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Tensor models generalize the matrix-model approach to 2-dimensional quantum gravity to higher
dimensions. Some models allowing a 1/N expansion have been explored, most of them generating
branched-polymer geometries. Recently, enhancements yielding an additional 2d pure gravity (pla-
nar) phase and an intermediate regime of proliferating baby universes have been found. It remains
an open issue to find models escaping these lower-dimensionality universality classes.

Here we analyze the dominant regime and critical behaviour of a range of new models which are
candidates for such effective geometries, in particular interactions based on the utility graph K3,3.
We find that, upon proper enhancement, the two-phase structure of a branched-polymer and a 2d
gravity regime is the common case in U(N)-invariant rank D = 4 tensor models of small orders.
Not only the well known so-called necklace interactions but also K3,3-type interactions turn out as
the source for the planar regime. We give a systematic account of the enhancement scaling, the
counting of leading-order diagrams and the multi-critical behaviour of a wide range of interactions,
in particular for all order-6 interactions of rank 3 and 4. These findings support the claim of
universality of such mixtures of branched-polymer and planar diagrams at criticality. In particular,
this hints at the necessity to consider new ingredients, or interactions of higher order and rank, in
order to obtain higher dimensional continuum geometry from tensor models.

INTRODUCTION

Tensor models [1–3], which generalize matrix models [4] to higher dimensions, were introduced as a non-perturbative
approach to quantum gravity, and an analytical tool to explore random geometries in dimension higher than two.
These geometries are generated as Feynman diagrams in the perturbative expansion of a tensor path integral, and
the amplitudes associated to discrete geometries are discretizations of the quantum path integral of general relativity.
Restricting the tensor action to be U(N)D-invariant such that interactions can be represented as D-coloured graphs
[5] allows for a 1/N expansion [6, 7]. A continuum limit can be obtained by tuning correlation functions to criticality
in the coupling parameters [5, 8, 9].

So far, only continuous geometries which come as limits of one or two dimensional structures have been identified.
Tensors of rank D = 1, i.e. vector models, generate plane trees in the large-N limit, which converge towards the
continuous random tree [10–12] in the continuum limit, also called branched polymers, and are characterized by the
entropy critical exponent γ = 1/2, Hausdorff dimension dh = 2 and spectral dimension dS = 4/3. In the D = 2 case
of matrix models, amplitudes scale as N2−2g leading to planar geometries (genus g = 0) in the large-N limit, which
converge at criticality towards the Brownian sphere [13–15], with γ = −1/2, dH = 4, and dS = 2, which has recently
been proven to be equivalent to 2d Liouville quantum gravity [16–20]. Tensor models of rank D ≥ 3 are generically
dominated in the large-N limit by so-called melonic diagrams [8] encoding discrete D-dimensional spherical manifolds.
Surprisingly, in the continuum limit, they converge towards branched polymers [21]. Nevertheless, it has recently been
shown that non-melonic interactions coined “necklaces” can be enhanced to obtain continuum 2d geometry in this
limit [22] using an intermediate-field (IF) representation [23, 24].

The question is thus whether it is possible to find an enhancement of certain interactions such that the large-N
continuum limit has properties suited for a quantum space-time of dimension higher than two. Such new continuum
geometries should have spectral dimension dS > 2 and are expected to be characterized also by new critical exponents
γ. While there are no guiding lines from mathematics where no such geometries are known so far, tensor models
generatingD-dimensional discrete topologies could, in principle, contain such new universality classes in the continuum
limit.
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The motivation of the current work is that there are classes of tensor models not investigated before which, on first
sight, have the potential to describe such new universality classes of higher-dimensional continuum geometries. The
naive idea is that such geometries might arise when there are sufficiently large non-planarities, e.g. crossing edges on
the diagrams such that the diagrams cannot be embedded on the 2-sphere. Intuitively, a space obtained as a limit of
discrete random spaces with diverging number of holes competing with the diverging volume should have interesting
fractal properties. Natural candidates are non-local interactions with a combinatorial structure based on the utility
graph K3,3. According to Kuratowski’s theorem [25], finite graphs are not planar if and only if they contain (a
subdivision of) either the utility graph K3,3 or the complete graph K5. As bipartite graphs, U(N)D-invariant tensor
interactions cannot contain K5. It is thus natural to expect new quantum geometries to result from sufficiently
dominant interactions which are extensions of K3,3.

To test this hypothesis we have explored the full space of sixth-order tensor-invariant interactions at rank D = 3
and 4. There are preliminary results that the K3,3-interaction for D = 3 leads only to small crossings [26], which
should not be dominant in the continuum limit, as we indeed prove in this paper. At D = 4, it is possible to have
K3,3-type interactions which lead, on first sight, to large crossings. Nevertheless, studying the dominant diagrams
and the critical behaviour in detail we find that these models are still in the universality class of branched-polymer
and 2d-gravity geometries. We find an explanation for this in terms of a bijection between the Feynman diagrams
and embedded diagrams, that is, graphs drawn on surfaces.

Our systematic study of non-melonic tensor models covers a number of interesting aspects. First of all, it is the first
study of interactions of order higher than 4, apart from a specific rank-3 model of order 8 leading to branched polymers
in the continuum at large N [27]. So far, the focus in the literature has been on quartic interactions [24, 28–32] and
straightforward extensions. We are able to extend these studies to higher order using the recent generalization of
intermediate-field representation to arbitrary order [26]. This method relies on a bijection between stranded Feynman
diagrams and embedded diagrams. It is a powerful tool for finding enhancements of less dominant interactions and
for identifying the resulting diagrams at leading order in the 1/N expansion. We provide a systematic analysis of the
enhancement scalings of all sextic interactions.

The bijection to simpler embedded diagrams provides means to determine amplitudes from counting diagrams.
Tensor models, just like matrix models, are purely combinatorial in that amplitudes in the perturbative expansion are
given, up to factors in couplings and N , simply by the number of diagrams contributing at that order. Accordingly,
leading-order correlation functions are generating functions in the combinatorics sense. In this way we obtain explicit
Dyson-Schwinger-type equations for two-point functions and find solutions solving them. On these grounds we are
able to determine the critical behaviour in many cases by performing explicitly the Newton-Puiseux expansion in
fractional powers at critical loci. The critical behaviour of correlations, characterized by the entropy exponent γ,
provides a first hint of what the continuum limit of the model is.

As a consequence, we are for the first time able to analyse models generating topologically non-trivial discrete
geometries. Indeed, the tensor interactions are dual to D-dimensional building blocks, and the Feynman diagrams are
dual to discrete spaces obtained by gluing such building blocks together. So far, only models involving interactions
with boundaries of spherical topology, thus generating discrete geometries obtained from gluing balls, have been
investigated. The interactions we are considering in this paper are dual to building blocks whose boundaries are
spherical, toroidal, or may even be singular (pseudo)-manifolds. Still, we find that they all belong to the universality
classes with continuum limits of branched-polymer or planar geometries.

That is, all models considered here belong to the universality classes of branched polymers (γ = 1/2), of 2d pure
gravity (planar diagrams, with γ = −1/2), or to an intermediate transitional regime of “proliferating baby universes”,
with critical exponent γ = 1/3, through various combinations of enhanced interactions. This last regime was discov-
ered in matrix models by considering modified Einstein-Hilbert actions with higher curvature terms, resulting into
multi-trace interactions [33–37]. On the contrary, we recover these regimes as different phases of tensor models with
connected interactions, corresponding to discrete theories of gravity without higher-order curvature terms. In combi-
natorics, these three regimes appear also in the context of (non-embedded) planar graphs with given 2- or 3-connected
components [38].

A peculiar feature of tensor models is that the branched-polymer–planar phase diagram can even be obtained from a
single type of interaction. Indeed we show here that it occurs already for two quartic necklace interactions of different
colouring, extending and completing previous work [22, 39]. In the present model, the branched-polymer phase is
not obtained from a planar regime by coupling it to a polymerization term, as done in [22, 33–35, 39], but rather
as an interference between planar regimes, which instead of building up interesting behaviour, reduces to a branched
polymer regime for a small region of the phase space. As expected, at the boundary of this critical region we observe
the intermediate regime of proliferation of baby universes.

The multi-critical structure of the models turns out to be more involved than anticipated in the literature [22, 33, 35].
It is well known that with several couplings one can have sequences of multi-critical subspaces with critical exponents
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γ = 1/2, 2/3, 3/4, ... in the branched-polymer regime [40], and the Kazakov exponents γ = −1/2, −1/3, −1/4, ... in
the planar regime [41] which in the continuum comes to coupling non-unitary conformal matter to 2d gravity. If such
multi-critical subspaces are incident with the baby-universe transition regime, special multi-critical values could be
found. In the case of matrix models it is stated that such cases occur [34, 35]. However, our explicit calculations of
critical loci in the tensor models considered here indicate that branched-polymer-regime multi-critical subspaces are
not incident with the transition regime. Instead, we find that the presence of couplings relevant for the planar regime
can enrich also the multi-critical structure of the branched-polymer regime.

Apart from these new details in the multi-critical structure, our main result is the confirmation that order-6 tensor
models of rank 3 and 4 belong still to the same universality classes as order-4 models. Initial hope to find new
universality classes for K3,3-type interactions could not be fulfilled. Indeed, the bijection with embedded diagrams
shows clearly that the influence of non-planarities in the interactions on the structure of leading order diagrams is not
strong enough by itself to change their large scale properties, and therefore the corresponding continuum limit. This
could be taken as an argument that U(N)D-invariant tensor models do not cover new regimes.

Conversely, the absence of new regimes in the models considered might suggest that the structure of the embedded
interaction, after the intermediate-field bijection, should be a more pertinent criterion than the non-planarity of its
stranded version. Indeed, all order 4 and 6 tensor model diagrams of rank 3 and 4 allow for some bijection to two-
dimensional combinatorial structures. The non-planarity becomes a condition on colourings of edges of ribbon graphs
which at best has no effect with respect to their usual planar large-N behaviour, or tends to prevent large loops from
appearing instead of favouring them, as was initially hoped for. However, this argument is not applicable in general
for higher-order or higher-rank models since the bijection maps interactions to “stuffed” embedded vertices with a
non-trivial internal structure in general.

