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ABSTRACT Benders, such as bilayers, are well-known shape-changing structures which bend upon activation by a
stimulus, such as temperature. The objective of this contribution is to propose new shape-changing rod-like
structures, referred to as twisters, which twist upon activation. A simple biomimetic design principle based
on symmetry considerations is proposed and used to derive a mechanical model. The kinematics of the
response of the twister to the simulus is inspired from FEM simulations, and slightly simplified to allow
for an analytical resolution of the governing equations. Proposed twisters are shown to first stretch as the
stimulus increases until a bifurcation is reached, then, they undergo a mixed stretching–twisting regime.
An accurate approximation of the bifurcation point is derived and serves as a guideline for the design of
twisters in accordance with chosen specifications. Results are illustrated using twisters with three different
behaviours. The methodology can be straightfowardly extended to more complex kinematics and other
constitutive laws.

Introduction Nature has a long experience in designing mechanical systems, offering a great
source of inspiration for human-made constructions. Of particular interest in this work is the phe-
nomena of shape change in response to an externally changing stimulus, typically humidity, present
in a variety of natural systems [6]. The underlying design principle consists in the structure-function
relationship of a system possessing heterogeneous expansion properties distributed throughout
its shape, leading to differential expansion upon a variety of external stimuli (activation). This
differential expansion is responsible for an overall shape change, which is referred to as morphing.

Among the numerous morphers present in Nature, bilayers are probably the simplest. For
example, pinecones open and close depending on air moisture to release their seeds at a time
favorable for their germination [5]. Metallic bilayers [11] are a well-known engineering system
based on this design principle: they display bending upon activation by change of temperature
(benders). Intrigued by twisting motions of some natural morphers such as the twist-like opening of
seed pods [2] and the coiling actuation of the stork’s bill awn [1], here we investigate an anologous
design principle to benders leading to twisting motions activated by an external stimulus. Systems
exhibiting such behaviours are referred to as twisters; they are to twisting what benders are to
bending.

In a previous paper [12], the design of biphasic extrudable morphers following Curie’s princi-
ple regarding symmetry conservation was explored using the finite-element method and revealed
twisting structures. Here, a particular rotationally symmetric material architecture is more thorougly
investigated. The proposed twisters derive from qualitative observations of twisting structures simu-
lated using the finite element method (section 1). These observations lead to a simple kinematical
description which is used to propose an analytical model of twisters based on differential theory and
elastic rod theory (section 2). Using the analytical methods derived in section 3, the mechanical
model is shown to capture the stretching–twisting behavior of these twisters (section 4). Several
illustrations are provided together with a sensitivity analysis based on approximate equations.

1. Description of twisters and qualitative analysis with FEM We focus on
translationally invariant rod-like structures (cylinders) made of two different linear elastic materials
subjected to differential eigenstrains. Eigenstrains do not generate any stresses per se, but they may
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lead to elastic strains because of geometric compatibility, indirectly causing elastic stresses [7]. The
eigenstrains are assumed to have a linear dependency w.r.t. an externally applied stimulus, which is
chosen to be constant throughout the structure.

The cross-sections are made out of a regular n-sided polygon (the core) with wings of the same
shape but smaller size, placed on each side as depicted in fig. 1. The core has a low expansion
coefficient (αc) while the wings have a high expansion coefficient (αw), thus leading to differential
expansion. The circumradii of the n-sided polygons are denoted by Rc for the core and Rw for each
wing. Such structures are referred to as n-twisters.
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Figure 1: Rotationally symmetric concave cross-sections of twisters made out of regular n-sided polygons
(n = 3, 4, 6). (light gray) core with a low expansion coefficient, (dark gray) wings with a high expansion
coefficient.

The rationale behind such shapes is Curie’s symmetry conservation principle: “effects have at
least the symmetry of their causes” [4]. In 2D, all orthogonal symmetries can be generated from
mirror and rotational symmetries. Bending conserves mirror symmetry (bending plane) and benders
typically possess a mirror plane. Similarly, twisting conserves rotational symmetry (rotational axis),
hence the idea to look at potentially twisting structures already possessing rotational symmetry.
Additionally, being translationally invariant, such structures possess the benefit of being extrudable
and so are easy to process on an industrial scale.

