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Chapter 4

ERROR PROPAGATION AFTER
REORDERING ATTACKS ON
HIERARCHICAL STATE ESTIMATION

Ammara Gul and Stephen Wolthusen

Abstract State estimation is vital to the stability of control systems, especially
in power systems, which rely heavily on measurement devices installed
throughout wide-area power networks. Several researchers have ana-
lyzed the problems arising from bad data injection and topology errors,
and have proposed protection and mitigation schemes. This chapter
employs hierarchical state estimation based on the common weighted-
least-squares formulation to study the propagation of faults in interme-
diate and top-level state estimates as a result of measurement reordering
attacks on a single region in the bottom level. Although power grids are
equipped with modern defense mechanisms such as those recommended
by the ISO/IEC 62351 standard, reordering attacks are still possible.
This chapter concentrates on how an inexpensive data swapping attack
in one region in the lower level can influence the accuracy of other re-
gions in the same level and upper levels, and force the system towards
undesirable states. The results are validated using the IEEE 118-bus
test case.

Keywords: Power systems, hierarchical state estimation, reordering attacks

1. Introduction
Efficient and reliable supervisory control and data acquisition (SCADA) sys-

tems along with energy management systems (EMSs) contribute to the safe and
efficient operation of power grids. A SCADA system located at a control center
collects data from remote substations in order to manage the power grid. An
energy management system at the control center processes the collected data
using an on-line application called state estimation. State estimation enables an
operator to obtain accurate estimates of the system state despite noisy or faulty
measurement data using a steady state flow model of the physical system [1, 13].
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Many energy management system applications (e.g., for contingency analysis)
use the estimated system state, which makes accurate state estimation vital to
safe and efficient power grid operations.

Modern power systems are becoming more interconnected and less likely to
be dependent on a single control center for operations. Positioning operators
throughout the system in a hierarchical or distributed structure improves op-
erational efficiency. Each operator located at his/her own control center uses
SCADA and emergency management systems to manage a certain region of
the overall system. Examples of such interconnected systems are the ENTSO-
E in Europe and Western Interconnect (WECC) in the United States. Future
power systems are expected to be even more interconnected than before and,
thus, systems without any central coordinators should be anticipated. The
timely exchange of accurate information between regional operators is essential
to maintaining the safety of a large interconnected power network. At the same
time, data exchange is limited for reasons of sensitivity. This complicates the
tasks of operators who use local state estimates for command and control in
their regions, which, in turn, contribute to the estimated state of the entire
system.

Hierarchical state estimation requires control centers at each level to ex-
change data regularly. The Inter-Control Center Communications Protocol
(ICCP) is widely used to transmit information from one level to another dur-
ing hierarchical state estimation. This protocol supports access control, but it
does not provide key-based authentication for the exchanged data. Therefore
standard protocols such as TLS as mandated by IEC 62351 are used to im-
plement authentication for ICCP associations [6]. As a result, ICCP messages
may be passed in the clear to the protocol stack to provide authentication. An
adversary who installs a Trojan could compromise all incoming and outgoing
ICCP messages [19]. The vulnerability of control systems to such attacks is
exacerbated by the fact that ICCP relations are often formed between hosts in
the various regions.

This chapter examines the conditions under which a compromised region
in a lower level can have undesirable impacts on other regions in the same
hierarchical level as a result of the propagation of faults to the top level and
then back down to each level. Although an attacker can impact other regions
by manipulating a single region, in reality, the magnitudes of the changes that
can be induced are limited. This chapter determines a necessary condition
that enables the formulation of a minimum cost attack to realize a maximum
(negative) impact.

2. Related Work
The effects of bad data on state estimation in power systems have been

studied extensively [14–16]. Typically, a bad data detection algorithm is exe-
cuted during state estimation; this algorithm removes outliers based on simple
statistical thresholds.
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When the measurement data collected by a SCADA system is compromised,
the resulting incorrect state estimation can force the system into an undesirable
state. Without further constraints on data and data correlations, Liu et al. [12]
have relied on DC power flows. Other studies have attempted to determine the
minimal undetectable attacks that require the least manipulation of data [5, 10].