The structure of the paper is the following: In the first section, we introduce rank-D enhanced random tensor
models, describe their relevance as discrete formulations of gravity in dimension D, and comment on known critical
behaviour and continuum limits. We introduce some of the models we solve in the following. The exhaustive list of
order-3 and order-4 U(N)D-invariant interactions can be found in Tables I and II, as well as the scalings and critical
exponents computed in this paper. Section II is dedicated to the characterization of leading order Feynman diagrams
throughout the bijection introduced in [26] with embedded diagrams. Finally, in Section III, we analyse the critical
and multi-critical behaviour of the models.

I. TENSOR MODELS WITH BRANCHED-POLYMER–PLANAR-TRANSITION CRITICAL
BEHAVIOUR

A. Tensor models

We consider tensor models as defined by a partition function with a finite number of U(N)⊗D-invariant interactions
indexed by B in the set of interactions B defining the model,

ZB
(
{tB}, N

)
=

∫
CD

exp

[
ND−1

∑
B∈B

tBN
sBTrB(T, T̄ )

]
dµ0(T, T̄ ), (1)

where sB ∈ N are the scalings, and dµ0(T, T̄ ) is the Gaussian measure

dµ0(T, T̄ ) =
1

Z0
e−N

D−1T ·T̄
N∏

a1,...,aD=1

dTa1···aDdT̄a1···aD , (2)

in which we denoted T ·T̄ =
∑
a1,···aD Ta1···aD T̄a1···aD . The partition function Z0 is normalized such that ZB(0, N) = 1.

More specifically, TrB(T, T̄ ) are polynomials of T and T̄ invariant under unitary transformations in U(N)⊗D =
U(N) ⊗ · · · ⊗ U(N). Therefore they must have the same number of copies of T and T̄ , and indices may only be
contracted between a T and a T̄ . An example in D = 4 is the following,

TrB12
2N

(T, T̄ ) =
∑N

a,b,c,d,e,f,g,h=1 TabcdT̄abefTghef T̄ghcd.

1 2

3 4

(3)

An interaction B, usually called a bubble, is represented graphically by drawing a line labelled with the index c
between a T and a T̄ if the index c is summed between the two corresponding tensors, as pictured below on the left
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for the previous example.
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2

1

3

3
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4

T

T̄ T̄

T

T̄ T

1

3

2

4

(4)

For a given choice of set B of interactions, the perturbative expansion of the free energy

FB
(
{tB}, N

)
= ln

(
ZB({tB}, N)

)
(5)

is labelled by connected Feynman diagrams which are generalized ribbon graphs, also called stranded graphs. The
propagators contain D strands, one for each index of T , as shown above on the right of (4), and the interactions B ∈ B
have a non-trivial internal structure.

1

2

2

1

3

3

4

41

3

3

1

2

2

4

4

(6)

Figure (6) is an example of a contribution to the 2-point function of a quartic rank-4 model. The corresponding
diagrams Γ contain a certain number Fc(Γ) of closed curves for each colour c, which we name faces. We denote

F (Γ) =

D∑
c=1

Fc(Γ) (7)

the total number of faces of a diagram Γ. In the following, nB is half the order of the interaction B. Using the fact that
there are 2nB half-propagators per interaction B, each contributing with a factor N−(D−1), the amplitude associated
to a Feynman diagram Γ is

A(Γ) =
1

c(Γ)

(∏
B∈B

t
BB(Γ)
B

)
N

∑
B∈B BB(Γ)

(
sB−(nB−1)(D−1)

)
+F (Γ), (8)

where BB(Γ) is the number of interaction bubbles of type B in Γ, and c(Γ) is a symmetry factor.
The 1/N expansion of the free-energy of such a random tensor model can be understood as a discrete version of

the formal Einstein-Hilbert partition function of D-dimensional pure Euclidean gravity [2],

ZEH =
∑

topologies

∫
dg e−SEH , SEH =

1

16πGn

∫
dDx

√
|g|(2Λ−R), (9)

where Λ is the cosmological constant, Gn is Newton’s constant, and R is the Ricci scalar of the metric g. Indeed,
every discrete manifold can be equipped with a geometry by taking all the edges to have a fixed length. Therefore, the
integration over geometries can be replaced with a sum over discretized manifolds of a discrete version of the Einstein-
Hilbert action. Stranded tensor diagrams Γ are dual to pseudo-manifolds such that for some set B of interactions

ZB
EH = FB

(
{tB}, N

)
=
∑

Γ

e
∑
B∈B BB(Γ)

(
κD−2(Gn)Fint(B)−κD(Gn,Λ)2nB

)
+κD−2(Gn)F (Γ), (10)

where κD(G,Λ) and κD−2(G) do not depend on B and are obtained from Regge’s action [42] for fixed lengths, and
the number of internal faces Fint(B) depends only on the stranded structure of the interaction B. We recover the
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amplitudes1 Eq. (8) by setting

N = eκD−2(Gn), and tB = eκD−2(Gn)
(
Fint(B)−sB+(nB−1)(D−1)

)
−2κD(Gn,Λ)nB . (11)

This explains the physical meaning of parameters N and tB in tensor-model quantum gravity, and justifies that
enhanced tensor models can be interpreted as discrete Einstein-Hilbert theories of gravity without higher order
curvature terms, something which has not been stressed before. In particular, the large-N limit corresponds to a
weak-coupling limit in quantum gravity as κD−2(Gn) is inversely proportional to Newton’s constant Gn [2].

Continuum limit and critical behaviour

In the large N limit, only contributions which maximize the exponent of N in Eq. (8) survive. This corresponds to
the physical limit of small Newton’s constant. The large-N free energy,

FLO
(
{tB}

)
= lim
N→∞

1

ND
F
(
{tB}, N

)
, (12)

is a formal power series in the coupling constants. There are regions of the phase space for which FLO becomes singular
(the inverse functions develop extrema). When reaching a singularity, the correlation functions do not depend anymore
on the details of the Feynman diagrams but only on the way diagrams with large number of interactions scale. This
corresponds to a continuum limit, for which the tensor model could, in some relevant cases, describe a non-perturbative
theory of random fractal continuum spaces, a short-scale version of the Einstein-Hilbert action for pure gravity.

The relevance of such a continuum limit is partially encoded in the critical behaviour of the correlation functions
when reaching singularities, that is, by the corresponding entropy critical exponent γ, also known in matrix models
as the string susceptibility [4]. It is obtained from the smallest non-integer exponent of the power expansion of the
correlation functions around a singular point. For instance, in the simpler case of a single coupling t with dominant
singularity tcr, the critical exponent γ is given by

FLO(t) =

k−1∑
i=0

αi(tcr − t)ai + αk(tcr − t)2−γ + o(tcr − t)2−γ , (13)

where the αi may be null, all ai are integers and 2− γ is not. In the case of a 2n-point function the first non-integer
exponent is 2− n− γ. In practice, it is easier to compute the critical exponent from the 2-point function since then
the symmetry factors c(Γ) of the amplitudes in Eq. (8) are trivial. We interpret the critical exponent γ as follows.

• If γ = 1/2, the continuum limit is very likely to describe branched polymers [21], also known as the continuous
random tree [10–12]. This is the limit reached in random vector models or coloured random tensor models
[8], and it is not a relevant limit for quantum gravity in our context2. We expect branched polymers in the
continuum when the Feynman diagrams are in one-to-one correspondence with families of embedded trees which
do not carry too much additional information3.

• If the critical exponent is γ = −1/2, we are in the universality class of pure 2d gravity, and we expect the
continuum limit to be the Liouville theory of 2d quantum gravity [16–20]. Intuitively, this behaviour is expected
when there is a one-to-one correspondence between the Feynman diagrams and families of planar diagrams
which do not carry too much information, and which are not restricted by criteria so strong they change the
universality class, e.g. by restricting the number of possible loops (embedded trees are planar).

• If the critical exponent is γ = 1/3, and if the characterization of contributing diagrams suggests so, we expect
baby universes to proliferate [33–35]. This balanced regime interpolates between branched polymers and pure
2d gravity. It is obtained in the context of matrix models by adding a non-local4 Tr(M2)2 polymerization
perturbation to the potential. Such a multi-trace term encodes higher order curvature perturbations to the
Einstein-Hilbert action and generates nodal points at which the discrete surfaces generated by one-matrix
models “touch” each other without interacting. At leading order, the incidence relations between these surfaces

1 To get rid of the symmetry factor, we can just consider stranded diagrams with one distinguished propagator.
2 We stress however that such tensor models can be of interest as Sachdev-Ye-Kitaev (SYK) like tensor models when adding a time

parameter [43–46]. In some cases, it is believed that they could serve as toy models to study the quantum properties of black-holes
[47, 48].

3 In many cases, there is a one-to-one correspondence between planar diagrams and families of plane trees which carry labelings [49, 50].
This additional information is enough to escape the universality class of branched polymers.

4 Non-local refers here to the fact that the stranded interaction is non-connected.
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are tree-like. If the coupling of the non-local term is too weak, the perturbation has no effect and the universality
class is that of pure 2d gravity. If the polymerization is too strong, the nodal points dominate, and branched
polymers are recovered in the continuum.

There is an intermediate value of the coupling for which the proliferation of nodal points competes with the
diverging areas of the surfaces, leading to an intermediate regime for which baby universes proliferate, and the
entropy exponent γ = 1/3 is positive. We stress however that, for matrix models, this regime is reached at the
cost of introducing non-local interactions corresponding to higher order curvature terms. In this paper, we study
various 4-dimensional models with local interactions5. Furthermore, they correspond to D-dimensional Einstein-
Hilbert Euclidean partition functions without higher order curvature terms throughout relations Eq. (11). Still,
they entail the same three regimes.

