over
interpretations : H ă tbu ă tcu ă tdu ă tb, cu ă tc, du ă ta, b, du.

We remind that M “ Modpψ ˛F µq “ ttb, cu, ta, b, duu.

There are three subsets of Cl^pMq that are ^-closed and at distance

1 from M, and Cl^pMq is one of them. Therefore, Modpψ ˛
Proxβ
F µq “

ttb, cu, ta, b, du, tbuu.

Now let us consider M “ Modpψ ˛W µq “ ttb, cu, tc, du, ta, b, duu. Observe
that Cl^pMq “ ttb, cu, tc, du, ta, b, du, tbu, tcu, tdu,Hu. There is no closed subset
of Cl^pMq which is at distance 1 from M, and six of them are at distance 2,
therefore FppMq is made of these six subsets. Since Cl^pMq R FppMq we have
to determine which of its element is the lexicographically minimal one. For this
we focus on Table 3 where we can read the lexicographic order assigned to the
different elements of FppMq.

Hence, Modpψ ˛
Proxβ
W µq “ tM3u “ tta, b, duu.

Observe that in this example the three refinements we have considered give

different results, Modpψ ˛
Proxβ
W µq ‰ Modpψ ˛

Clβ
W µq ‰ Modpψ ˛

Minβ
W µq.
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H tbu tcu tdu tb, cu tc, du ta, b, du

ttb, cuu 0 0 0 0 1 0 0

ttc, du 0 0 0 0 0 1 0

tta, b, duu 0 0 0 0 0 0 1

ttb, cu, tc, du, tcuu 0 0 1 0 1 1 0

ttb, cu, ta, b, du, tbuu 0 1 0 0 1 0 1

ttc, du, ta, b, du, tduu 0 0 0 1 0 1 1

Table 3. Lexicographic order on subsets of models

4.3 Logical properties of refined belief update operators

In this section we investigate how our refined update operators behave with
respect to satisfaction of the KM postulates. We first show that our update
refinements preserve the first four KM postulates.

Proposition 22. Let ˛ be an update operator and L1 Ď L a characterizable frag-
ment. For i “ 1, . . . , 4, if ˛ satisfies postulate pUiq, then so does any refinement
of this operator in L1, � P r˛,L1s.

Proof. Suppose L1 is a β-fragment. Thus we can assume that � P r˛,L1s is an
operator of the form ˛fβ where fβ is a suitable β-mapping. Since postulates (U1)
and (U4) are exactly the same postulates as (R1) and (R4), and since satisfaction
of (U3) follows from satisfaction of (R3), according to [6, Prop. 6]) we only have
to deal with (U2). By definition Modpψ�µq “ fβpModpψ ˛ µqq. Since ˛ satisfies
postulate (U2), if ψ |ù µ, then ψ ˛ µ ” ψ, i.e. Modpψ ˛ µq “ Modpψq. Therefore,
fβpModpψ ˛ µqq “ fβpModpψqq. Since ψ P L1, fβpModpψqq “ Modpψq. Thus,
ψ�µ ” ψ.

A natural question is whether there exist refined update operators that satisfy
more postulates. We focus on Forbus’ and Winslett’s operators (that satisfy
respectively all KM postulates and the first eight ones) refined by Clβ , Minβ and
Proxβ (other update operators as well as other refinements have been studied
in [28]). We discuss the postulates that are expressible in our fragments, namely
(U5), (U6) and (U9).

In the following, within a characterizable fragment, it is implicit that any
β-mapping we refer to, uses the Boolean function β which characterizes the
fragment. This means that within LHorn (resp. LKrom , Laffine) a β-mapping is
an ^-mapping (resp., maj3-mapping, ‘3-mapping).

We first show that Proposition 22 cannot be extended to postulate (U5).
Indeed we get the following negative result for (U5).

Proposition 23. Let ˛ P t˛F , ˛W u. The refined update operators ˛Clβ , ˛Minβ

and ˛Proxβ violate postulate (U5) in any L1 P tLHorn ,LKrom ,Laffineu.

Proof. The proof is in the appendix.
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Remark 24. Let us emphasize that this result shows a difference between revision
and update. Indeed, let us recall that Forbus’ operator ˛F can be considered as
the update counterpart of Dalal’s revision operator, ˝D. The refinements of these
two operators by the function Minβ show a different behavior. While in [6] it

was proven that ˝
Minβ
D satisfies (R5), the above proposition shows that ˛

Minβ
F

violates (U5). Interestingly the proof that ˝
Minβ
D satisfies (R5) relies on the fact

that Dalal’s operator ˝D satisfies both (R5) and (R6). In the context of update
(U9) is a weaker version of (R6), that applies only to complete formulas. While
Forbus’ operator ˛F satisfies (U9) it can be proved that it does not satisfy (R6)
(see the example given in the proof of Proposition 23 for the min refinement in the
Horn fragment). This explains the difference of behavior of the two operators,
Dalal and Forbus, with respect to the preservation of the fifth postulate, resp.
(R5) and (U5).

For the ninth postulate (U9), we obtain a rather general negative result,
which is similar to the result obtained for (R6) in the context of revision (see
[6]), but which nevertheless requires new examples to be proven, since in the
case of update we need complete formulas.

Proposition 25. Let ˛ P t˛F , ˛W u and L1 P tLHorn ,LKrom ,Laffineu. Then any
refined operator � P r˛,L1s violates postulate (U9) in L1.

Observe that in order to prove this proposition the examples in [6] cannot be
used since they do not involve complete formulas and we have to provide new
ones.

Proof. The proof is in the appendix.