Van Cutsem and Ribbens-Pavella [18] were among the earliest researchers
to focus on hierarchical state estimation; their seminal survey paper is still
used to construct models. Lakshminarasimhan and Girgis [11] have proposed
a two-level hierarchical state estimation for wide-area power systems that as-
sumes a highly reliable phasor measurement unit (PMU) at every boundary
bus. Vukovic and Dan [19] have described several types of data attacks on
decentralized state estimation, but they do not provide details about the com-
putational complexity. Moreover, their proposed mitigation scheme involving
an outlier approach can detect errors only after hundreds of iterations and,
even then, the attack may not be identified.

False data injection attacks, which were initially studied in the context of
conventional state estimation, have been shown to be possible in hierarchical
topologies as well [7]. Baiocco and Wolthusen [3] have employed automated
(graph) partitioning to support robust hierarchical state estimation during un-
expected failures of single or multiple lines, or attacks. Shepard et al. [17] have
described GPS spoofing attacks on phasor measurement units, which can result
in ill-conditioned Jacobian matrices and divergence by introducing jitter in the
communications channels during hierarchical state estimation [2]. A number of
state estimators have been proposed, but studies of robustness to attacks have
focused on centralized topologies. However, Baiocco et al. [4] have discussed
the hierarchical case in the context of smart grid and microgrid environments.

Gul and Wolthusen [9] have highlighted the vulnerability of a communica-
tions infrastructure to an attack that reorders measurement vectors, resulting
in incorrect estimates and potentially undesirable system states. It is worth
noting that Gul and Wolthusen assume that the preceding and present mea-
surement vectors are known to the attacker. In the two distinct scenarios they
analyzed, the system diverged as a result of an ill-conditioned Jacobian matrix.

3. Power System State Estimation
A power system is denoted by a graph G with a set of buses V and a set of

transmission lines E . An AC power flow model is assumed. This is expressed
as:

z = h(x) + e (1)

where z ∈ Rm is the measurement vector; x ∈ Rn is the state vector (m >
n); h is the measurement function relating z to x; and e is the noise vector
with a mean of zero and known co-variance R. The errors are assumed to be
independent; therefore, R = diag{σ2

1 , σ
2
2 , · · · , σ2

m} is a diagonal matrix.



70 CRITICAL INFRASTRUCTURE PROTECTION XII

The states x̂ are estimated by solving the following normal equations:

[FT R−1F ]Δx̂ = FT R−1[x − f(x)] (2)

Following this, bad data analysis is performed based on the residual values:

r = z − h(x̂) (3)

Residual values that are larger than a statistical threshold τ are identified
and the corresponding measurements are flagged as bad. After the bad mea-
surements are removed, state estimation is re-run until the system converges.
Unfortunately, bad data detection is difficult when there are multiple bad mea-
surements. In practice, bad data goes undetected due to the presence of other
bad data, or good measurements are flagged as bad for other reasons such as a
change to the topology. Interested readers are referred to [1] for more details
about state estimation.

4. Hierarchical State Estimation
Conventional or centralized state estimation can be followed by a multi-

region hierarchical procedure in which local state estimators process all the raw
measurements that are available locally; thus, only manageable amounts of data
are sent to the immediate higher level. This process continues upward until the
highest level is able to compute the state of the entire system, which is then
conveyed to the lower levels for crucial tasks such as bad data processing [8].

The multi-region hierarchical structure can be symmetric or asymmetric.
A symmetric hierarchy has a balanced division of bus-bars/tie-lines over all
the regions whereas an asymmetric hierarchy has an unbalanced distribution
of bus-bars/tie-lines. While symmetric hierarchical state estimation is trivial,
asymmetric hierarchical state estimation models real-world power systems, but
is more complex. Only asymmetric hierarchical state estimation is considered
in this work. The formulation is taken from [2, 4].