Multi-critical behaviour

For some regions of the phase space, the correlation functions exhibit more singular behaviour. For instance, this
occurs when higher derivatives of the inverse functions vanish. To reach such regions, one typically has to fine-tune
the couplings. Higher order critical exponents appear, which depend on how singular the correlation functions get,
but also on the critical exponents when the couplings are not fine-tuned. For instance, when the generic critical
behaviour is that of branched polymers γ = 1/2, the multi-critical exponent of order m is [40]

γ =
m

m+ 1
. (14)

When the generic critical behaviour is that of 2d pure gravity, the order-n multi-critical exponent is [41]

γ = − 1

n+ 1
. (15)

To obtain a multi-critical exponent of order q = m (branched polymer) or q = n (planar), one typically needs to
consider at least q interactions of different (polynomial) order, and tune the couplings to reach the right subspace of
codimension q in the coupling phase space. It is possible to interpret the interactions of higher order as certain hard-
dimer configurations on the random lattices obtained from only the lowest-order interactions. In the case of matrix
models and 2d gravity, coupling random planar diagrams to hard-dimers leads to the Yang-Lee edge singularity in the
continuum limit, a non-unitary conformal matter coupled to gravity [51]. This motivates the study of multi-critical
behaviour in the context of enhanced random tensor models. However, the entropy exponent γ is in general just a first
indicator of what the continuum theory can be. For instance, an exponent γ = −1/3 does not necessarily mean that
the continuum theory is the Yang-Lee singularity, as the same exponent is recovered for the Ising model on random
lattices [41, 52], leading to unitary conformal matter coupled to 2d gravity in the continuum.

In the transition regime of proliferating baby-universes multi-criticality is a particular subtle issue. In [34] it is
argued that, tuning a matrix model to order-n multi-criticality and adding a strong-enough polymerization (non-
local) term Tr(M2)2, the 1/3 exponent corresponding to proliferating baby-universes could be changed to a

γ =
1

n+ 2
(16)

multi-critical exponent. It is further argued in [35] that the exponent

γ =
m

n+m+ 1
(17)

could be reached using non-local (multi-trace) interactions of higher order. We will show that the latter is not realized
in the tensor models considered here.

The scalings sB

In order for the 1/N expansion of 2n-point functions to be defined, the scalings sB in Eq. (1) have to be chosen
such that the dependence of the amplitude of Feynman diagrams in N is bounded by Nf(n), where f(n) only depends

5 In the sense that stranded interactions are connected.
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on n. For the free-energy, we expect f(n) = D, D being the rank of the tensor T , as ND is the number of degrees
of freedom. However, any choice leading to bounded amplitudes is not considered a good choice: if there are finitely
many contributions to the leading order, the large N correlation functions do not exhibit any singularity, and the
theory is trivial in the continuum. Gurau proved [53] that the choice sB = −δ(B) ≤ 0, δ(B) being the Gurau degree
of the bubble (see [53]), leads to a defined 1/N expansion. The interaction bubbles with vanishing Gurau degree have
an almost vector-like structure, and are called melonic (e.g. interactions labelled 2M, 3M, 3

′
M in Table I, II). We do

not describe them precisely, but for our purposes, the important properties we need are:

– the only scaling leading to a defined and non-trivial 1/N expansion for a melonic interaction is smelonic = 0,

– the leading order of melonic random tensor models is tree-like, the 2-point function has a square-root singularity,
so that the critical exponent is γ = 1/2, and they lead to branched polymers in the continuum [21].

A non-trivial consequence of a result from [54] is that for every non-melonic case, the choice sB = −δ(B) leads
to a finite number of Feynman diagrams contributing to each order of the 1/N expansion, and in particular to a
trivial leading order. For known cases of bubbles B there is only one particular integer value of sB satisfying the
two conditions above, and one has to look at each model individually to determine it. This value is positive for
non-melonic interactions. Models with a choice of scaling leading to a defined and non-trivial 1/N expansion are
known as enhanced tensor models in the literature [22, 39].

The aim of this paper is to compute the appropriate scaling sB and the critical exponent γ for every type of quartic
and sextic interaction B in dimension 3 and 4. The results we obtain are combined in Tables I and II. As will be
clear in the following section, some interactions only differ by exchanging colours. In the tables, we only represent
one interaction of each type, but we provide in the second column the number of interactions which only differ by an
exchange of colours. In this way, the number of sextic interactions of rank 3 and 4 sums up to 7 and 41 respectively,
in agreement with [55].

We recall that the amplitude of a vacuum diagram Γ is given by (8), up to a symmetry factor. The symmetry
factor is one for the two-point function. The accurate scaling sB leading to a defined and non-trivial 1/N expansion
is deduced from the number of faces (7) of leading-order diagrams, and the critical exponent γ is given by the critical
behaviour of the resulting leading-order two-point function, expected to be an indicator for the continuum limit as
explained.

In this paper, we have chosen to use the stranded representation of interactions leading to diagrams which generalize
ribbon graphs. Another graphical representation is commonly used in the tensor models literature, in which tensors T
are represented as white vertices, tensors T̄ are represented as black vertices, and a line of colour c is drawn between
a black vertex and a white vertex if a strand of colour c goes between the corresponding tensors T and T̄ in the
stranded interaction. We represent these graphs as well in the third column of the tables. Finally, we represent the
corresponding intermediate-field vertex which will be explained in detail in Section II.

B. Phase transition from a single type of interaction: quartic necklaces

The leading order of matrix models with single-trace interactions of orders {k1, k2, · · · } involves planar ribbon
graphs with vertices that have {k1, k2, · · · } incident propagators. The critical behaviour of the correlation functions
is given by the exponent γ = −1/2, or, if the couplings are fine-tuned, by the multi-critical exponents −1/m. It is
still possible to obtain other critical regimes, such as that of proliferating universes, characterized by the exponent
γ = 1/3, but one needs to consider multi-trace interactions [33, 35], graphically represented by non-connected stranded
interactions. Here, we introduce a one-tensor model with connected stranded interactions, which presents a branched-
polymer phase, a 2d planar phase, and a proliferation of baby universes at the phase transition between them. It
happens to be equivalent to a multi-matrix N2×N2 hermitian model (with usual trace). This tensor model has three
interactions, that previously introduced in (4) and two obtained by exchanging colours.

B12
2N

1

2

2

1

3

3

4

4

T

T̄ T̄

T

B13
2N

1

3

3

1

2

2

4

4

T

T̄ T̄

T

B14
2N

1

3

3

1

2

2

4

4

T

T̄ T̄

T

(18)
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These interactions have been called (quartic) necklaces in [22] because of their representation in graphs (see the second
and fifth rows of Table II). We conserve this denomination here. The corresponding partition function is

Z4(g2, g3, g4, N) =

∫
CD

e
g2N

4TrB122N
(T,T̄ )+g3N

4TrB132N
(T,T̄ )+g4N

4TrB142N
(T,T̄ )

dµ0(T, T̄ ), (19)

with coupling gi = t1i2N
corresponding to the interactions B1i

2N
. We know from [22] that the appropriate scaling is

sB = 1. The amplitude (8) rewrites as

A(Γ) ∼ gB2(Γ)
2 g

B3(Γ)
3 g

B4(Γ)
4 NF (Γ)−2B(Γ), (20)

where Bi denotes the number of interaction bubbles of type B1i
2N

, and B = B2 +B3 +B4.
A simple argument shows that the random tensor model for only a single non-vanishing coupling, e.g. g3 = 0,

g4 = 0, is described by a one-matrix model: by grouping together the colours 1,2, and 3,4 in (4), one obtains ribbon
graphs for a matrix M(12)(34) = T1234 in which strands carry two colours instead of one.

M

M̄ M̄

M

M̄ M (21)

Such ribbon graphs label the perturbative expansion of a quartic N2 ×N2 matrix model, with partition function

Z4(g2, N) =

∫
dMdM̄

πN2 e−TrMM†−g2N−2TrMM†MM† . (22)

In the case where not all three couplings vanish, the tensor model can also be rewritten as a matrix model. Indeed, it
was shown in [22] that the Feynman diagrams of this theory are one-to-one with embedded diagrams, or ribbon graphs,
with vertices of any valency (the valency is the number of incident propagators), and three kinds of propagators, those
carrying colours 1 and 2 and coming with a factor g2, those carrying colours 1 and 3 and coming with a factor g3, and
those carrying colours 1 and 4 and comming with a factor g4. Embedded diagrams label the perturbative expansion
of matrix models, and the model turns out to be described by the following three-matrix model

Z4(g2, g3, g4, N) =

∫
e−Tr ln

(
1
⊗4−i

√
2g2M12⊗134−i

√
2g3M13⊗124−i

√
2g4M14⊗123

)
dν(M12,M13,M14), (23)

where M12, M13, and M14 are N2×N2 hermitian matrices that propagate their subscript colours, 1ij is the identity in

colours i and j, and the measure is dν(M12,M13,M14) = dM12dM13dM14/Z0 e
−N2

2 Tr(M2
12+M2

13+M2
14), Z0 being chosen

so that Z4(0, 0, 0, N) = 1. This is the intermediate-field representation of the tensor model. Denoting E1i the number
of propagators of type 1i, the amplitude of a ribbon graph M is

A(M) ∼ gE12(M)
2 g

E13(M)
3 g

E14(M)
4 NF (M)−2E(M), (24)

where now F (M) =
∑4
i=1 Fi(M) is the sum of the faces of colours 1, 2, 3 and 4 of the embedded diagram, and E is

the total number of propagators. Leading-order diagrams are planar, but also satisfy an additional constraint on the
possible loops, which depends on the colours of the propagators.

