D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, The emerging field of signal processing on graphs, IEEE Signal Process. Mag, vol.30, issue.3, pp.83-98, 2013.

A. Ortega, P. Frossard, J. Kova?evi´kova?evi´c, P. Moura, and . Vandergheynst, Graph signal processing: Overview, challenges, and applications, Proceedings of the IEEE, vol.106, issue.5, pp.808-828, 2018.

R. K. Fan and . Chung, Spectral graph theory (CBMS regional conference series in mathematics, 1996.

B. Girault, Stationary graph signals using an isometric graph translation, Signal Processing Conference, pp.1516-1520, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01155902

B. Girault, A. Ortega, and S. S. Narayanan, Irregularity-aware graph Fourier transforms, IEEE Transactions on Signal Processing, vol.66, issue.21, pp.5746-5761, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01708695

R. Shafipour, A. Khodabakhsh, G. Mateos, and E. Nikolova, A directed graph Fourier transform with spread frequency components, 2018.

K. David, P. Hammond, R. Vandergheynst, and . Gribonval, Wavelets on graphs via spectral graph theory, Applied and Computational Harmonic Analysis, vol.30, issue.2, pp.129-150, 2011.

S. Chen, R. Varma, A. Sandryhaila, and J. Kova?evi´kova?evi´c, Discrete signal processing on graphs: Sampling theory, IEEE transactions on signal processing, vol.63, issue.24, pp.6510-6523, 2015.

A. Anis, A. Gadde, and A. Ortega, Efficient sampling set selection for bandlimited graph signals using graph spectral proxies, IEEE Transactions on Signal Processing, vol.64, issue.14, pp.3775-3789, 2016.

A. Lloyd-n-trefethen, T. Birkisson, and . Driscoll, Exploring ODEs, vol.157, 2017.

N. Saito, How can we naturally order and organize graph laplacian eigenvectors?, 2018.

A. Sandryhaila and J. M. Moura, Discrete signal processing on graphs, IEEE Trans. Signal Process, vol.61, issue.7, pp.1644-1656, 2013.

B. Girault, S. Shrikanth, A. Narayanan, P. Ortega, E. Gonçalves et al., GraSP: A Matlab toolbox for graph signal processing, pp.6574-6575, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01424804

M. Belkin and P. Niyogi, Laplacian eigenmaps for dimensionality reduction and data representation, Neural computation, vol.15, issue.6, pp.1373-1396, 2003.

A. Agaskar and Y. M. Lu, A Spectral Graph Uncertainty Principle, IEEE Transactions on Information Theory, vol.59, issue.7, pp.4338-4356, 2013.

R. Bastien-pasdeloup, V. Alami, M. Gripon, and . Rabbat, Toward An Uncertainty Principle For Weighted Graphs, Signal Processing Conference, p.2015

, Proceedings of the 21st European, pp.1511-1515, 2015.

B. Pasdeloup, V. Gripon, G. Mercier, and D. Pastor, Towards a characterization of the uncertainty curve for graphs, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.4558-4562, 2016.

M. Tsitsvero, S. Barbarossa, and P. Lorenzo, Signals on Graphs: Uncertainty Principle and Sampling, IEEE Transactions on Signal Processing, vol.64, issue.18, pp.4845-4860, 2016.

N. Perraudin, B. Ricaud, I. David, P. Shuman, and . Vandergheynst, Global and local uncertainty principles for signals on graphs, APSIPA Transactions on Signal and Information Processing, vol.7, p.3, 2018.

A. Gadde, A. Anis, and A. Ortega, Active semi-supervised learning using sampling theory for graph signals, Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.492-501, 2014.

S. Mallat, A wavelet tour of signal processing, 1999.

D. I. Shuman, C. Wiesmeyr, N. Holighaus, and P. Vandergheynst, Spectrum-Adapted Tight Graph Wavelet and Vertex-Frequency Frames, IEEE Trans. Signal Processing, vol.63, issue.16, pp.4223-4235, 2015.