The finite elements method was used in Abaqus® to observe the behaviour of twisters under the
action of a thermal stimulus (see fig. 2 left), under free–free boundary conditions [12]. Considering
large transformations (option NLgeom), the linearly elastic structure was statically loaded by a
thermal scalar field, generating differential expansion. The adaptive mesh was composed of about
ten thousand linear 8-node brick elements (C3D8). As the stimulus S increased, the differential
expansion between the wings and the core grew. Interestingly, the morphing featured a twisting
instability. For small values of S, the twister only stretched; but when S became larger than a critical
value Scrit, its morphing became a combination of stretching and twisting (S > Scrit).

The following section is dedicated to the derivation of an analytical model for the above-described
twisters, whose kinematics is inspired by the qualitative observation of the FEM simulations.

The chosen kinematic to describe the twisters deformation are derived in the framework of large
strains and large displacements. Even though the methodology can be straightforwardly applied to
other constitutive laws, it is however assumed that the materials of both core and wings are linear
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Figure 2: Kinematical scenario based on FEM observations of the stretching-twisting instability of twisters
as a function of S. (Left) Morphing stages of a 4-twister using FEM. (Right) Center lines of the core (light)
and one wing (dark) in the two stages of the kinematical scenario. In the second stage (S > Scrit), the wings
helically wind around the core.

elastic and undergo small strains, hence their constitutive law is given by a simple Hooke’s law. The
chosen kinematical scenario (see fig. 2 right) is such that:

• the core is allowed to undergo stretching and torsion, but no bending;

• the wings are constrained to wind around the core in a helical manner1 and can thus undergo
stretching as well as a combination of bending and torsion.

The center line of the wings thus follows a helix of constant radius r and constant pitch 2πp which
winds around the twisted (but straight) center line of the core. The assumption that the distance
between the centroids of the core and wings r is constant derives from the fact that we only impose
longitudinal expansions and neglect dimensional changes in the plane of the cross-section (e.g. due
to Poisson effect), as well as warping effects. More questionable is the assumption of constant
pitch: in the bottom simulation of fig. 2, the twister exhibits not only i) a varying twist, but also ii)
a change of sign of the twist. Noting that ii) is due to the mirror symmetry of the simulation with
free–free boundary conditions, we here consider only a half-twister or, equivalently, a free–fixed
twister. Regarding i), simplicity is favoured over accuracy: all the following methodology can be
adapted to include a varying twist, but it would add unnecessary complications to the equations.

The elastic energy of one rod of length L with imposed longitudinal eigenstrain (ε∗) undergoing
a combination of stretching (ε), single bending (κ) and torsion (τ ) is given by:

ES(ε, κ, τ) = L

2

(
EA(ε− ε∗)2

stretching

+EIκ2

bending

+µJτ 2

torsion

)
(2.1)

where E and µ are the tensile and shear moduli of its material and A, I , J the area, second moment
1 Chirality of twisters is absent from our analytical description, hence negative and positive τ are equivalent (handiness of

helices). In practice, the twister twists in the direction determined by its initial chirality and thus “selects” one branch in
the (ε,τ ) space.
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Nomenclature
Dimensionless parameters
A0 Area coefficient
I0 Inertia coefficient
J0 Torsion coefficient
E Stiffness ratio
ε, τ Dimensionless strain and torsion of core
ES Dimensionless energy
κw, τw Dimensionless curvature, torsion of wing
R Size ratio
Rc Dimensionless core circumradius
Rw Dimensionless core circumradius
Geometric parameters
2πp Pitch of the helix
Ac, Aw Cross-sectional area of core, wing
εc, εw Longitudinal strain of core, wing
ε∗c , ε∗w Imposed eigenstrain on core, wing
Ic, Iw Second moment of area of core, wing
Jc, Jw Torsion constant of core, wing