The usual three regimes also appear in this case, as we show in Subsection III C: for two vanishing couplings, this
reduces to a usual matrix model, in the universality class of pure 2d gravity (γ = −1/2); for g2 = g3 = g4, there is
a destructive interference between the three kind of matrices which reduces the critical behaviour to a square root
singularity, with exponent γ = 1/2. Some intermediary values of the coupling constant reproduce the regime of
proliferating baby universes, with exponent γ = 1/3.

The only other type of quartic interactions in dimension 4 is melonic (see Table II). The quartic melonic model is
the most studied uncoloured tensor model. As all melonic models, it has a tree-like leading order characterized by
the critical exponent γ = 1/2 and converging towards branched polymers in the continuum limit. Coupling a quartic
melonic interaction and an interaction of the kind in Eq. (18), the same three regimes appear, as detailed in [22].
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C. The enhanced K3,3 tensor model

Before considering all sextic interactions for rank D = 4 tensors, it is useful to understand the sextic interactions at
rank D = 3. There are 3 different kind of sextic interactions in dimension 3. Two of them are melonic (type 3M and
3′M interactions in Table I), and therefore are not to be enhanced (s = 0). Their critical behaviour is known to be that
of branched polymers. We therefore focus on the 3 dimensional theory with the following non-melonic interaction

TrK3,3
(T, T̄ ) =

∑N
a,b,c,d,e,f,g,h,i=1 TabcT̄adeTfdgT̄hbgThieT̄fic.

21 3 (25)

and corresponding partition function

ZK3,3
(t3k

, N) =

∫
CD

et3kN
3TrK3,3

(T,T̄ )dµ0(T, T̄ ). (26)

It is represented below, as well as the corresponding propagator.

1

1

1

2

2

3

3

3

2

T

T T

T̄ T̄

T̄

T̄ T

1

3

2 (27)

It is referred to as the K3,3 interaction in the random tensor literature, as one obtains the complete bipartite K3,3

graph by replacing each tensor by a vertex. It is a natural model to consider as it is symmetric upon exchange of
colours and no non-planar interactions have been considered before (you can not draw it without a crossing). It has
been shown in [26] that the number of faces Eq. (7) of leading-order diagrams is

FLO = 3(1 +B), (28)

where B is the number of interaction bubbles. From Eq. (8), this implies that the strongest scaling one can choose is
s = 1. Knowing this, the amplitude of Feynman diagrams (8) rewrites as

A(Γ) ∼ tB(Γ)
3k

NF (Γ)−3B(Γ). (29)

In the large N limit, only diagrams which maximize F (Γ)−3V (Γ) survive. They have been identified in [26], however,
although a γ = 1/2 exponent was expected, it had not been computed before. They scale in O(N3) and we show in
Section II B that the leading-order two-point function satisfies the following self-consistency equation,

G2(t3k) = 1 + 3t3kG2

(
t3k)3 + 3t23k

G2(t3k)6. (30)

Using standard results in singularity analysis of tree generating functions [56, ch. VII.4] we find that the solution to
this equation has a square-root expansion

G2(t3k
) = G2(tcr)− c

√
1− t3k/tcr + o

(√
1− t3k/tcr

)
, (31)

indeed leading to a γ = 1/2 exponent, and where tcr > 0, G2(tcr) > 0, and c > 0 can be computed numerically. To
summarize, we present all interactions of order 6 for rank D = 3 in table I.

D. Order six theory in four dimensions

In dimension 4, besides melonic interactions 3M and 3′M (see Table II), there are necklace interactions 3N, and the
interactions of type 3MN, which all generate leading orders similar to that of quartic necklaces, there is the interactions
3′N, which, as we will explain in Subsection II C, can be understood as an enrichment of the quartic necklaces, and
there are two kinds of interactions, 3K and 3′K, which are obtained from the K3,3 interaction by adding an additional
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Name
Numb.
of col.

Interaction Coloured graph Int Field sB γB

2M 3
1

12

2

3

3

T

T̄
T̄

T

1

12

2

3

3

1
0 1

2

3M 3 1

1

1

2

2

3

3

3

2

T

T T

T̄ T̄

T̄

1

1

1

3

2

2

3

32
1

1

1

0 1
2

3′M 3 1

1

1

2

2

3

3

3

2

T

T T

T̄ T̄

T̄

2

1 3

1

2

3

3 1
2

1

3 13

0 1
2

3K 1 1

1

1

2

2

3

3

3

2

T

T T

T̄ T̄

T̄

1

1

1

3

3

3

2

2

2

12

23 13

1 1
2

TABLE I. All U(N)3-invariant interactions of order 4 and 6 in rank-3 tensors. The non-local structure of the interaction is shown
as stranded diagram, in the coloured-graph representations common in the tensor-model literature and in the intermediate-field
representation explained below in section II.

colour. As detailed in Subsection II C, it is very easy to show that interaction of the type 3′K have a tree-like leading
order with exponent γ = 1/2. We therefore describe the 3K tensor model here. The interaction is obtained from the
K3,3 interaction by adding strands of colour 4 parallel to the strands of colour i, where i = 1, 2, or 3 (and by possibly
exchanging colours). An interaction of this type is

1

1

2

3

4

4

3

T

T T

T̄ T̄

T̄

2

2

3

14 TrB3K
(T, T̄ ) =

N∑
a,b,c,d,e,f,g,h,i,j,k,l=1

TabcdT̄aefgTheij T̄kbijTklfgT̄hlcd. (32)

We will study the critical regimes for an order six theory that also includes the following type 3M melonic interaction,

1

1

2

3

4

4

3

T

T T

T̄ T̄

T̄

2

2

3

14 TrB3M
(T, T̄ ) =

N∑
a,b,c,d,e,f,g,h,i,j,k,l=1

TabcdT̄aefgThefgT̄hijkTlijkT̄lbcd. (33)

The corresponding partition function is

Z6(λ,N) =

∫
CD

e
t3kN

3+s3K Tr3K (T,T̄ )+t3MN
3TrB3M

(T,T̄ )
dµ0(T, T̄ ). (34)

Because the interaction in Eq. (33) is melonic, we should have a square-root critical behaviour in t3M
, when t3k

= 0.
We will show in Subsection II C that the right scaling is s3K = 2. We will also show that the three critical regimes
with exponents 1/2, −1/2, and 1/3 are obtained for this model.
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Name
Numb.
of col.

Interaction Coloured Graph Int Field sB γB

2M 4

1

2
2

1

3

3

4

4

T

T̄ T̄

T

1

1

3

3

4

4

1
0 1

2

2N 3

1

2

2

1

3

3

4

4

T

T̄ T̄

T

1

2

1

3

3

4

4

2 12
1

−1/2

1/2

1/3

3M 4

1

1

2

3

4

4

3

T

T T

T̄ T̄

T̄

2

2

3

14

1

1

1

4

2

2

4

42
1

1

1

0 1
2

3′M 6

1

1

2

3

4

4

3

T

T T

T̄ T̄

T̄

2

2

3

14

3

1 4

1

2

4

4 1

2

3 1

4 14

0 1
2

3N 3

1

1

2

3

4

4

3

T

T T

T̄ T̄

T̄

2

2

3

14

1

2

3

4

2

1

3

4

43 21
12

12

12

2

−1/2

1/2

1/3

3′N 6

1

1

2

3

4

4

2

T

T T

T̄ T̄

T̄

2

3

14

3

14

3

1

3

2

4

2

1

3

4

2 123

13

12

2 1
2
?

3MN 12

1

1

2

3

4

4

3

T

T T

T̄ T̄

T̄

2

2

3

14

1

1

4

3

4
2

1

2

3

4

3
12

12

1

1

−1/2

1/2

1/3

3K 6

1

1

2

3

4

4

3

T

T T

T̄ T̄

T̄

2

2

3

14

1

1

1

4

3

3

4

43

2

2

2

12

234 134

2

−1/2

1/2

1/3

3′K 4

1

1

23

4

4

3

T

T T

T̄ T̄

T̄

2

2

3

1

4

1

1

4

3

4

3

3

2

2

2

1

4

12

23 13

1 1
2

TABLE II. All U(N)4-invariant interactions of order 4 and 6 in rank-4 tensors, shown as stranded diagram, coloured-graph
and in the intermediate-field representation explained below in section II.
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II. LEADING-ORDER DIAGRAMS

In this section we explain the derivation of the Dyson-Schwinger equations for the tensor models under consideration
by counting their Feynman diagrams. The evaluation of the perturbative sum of the 2-point function can be performed
most efficiently transforming the tensor-model state sum to an intermediate-field representation involving embedded
diagrams [23, 24, 26]. This was illustrated in section I B for the quartic tensor model with a single interaction of
type B1i

2N
, for which the Feynman diagrams are in one-to-one correspondence with four-valent ribbon graphs, and in

which closed strands carry a weight N2. For other models, there generally is no one-to-one map as simple but one
can develop more subtle transformations.

There is a one-to-one correspondence between Feynman diagrams and embedded diagrams equivalent to ribbon
graphs, introduced in [26], in which interactions are replaced by white vertices of a specific kind. White vertices can
only be linked to black vertices, and conversely. Propagators, which we will call edges in this section, carry various
colour-sets I ⊂ {1, · · · , D} that depend on the interactions, and black vertices have no restriction on possible incident
edges. Importantly, embedded diagrams, also sometimes called fatgraphs, are graphs for which the cyclic ordering of
edges around vertices matters: two diagrams which only differ by the ordering of edges around vertices are different
diagrams. Consequently, two half-edges incident to the same vertex and following each other are separated by a
well-defined corner. A face in an embedded diagrams is a closed walk: a cyclic succession of corners that are on the
same side of the same edge (they correspond to the closed strands of the equivalent ribbon graph). The propagators
in the stranded representation are mapped to corners in the new intermediate-field representation, and crucially, the
faces of colour i of the stranded diagrams (Eq. (7)) are mapped to faces around the embedded diagrams obtained by
keeping all the black vertices, and only the edges whose colour-set contains colour i, as can be seen on the example
of (36). We can therefore apply ribbon graphs tools to solve tensor models. We refer the reader to the Appendix for
a more detailed explaination of this correspondence.