The status of the sixth postulate (U6) is less clear than the ones we have
investigated so far. Indeed, the two following propositions show that the satis-
faction of (U6) depends on the β-mapping that is used to define the refinement.

Proposition 26. Let ˛ be an update operator and L1 a β-fragment. If ˛ satisfies
(U6), then so does the refined operator ˛Clβ in L1.

Proof. Suppose that pψ ˛Clβ µ1q |ù µ2 and pψ ˛Clβ µ2q |ù µ1. Thus, ClβpModpψ ˛
µ1qq Ď Modpµ2q and ClβpModpψ ˛ µ2qq Ď Modpµ1q. Moreover, Modpψ ˛ µ1q Ď

ClβpModpψ˛µ1qq and also Modpψ˛µ2q Ď ClβpModpψ˛µ2qq. Therefore, Modpψ˛
µ1q Ď Modpµ2q and Modpψ ˛ µ2q Ď Modpµ1q. Since ˛ satisfies (U6), we get
ψ ˛µ1 ” ψ ˛µ2. According to the equivalence property cited in Definition 8, we
have finally ψ ˛Clβ µ1 ” ψ ˛Clβ µ2.

Proposition 27. Let ˛ P t˛F , ˛W u. The refined operator ˛Minβ violates postu-
late (U6) in any L1 P tLHorn ,LKrom ,Laffineu.

Proof. The proof is in the appendix.
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The refinement by Proxβ of Forbus’ and Winslett’s operators does not seem
to behave better than the refinements by Clβ and Minβ . It is rather difficult
to find counterexamples in all fragments and we obtain only a partial result in
LHorn .

Proposition 28. Let ˛ P t˛F , ˛W u. The refined operator ˛Proxβ violates postu-
late (U6) in LHorn .

Proof. The proof is in the appendix.

Let us briefly summarize and discuss the results obtained in this section so
far. Proposition 22 is positive: Given an update operator satisfying the four basic
postulates (U1)-(U4), any refinement of it (in any fragment) satisfies them as
well. The other results, obtained for refinements of Forbus’ and Winslett’s oper-
ators, look less promising. Nevertheless they raise interesting issues. On the one
hand one might ask whether postulates (U5), (U6) and (U9) should be adapted
to refinements, which correspond to a specific way of building update operators.
On the other hand one has to bear in mind that Forbus’ operator in not the only
one satisfying all postulates. Indeed representation theorems (in terms of pre-
orders as discussed in Section 4) characterize operators satisfying all postulates.
Some of these operators might lead to refinements satisfying more postulates. A
classification of operators that satisfy all postulates and can be refined in such a
way to preserve (U5), (U6) and (U9) in some fragment is beyond the scope of
this paper and left as future work.

Table 4 gives a general overview of the properties of our refined update
operators in terms of satisfaction of the postulates (U5), (U6) and (U9). We put
‘

if the refined operator satisfies the considered postulate, ˆ if it violates it in
all fragments, and ˆLHorn

it is only known that the refined operator violates the
postulate in LHorn .

Refined operators Postulates
(U5) (U6) (U9)

˛
Clβ
F ˆ ‘ ˆ

˛
Clβ
W ˆ ‘ ˆ

˛
Minβ

F ˆ ˆ ˆ

˛
Minβ

W ˆ ˆ ˆ

˛
Proxβ

F ˆ ˆLHorn ˆ

˛
Proxβ

W ˆ ˆLHorn ˆ

Table 4. An overview of the satisfied postulates by the refined operators.

Finally observe that (U7) and (U8) are not applicable in our study since
they use disjunction of formulas while our fragments are not closed under dis-
junction (given µ1 and µ2 in L1, µ1_µ2 does not necessarily belong to L1). These
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postulates would require to be reformulated in order to fit into fragments while
still characterizing rational behavior of update operators. This is an interesting
issue, which is beyond the scope of this paper. An adapted formulation of these
postulates would ideally be validated by a representation theorem.

Let us nevertheless discuss postulate (U8), which is the most uncontroversial
postulate for belief update in the context of full propositional logic. It reflects
the central fact that a rational update operator should give each model of the
original beliefs equal consideration (a property that distinguishes update from
revision). Unfortunately (U8) fails playing this role in fragments of propositional
logic that are not closed under disjunction. Indeed, the union of closed sets
of models obtained after having considered independently each model of the
formula representing the belief set, has no reason to be a closed set of models.

However, note that by construction our refined operators first compute the
result obtained through an original operator, and then, as a post-processing step,
apply a β-mapping to it. Therefore, starting from an update operator that sat-
isfies (U8) the models of the formula will equally contribute to the update in
the first step. So at least the spirit is preserved, even if of course one has to
perform a post-processing in order to remain in the fragment.Observe that for
the refinement by the closure Clβ, since for for all formulas ψ and µ in L1,
Modpψ ˛Clβ µq “ ClβpModpψ ˛ µqq, we have TL1pψ ˛Clβ µq “ TL1pψ ˛ µq. There-
fore, roughly speaking ˛Clβ is the best approximation of ˛ in L1, and if ˛ can be
considered as a rational update operator, then so can ˛Clβ in L1.

4.4 When only the formula representing the agent’s beliefs is in the
fragment

When working within fragments a very natural situation is that the formula
representing the initial agent’s beliefs is indeed in the fragment, while the formula
reflecting new information, which potentially comes from an external source, is
not. In order to iterate the process one is interested in a result that still belongs
to the fragment. An interesting issue is thus to decide whether our approach
allows us to refine well-established belief update operators which starting from
a formula ψ in the fragment and a formula µ not necessarily in the fragment,
give a result in the fragment. This is what we address in this section (for sake
of completeness, the symmetric case, which is much less natural, and in which
only new information is required to be in the fragment is addressed in [28]).