κc, κw Curvature of core, wing
Lc, Lw Length of core, wing
n Number of wings
Rc, Rw Circumradius of core, wing
τc, τw Torsion of core, wing
L0 Length of twister at rest
r Distance between centroids of core and

wings
Material parameters
αc, αw Expansion coefficient of core, wing
∆α The differential expansion coefficient
Ec, Ew Young modulus of core, wing
νc, νw Poisson coefficient of core, wing
Other parameters
ES Total elastic energy
Ecore Elastic energy of the core
εcrit Strain of core at instability
Ewing Elastic energy of one wing
Scrit External stimulus at instability
S External stimulus

of area and torsion constant2 of its cross-section. The action of the stimulus is described as an
“eigenstretching” of the core and the wings via the imposed eigenstrain ε∗, controlled by the external
stimulus S via ε∗• = α•S where α• is the susceptibility to the external stimulus S (• ∈ {c,w}). For
example, the external stimulus can be a variation of temperature S = ∆T and α would then be the
coefficient of thermal expansion. According to our kinematical scenario, the energy of the core Ecore
is a function of its stretching εc and its torsion τc, and the energy of each wing Ewing is a function of
its stretching εw, its curvature bending κw and its torsion τw. Because of the kinematical assumptions,
the quantities εc, τc, εw, κw and τw are constant along the twister’s main axis. Considering isotropic
materials (µ• = E•/2(1 + ν•)), we have:

Ecore(εc, τc) = LcEc

2

(
Ac(εc − ε∗c)2 + Jc

2(1 + νc)
τ 2

c

)
, (2.2)

and
Ewing(εw, κw, τw) = LwEEw

2

(
Aw(εw − ε∗w)2 + Iwκ

2
w + Jw

2(1 + νw)τ
2
w

)
, (2.3)

where Lc and Lw denote the length of the center line of the core and wing respectively. The total
energy ES = Ecore + nEwing together with the proposed kinematics embed enough “information” to
achieve the targeted twisting upon activation above a stimulus threshold Scrit. To support this claim,
ES is now going to be derived in the case of the previously introduced polygonial geometries.

The chosen kinematics can first be used to reduce the number of parameters. Introducing the
dimensionless torsion of the core τ = rτc = rdθ/dz = r/p and given that the arclength variation of
an helix of radius r and pitch p is related to the variation of its azimuthal angle along the transversal

2 The torsion constant should not be confused with the polar moment of inertia, which are only equal for circular shapes.
More details are given in appendix A.4.
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direction θ by ds =
√
r2 + p2 dθ, the length of the core (Lc) and the length of a wing (Lw) are

related by:

Lc =
∫ Lc

0
dz = p

∫ Lc
p

0
dθ = p√

r2 + p2

∫ Lw

0
ds = Lw√

1 + τ 2 . (2.4)

The relation between Lc and Lw therefore only involves τ . In line with the notation τ for the
dimensionless torsion of the core, we introduce the notation ε = εc for the dimensionless stretching
of the core. In the framework of large transformations [3, sec. 2.2], the stretching of the wings (εw)
and the stretching of the core (εc) are defined as:

εw =

(
Lw

L0

)2
− 1

2 and ε = εc =

(
Lc

L0

)2
− 1

2 , (2.5)

where L0 denotes the initial length of the twister. If |L• − L0| � L0, this reduces to ε• =
(L• − L0)/L0. Using eq. (2.4) yields the following relation between εc and εw:

εw =

(
Lw

L0

)2
− 1

2 =
(1 + τ 2)

(
Lc

L0

)2
− 1

2 = ε(1 + τ 2) + 1
2τ

2. (2.6)

Assuming perfect attachment between the wings and the core (as required by the compatibility of
strain before delamination), the material curvature and torsion of the wings can be assimilated to
the geometric curvature and torsion of their center line helix defined by κw = r/(r2 + p2) and
τw = p/(r2 + p2) respectively. In their chosen dimensionless form, the material curvature and
torsion of the wings are:

κw = rκw = τ 2

1 + τ 2 , τw = rτw = τ

1 + τ 2 . (2.7)

Finally, the material curvature of the core is zero (κc = 0, straight line). The proposed helical
morphing scenario is hence such that all geometric variables (lengths, stretchings, curvatures and
torsions) can be expressed as functions of Lc, ε and τ using eq. (2.4), eq. (2.6), eq. (2.7). The
configuration of a n-twister for a given stimulus, which is a priori parametrized by the eight
geometric quantities Lc, Lw, εc, εw, κc, κw, τc and τw, is thus entirely determined by the stretching
and torsion of its core (ε and τ ) – and of course by the initial geometry governed by n, L0, Rc and
Rw as well as the material properties Ec, Ew, νc, νw, αc and αw. This implies that the elastic energy
of the whole twister is a function of ε and τ only. Using the terminology of catastrophe theory [10],
n, L0, Rc and Rw as well as Ec, Ew, νc, νw, αc and αw are control parameters, while ε and τ are
state variables.