To obtain the white vertex corresponding to a given interaction, one has to choose a way to pair every tensor T with
a T̄ . The intermediate-field vertices corresponding to each interaction are given in the fifth column of Tables I and II.
The choices of pairings on order-6 interactions made to obtain these embedded vertices are given by the following
rules,

T

T T

T̄ T̄

T̄

A

B

C

↔
A

B

C
, and

T

T T

T̄ T̄

T̄

A

B

C

↔

A

BC
. (35)

An example of a stranded diagram and the corresponding intermediate-field embedded diagram are shown below,

1

1

3

3

2

1

1

1

2
3

2

2

1

2
32

↔

1

1 1

3
313

13

1 1

. (36)

Given an embedded diagram M, we denote L(M) its number of independent loops, given in terms of its number of
edges E, vertices V , and connected components K by

L(M) = E(M)− V (M) +K(M). (37)

A tree is a diagram with no loops. The genus g of an embedded diagram is given in terms of its number of faces F by

2K(M)− 2g(M) = V (M)− E(M) + F (M). (38)
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It is the minimal number of holes of a surfaces on which the diagram can be drawn without crossings. If M is an
intermediate-field diagram, we may consider the colour-i sub-diagram obtained by keeping all the black vertices and
all the edges whose colour-set contains colour i. We respectively denote Li(M), Fi(M), and gi(M), the number of
loops, faces, and the genus of the corresponding colour-i sub-diagram. If M is an intermediate-field diagram and T
is an intermediate-field tree with the same number BB(M) of interaction bubbles of each type, then the following
identity holds, which was shown in [26],

F (T )− F (M) = DL(M) + 2

D∑
i=1

(
gi(M)− Li(M)

)
. (39)

We will mainly use this formula to determine leading-order diagrams of the tensor models. The number of faces of
trees is always linear in the number of interaction bubbles of each kind,

F (T ) = D +
∑
B∈B

aBBB(T ), (40)

where aB only depends on the interaction bubble and the way the tensors T and T̄ have been paired (it is the number
of faces when putting the propagators between the pairs (T, T̄ ), minus the rank of the tensor) [26]. If trees belong to
the leading order, then aB gives the strongest scaling sB one can choose to have a defined 1/N expansion

sB = (nB − 1)(D − 1)− aB. (41)

All interactions of order 4 and 6 in dimensions 3 and 4 are such that, for the choices of intermediate-field vertices
presented in Tables I and II, trees belong to the leading order, and we can therefore deduce the appropriate scalings
from the number of faces of trees. With this choice of scaling, the amplitudes of intermediate-field diagrams scale as

A(M) ∼ ND
(

1−L(M)
)

+2
∑D

i=1

(
Li(M)−gi(M)

)
= O(ND). (42)

A. Intermediate-field representation of rank D = 4 quartic tensor models

For quartic theories with interactions of the type 2N (18) or of the type 2M (first row of Table II), the transformation
can be done directly on the correlation functions using the Hubbard-Stratonovich transformation [57, 58]. This can
be seen e.g. in [32]. However we here focus on describing this correspondence at the diagram level. We choose to pair
a tensor T and a T̄ , and we see the quartic interactions as new kind of edges between these two pairs6, as illustrated
in (43). The fact that interactions become edges is why this new representation is called the intermediate-field
representation.

1j 1 ↔ 1j 1 (43)

Of course there are several choices of pairings. If the interaction is of type Bi2M
, we always choose to pair the tensors

that are linked by 3 strands, and if the interaction is of type B1i
2N

, we always choose to pair tensors that are not linked
by a strand of colour 1. The colours which propagate between the chosen pairs now label the corresponding edges in
the new representation. The vertices in the new representation correspond, in the stranded representation, to cycles
alternating pairs of tensors not linked by colour 1 and propagators. In the quartic case, one has the following theorem,
first proven in [22]: there is a one-to-one correspondence between Feynman diagrams of enhanced four dimensional
quartic tensor models and embedded diagrams with edges carrying either one colour {i}, where i = 1, 2, 3, 4, or a set

6 In the quartic case, the intermediate-field vertex would have two incident edges, and it can just be replaced with an edge.
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of two colours {1, 2}, {1, 3} or {1, 4}. Crucially, the faces of colour i of the original Feynman diagrams are mapped
to the faces of the embedded colour-i sub-diagram. The total number of faces of an embedded diagram M is

F (M) =

4∑
i=1

Fi(M). (44)

Note that if there are no edge with label-set containing colour i, then Fi(M) = V (M). Similarly, if colour 1 appears
on every edge, as it is the case if all interactions are of the B1i

2N
type, then F1(M) is just the total number of faces of

the diagram M. The dependence in N of the amplitude of a diagram is

A(M) ∼ NF (M)−
(

3
∑4

i=1 Ei(M)+2
∑4

i=2 E1i(M)
)
, (45)

where Ei are edges carrying colour-i only, and E1i are edges labelled with colours 1 and i. Consequently, the embedded
diagrams contributing to the leading order of the tensor model are those which maximize F at fixed number of edges
of each kind. Leading-order contributions are identified by first looking at the behaviour of trees, which are connected
embedded diagrams M such that L(M) = 0, and then studying the way F changes when deleting edges. One can
easily prove recursively on the number of edges [26] that a tree T is such that

F (T ) = 4 + 3

4∑
i=1

Ei(T ) + 2

4∑
i=1

E1i(T ), (46)

corresponding to Eq. (40), and resulting in amplitudes scaling as

A(T ) ∼ N4. (47)

Furthermore, one can easily show that if a diagramM contains an edge labelled with a single colour and which is not
a cut-edge (a cut-edge is such that the number of connected components increases by 1 when being deleted), then
there exist another diagram M′ such that

A(M) ∼ A(M′)N−α, (48)

with α > 0. Thus,M cannot contribute to the leading order. To identify leading-order diagrams we now use Eq. (39).
Here, L1 = L and g1 = g, so that if M and a T have the same number of edges of each kind and if colour-i edges in
M are all cut-edges, the scaling in N of the amplitude is

4−
(
F (T )− F (M)

)
= 4− 2Lm(M)− 2

(
g(M) +

4∑
i=2

gi(M)
)
, (49)

where all quantities have been defined before, except

Lm(M) = L(M)−
4∑
i=2

Li(M) ≥ 0, (50)

the number of independent loops in the graph that contain edges of at least two sets of colours 1i and 1j with i 6= j.
Consequently, a diagram contributing to the leading order is planar (g(M) = gi(M) = 0), and only has loops of
edges that carry the same two colours 1 and i (Lm = 0) for any i. A schematic example is shown in (51) (each blob
corresponds to a planar component with only edges carrying the same colour-set {1i}).

12

14

14 13

12

2

3

1

1

1

4

2

4

(51)
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We typically count diagrams with one distinguished edge, to which an orientation is given. The reason is that this
breaks symmetries, as mentioned previously, and therefore leading order diagrams can then be counted more easily.
Cutting that distinguished edge, one obtains a contribution to the 2-point function, and conversely. Counting rooted
diagrams therefore goes back to counting leading-order contributions to the 2-point function.

Non-separable embedded diagrams [59] are such that no face has two corners incident to the same vertex. The
distinguished edge is either a cut-edge of colour i, in which case there is one 2-point function at each extremity,
and the contribution is tiG

2
2, or it belongs to a leading-order non-separable planar component, in which case all the

edges have the same colour set {1i}. In each corner on each vertex is a (possibly trivial) rooted leading-order 2-point
function. We denote Pns the generating function of rooted non-separable planar embedded diagrams,

Pns(z) =
∑
n≥0

cnz
n, (52)

where cn is the number of non-separable embedded diagrams with n edges. It is given by the following parametrization
[59, 60],

z = u(1− u)2 (53)

Pns(z) = (3u+ 1)(1− u). (54)

In an embedded diagram, the number of corners is twice the number of edges. Because we need to add one 2-point
function G2 per corner of the non-separable component containing the root, we need to replace the parameter z
counting edges of the non-separable planar component with t1i2N

G2
2. We therefore obtain the following equation for

the leading-order two-point function G2, which depends on the coupling constants {ti2M
}, {t1i2N

}

G2 = 1 +

4∑
i=2

(
Pns(t

1i
2N
G2

2)− 1
)

+G2
2

4∑
i=1

ti2M
. (55)

The reduction of this equation to the case with a single necklace and melonic interactions has been investigated in
[39], as well as the case where all necklaces are given the same coupling. In Section III, we study in detail the critical
regimes when considering quartic necklaces with independent couplings, and show that the same critical regimes are
involved.

B. The sextic case in dimension three

For K3,3-type interactions the total number of faces of leading-order Feynman diagrams is

F (M) = 3(1 +B(M)), (56)

as shown in [26] where we recall that B is the number of interaction bubbles, so that when putting a N3 scaling
in the action, corresponding to s = 1, the amplitude of leading-order Feynman diagrams contributing to the free
energy scales as N3. Vacuum leading-order diagrams are such that bubbles are locally as in one of the two situations
illustrated in Eq. (57), as proven in [26],

1

1

1

2

2

3

3

3

2

G2 G2 G2 1

1

1

2

2

3

3

3

2

1

1

1

2

2

3

3

3

2

G2

G2

G2

G2

G2

G2

(57)

in which the G2 blobs indicate the insertion of a possibly trivial contribution to the leading-order 2-point function.
As explained previously, we count the diagrams contributing to G2. It corresponds to counting diagrams with one
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distinguished edge, so that all symmetries break down. Distinguishing an edge goes back to choosing a particular pair
(T, T̄ ). On each side, given a T , there are three different ways of choosing a T̄ . Consequently, the self-consistency
equation of the 2-point function G2 is

G2(t3k
) = 1 + 3t3k

G2

(
t3k

)3 + 3t23k
G2(t3k

)6. (58)

We stress that the self-consistency equation for the 2-point function of all sextic melonic interactions would be the
same, but without the order 6 term. The effect of the non-planarity is therefore to generate loops at leading order,
but which are too small to change the large-scale structure of leading-order diagrams.