Baiocco et al. [4] have introduced a tree structure for multi-region hierar-
chical state estimation with the tree root (level k) denoting the highest level
state estimation. A lower level may have child nodes; a lower level without
child nodes is a leaf node and resides in the lowest level (level 1) of the hierar-
chy. Each node performs its own state estimation using measurements of the
estimated states from lower nodes; for level 1, the measurements are obtained
by computing power flows. It is assumed that robust partitioning is already
performed and that there are no overlaps between regions, except for common
tie-lines that connect neighboring regions.
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When a node estimates its state vector, it sends this vector (including the
gain matrix) to all its children or to the parent node. This type of multi-region
hierarchical state estimation involves two-way transmission of information from
the lower levels to the higher levels until the root node is reached, upon which
the overall state estimate is sent downwards towards the leaf nodes so that the
state estimate is passed to all the tie-line branches.

A general k-level multi-region hierarchical state estimation is expressed as:

y0,j1 = f1,j1(y1,j1) + e1,j1 , j1 = 1, · · · , r1

y0,b1 = f1,b1(y1) + e1,b1

y1,j2 = f2,j2(y2,j2) + e2,j2 , j2 = 1, · · · , r2 (4)
y1,b2 = f2,b2(y2) + e2,b2

...
y0,b1 = f1,b1(y1) + e1,b1

where y0,j1 is the local measurement vector in Sj1 in level 1; y0,b1 is the border
measurement vector in level 1; y1,j2 is the local measurement vector in Sj2 in
level 2; y1,b2 is the border measurement vector in level 2; yk is the state vector
of the overall system; fl is the corresponding non-linear measurement function
for each level l; and el is the corresponding Gaussian measurement noise vector.

Level 1 Multi-Region State Estimation. For level 1, each region Sj

estimates its own state ỹ1j by solving the following normal equations iteratively:

[FT
1,j1R

−1
1,j1

F1,j1 ]Δỹ1,j1 = FT
1,j1R

−1
1,j1

[y0,j1 − f1,j1(y1,j1(k))]

[FT
1,b1R

−1
1,b1

F1,b1 ]Δỹ1,j1 = FT
1,b1R

−1
1,b1

[y0,b1 − f1,b1(y1,j1(k))]
(5)

where the inputs at this level include the measurement vectors y0,j1 and y0,b1 ;
Jacobian matrices F1,j1 and F1,b1; and gain matrices R1,j1 and R1,b1 . Note
that the Jacobian matrices are updated at every iteration.

Level i Multi-Region State Estimation. The following equations
must be solved for each intermediate level hierarchically from the lower levels:

[FT
i,ji−1

Gi−1,ji−1Fi,ji−1 ]Δỹi−1,ji−1 (k) =

FT
i,ji−1

Gi−1,ji−1 [ỹi−1,ji−1 − fi,ji−1(yi(k))]

[FT
i,bi

Gi−1,bi−1Fi,bi ]Δỹi−1(k) = FT
1,b1Gi−1,bi−1 [ỹi−1 − fi(yi(k))]

(6)

Using the estimate ỹi−1,ji−1 from level l − 1 as the measurements in a dis-
tributed approach, ỹi,ji can be obtained as described in [7]. The Jacobian
matrices are revised based on the estimates from levels i and i + 1.
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Level l Multi-Region State Estimation. Using the vector ỹl1 sup-
plied by the lower level l − 1 as the measurement vector, the system state can
be estimated by iteratively solving the following equations:

[FT
l,jl−1

Gl−1,jl−1Fl,jl−1 ]Δỹl−1,jl−1(k) = FT
l,jl−1

Gl−1,jl−1 [ỹl−1,jl−1 − fl,jl−1(yl(k))]

[FT
l,bl

Gl−1,bl−1Fl,bl
]Δỹl−1(k) = FT

1,b1Gl−1,bl−1 [ỹl−1 − fl(yl(k))]
(7)

Note that the hierarchical state estimation process outlined above requires
two-way exchange of data between local state estimators in each layer of the
hierarchy [2].