The energy of one wing becomes:

Ewing(ε, τ) =
√

1 + τ 2LcEw

2

Aw

(
ε(1 + τ 2) + 1

2τ
2 − ε∗w

)2

+ Iw

(
τ 2

r(1 + τ 2)

)2
+ Jw

2(1 + νw)

(
τ

r(1 + τ 2)

)2
.

(2.8)

Using, for sake of simplicity, the additional assumption that the two materials have the same Poisson
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ratio (νc = νw = ν), the energy of a n-twister consisting of one core and n wings is such that:

ES(ε, τ) =

stretching of the core

EcLc

2 Ac(ε− ε∗c)2 +

torsion of the core

EcLc

4
Jc

r2(1 + ν)τ
2 +

n
EwLc

√
1 + τ 2

2

Aw

(
ε(1 + τ 2) + 1

2τ
2 − ε∗w

)2

stretching of one wing

+ Iw

(
τ 2

r(1 + τ 2)

)2

bending of one wing

+ Jw

2(1 + ν)

(
τ

r(1 + τ 2)

)2

torsion of one wing

.
(2.9)

The area, second moment of area and torsion constant are given by A• = A0R
2
•, I• = I0R

4
•

and J• = J0R
4
•, where A0, I0 and J0 are geometric parameters depending only on the shape

(governed by n). The analytical expressions of A0(n) and I0(n) are derived in appendix A, where
the approximated values of J0 for n ∈ {3, 4, 6} are also given. It is worth noting that with the chosen
kinematics, each wing deforms w.r.t. its neutral axis, not the twister’s, so that each second moment
of area needs to be calculated for an axis passing through the centroid of its polygon, and not the
centroid of the twister. Additionally, second moment of inertia of sections with at least three axes
of symmetry do not depend on the direction of the axis they are calculated with [8]. This holds in
particular for all regular polygons and simplifies the calculation in the present case.

Observing that Lc = L0
√

1 + 2ε (from eq. (2.5)), adding S as an explicit parameter and
introducing the stiffness ratio E = Ec/Ew as well as the dimensionless core and wing circumradii
Rc = Rc/r and Rw = Rw/r, the dimensionless scaled elastic energy (ES = 2 ES/(L0EwR

2
w)) is

finally given by:

ES(ε, τ) =
√

1 + 2ε
E R

2
c

R
2
w

(
A0(ε− αcS)2 + R

2
c

2
J0

(1 + ν)τ
2
)

+

n
√

1 + τ 2
(
A0

(
ε(1 + τ 2) + 1

2τ
2 − αwS

)2
+R

2
w

(
I0

τ 4

(1 + τ 2)2 + J0

2(1 + ν)
τ 2

(1 + τ 2)2

)).
(2.10)

3. Characterisation of the twister’s response The expression of the energy (eq. (2.10))
can be used to compute the response of a twister to a stimulus S by minimising ES with respect to ε
and τ . This could be done numerically, but the optimisation problem can be simplified with the use
of optimality conditions. Necessarily, an equilibrium point (ε, τ) is a stationary point of ES , that is
∇ES = 0 or equivalently: ∂εES(ε, τ) = 0,

∂τES(ε, τ) = 0.
(3.1)

(3.2)

The evolution of a twister starting from its resting position (ε, τ) = (0, 0) for S = 0 is now
considered. Since eq. (3.2) is always satisfied for τ = 0 (because the energy is an even function
of τ ), the response of a twister to the stimulus S is governed3 only by eq. (3.1), as long as no
critical point of ∂τES is reached. Equation (3.1) with τ = 0 constitutes the governing law of the
stretching phase, by providing the strain ε induced by the stimulus. In order to perform a qualitative
analysis, ∂εES(ε, 0) = 0 can be approximated by using a first-order Taylor expansion in ε in the