Given an update operator ˛, we call � : L1 ˆ LÑ L1 a ˛-left-refinement (for
L1) if it satisfies all properties given in Definition 8 with ψ P L1 and µ P L.

It is then easy to check that the characterization given in Proposition 11
still holds, that is that any ˛-left-refinement can be defined as ˛fβ for some
β-mapping fβ . So, we are in a position to study the logical properties of such
refined operators in terms of satisfaction of postulates.

On the one hand note that the negative results obtained in the initial frame-
work a fortiori hold in this generalized case. On the other hand, the seventh
postulate (U7), which did not apply in the previous section, makes sense in this
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context. For these reasons, we shall examine postulates (U1)-(U4), (U6) and
(U7).

We first give a general positive result for three of the four basic postulates.

Proposition 29. Let ˛ be an update operator and L1 Ď L a β-fragment. For
i “ 2, 3, 4, if ˛ satisfies pUiq, then each ˛-left-refinement for L1, � : L1ˆLÑ L1,
satisfies postulate pUiq.

Proof. The proof is similar to the one used in Proposition 22, since ψ P L1 is not
used for the preservation of (U2)-(U4).

Contrary to (U2), (U3) and (U4), the first postulate (U1) could be violated.
The success postulate (U1) says that the models of the updated beliefs have to
be models of new information, i.e., ψ ˛ µ |ù µ. In the case of a refined operator
˛fβ , since Modpψ ˛fβ µq “ fβpModpµqq, the problem is that the application of
fβ can generate new models that are not necessarily models of µ, and thus the
postulate (U1) is not necessarily preserved. We show that this is indeed the case,
and actually we prove that the preservation of (U1) depends on the β-mapping
that is used for the refinement.

Proposition 30. Let ˛ P t˛F , ˛W u be an update operator and L1 Ď L a
β-fragment. The ˛-left-refinement ˛Clβ violates postulate (U1) in any L1 P

tLHorn ,LKrom ,Laffineu.

Proof. Let ˛ P t˛F , ˛W u. Consider ψ P L1 such that Modpψq “ tHu. This set
is closed under ^, maj3 and ‘3. Let µ P L such that Modpµq “ ttau, tbu, tcuu,
we get Modpψ ˛ µq “ ttau, tbu, tcuu. Thus, Modpψ ˛Clβ µq “ ttau, tbu, tcu,Hu.
Observe that Modpψ ˛Clβ µq Ę Modpµq, hence ˛Clβ violates (U1).

However, some β-mappings behave better, in particular the β-mappings f we
call contracting, which are characterized by the property fpMq ĎM for any set
of interpretations M. Observe that Minβ is such a contracting mapping.

Proposition 31. Let ˛ be an update operator and L1 Ď L be a β-fragment. If ˛
satisfies (U1) and if fβ is a contracting β-mapping, then the ˛-left-refinement,
˛fβ : L1 ˆ LÑ L1, satisfies postulate (U1).

Proof. Since ˛ satisfies (U1), we have ψ˛µ |ù µ. Thus, Modpψ˛µq Ď Modpµq. Be-
sides, fβ is contracting, thus fβpModpψ˛µqq Ď Modpψ˛µq Ď Modpµq. Therefore,
Modpψ ˛fβ µq Ď Modpµq, i.e., ψ ˛fβ µ |ù µ. Hence ˛fβ satisfies (U1).

So interestingly contracting β-mappings allow us to refine rational update
operators in order to obtain update operators defined from L1 ˆ L to L1 that
satisfy the four basic postulates. Observe that this is in sharp contrast with
belief revision. No refinement of a rational revision operator provides a revision
operator defined from L1 ˆ L to L1 that satisfies the first four basic postulates.
Indeed, the second postulate for revision (R2) (if pψ ^ µq is satisfiable then
ψ ˝ µ ” ψ ^ µ) is not compatible with an operator from L1 ˆ L to L1. For
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instance let us consider ψ ” J and µ a satisfiable formula which is not equivalent
to any formula in L1. The formula ψ ^ µ is satisfiable since ψ ^ µ ” µ, whereas
ψ ˝ µ ı ψ ^ µ by assumption on the choice of µ.

Another way to deal with (U1) is to consider a weaker version of this postulate
that would be more appropriate to fragments in this particular case, where new
information does not necessarily belong to the fragment. In full propositional logic
(U1) means that TLpµq Ď TLpψ ˛ µq. In a fragment L1 it would be reasonable
to require only that TL1pµq Ď TL1pψ ˛ µq. Since for any β-fragment L1 and any
formula µ, TL1pµq “ TL1pµ̃q where µ̃ P L1 is such that Modpµ̃q “ ClβpModpµqq,
we propose the following weaker version of (U1):

Let L1 be a β-fragment, ψ P L1, and µ P L.
(Ũ1) ψ ˛ µ |ù µ̃, where µ̃ P L1 is such that Modpµ̃q “ ClβpModpµqq.

Interestingly, with this more adequate formulation the success postulate is
preserved by left-refinements.

Proposition 32. Let ˛ be an update operator and L1 Ď L a β-fragment. If ˛
satisfies pU1q, then each ˛-left-refinement for L1, � : L1 ˆ L Ñ L1, satisfies
postulate pŨ1q.