5. Three-Level Simplification
This section presents a simplification of the multilevel model as a three-level

model. The three-level model is given by:

y0,j1 = f1,j1(y1,j1) + e1,j1 , j1 = 1, 2
y0,b = f1,b(y1,b) + e1,b

y1,j2 = f2,j2(y2,j2) + e2,j2 , j2 = 1, 2
y1,b = f2,b(y2,b) + e2,b

y2 = f3(x) + e3

(8)

where the measurement vectors y0,j1 , y1,j1 and y0,b, y1,b; state vectors y1,j1 ,
y2,j2 and yb,j1 , yb,j2 ; and non-linear measurement functions f1,j1 , f2,j2 and f1,b,
f2,b are as described above.

In order to simplify the process, it is assumed that there are no border
variables and that the measurement functions are linear. The resulting three-
level model is given by:

y0j = F1jy1j + e1j , j = 1, 2
y1j = F2jy2j + e2j , j = 1, 2
y2 = F3x + e3

(9)

where F1j , F2j and F3 are the Jacobian matrices of the corresponding measure-
ment functions.

For each region, state estimation employs an iterative algorithm that deter-
mines the local state vector along with another iterative process involving the
two levels [7]:

Level 1: The inputs to the first level are y1j for regions j = 1, 2 (as-
suming two regions) and the weighting matrix R−1

1j . The output, which
corresponds to the local state vector ŷ1j for each region, is obtained by
solving the following normal equation iteratively for each region:

[FT
1jR

−1
1j FT

1j ]ŷ1j = FT
1jR

−1
1j y0j (10)
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Level 2: The inputs to the second level are y1j for regions j = 1, 2
(assuming two regions) and the weighting matrix R−1

1j . The output, which
corresponds to the local state vector ŷ1j for each region, is obtained by
solving the following normal equation iteratively for each region:

[FT
2jR

−1
2j FT

2j ]ŷ2j = FT
2jR

−1
2j y1j (11)

Level 3: The inputs to the third level are the state vectors of the second
level ŷ2 and the gain matrices G2 = FT

1jR
−1
2j FT

2j (corresponding to the
weighting matrix). The output x̂, which is the state of the entire system,
is obtained by solving the following normal equation for the third level:

[FT
3 G−1

2 FT
3 ]x̂ = FT

3 G−1
2 ŷ2 (12)

where y2 and G2 are obtained by juxtaposing the corresponding y2j and
G2j , respectively.

6. Attack Model
The attacker’s goal is to disrupt hierarchical state estimation. It is assumed

that the attacker can reorder the measurement set y0 of only one partition
S0 ∈ S in the lowest level l1 of the hierarchy, where S is the set of partitions.
As a result, incorrect state variables are transmitted to the partitions in the
upper levels at the beginning of each hierarchical state estimation iteration.

The structured reordering attack leverages internal knowledge of the parti-
tions in order to maximize its impact. The knowledge required for the success
of the reordering attack includes some previous plausible measurement set yold

of the targeted partition. The principal goal of the attack is to have a false
local state estimate that propagates to the higher levels to produce an incorrect
estimate x.

The following constraints are imposed on an attack on the three-level hier-
archical structure:

After the attack is launched on a single partition in level l1, the data
exchange between the upper two levels (i.e., l2 and l3) remains normal.
This means that there is no further attack on the upper levels.

The network configurations (i.e., sub-region partitioning) in levels l2 and
l3 are not permitted to change over the course of a complete top-down
synchro-upgrade. Note that this constraint is usually not imposed on
hierarchical state estimation [2].

After the attack, the flow equation for the first level l1 is:

[FT
1jR

−1
1j FT

1j ]ŷ
∗
1j = FT

1jR
−1
1j y∗

0j (13)

where y∗
0j is the swapped measurement vector of one of the sub-regions in level

l1. The inputs to the second level y∗
1j for regions j = 1, 2 are the false estimates
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from the first level l1:

[FT
2jR

−1
2j FT

2j ]ŷ
∗
2j = FT

2jR
−1
2j y∗

1j (14)

Finally, the output x̂∗, which is the state of the entire system, is obtained by
solving the following normal equation for the third level l3:

[FT
3 G−1

2 FT
3 ]x̂∗ = FT

3 G−1
2 ŷ∗

2 (15)

where y∗
2 and G2 are as defined above.