3 This necessary condition is also a sufficient condition because the energy is locally convex at (ε, τ) = (0, 0) for S = 0
(the determinant of the Hessian matrix of E0(0, 0) is positive), and because it remains convex until (ε, τ) becomes a
critical point of ∂τES .
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neighbourhood of 0 (legitimized by the small strains assumption ε� 1). Expressing ε in terms of S
yields:

ε ≈ αwn+ αcER
2

n+ ER
2 S =

(
αw −

∆α

1 + n/(ER2)

)
S, (3.3)

where R = Rc/Rw = Rc/Rw is the size ratio and ∆α = αw − αc is the differential expansion
coefficient. The strains of core and wings are the same in the stretching phase (εw = εc = ε from
eq. (2.6) with τ = 0) and can be approximated by eq. (3.3). The core is not twisting (τc = 0) and the
wings are thus neither bending nor twisting (τw = κw = 0 from eq. (2.7) with τ = 0). Equation (3.3)
shows that when Ec →∞ or Rc →∞, the behaviour is dominated by the core (ε ∼ αcS), which is
relevant. On the contrary, when n→∞, the behavior follows the stretching of the wings (ε ∼ αwS).
We can also check that the stretching increases with αw, as expected.

Now that the stretching phase has been characterized, the question is whether the proposed
candidate is actually a twister. In other words, is there a value Scrit such that the system starts
twisting when the stimulus reaches Scrit? This boils down to whether ∂τES(ε, 0) reaches a critical
point, i.e.: ∂

2
τ εES(ε, 0) = 0,
∂2
τ τES(ε, 0) = 0,

(3.4)

(3.5)

for some ε. Equation (3.4) is satisfied for all ε and S, because it equals ∂2
ε τES which is the derivative

w.r.t. τ of an even function of τ . The existence of a critical point is thus governed by eq. (3.1)
(stretching phase) and eq. (3.5) (critical point). Though very simple to solve numerically, this reduces
to a system of two independent quadratic equations in ε and S, which does not have closed-form
solutions that can be reasonably apprehended. For the sensitivity analysis to come in section 4,
we linearize eq. (3.1) as previously, leading to eq. (3.3). This expression of ε is then injected into
eq. (3.5) which provides the following expression of the critical stimulus:

Scrit ≈ (n+ ER
2)

√
1 + AB(n+ ER

4)R2
c − 1

A
, (3.6)

withA = 4αwn+(5αc−αw)ER2 = 4αw(n+ER2)−5∆αER2 andB = J0(A0∆αn(1+ν)ER4)−1.
The corresponding εcrit can be easily retrieved using eq. (3.3):

εcrit ≈ (αwn+ αcER
2)

√
1 + AB(n+ ER

4)R2
c − 1

A
. (3.7)

When αw → αc (∆α → 0), B → ∞ and we have Scrit → ∞ as well as εcrit → ∞, meaning that
the critical point is not reachable. This is relevant: there is no differential expansion, hence no
twist. Cases E →∞ or E → 0 (core or wings become infinitely rigid) and n→∞ (axisymmetric
structure) also lead to Scrit → ∞ and εcrit → ∞, as expected. We insist that the approximation
provided by eq. (3.6) does not formally prove the existence of a bifurcation: it is not excluded that
the approximation of Scrit exists for a given set of geometric and material parameters, while the
exact system of equations has no solutions for the same set of parameters, meaning there is no
critical point. The tedious case by case discussion would not bring much: what matters is that for
a very large majority of parameters, i) there is a critical point and ii) it is well approximated by
eq. (3.6) and eq. (3.7). Both i) and ii) will be illustrated in the next section, demonstrating that the
proposed mechanical system is an actual twister.

The post-instability evolution (S > Scrit) remains to be characterised. As for the stretching
phase, the governing equations are eqs. (3.1) and (3.2). However, now τ 6= 0 so the second equation

7



is not always satisfied: both equations are necessary4. Equations (3.1) and (3.2) can easily be solved
numerically; they can also be approximated locally using Tayor expansions, but it is not useful for
the discussion. More interesting is the limit value of τ as the stimulus increases. Solving eq. (3.2)
for S and injecting the result into eq. (3.1) for ε→∞ leads to the asymptotic values of τ :

lim
ε→∞

τ = ±
√
∆α

αc
. (3.8)

This limit shows that as the stimulus increases in the strecthing & twisting regime, the torsion
asymptotically reaches a value which only depends on the expansion coefficients αc and αw. This
provides a very simple way of estimating the maximum twist.