Proof. Since ˛ satisfies (U1), we have ψ ˛ µ |ù µ. Thus, Modpψ ˛ µq Ď Modpµq.
According to Definition 9, for any β-mapping fβ we have fβpModpψ ˛ µqq Ď
ClβpModpψ ˛µqq, and since Clβ is monotone ClβpModpψ ˛µqq Ď ClβpModpµqq,

thus proving that (Ũ1) holds.

The status of postulate (U6) seems to be unchanged in this generalized frame-
work compared to the original one.

Proposition 33. Let ˛ be an update operator and L1 Ď L be a β-fragment. If ˛
satisfies (U6), then the ˛-left-refinement, ˛Clβ : L1 ˆ L Ñ L1, satisfies postulate
(U6).

Proof. The proof is similar to the one used in Proposition 26, since µ P L1 is not
used.

In the previous section, the seventh postulate (U7) was not applicable since
the considered fragments are not closed under disjunction, however for ˛-left-
refinements, there is no constraint on new information µ anymore and this pos-
tulate makes sense. We get a negative result for this postulate.

Proposition 34. Let ˛ P t˛F , ˛W u. The ˛-left-refinement ˛Minβ violates postu-
late (U7) in LHorn .

Proof. Let ψ be a formula in LHorn such that Modpψq “ ttb, c, duu and let µ1

and µ2 be two formulas in L such that Modpµ1q “ tta, b, cu, tcuu and Modpµ2q “

tta, b, cu, tduu. Observe that Modpµ1qYModpµ2q is not closed under ^ and thus
µ1_µ2 is not equivalent to any formula in LHorn . Consider the following order:
tcu ă ta, b, cu ă tdu. We get Modpψ ˛µ1q “ tta, b, cu, tcuu, which is closed under
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^, thus Modpψ ˛Min^ µ1q “ tta, b, cu, tcuu. Moreover we have Modpψ ˛ µ2q “

tta, b, cu, tduu which is not closed under ^, this leads to Modpψ ˛Min^ µ2q “

tta, b, cuu. Therefore Modpψ ˛Min^ µ1q XModpψ ˛Min^ µ2q “ tta, b, cuu. Besides,
we get Modpψ ˛ pµ1 _ µ2qq “ tta, b, cu, tcu, tduu, which is not closed under ^
thus Modpψ ˛Min^ pµ1_µ2qq “ ttcuu. Consequently we have Modpψ ˛Min^ µ1qX

Modpψ˛Min^µ2q Ę Modpψ˛Min^ pµ1_µ2qq. Hence, ˛Minβ violates (U7) in LHorn .

To conclude this section let us recall that Herzig’s update operators ˛HZ
(and in particular, Hegner’s operator ˛H) are well-suited for update in any char-
acterizable fragment when both the formula representing the agent’s beliefs and
the formula reflecting new information are in the fragment (see Proposition12).
However, this is not the case anymore when new information is not required to
be in the fragment, as illustrated in the following example.

Example 35. Let two formulas ψ and µ such that ψ “  a^ b^c and µ “ a_b.
We have Modpψq “ ttcuu, Modpµq “ ttau, tbu, ta, bu, ta, cu, tb, cu, ta, b, cuu and
Varpµq “ ta, bu. Clearly, ψ is in LHorn but µ is not equivalent to any Horn for-
mula. Assume deppµq “ ta, bu, we get Modpψ ˛HZ µq “ tta, cu, tb, cu, ta, b, cuu,
which is not closed under intersection. Therefore, within this more general frame-
work (˛-left-refinement), Herzig’s update operators ˛HZ (and in particular, Heg-
ner’s operator ˛H) would deserve to be refined.

5 Conclusion

We have investigated to which extent well-established model-based belief change
operators can be refined to work within propositional fragments. We have first
defined desired properties any refined belief change operator should satisfy and
provided a characterization of all such refined operators. Then, we focused on
the belief update operation, which has been neglected so far. We showed that
any refinement of an update operator preserves the basic KM update postulates
pU1q´pU4q for any fragment. We then focused on Forbus’ and Winslett’s update
operators, within Horn, Krom and affine fragments.

We showed that all the proposed refinements violate the fifth postulate pU5q.
This result is very interesting since it highlights a difference between revision
and update. An interesting issue is whether this postulate is indeed violated by
any refined update operator. Regarding the sixth postulate pU6q the situation
is less clear since the refinement by the closure preserves this postulate, while
the other studied refinements do not. It would be interesting to characterize the
refined operators that preserve it. We also showed that none of the refinements
of Forbus’ and Winslett’s operators satisfies the ninth postulate pU9q.

We also studied a natural extension, when only the formula representing the
agent’s beliefs is in the fragment, and not necessarily new information, that is
operators from L1 ˆ L to L1. Our approach can handle this extension. Using
β-mappings that are contracting allows us to define refined update operators,
which—contrary to revision—satisfy the first four basic postulates.
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There are several interesting issues for future work. The first one concerns the
postulates. The KM postulates that apply in propositional fragments are not all
satisfied by refined operators, namely pU5q, pU6q and pU9q. An interesting issue
is how to weaken them in such a way that some refinements, notably the closure
refinement, satisfy them. Other KM postulates are not expressible in fragments,
namely pU7q and pU8q. For them, an additional difficulty is to modify them so
that they apply in fragments, regardless of refinement operators. A challenging
task would be to find an appropriate formulation of these postulates that leads
to a representation theorem for update in fragments, as it has been already done
for revision [13] and merging [21] within the Horn fragment.

Besides, we plan to continue our study in exploring other belief change op-
erations. We started to investigate refinements of belief contraction operators in
propositional fragments [5]. We want to proceed with erasure, which is to belief
update what contraction is to belief revision. Another candidate is belief forget
that is also defined by means of update operators.