In the case of a false data injection attack, the symbol a denotes the at-
tack vector that expresses the amount of change to the original measurement
vector [12]:

a = Fc (16)

where the vector c denotes the magnitude of change and is bounded by some
stealthy condition.

Jamming or delay attacks can be seen as a sub-class of reordering attacks
because they resend the previous data after a time interval. Also, attacks that
replay or block measurement vectors can be considered to be a special case of
reordering attacks with time constraints. The common aspect of all of these
attacks is that no attack vector has to be added. Instead, the attacker simply
drops/blocks a measurement or injects jitter in the measurement regardless of
whether or not it is secure/protected by hacking the communications infras-
tructure. Therefore, the general term, “reordering of the measurement vector”
is introduced to convey that the attacker replaces the true measurement vector
with a previous plausible (true) vector.

In this case, the time horizon is critical to the attacker because it determines
the strength of the attack. It is assumed that the attacker has measurement
information from the present back to some point in time. From among these
measurements, the attacker chooses the measurement vector to be swapped
with the present measurement vector while continuing to maintain stealth.
The term “stealth” implies that the attack is successful in forcing the system
state without being detected by the model-based bad data detection algorithm.
Sophisticated detection criteria certainly exist, but they are mainly used to
determine which measurement devices (vector entries) are compromised, and,
therefore, are not relevant to the case at hand. Other models rely on message
redundancy to determine compromise, but this approach is not feasible for
network-based attacks.

7. Reordering Attack Cost and Impact
The minimum attack cost Γy corresponds to the situation where the attacker

expends the least effort to obtain the maximum mean square error (MSE).
Power grid regions can be secured in one of the three ways: (i) non-tamperproof
authentication (Sntp ⊆ Sm); (ii) tamperproof authentication (Stp ⊆ Sm); or
(iii) other protection. Non-tamperproof authentication is implemented by a
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bump-in-the-wire device or a remote terminal unit (RTU) with a non-tamper-
proof authentication module; regions with this type of authentication are only
susceptible to attacks that involve physical access to the region from where
the measurements originate. In contrast, tamperproof authentication is not
susceptible to attacks. Other protection mechanisms include security guards
and video surveillance systems that are generally not vulnerable to attacks.
However, to be realistic, all the regions of a power grid cannot be protected
and there will be at least one vulnerable region Sm′ . If the region where the
measurement vector is to be attacked is protected and uses non-tamperproof
or tamperproof authentication, then the measurement is not vulnerable and it
is assumed that Γy = ∞.

Otherwise, for a measurement y, Γy is defined as:

Γy = min ‖a‖ s.t. a = Fc = ŷnew − ŷold and
a(y) �= 0 =⇒ |S(m′)| �= 0, s.t. S = S(m) ∪ S(m′)

(17)

where Sm denotes the authenticated regions; and Sm′ denotes the vulnerable
regions such that S = S(m) ∪ S(m′).

In addition, it is assumed that the attacker is free to choose the set of
plausible measurements in a particular time frame to be used in a reordering
attack. As a result of this freedom and the attack cost Γy mentioned above,
the maximum attack impact is taken to correspond to the attacker’s outcome
Iy, which is given by:

Iy = max I =
√∑

(ỹnew − ỹold)2

s.t. tnew − told � ε
(18)

where t is the time slot from among the time frames available to the attacker;
and ε is a pre-defined threshold that limits the attacker’s choice. The super-
scripts “old” and “new” denote the original measurement and the measurement
to be inserted in its place, respectively.

8. Experimental Results
Before discussing the experimental results, it is important to recall that,

in order to perform a reordering attack, the attacker must have knowledge of
the system topology. It is assumed that the topology does not change or the
topology is static for the duration of the attack.