In this section, the governing equations of the stretching and stretching–twisting phases, summa-
rized in table 1, have been given. They are used and illustrated in the following section.

Regime Kinematical Governing Approximated
scenario equation(s) solution

Stretching

εc = εw = ε

τc = τw = 0
∂εES(ε, 0) = 0 ε given in eq. (3.3)

Bifurcation

εc = εw = ε

τc = τw = 0

∂εES(ε, 0) = 0
∂2
ττES(ε, 0) = 0

ε = εcrit given in eq. (3.7)

Streching
& twisting


εc = ε 6= εw (eq. (2.6))

τc = τ

r
6= τw (eq. (2.7))

∂εES(ε, τ) = 0
∂τES(ε, τ) = 0


ε→∞

τ → ±∆α
αc

Table 1: Summary of the equations governing the response of the twister to the stimulus S.

4. Results and discussion The governing equations of the twister in both stretching and
stretching–twisting regimes have been provided and approximated in the previous section. These
expressions are now used to design twisters in accordance with some technical specifications. The
design possibilities are illustrated for four different twisters:

• Twister 0 (T0) is a reference twister with arbitrary parameters;

• Twister 1 (T1) should stretch more than T0 and twist with a smaller amplitude;

• Twister 2 (T2) should stretch less than T0 and twist with a larger amplitude;

• Twister 3 (T3) should stretch more than T0 and twist with a larger amplitude.

The sensitivity of Scrit and εcrit to the parameters values is analysed using eqs. (3.6) and (3.7). The
sign of the variation of Scrit for a small change of the parameters around their reference values (see
table 3, line T0) is reported in table 2. For the chosen reference values the sign of the variation of
εcrit is the same as the sign of variation of Scrit. The relevance of the result of the sensitivity analysis
is detailed for each parameter in the third column.

4 For the stretching phase, there were one equation for two unknowns (τ = 0): solutions are, generically, curves. For the
twisting phase, there are two equations for the three unknows ε, τ and S, so the solutions are also curves: the additional
variable τ is “compensated” by the additional equation ∂τES .
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Increasing
Parameter

Variation of
Scrit and εcrit

Comments on relevance

n ↗ As n increases, the twister gets closer to an axisymmetric
structure, which does not twist.

E ↗ Increasing the stiffness of the core results in a higher resis-
tance to twist.

ν ↘ When the Poisson’s ratio increases, the twisting stiffness
decreases relatively to the stretching stiffness, thus lowering
the resistance to twist.

R ↗ Increasing the relative volume of the core results in a higher
resistance to twist.

∆α = αw − αc ↘ Increasing the differential expansion pushes twisting to acti-
vate sooner.

Table 2: Variations of Scrit and εcrit for small increases of the parameters around their reference values. An
arrow↗ for a parameter indicates that Scrit and εcrit increases when the parameter increases, meaning that
the twister becomes less favorable to twisting.

Table 2 serves as a guideline for the design of T1, T2 and T3 by adjusting the parameters of T0.
T1 should i) twist for large value of εcrit and ii) the post-instability twisting amplitude should be
small. Equation (3.8) shows ii) can only be achieved with a small difference of expansion coefficients
∆α, compared to αc. Specification i) can be enhanced by increasing E, for example. For T2, a
similar reasoning leads to a reduction of R and an increase of ∆α while T3 is set by increasing E as
well as the differential expansion ∆α. The selected values are reported in table 3.

Twister n E ν Rc Rw αc αw

T0 3 3 0 3 2 0.4 0.5
T1 3 4 0 3 2 0.4 0.41
T2 3 3 0 1 1 0.5 1
T3 3 300 0 3 2 0.4 0.8

Table 3: Parameter values of the four twisters.

The critical values of the instability have been computed by solving equations (3.1) and (3.5)
(see table 1) and are compared to the approximate equations provided in section 2. For all cases,
such critical values exist: this means that the proposed model actually describes a twisting instability.
Moreover, the approximations of Scrit and εcrit are very close to the computed values, which validates
eq. (3.6) and eq. (3.7), as well as the approximate description of the stretching phase.