For this model, we introduce a new correspondence between Feynman stranded diagrams and embedded diagrams,
subtler than that described at the beginning of Sec. II and in the Appendix, which renders the tree-structure of
leading-order diagrams explicit at the cost of introducing extra colours on the (white) intermediate-field vertices
corresponding to the interaction bubbles. This additional colouring takes into account the way the tensors T and T̄
have been paired to obtain the patterns of (57).7 Leading-order stranded diagrams are mapped to embedded diagrams
with coloured vertices and black vertices such that edges - which carry colour sets {12}, {13}, {23}, or {123} - can
only link coloured vertices to black vertices. The black vertices are of any valency and are similar to the vertices
introduced in Section II A. The other vertices are of valency 3 (colours a, b and c), or 6 (colours d, e, and f), and are
rigid in the sense that they have a fixed ordering of edges around them. The cyclic counterclockwise ordering of edges
around valency-3 vertices a, b and c, is given by their colour-sets according to {12}, {13}, {23}, as shown in (59).
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a
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23

13

b
12

23
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c (59)

The 6-valent vertices d, e, and f have a coloured internal structure, and all incident edges carry all colours {123}, as
shown in (60).
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(60)

As before, the faces of colour i of the stranded diagram in the original picture are now mapped to the faces of the
corresponding colour-i sub-diagram. Leading-order diagrams are mapped to trees in the new representation, and
other diagrams are mapped to embedded diagrams as just described, which have at least one loop and have a few
forbidden small sub-diagrams.8 The number of faces of a tree in the new representation is recursively proven to be
(56), which corresponds to equation Eq. (40) and provides a3K

= 3, and therefore s3K
= 1 from Eq. (41). As in the

previous subsection, we define L12 ≥ 0, the number of independent loops of M which are not counted in L1 and L2,
as

L12 = L− L1 − L2. (61)

In particular, we will use the two following properties:

L ≥ Li + Lj (62)

for any i 6= j, and

Lij(M) > 0 ⇒
[

There exist some edge in M which is a cut-edge in

Mi and Mj but is not a cut-edge in M

]
. (63)

7 More precisely, the correspondence is similar to that described in the Appendix, but instead of choosing one given pairing of the (T, T̄ )
for all the interactions in the graph, we choose the pairing locally for every subgraph as in Eq. (57), making sure that the paired tensors
are those linked by a propagator with a G2 blob. For technical details see [61], Sec. 3.2.6.

8 In order to stay concise, we do not explain in detail the correspondence for non-leading diagrams, as we only use the correspondence for
leading-order diagrams in the following. We stress however that this correspondence can be extended to all orders.
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Using Relation (39) which compares the number of faces of intermediate-field diagrams and trees, we see that a
diagram M satisfies

F (M) = 3(1 +B(M))−∆3(M) = 0, (64)

where ∆3(M) is the quantity

∆3(M) = L12 + L13 + L23 + 2

3∑
i=1

gi(M) ≥ 0, (65)

which is non-negative as a sum of positive quantities, and vanishes iff all terms vanish. The amplitude of diagrams in
the new representation is

A(M) ∼ tB(M)
K N3−∆3(M), (66)

where the number of bubbles B(M) = Vcol(M) is the number of coloured vertices and we can now restate the
condition a diagram needs to satisfy in order to contribute at leading order,

M is L.O. ⇔
{
L12 = L13 = L23 = 0
g1 = g2 = g3 = 0

. (67)

This is the characterization used in [26, 61] to prove that the leading order diagrams are as shown in Eq. (57).
The proof is quite lengthy, so we do not repeat it here, but just sketch it: The leading order embedded diagrams are
characterized recursively on the number of white vertices. The leading order diagrams with one and two vertices are
identified to be the embedded diagrams corresponding to the diagrams of Eq. (57) but without the G2 blobs. Then
it is recursively shown that if ∆3(M) = 0, then M contains a subgraph as in Eq. (57), and the blobs still satisfy
∆3(M) = 0, so the recursion hypothesis applies to them. For more details, we refer the reader to [61].

C. The sextic case in dimension four

We explain now the leading-order behaviour of all D = 4 sextic interactions. As mentioned in Subsection I D, the
interactions of type 3M and 3′M in Table II are melonic, and therefore their critical behaviour and continuum limit is
known. The tensor model built with necklace interactions of type 3N, as well as melonic interactions 3M and 3′M is
similar to the full quartic rank-4 tensor model in all aspects, and the proof follows the exact same steps. Trees belong
to the leading order and behave as Eq. (40) with number of faces

F 3N

LO = 4 + 4B3N
+ 6(B3M

+B3′M
) (68)

such that a3N = 4, and therefore s3N = 2 from Eq. (41). Denoting P(3)
ns (z) the generating function of planar ribbon

graphs with white vertices of valency three and black vertices of any valency, and such that no face visits twice or
more the same black vertex, counted according to their number of black vertices9, the self-consistency equation for
the leading-order 2-point function of this model is

G2 = 1 +

4∑
i=2

(
P(3)

ns (t1i3N
G3

2)− 1
)

+G3
2

( 4∑
i=1

ti3M
+

4∑
i<j=1

tij3′M

)
(69)

as G2 is inserted on every corner around a black vertex, and there are as many such corners as edges in the diagram.
We expect the same critical regimes as in the quartic case.

Interactions of type 3MN are obtained from a quartic necklace by “opening” a strand of colour i and inserting two
tensors linked by three new strands of colours different from i. These two tensors are paired, and, depending on
whether colour i is colour 1 or parallel to colour 1, or not, we have the following intermediate-field vertices (with the
pairing rule (35)),
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2

4 1 ↔
12

4 124

,

(70)

9 This can be computed from [62].
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and their equivalents. The edge corresponding to the insertion always carries a single colour. As in the quartic case,
such an edge is necessarily a cut-edge in every leading-order diagram. Indeed, unhooking an edge e as shown in (71)
(here, we cannot delete an edge because of the rigid structure of white vertices),

e

→
e

(71)

it is easily seen that, if e carries a single colour, the number of faces necessarily increases at least by two. Therefore,
if unhooking the edge does not increase the number of connected components, the diagram is suppressed at large N .
Leading-order diagrams of a type 3MN tensor model are obtained from leading-order diagrams from necklace-type
models by performing the following operations on the edges

1i

L.O. →
1i

G2

1 or i
1i or

1i

G2

j 6= 1, i
1ij , (72)

where G2 is a 2-point leading-order insertion from the current order-6 model. Consequently, trees belong to the
leading order, and it is seen recursively that their number of faces behave as Eq. (40) with

F 3MN

LO = 4 + 5B, (73)

yielding a3MN
= 5, and therefore s3MN

= 1 from Eq. (41). A distinguished edge in a leading-order diagram is always
incident to a non-separable planar diagram with all edges of colour 1i, with one full G2 insertion on every corner, and
another G2 inserted on each edge, with 3 ways of deciding which one is the distinguished edge. For each edge, one
has to decide which one of the four colours c of the quartic necklace B1i

2N
has received an insertion, contributing with

a coupling tci3MN
. The self-consistency equation for the 2-point function of the full type-3MN tensor model is

G2 = 1 +

4∑
i=2

{
Pns

(
3G3

2

4∑
c=1

tci3MN

)
− 1
}
. (74)

In the case where a single interaction Bci3MN
, with c ∈ {1, 2, 3, 4} and i ∈ {2, 3, 4}, is allowed it reduces to the simpler

equation

G2 = Pns

(
3G3

2t
ci
3MN

)
. (75)

We now consider an interaction of type 3′K, and show that the leading-order intermediate-field diagrams are precisely
trees. Suppose that 4 is the colour which belongs to every double-strands, as in the diagram of Table II. We apply
relation Eq. (39), which compares faces of trees T and diagrams M with the same number of interactions:

F (T )− F (M) = L(M)− 2L4(M) + 2g4(M) + ∆3(M) (76)

≥ L(M)− 2L4(M) + 2g4(M), (77)

where ∆3 has been defined in Eq. (65). As colour 4 does not appear on any edge, L4(M) = g4(M) = 0 such that

F (T )− F (M) = L(M). (78)

This vanishes if M is a tree and is positive otherwise. The self-consistency equation is a simple cubic tree-equation,
and, as for 3MN type interactions, a3′K

= 5, and s3′K
= 1. This argument holds for a single type 3′K colouring, however

we also expect a tree-behaviour for the full 3′K tensor model.

We consider a single interaction of type 3K, with the colouring as in Table II. The number of faces of trees is Eq. (40)

F (M) = 4(1 +B(M)). (79)
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Moreover, diagrams are such that L3 = L4 and (61, 62, 63) are true for i 6= j < 4, so that (39) rewrites as

∆4(M) = F (T )− F (M) = 2(L13(M) + L23(M)) + 2

4∑
i=1

gi(M), (80)

so that trees belong to the leading order, from which we deduce that, as a3K
= 4, s3K

= 2 from Eq. (41), and other
leading-order contributions are such that

L13 = L23 = 0, and ∀i, gi = 0. (81)

There are two cases. If in addition L12 = 0, then we know from the previous section that in our representation, the
diagram is a tree. If not, L12(M) > 0, and from (63) we know that there exist an edge e which is not a cut-edge, but
is so in both M1 and M2. Unhooking e as in (71), we obtain a new diagram M′ such that,

L′ = L− 1, L′1 = L1, and L′2 = L2. (82)

Using (62) and (81),

0 ≤ L′ − L′1 − L′3 = L− 1− L1 − L′3 = L3 − L′3 − 1. (83)

Furthermore, L3 − L′3 is 0 or 1, but the first value contradicts (83), so that

L′3 = L3 − 1, (84)

and therefore M is obtained from M′ by hooking an edge of colour i34 to create a loop such that M3 = M4 stays
planar and such that it is a cut-edge in Mi. We still have L′ ≥ L′1 + L′2 = L1 + L2, so there are two cases. Either
L′ > L′1 + L′2, in which case we repeat the same steps, or L′ = L′1 + L′2, in which case M′ is a tree. From this tree,
M is obtained by hooking a certain number of edges i34 so that every edge of colour 12 stays a cut-edge and such
that the overall diagram remains planar.