Finally, an ambitious issue is the study of the computational complexity of
the refined update operators.
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Appendix

Proposition 23. Let ˛ P t˛F , ˛W u. The refined update operators ˛Clβ , ˛Minβ and
˛
Proxβ violate postulate (U5) in any L1 P tLHorn ,LKrom ,Laffineu.

Proof. We give first the proof for the refinement by Clβ . For LHorn and LKrom ,
consider ψ, µ, φ in LHorn (resp. LKrom) such that Modpψq “ tta, b, cuu, Modpµq “
ttau, tbu, tcu,Hu and Modpφq “ ttcu,Hu. Such formulas exists since these sets of mod-
els are closed under ^ and maj3. For ˛ P t˛F , ˛W u, we have Modpψ˛µq “ ttau, tbu, tcuu
which is not closed under ^ nor under maj3. We get Modpψ˛Clβ µq “ ttau, tbu, tcu,Huu
and Modppψ ˛Clβ µq ^ φq “ ttcu,Huu. Besides, Modpψ ˛Clβ pµ^ φqq “ ttcuu, therefore
Modppψ ˛Clβ µq ^ φq ­|ù Modpψ ˛Clβ pµ^ φqq. Hence, ˛Clβ violates (U5) in LHorn and
LKrom .

For L1 “ Laffine , consider ψ, µ, φ in Laffine

such that Modpψq “ ttau, ta, b, cuu, Modpµq “

tH, ta, bu, ta, cu, ta, du, ta, eu, tb, cu, tb, du, tb, eu, tc, du, tc, eu, td, eu, ta, b, c, du, ta, b, c, eu,
ta, b, d, eu, ta, c, d, eu, tb, c, d, euu and Modpφq “ ttd, eu,Hu. Note that ψ, φ P Laffine

since the corresponding sets of models are closed under ‘3 and the set of mod-
els of µ is the set of solutions of the equation a ‘ b ‘ c ‘ d ‘ e “ 0. We have
Modpψ ˛ µq “ tH, ta, bu, ta, cu, ta, du, ta, eu, tb, cu, ta, b, c, du, ta, b, c, euu. The closure
of this set under ‘3 is exactly Modpµq. Hence, Modpψ ˛Clβ µq “ Modpµq. We now use
φ P Laffine with Modpφq “ ttd, eu,Hu. We obtain Modppψ ˛Clβ µq ^ φq “ tH, td, euu.

But, Modpψ ˛Clβ pµ^ φqq “ tHu. Thus, pψ ˛Clβ µq ^ φ ­|ù ψ ˛Clβ pµ^ φq, hence ˛
Clβ
F

and ˛
Clβ
W violate postulate (U5) in Laffine .

Let us now turn to the refinement by Minβ . We give first the proof for LHorn and
LKrom . Let ˛ P t˛F , ˛W u. Let ψ, µ and φ in LHorn (resp. LKromq such that Modpψq “
tta, b, c, d, e, fu, tb, c, d, e, fuu, Modpµq “ tH, tcu, ta, bu, tc, du, te, fu, ta, b, cuu and
Modpφq “ tta, bu, tc, du, te, fu,Hu. Observe that since these sets of models are
closed under ^ (resp. under maj3) such formulas exist. Consider the following or-
der ta, bu ă tc, du ă te, fu ă ta, b, cu. On the one hand we obtain Modpψ ˛ µq “
ttc, du, te, fu, ta, b, cuu, and thus Modpψ ˛Minβ µq “ ttc, duu. Therefore, Modppψ ˛Minβ

µq ^ φq “ ttc, duu. On the other hand, Modpψ ˛ pµ^ φqq “ tta, bu, tc, du, te, fuu, thus
Modpψ ˛Minβ pµ ^ φqq “ tta, buu. It is then clear pψ ˛Minβ µq ^ φ ­|ù ψ ˛Minβ pµ ^ φq,

hence ˛
Minβ
F and ˛

Minβ
W violate postulate (U5) in LHorn and LKrom .

For L1 “ Laffine , we can consider the formulas ψ, µ in Laffine with the same set of
models as in the case of the refinement by Clβ and let φ P Laffine such that Modpφq “
ttb, cu, tb, du, tb, eu, tb, c, d, euu. Note that φ P Laffine exists since the corresponding
set of models is closed under ‘3. Let us suppose that tb, du and tb, cu are the two
smallest interpretations with respect to ď with tb, du ă tb, cu. We have on the one
hand Modpψ ˛ µq “ tH, ta, bu, ta, cu, ta, du, ta, eu, tb, cu, ta, b, c, du, ta, b, c, euu which is
not closed under ‘3 and so Modpψ ˛Minβ µq “ ttb, cuu. Hence, Modppψ ˛Minβ µq^φq “
ttb, cuu. On the other hand, we have Modpψ ˛ pµ ^ φqq “ ttb, cu, tb, du, tb, euu, which
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is not closed under ‘3, and thus Modpψ ˛Minβ pµ ^ φqq “ ttb, duu. It is obvious that

pψ ˛Minβ µq ^ φ ­|ù ψ ˛Minβ pµ^ φq. Therefore, ˛
Minβ
F and ˛

Minβ
W violate postulate (U5)

in Laffine .