The state evolution of a twister in response to an increasing stimulus results from the simple
numerical resolution of the governing equations (cf. table 1). All numerical results were computed
in Mathematica. Figure 3 depicts the results for each chosen twister. The asymptotes directly follow
from eq. (3.8). For each case, the observed behaviour is consistent with the FEM simulations:
stretching regime, then instability giving birth to a stretching–twisting regime. Branches are
symmetric with respect to τ but negative branches have not been represented. It is worth mentionning
that, contrary to the small strain assumption, the strains around the twisting instability can be
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Twister
“Exact” value Approximation Relative error
Scrit εcrit Scrit εcrit Scrit εcrit

T0 1.61 0.694 1.60 0.689 0.6 % 0.7 %
T1 6.83 2.75 6.84 2.75 0.1 % 0.0 %
T2 0.383 0.285 0.391 0.293 1.9 % 2.9 %
T3 8.72 3.50 8.72 3.50 0.0 % 0.0 %

Table 4: Comparison of the critical values of ε and S causing bifurcations for the four twisters.

relatively high, thus contradicting Hook’s law. However, the same qualitative behavior is expected
with an adapted large deformation behavior law. In the end, the proposed mechanical model, though
simple, proves to exhibit the targeted twisting behaviour.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0
0.

2
0.

4
0.

6
0.

8
1

Stretching ε

Tw
is

tin
g

τ

Figure 3: State evolutions of the twisters of table 3. [ ] T0, [ ] T1, [ ] T2, [ ] T3. Dashed lines:
asymptotes of τ for ε→∞. Negative τ have been omitted.

The critical value Scrit plays the same role as the critical force in buckling theory: exactly
as a beam subjected to an increasing normal force buckles in one direction when the force is
sufficiently high, twisters subjected to an increasing stimulus twists in on direction (±τ ) when the
stimulus is sufficiently high. Animations of the four twisters are provided as supplementary material.
Illustrations of the centroids of the core and one wing are provided in fig. 4 for the three twisters T1,
T2 and T3.

Conclusion Inspired by Nature and based on symmetry considerations, a particular class of
structures called twisters was proposed featuring open rotational symmetric cross-sections made
out of regular polygons, where active wings are arranged around a passive core. A twister reacts
to an external stimulus, such as a uniform temperature field, by differential expansion leading to
a combination of stretching and twisting. A kinematical scenario based on FEM simulations was
derived and used to construct a mechanical model with two state variables (the stretching strain and
the twist). Governing equations were provided and it was shown that the evolution of the response to
the stimulus featured a twisting instability: above a critical value of the stimulus Scrit, the twister’s
morphing behavior changes from a pure stretching regime to a stretching & twisting regime. An
approximation of Scrit was derived and set the base for a simple sensitivity analysis. The latter was
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(a) T1: long stretching phase, small
twisting amplitude.

(b) T2: small stretching phase, large
twisting amplitude.

(c) T3: long stretching phase, large
twisting amplitude.

Figure 4: Centroids of the core (light gray) and of one wing (red) for different levels of stimulus S. Each
row corresponds to the same stimulus and all images share the same scale. Corresponding animations are
available online.

used to choose the value of twisters parameters in accordance with some arbitrary specifications.
Numerical simulations validated the design principle of the twister and the approximated value of
Scrit was shown to be very accurate. In the end, we now have a new simple structure, capable of
responding to a uniform stimulus by stretching and twisting. The assumptions of constant twist and
linear elastic materials were useful to derive understandable formulas and check their relevance.
However, the presented methodology can be easily extended to more general kinematic scenarii or
other constitutive laws.

By combining benders and twisters, it is theoretically possible to build rod-like morphers
morphing into any curve in space as a stimulus increases. This new marterial architecture thus
enriches the existing design space of passive actuators. The main remaining challenge now lies in
the choice of appropriate material.

Author contributions statement S.T. conceived the study, formulated the mechanical
model and contributed to about half of the manuscript. A.T. solved the mechanical model and
contributed to about half of the manuscript. J.D, Y.B. and P.F. helped to concieve the study.
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A. Geometric relationships

O
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B

||

α

C
D

r

Rw

Rc

core wing

Figure 5: Cross-section of a n-twister and related notations.