Leading-order diagrams are quite similar to those obtained from a single type 3MN interaction, with the difference
that here, the tree part has three valency-3 vertices and three valency-6 vertices. We distinguish an edge with colour set
{134} or {234}. To recover the leading-order 2-point function, one simply replaces z with 3/2z. There are two cases.
In the first case, the distinguished edge is either a cut-edge of colour set {134} or {234}, and it belongs either to one of
the three 3-valent vertices or to one of the three 6-valent vertices. The contribution is 6t3k

G2(t3k
)3 + 6t23k

G2(t3k
)6. In

the other case, the distinguished edge is not a cut-edge, in which case it belongs to a non-separable planar component
Eq. (53) for which all edges contain the colours 34, and we need to insert one 2-point function per black corner of
the non-separable component and one 2-point function per edge - corresponding to the colour-{12} cut-edge - that
can be added in two possible ways. Indeed, a white vertex is added on every edge, and a colour-{12} bridge is added
between that white square and a leading order sub-diagram, and there are two ways of deciding which one of the two
colour-{34} segments has colour-set {234}, and which one has colour-set {134}. This second possibility contributes as
Pns

(
2zG3

2

)
. It generates a tree part 2zG3

2 which has to be subtracted from the overall tree part. The 2-point function
G2 therefore satisfies

G2 = G2(t3k
) = Pns

(
2t3k

G3
2

)
+ 4t3k

G3
2 + 6t23k

G6
2. (85)

As for interactions of type 3′N, we notice that a propagator can be inserted on every interaction bubble,
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, (86)

transforming every bubble into two quartic necklaces with different colouring and a distinguished propagator between
them, without changing the number of faces. A type 3′N diagram belongs to the leading order if the diagram obtained
by inserting a propagator for every bubble is a type-2N leading-order diagram. Because the inserted propagators are
distinguished, leading-order diagrams of type 3′N correspond to leading-order diagrams of type 2N for which there
exist a way of choosing propagators such that every bubble is incident to a distinguished propagator, and such that
every distinguished propagator is between two quartic necklaces with different colourings.
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This is a very specific kind of hard-dimer model on leading-order quartic necklaces (it is similar to a dimer model
on random lattices with black and white vertices such that distinguished edges only link black and white vertices,
and such that every vertex is incident to a distinguished edge). Coupling a model to hard dimers is in general similar
to considering multi-critical behaviour for models with higher order interactions. This suggests that the critical
behaviour from interactions of type 3′N could in principle be obtained from the quartic necklaces regimes. Each one of
the various models involving interactions of type 3′N and 2N should correspond to a very specific kind of hard-dimer
model on random lattices with coloured vertices and particular restrictions on how the distinguished edges can be,
which could exhibit very interesting critical behaviour. We will however leave their study for further work.

III. MULTI-CRITICAL BEHAVIOUR OF THE MODELS

Enhanced coloured tensor models exhibit a rich multi-critical structure at leading order in the 1/N expansion.
Critical behaviour of branched-polymers is the standard case in tensor models, but enhancing necklace-type interac-
tions allows for planar regimes as well. When both types of interactions are present in the action, there are regimes
in coupling space for each behaviour. The boundary between them obeys the special transition behaviour for which
“cacti” dominate which are made of an infinite number of discrete spheres of diverging areas - baby universes- with
tree-like incidence relations. These are characterized by a critical exponent γ = 1/3. Moreover, for several couplings
the regimes have further internal structure of multi-critical subspaces. In this section we explain this structure for the
models under consideration and illustrate it with explicit examples. As a new result we find that there is generically
no multi-criticality on the boundary between the regimes induced by trees.

A. Universality transition between planar and branched-polymer regimes

All the models under consideration yield equations for the two-point function G2 of the general form

G2 = Q0[G2] +
∑
j

Pns(Qj [G2]) (87)

where Q0, Q1, ... are a finite number of polynomials in G2 and Pns is the generating function of non-separable planar
diagrams, Eq. (53). (Strictly speaking, sextic necklaces B3N

and the necklace-type interaction B3′N
have to be described

by a modified generating function P(3)
ns for non-separable rooted diagrams with restricted valency, or dually, faces

restricted to hexagons. Nevertheless, there are no reasons to expect qualitative differences.)

We conjecture that solutions G2 always have the same qualitative behaviour of a planar regime, a branched-polymer
regime and a baby-universe transition phase. To this end we have analyzed the critical behaviour of the various models
considered here. We provide some general arguments and illustrate this statement with a number of explicit examples
in the following parts of the section.

Let us consider the general case of one planar coupling g and a finite number of melonic couplings {tj}. The
corresponding equations for G2 are

0 = V (G2, tj) + Pns(gG
k
2) (88)

where V covers a finite set of melonic interactions,

V = V (G2, tj) = −G2 +
∑
j≥1

tjG
j
2 , (89)

and k ≥ 2 results from the interaction of order 2k that is relevant for the planarities. Here, k = 2 for quartic necklaces
Eq. (55), and k = 3 for type 3K interaction Eq. (85).

Heuristically, the generic two-phase structure of the models is obvious from Eq. (88): For the planar coupling g much
larger than the melonic couplings {tj}, the V part can be neglected and the equation is simply the equation for planar
diagrams [39]. On the contrary, for g much smaller than the {tj}, the equation reduces effectively to 0 = V (G2, tj)
for which the implicit-function scheme theorem [56, Ch. VII.4] applies yielding critical branched-polymer behaviour.

We have used three methods to determine critical loci. Due to the definition Eq. (53) of Pns, the equations for
G2 are parametric. The straightforward way to determine critical loci is given by the vanishing of the Jacobian
determinant together with the original equations. This is again a system of equations which has to be solved for G2,
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the additional parameter u (see Eq. (53)) and one of the couplings. The advantage is that all critical values including
Gcr

2 are directly determined.
A second way to find the critical loci is to reduce the parametric equations to a single one and demand its discrim-

inant to be vanishing. For Eq. (88), elimination of the extra variable of the parametric definition of Pns Eq. (53) in
terms of the resultant yields the equation

0 = V 2(V + 1)− 2(8 + 9V )gGk2 − 27(gGk2)2 . (90)

Up to some monomial factors, its discriminant has the form of a product Pbp · (Ppl)
3 of a polynomial Pbp determining

the surfaces at which G2 obeys the critical behaviour of branched polymers and Ppl yielding planar critical behaviour.
The transition line between the two regimes is then determined by the common solution Pbp = Ppl = 0.

A third method is to determine critical loci of G2(g, tj) as extrema of the inverse function tk(G2, g, tj) for some
tk ∈ {tj}. While this is straightforward when equations are linear in the couplings, for polynomial equation like in our
case a clever rescaling of couplings has to be guessed in order to find an explicit inversion, if possible at all. Indeed,
Eq. (88) can be appropriately inverted after rescaling tj = λjt and g = λt. Then V (G2, tj) = tṼ (G2, λj) and the
equation takes the form

0 = Ṽ 3t2 + (9λGk2 − Ṽ )2t− 108(λGk2)2t− 16λGk2 . (91)

such that

t± = t±[G2, λ, Ṽ (G2, λj)] =
1

2Ṽ 3

[
(9λGk2 − Ṽ )2 − 108(λGk2)2 ± (λGk2 − Ṽ )

1
2 (9λGk2 − Ṽ )

3
2

]
(92)

where t− is the physical branch with t−(G2 = 1, λ, Ṽ ) = 0 .
The third method is particularly useful to determine multi-critical loci with exponents

δ ≡ 1− γ =
1

q + 1
→ γ =

q

q + 1
(93)

from vanishing derivatives

0 =
∂t

∂Ṽ
=

∂2t

∂Ṽ 2
= ... =

∂qt

∂Ṽ q
. (94)

In contrast to the case with only melonic interactions [5] where all equations are polynomial, in this case it is not
obvious whether solutions to these systems of equations exist up to q being the number of couplings.

Nevertheless, in explicit examples we do find multi-critical loci up to q = m+ 1 for m ≥ 2 melonic couplings, that
is, even including the planar coupling g. This means that planar couplings enrich also the multi-critical structure of
the branched-polymer regime which is a new insight to the best of our knowledge.

In the phase space of the models considered here, there are no intersections of multi-critical lines with transition
lines. Accordingly, the case of critical exponents

γ ≡ 1− δ =
p

m+ n+ 1
(95)

as argued in [35] for matrix models and applied to tensor models [22] does not appear (in this relation, m is the
number of fine-tuned branched-polymer-type couplings, n the number of fine-tuned planar couplings, and p ≤ m).