This section evaluates the proposed model by considering reordering attacks
on hierarchical state estimation involving regions of the standard IEEE 118-
bus system. The IEEE 118-bus system is divided into six regions, and an
intermediate level exists between the top and bottom levels (Figure 1).
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Region 5 
b82 – b96,

b100 – b112

Region 3 
b54 – b69,

b100 – b112

Region 8 Region 7

Region 1 
b1 – b17,

b31, b32, b113,
b114, b117

Region 6 
b15 – b17 – b23,
b33 – b35, b37,
b39 – b42, b49

Region 2 
b34, b36 – b38,
b43 – b54, b65,

b69 – b70, b75 –
b80, b82, 
b97, b100  

Region 4 
b23 –  b30, b32,
b70 – b75, b77,

b115, b118 

Figure 1. Bus-bar distribution in the IEEE 118-bus system.
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Figure 2. Information flow during hierarchical state estimation.

As shown in Figure 2, since the hierarchical model involves two-way synchro-
upgrades (i.e., from the lower levels to the upper levels and subsequently from
the topmost level down to the lower levels), it is particularly interesting to ob-
serve the error propagation after an attack. The attacker is free to choose data
from a certain time frame (i.e., the attacker has a limited amount of knowl-
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Figure 3. Impact of regionwise reordering in the lower level.

edge about the previous data). The weighted-least-squares (WLS) technique
was used to estimate the state and the open-source MATPOWER package was
used to load the data associated with the IEEE 118-bus system.

Figure 3 shows the mean squared error after performing least cost reordering
attacks on the IEEE 118-bus system. The figure shows the logarithm (base 10)
of the mean squared error for a complete round of the weighted-least-squares
state estimation – from the lower layer to the top layer and all the way down,
detailing how the error propagates up from the lowest level to the top level and
back down.

It is clear that, at the end of a complete round after a reordering attack,
all the regions are affected regardless of the intensity and the reordering of the
individual regions.

A key observation is the epidemic characteristic of the attack, where the
error propagates from an infected region in the lower level to all the regions
in the lower level. The plot also illustrates how a single region in a lower
level influences all the regions in the same level, implying that the attacker can
choose the cheapest and most vulnerable region to launch the attack. Clearly,
the error is maximum for the region where the attack originates. In the spe-
cific partitioning of the IEEE 118-bus system, Region 5 appears to be the most
vulnerable because the system diverges when the input data is reordered. How-
ever, it is worth noting that the partitioning of the IEEE 118-bus system for
the reordering attack is a particular case and other cases may exist.

The measurement reordering attack as described above works when some
portions of the power system have integrity protection mechanisms. This is
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not an unreasonable assumption because implementing timestamped measure-
ments with authentication would be prohibitively expensive for current power
grids. Indeed, as long as a power grid has unprotected legacy components, mea-
surement reordering attacks will always pose a threat. However, in a decade or
so, it should be possible to implement cryptographically timestamped authen-
tication mechanisms for an entire grid, which would reduce, if not eliminate,
the threat of reordering attacks.

9. Conclusions
This chapter has focused on reordering attacks on hierarchical state esti-

mation as described in [9], where an adversary reorders measurement data
without injecting or modifying data, resulting in incorrect estimates and po-
tentially undesirable power system states. The attacks are feasible because
it is not possible to implement authentication mechanisms throughout a large
power grid. Therefore, this chapter has studied targeted reordering attacks on
the most vulnerable region of a power system, which cause errors to propa-
gate all over the system, and not just the attacked region. The results also
demonstrate that an attacker can force incorrect estimates in a protected (i.e.,
authenticated) region of a power system by launching a clever attack on a less
protected region.

Future research will attempt to develop protection and mitigation techniques
for hierarchical or fully-distributed state estimation as employed in a smart
grid. Research will also investigate the number of measurements and the spe-
cific measurements that would be swapped by an attacker to achieve maximal
impact.
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