A.1. Relation between r, Rc and Rw Geometric relationships can be easily derived by
considering triangular slices of n-sided regular polygons, see fig. 5. Using elementary geometry:

r2 = ‖−→OC‖ = ‖−→OA+−→AC‖ = ‖Rc(1, 0)+Rw(cos(α), sin(α))‖ = (Rc+Rw cos(α))2+(Rw sin(α))2,

so, with R = Rc/Rw and since α = 2π/n, we have:

r =
√
R2

c + 2RcRw cos
(2π
n

)
+R2

w = Rw

√
1 + 2R cos

(2π
n

)
+R

2
. (A.1)

A.2. Expression of A0(n) The areas of the core and of one wing are given by Ac = A0(n)R2
c

and Aw = A0(n)R2
w where A0(n) is the area of a n-sided regular polygon of unit circumradius.

Considering the triangle above, it comes directly:

Ac(n) = 1
2n×OA×OB sin(α) = n

2R
2
c sin(α). (A.2)

so finally A0(n) = 1
2n sin(2π/n) (note that A0 → π when n→∞: it’s the area of a unit disk).

A.3. Expression of I0(n) Without loss of generality, the n-sided regular polygon is assumed to
be such that the vertices Ak have coordinates (cos(2πk/n), sin(2πk/n)), for k ∈ {1, . . . , n} and
An+1 = A1. Then, the expression of the second moment of area with respect5 to the y-axis is given
by [8]:

Iy = 1
12

n∑
k=1

(x2
k + xkxk+1 + x2

k+1)(xkyk+1 − xk+1yk).

Using trigonometric identities, this expression simplifies nicely. The right parenthesis becomes:

xkyk+1 − xk+1yk = cos
(2kπ
n

)
sin

(2(k + 1)π
n

)
− cos

(2(k + 1)π
n

)
sin

(2kπ
n

)
= sin

(2π
n

)
,

5 The second moment of area does not depend on the direction of the axis for regular polygonial sections.
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so it does not depend on k and can factorize the sum. Then,
n∑
k=1

x2
k =

n∑
k

x2
k+1 = 1

2

n∑
k=1

(
1 + cos

(4kπ
n

))
= n

2 ,

and using the identity cos(a) cos(a+ b) = (cos(b) + cos(2a+ b))/2 it comes:
n∑
k=1

xkxk+1 =
n∑
k=1

1
2

(
cos

(2π
n

)
+ cos

(4kπ
n

+ 2π
n

))
= 1

2n cos
(2π
n

)
.

Finally,

I0(n) = n

12 sin
(2π
n

)(
1 + 1

2 cos
(2π
n

))
. (A.3)

I0(n)→ 1
4π when n→∞, which corresponds to the second moment of area of a unit disk.

A.4. Expression of J0(n) In general, there is no closed-form expressions of the torsion constant
J0(n). Following Saint-Venant’s solution for uniform twist [3, sec. 3.4], one has to solve a Poisson
equation on the potential χ(x, y) from which the shear strain vector field −εyzex + εxzey with
zero curl derives. By defining a rescaled potential χ = χ

τ
and having solved χ for a particular

cross-section, the torsion constant is given by:

J = 4
∫∫

D
(χ2

,x + χ2
,y) dx dy. (A.4)

A.5. Values for n ∈ {3, 4, 6} Numerical approximations of J0(n) are given in table 5 for the
considered geometries [9].

side number shape area second moment of area torsion constant
nw A• = A0R

2
• I• = I0R

4
• J• = J0R

4
•

3 R•
A0 = 3

√
3

4 ≈ 1.30 I0 = 3
√

3
32 ≈ 0.162 J0 = 9

√
3

80 ≈ 0.195

4 R• A0 = 2.00 I0 = 1
3 ≈ 0.333 J0 ≈ 0.563

6 R• A0 = 3
√

3
2 ≈ 2.60 I0 = 5

√
3

16 ≈ 0.541 J0 ≈ 1.04

Table 5: Values of the geometric parameters of regular n-sided polygons (n = 3, 4, 6 and • ∈ {c,w}).
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