We now consider the refinement by Proxβ . We give first the proof for LHorn

and LKrom . Let ψ, µ and φ in LHorn (resp. LKrom) such that Modpψq “ tta, b, cuu,
Modpµq “ ttau, tbu, tcu,Hu and Modpφq “ ttcu,Hu. For ˛ P t˛F , ˛W u, we
have Modpψ ˛ µq “ ttau, tbu, tcuu, which is not closed under ^ (resp. maj3).
Since FppModpψ ˛ µqq consists in a single set ttau, tbu, tcu,Hu, which is
equal to ClβpModpψ ˛ µqq, we have Modpψ ˛Proxβ µq “ ttau, tbu, tcu,Hu and
Modppψ ˛Proxβ µq ^ φq “ ttcu,Hu. On the other hand, Modpψ ˛ pµ ^ φqq “ ttcuu,
which is closed under ^ (resp. maj3). Therefore Modpψ ˛Proxβ pµ ^ φqq “ ttcuu. It is

then clear pψ ˛Proxβ µq ^ φ ­|ù ψ ˛Proxβ pµ^ φq, thus proving that ˛
Proxβ
F and ˛

Proxβ
W

violate postulate (U5) in LHorn and LKrom .

For L1 “ Laffine consider ψ, µ and φ in Laffine such that Modpψq “

tta, b, cuu, Modpµq “ tH, ta, bu, tc, du, tc, eu, td, eu, ta, b, c, du, ta, b, c, eu, ta, b, d, euu
and Modpφq “ ttc, du, tc, eu, ta, bu, ta, b, d, euu. Note that such formulas exists in
Laffine since the corresponding sets of models are closed under ‘3. For ˛ P t˛F , ˛W u,
we have Modpψ ˛ µq “ tta, bu, ta, b, c, du, ta, b, c, euu which is not closed under
‘3. On the one hand Modpψ ˛Prox‘ µq “ Clβptta, bu, ta, b, c, du, ta, b, c, euuq “
tta, bu, ta, b, c, du, ta, b, c, eu, ta, b, d, euu, because ClβpModpψ ˛µqq is at distance 1 from
Modpψ ˛ µq and hence in FppModpψ ˛ µqq. Therefore Modppψ ˛Prox‘ µq ^ φq “
tta, bu, ta, b, d, euu. On the other hand we have Modpψ ˛ pµ ^ φqq “ tta, buu. This
set of models is closed under ‘3. Thus, Modpψ ˛Prox‘ pµ ^ φqq “ tta, buu. Therefore,

pψ ˛Prox‘ µq^φ ­|ù ψ ˛Prox‘ pµ^φq. Hence, ˛
Proxβ
F and ˛

Proxβ
W violate postulate (U5)

in Laffine .

Proposition 25. Let ˛ P t˛F , ˛W u and L1 P tLHorn ,LKrom ,Laffineu. Then any refined
operator � P r˛,L1s violates postulate (U9) in L1.

Proof. First, let us treat the case L1 “ LHorn . Consider � “ ˛
f where f is a

^-mapping. Let ψ and µ in LHorn such Modpψq “ tta, b, c, duu and Modpµq “
tta, bu, ta, cu, tau, ta, b, eu, ta, b, c, euu.

We obtain M “ Modpψ ˛ µq “ tta, bu, ta, cu, ta, b, c, euu. Consider the possibilities
for Modpψ�µq “ fpMq. Recall that fpMq Ď Cl^pMq “ tta, bu, ta, cu, ta, b, c, eu, tauu.
We consider two cases:
First assume that tau P fpMq. Let φ be such that Modpφq “ ttau, ta, b, euu “ N .
Clearly, such a φ exists in LHorn . Also note that Modpφq Ď Modpµq. We get Modpψ�pµ^
φqq “ Modpψ�φq “ fpModpψ ˛ φqq “ fpttau, ta, b, euuq “ N (N is closed under ^,
fpN q “ N holds by definition of refined operators), but Modppψ�µq ^ φq “ fpMq X

Modpφq “ ttauu.
Otherwise tau R fpMq. Since fpMq ‰ H and fpMq is closed under ^, by symmetry of
the role played by the variables b and c, it is sufficient to examine three possibilities for
fpMq: either fpMq “ tta, buu or fpMq “ tta, b, c, euu or fpMq “ tta, bu, ta, b, c, euu.

– If fpMq “ tta, buu or fpMq “ tta, b, c, euu, let us consider the formula φ such
that Modpφq “ tta, bu, ta, b, c, euu. Clearly, such a φ exists in LHorn . We ob-
tain Modpψ�pµ ^ φqq “ tta, bu, ta, b, c, euu, whereas Modppψ�µq ^ φq “ fpMq X

Modpφq “ fpMq.
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– If fpMq “ tta, bu, tta, b, c, euu. Consider φ in LHorn such that Modpφq “

tta, cu, ta, b, c, euu. Observe that Modpψ�pµ ^ φqq “ tta, cu, ta, b, c, euu, but
Modppψ�µq ^ φq “ fpMq XModpφq “ tta, b, c, euu.

Therefore, in any case Modppψ�µq ^ φq ‰ H and Modpψ�pµ ^ φqq Ę

Modppψ�µq ^ φq, thus proving that pψ�µq ^ φ is satisfiable, whereas
ψ�pµ^ φq ­|ù pψ�µq ^ φ in LHorn .

For L1 “ LKrom , the formulas ψ, µ P LKrom with Modpψq “ tta, b, c, d, euu,
Modpµq “ tta, b, cu, tb, c, du, tb, c, eu, tb, cu, ta, buu can be employed. For ˛ P t˛F , ˛W u,
we have M “ Modpψ ˛ µq “ tta, b, cu, tb, c, du, tb, c, euu. Observe that
Clmaj3pMq “ tta, b, cu, tb, c, du, tb, c, eu, tb, cuu. Let us consider the possibilities
for Modpψ�µq “ fpMq. By definition of refined operators, we know that ta, bu R fpMq

since ta, bu R Clmaj3pMq. We consider two cases:

First assume tb, cu P fpMq: Let φ be such that Modpφq “ ttb, cu, ta, buu “ N .
Clearly such a φ exists in LKrom . Besides note that Modpφq Ď Modpµq. We get
Modpψ�pµ ^ φqq “ Modpψ�φq “ fpModpψ ˛ φqq “ ttb, cu, ta, buu “ N , whereas
Modppψ�µq ^ φq “ ttb, cuu.
Otherwise, we have tb, cu R fpMq. Since fpMq ‰ H and fpMq is already closed under
maj3, by symmetry of the role played by the variables a, d and e, it is sufficient to
consider two cases for fpMq : either fpMq “ tta, b, cu, tb, c, duu or fpMq “ tta, b, cuu.

– If fpMq “ tta, b, cu, tb, c, duu, let us consider the formula φ such that Modpφq “
tta, b, cu, tb, c, euu. Clearly, such a φ exists in LKrom . We obtain thus Modpψ�pµ^
φqq “ tta, b, cu, tb, c, euu. Nevertheles, Modppψ�µq ^ φq “ fpMq X Modpφq “
tta, b, cuu.

– If fpMq “ tta, b, cuu. We select φ in LKrom with Modpφq “ tta, b, cu, tb, c, duu.
Then, Modpψ�pµ^ φqq “ tta, b, cu, tb, c, duu, whereas Modppψ�µq ^ φq “ fpMq X

Modpφq “ fpMq “ tta, b, cuu.

It is then clear that in any case Modppψ�µq ^ φq ‰ H and Modpψ�pµ ^ φqq Ę
Modppψ�µq^φq, thus showing eventually that pψ�µq^φ is satisfiable, whereas ψ�pµ^
φq ­|ù pψ�µq ^ φ in LKrom .
For L1 “ Laffine , we use formulas ψ, µ P Laffine with Modpψq “ tta, b, cuu and Modpµq “
tH, ta, bu, tc, du, tc, eu, td, eu, ta, b, c, du, ta, b, c, eu, ta, b, d, euu. Observe that the set of
models of µ is the set of solutions of the following equations system: (a‘b “ 0, c‘d‘e “
0). We have M “ Modpψ ˛ µq “ tta, bu, ta, b, c, du, ta, b, c, euu. For ˛ P t˛F , ˛W u, we
have Cl‘3pMq “ Modpψ ˛Cl‘3 µq “ tta, bu, ta, b, c, du, ta, b, c, eu, ta, b, d, euu. Let us
consider the possibilities for Modpψ�µq “ fpMq. We distiguish two cases.
First, assume ta, b, d, eu P fpMq: let φ be such that Modpφq “ tta, b, d, eu, ta, buu.
Clearly, such a φ exists in Laffine . Also note that Modpφq Ď Modpµq. We obtain on the
one hand Modpψ�pµ^ φqq “ Modpψ�φq “ fpModpψ ˛ φqq “ tta, buu and on the other
hand Modppψ�µq ^ φq contains tta, b, d, euu. Otherwise, we have ta, b, d, eu R fpMq.

Since fpMq ‰ H and fpMq is closed under ‘3, by symmetry of the role played
by the variables d and e, it is sufficient to distinguish four cases for fpMq: either
fpMq “ tta, buu or fpMq “ tta, b, c, euu or fpMq “ tta, bu, ta, b, c, euu or fpMq “

tta, b, c, du, ta, b, c, euu:

– If fpMq “ tta, buu or fpMq “ tta, b, c, euu, we consider the formula φ such
that Modpφq “ tta, bu, ta, b, c, euu. Clearly, such a φ exists in Laffine . We ob-
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tain Modpψ�pµ ^ φqq “ tta, bu, ta, b, c, euu, whereas Modppψ�µq ^ φq “ fpMq X

Modpφq “ fpMq.
– If fpMq “ tta, bu, ta, b, c, euu. In this case, let consider φ in Laffine such

that Modpφq “ tta, bu, ta, b, c, duuu. Observe that while Modpψ�pµ ^ φqq “
tta, bu, ta, b, c, duu, Modppψ�µq ^ φq “ fpMq XModpφq “ tta, buu.

– If fpMq “ tta, b, c, du, ta, b, c, euu, we use φ P Laffine with Modpφq “

tta, bu, ta, b, c, duu. While Modpψ�pµ ^ φqq “ tta, bu, ta, b, c, duu, we get
Modppψ�µq ^ φq “ fpMq XModpφq “ tta, b, c, duu.

Obviously, Modppψ�µq^φq ‰ H and Modpψ�pµ^φqq Ę Modppψ�µq^φq in all cases,
thus proving that pψ�µq ^ φ is satisfiable, whereass ψ�pµ^ φq ­|ù pψ�µq ^ φ in Laffine .

Proposition 27. Let ˛ P t˛F , ˛W u. The refined operator ˛Minβ violates postulate (U6)
in any L1 P tLHorn ,LKrom ,Laffineu.

Proof. Let ˛ P t˛F , ˛W u. We give first the proof for LHorn . Let ψ, µ1, µ2 P LHorn with
Modpψq “ ttbu, ta, b, c, duu, Modpµ1q “ ttau, ta, bu, ta, cu, ta, b, c, euu and Modpµ2q “

tta, bu, ta, b, c, euu. Suppose that ta, bu ă ta, cu ă ta, b, c, eu. On the one hand, we
have Modpψ ˛ µ1q “ tta, bu, ta, cu, ta, b, c, euu which is not closed under ^. Thus,
Modpψ ˛Min^ µ1q “ Min^ptta, bu, ta, cu, ta, b, c, euuq “ tta, buu Ď Modpµ2q. On the
other hand, we have Modpψ ˛ µ2q “ tta, bu, ta, b, c, euu, a set of models closed under
^. Therefore, Modpψ ˛Min^ µ2q “ tta, bu, ta, b, c, euu Ď Modpµ1q. But, ψ ˛Min^ µ1 ı

ψ ˛Min^ µ2, hence ˛Minβ violates (U6) in LHorn .
For L1 “ LKrom , we use ψ, µ1, µ2 P LKrom with Modpψq “ tta, b, cu, ta, buu, Modpµ1q “

ttau, tbu, tcu,Hu and Modpµ2q “ ttau, tcuu and we suppose that tau ă tbu ă tcu. We
have on the one hand Modpψ ˛ µ1q “ ttau, tbu, tcuu, this set is not closed maj3. Con-
sequently, Modpψ ˛Minmaj3 µ1q “ Minmaj3pttau, tbu, tcuuq “ ttauu Ď Modpµ2q. On the
other hand, Modpψ˛µ2q “ ttau, tcuu is closed under maj3. Hence, Modpψ˛Minmaj3 µ2q “

ttau, tcuu Ď Modpµ1q. Let us notice that Modpψ ˛Minmaj3 µ1q ‰ Modpψ ˛Minmaj3 µ2q,
hence ˛Minβ violates (U6) in LKrom .

Finally, for L1 “ Laffine , the formulas ψ, µ1 and µ2 P

Laffine with Modpψq “ tta, b, c, d, eu, ta, b, cuu, Modpµ1q “

tH, ta, bu, tc, du, te, fu, ta, b, c, du, ta, b, e, fu, tc, d, e, fu, ta, b, c, d, e, fuu and
Modpµ2q “ tta, bu, tc, du, ta, b, e, fu, tc, d, e, fuu can be used to show the asser-
tion. Indeed, the set of models of µ is the set of solutions of the following
equation system: (a ‘ b “ 0, c ‘ d “ 0, e ‘ f “ 0). Let us suppose that ta, bu
is the smallest interpretation with respect to ď. On the one hand, we have
Modpψ ˛ µ1q “ tta, bu, ta, b, c, du, ta, b, c, d, e, fuu, a set not closed under ‘3.
We obtain thus Modpψ ˛min‘3 µ1q “ tta, buu Ď Modpµ2q. On the other hand,
Modpψ ˛ µ2q “ tta, bu, tc, du, ta, b, e, fu, tc, d, e, fuu which is already closed under
‘3. Therefore, Modpψ ˛

min‘3 µ2q “ tta, bu, tc, du, ta, b, e, fu, tc, d, e, fuu. Hence,
Modpψ ˛min‘3 µ2q Ď Modpµ1q. Nevertheless, Modpψ ˛min‘3 µ1q ‰ Modpψ ˛min‘3 µ2q,
hence ˛Minβ violates (U6) in Laffine .

Proposition 28. Let ˛ P t˛F , ˛W u. The refined operator ˛Proxβ violates postulate
(U6) in LHorn .

Proof. Consider ψ and µ1 two formulas in LHorn such that Modpψq “ tta, b, c, duu
and Modpµ1q “ tta, bu, ta, cu, tau, ta, b, eu, ta, b, c, euu. Note that these sets of mod-
els are closed under ^. We get Modpψ ˛ µ1q “ tta, bu, ta, cu, ta, b, c, euu, which is
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not closed by intersection. Observe that ClβpModpψ ˛ µ1qq is at distance 1 from
Modpψ ˛ µ1q, and hence Cl^pModpψ ˛ µ1qq P FppModpψ ˛ µ1qq. Thus, Modpψ ˛Prox^

µ1q “ Cl^ptta, bu, ta, cu, ta, b, c, euuq “ tta, bu, ta, cu, ta, b, c, eu, tauu. Let µ2 be a for-
mula in LHorn such that Modpµ2q “ tta, bu, ta, cu, ta, b, c, eu, tau, tb, cu, tbu, tcu,Hu,
we observe that Modpψ ˛

Prox^ µ1q Ď Modpµ2q. Besides, Modpψ ˛ µ2q “

tta, bu, ta, cu, ta, b, c, eu, tb, cuu is not closed by intersection. We have FppModpψ˛µ2qq “

ttta, bu, ta, b, c, euu, tta, bu, ta, cu, ta, b, c, eu, tauu, tta, bu, tb, cu, ta, b, c, eu, tbuu, tta, cu, t
b, cu, ta, b, c, eu, tcuuu, it does not contain ClβpModpψ ˛ µ2qq.

Consider the following order on models of µ2:

ta, bu ă ta, b, c, eu ă tau ă ta, cu ă tb, cu ă tbu ă tcu.

It induces the following lexicographical order on the sets of models of FppModpψ˛µ2qq:
tta, bu, ta, b, c, euu ă tta, bu, ta, b, c, eu, tau, ta, cuu ă tta, bu, ta, b, c, eu, tb, cu, tbuu ă
tta, b, c, eu, ta, cuu ă tta, cu, tb, cu, ta, b, c, eu, tcuu. Thus, Modpψ ˛

Prox^ µ2q “

tta, bu, ta, b, c, euu Ď Modpµ1q. We observe that Modpψ˛Prox^µ1q ‰ Modpψ˛Prox^µ2q,
thus proving that ˛Proxβ violates (U6) in LHorn .
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