B. Coupling melons and a necklace

In this section we illustrate the phase structure of models with a planar coupling and a number of melonic couplings
Eq. (88) for a particular example. At least three couplings are necessary to investigate both the transition from a
planar to a branched-polymer regime as well as interference with multi-criticality in the latter one. The simplest
non-trivial case is the tensor model with a quartic and sextic melonic and a quartic necklace interaction,

V = −G2 + t2G
2
2 + t3G

3
2 . (96)

On the surface

tpl
3 = tpl

3 (g, t2) =
3

4

(
9g − 2

√
3g(9g + t2)2

)
, Gpl

2 = Gpl
2 (g) =

2

3
√

3g
, (97)
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we find γ = −1/2 critical behaviour

G2(g, t2, t3) = Gpl
2 +

4

27g
(
tpt
2 − t2

) (tpl
3 − t3

)
− 32

81 4
√

3g
(
t2 − tpt

2

)5/2 (tpl
3 − t3

)3/2

+O
(
tpl
3 − t3

)2

. (98)

The coefficient of the fractional-exponent expansion term already indicates, that this expansion breaks down for
t2 < tpt

2 where

tpt
2 = tpt

2 (g) = −3
(

7g −
√

3g
)

and tpt
3 = tpt

3 (g) = −9

4
g
(

3− 8
√

3g
)

(99)

for g > 0. Indeed, this is the solution we find for the line of phase transition between planar and branched-polymer
regime. We have checked the expansion around the transition line (g, tpt

2 , t
pt
3 ), for example in t3,

G2(g, t2, t3) = Gpl
2 −

1

9 31/6g3/2

(
tpt
3 − t3

)2/3
+O(tpt

3 − t3) (100)

yielding critical behaviour with exponent γ = 1/3. In particular, using the Newton-polygon method [56, ch. VII.7]
we find that there are no further multi-critical points on this line.

Critical surfaces on which G2 has γ = 1/2 critical behaviour are fourth roots of the equation

0 = Pbp(g, t2, t3) = 3125g4t23 + 7500g3t2t
2
3 − 2g2

(
2t52 + 25t32t3 − 2775t22t

2
3 + 500t2t

2
3 − 4500t33

)
(101)

−4g
(
2t62 + 23t42t3 − 283t32t

2
3 + 160t22t

2
3 − 1260t2t

3
3 + 16t33(25− 108t3)

)
(102)

−
(
t22 + 4t3

)2 (
4t32 − t22 + 18t2t3 + t3(27t3 − 4)

)
(103)

whose solutions are hard to handle explicitly. However, from the branching lines of the solutions we can find an
explicit expression for the multi-critical line g
t2
t3

 =
(5λ+ 1)(25λ2 + 118λ+ 1) +

(
25λ2 − 26λ+ 1

) 3
2

6× 72 (25λ2 + 22λ+ 1)
2

 72λ
72

625λ3 + 150λ2 − 339λ− 4− (5λ+ 4)
√
λ− 1(25λ− 1)

3
2


parametrized by λ ≤ 1/25. On this line we find γ = 2/3. The endpoint (g, t2, t3) = (1/80, 5/16,−5/128) of this line
is multi-critical with γ = 3/4 as can be seen from the expansion

G2

(
1

80
,

5

16
− t2,−

5

128

)
=

16

5
− 32 23/4

5
√

5

(
5

16
− t2

)1/4

+O
(

5

16
− t2

)
. (104)

The surprising finding is that in this example the γ = 3/4 point lies close to but not on the phase-transition line
Eq. (99). Moreover, we have checked that the transition line and the multi-critical line Eq. (104) have no intersection.
In particular, there is no critical point on the transition line with exponent γ = 2/4 = 1/2 as would follow from
Eq. (95). Therefore, the exponents argued for with matrix-model methods on the grounds of intersections of a multi-
critical line with the line of phase transition [35] are not recovered here. For such a result it is necessary to further
prove that such intersections actually exist. Our example shows that there are cases where they do not exist.

The properties of the two-point function G2 detailed in this example are common to solutions of the general type of
Eq. (88). We have checked combinations of various melonic interactions and, in particular, also type 3K interactions
instead of quartic necklaces. A peculiar aspect of the type 3K interaction B3K

is that it effectively contains already
both planar and branched-polymer behaviour since the equations for the two-point function Eq. (85) are of the form

G2 = Pns

(
gG3

2

)
+ t3G

3
2 + t26G

6
2 , (105)

only with fixed balance of coupling g = 2t3k
, t3 = 4t3k

and t6 = 6t3k
. Nevertheless, the tree-like part dominates in this

case and G2 has critical exponent γ = 1/2 at the critical point. This can be easily freed adding melonic interactions
of type 3M and 6M such that then t3 = 4t3k

+ t3M
and t6 = 6t3k

+ t6M
. Then there is again the full phase-space with

γ = 1/3 phase transition between planar and branched-polymer regime.
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FIG. 1. Left: Two-point function G2(t, s) for two type 2N quartic necklace interactions for various coupling ratios s according
to Eq. (106).The purple curve shows planar critical points valid for s < s1 and s > s2 while the magenta curve indicates the
critical points of the branched-polymer regime for sc,1 < s < sc,2.
Right: For comparison, two-point functions G2(t, λ) for type 3K and type 3M interactions in similar ratio of couplings t = t3k
and λ =

4t3k+t3M
2t3k

according to Eq. (105). The branched-polymer critical curve (magenta) extends here to arbitrary high λ, as

does the planar critical curve for arbitrary small λ. The phase transition with γ = 1/3 critical behaviour occurs at λ = −10/9.

C. Two types of necklaces with independent couplings

There is an example of a tensor model with a planar and a branched-polymer phase which is conceptually even
simpler: two or more types of necklace interactions. It has been considered partially in [39] for the case of quartic
necklace interactions B1i

2N
with identical couplings t12

2N
= t13

2N
and so forth. This results in geometries with branched-

polymer behaviour as soon as there are more then one type of necklaces.
Here we show that for independent couplings, e.g. t12

2N
, t13

2N
, there is only a very narrow regime of branched-polymer

behaviour. The two-point function G2 is the solution to the equation

G2(t12
2N
, t13

2N
) = G2(t, s) = Pns(tG

2
2) + Pns(s tG

2
2)− 1 (106)

where we use the relative coupling s = t13
2N
/t12

2N
and t = t12

2N
(one can check that indeed all results are symmetric under

s 7→ s−1). Then we find that G2 has the expansion

G2(t, s) = Gbp
2 − 32

(
2s+ 5− 5

√
2s
)1/2 (

5s+ 2− 5
√

2s
)1/2(

s+ 1−
√

2s
)1/2 (

tbp − t
)1/2

+O
(
tbp − t

)
(107)

typical for the branched-polymer regime only for s1 < s < s2 with

s1 =
5

4

(
3−
√

5
)
≈ 0.955 , s2 =

1

5

(√
5 + 3

)
≈ 1.047 (108)

and the critical values are

tbp =
1

32
(
s+ 1−

√
2s
) , Gbp

2 =
4
√

2s

s+ 1−
√

2s
− 8 . (109)

Again the expansion Eq. (107) is consistent with the solutions s1, s2 for the transition points as the radiant in the
numerator of the expansion coefficient is positive for s1 < s < s2.10 At these phase-transition values of s we find at
critical coupling tpt

1 =
√

5 + 3/96 and tpt
2 = 5/96

G2(t, s1,2) =
4

3

(√
5− 1

)
− 48(c1,2)1/3

(
tpt
1,2 − t

)2/3
+O

(
tpt
1,2 − t

)
(110)

with expansion coefficients c1 = 3
(
17
√

5− 38
)

and c2 = 6/
√

5− 11/25.

10 For s < (3 −
√

5)/5 ≈ 0, 153 and s > 5(3 −
√

5)/4 ≈ 6.545 the expansion Eq. (107) is defined as well but describes singularities of
non-physical (G2(0, s) 6= 1) solutions of Eq. (106).
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IV. CONCLUSIONS

We analysed the critical behaviour of tensor models for all quartic and sextic interactions in dimension 3 and 4, and
computed the unique scalings leading to a defined 1/N expansion, with non-trivial leading order, i.e. with infinitely
many contributions at leading order.

Most models present a branched-polymer phase, a 2d pure gravity (planar) phase, and an intermediate phase with
positive critical exponent, in which limit infinitely many smooth fractal spheres - baby universes - proliferate to form
cacti with infinitely many branching points. While this phase structure has, to our knowledge, always been recovered
from models with a matrix interaction and a polymerization perturbation, we provide a model generating cacti of
spheres of one or another colour converging towards the smooth fractal Brownian sphere in the continuum, except
for a very small region of the phase space for which the interference between the two colours is so strong it breaks
down to a branched-polymer phase. At the boundaries of this region, the two colors compete to produce proliferating
baby-universes. Furthermore, while in the context of matrix models, the polymerization terms were necessarily non-
connected multi-trace interactions coming from higher order curvature perturbations to the Einstein-Hilbert action,
in the present case, the considered models are all built from connected interactions, and can all be interpreted as
D-dimensional discrete Einstein-Hilbert theories of gravity without higher order curvature perturbations.

We study explicitly the multi-critical behaviour of a random tensor model with one quartic matrix-like “necklace”
interaction and polymerization “melonic” perturbations of orders 4 and 6 and see that instead of the entropy exponent
γ = 2/4 we would expect from [35], we obtain the multi-critical branched-polymer exponent γ = 3/4 at the end of
the multi-critical branched-polymer line, the planar coupling playing the role of an higher order polymer interaction
(we would not be able to reach an order-3 multi-critical branched-polymer exponent from only two quartic polymer
interactions and a sextic one). We stress that all the models introduced can be understood on the level of discrete D-
dimensional spaces dual to the Feynman stranded diagrams, so that all the critical and multi-critical phases involved
have interpretations in terms of statistical systems coupled to random D-dimensional lattices with very specific
adjacency conditions.

The results in this paper rely on a bijection between the Feynman stranded diagrams and embedded diagrams,
which generalizes the so-called intermediate-field representation. Throughout this bijection, the link with matrix-
models and two-dimensional discrete surfaces is made clear, and we therefore see that the non-planarity of the order
6 stranded interactions is replaced by a planar coloring rule on some cubic embedded vertices. In light of this, a more
appropriate criterium for interactions candidates to generate more interesting continuum limits could be the lack of
a planar embedded equivalent intermediate-field vertex from the bijection.
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Appendix A: Correspondence between stranded Feynman graphs and embedded diagrams

In this appendix, we summarize the one-to-one correspondence between stranded Feynman diagrams of random
tensor models, and embedded diagrams, in the case of interactions of order 6. This correspondence generalizes the
intermediate field representation for the quartic models [22–24]. It was introduced in [26] in a more combinatorial
language for interactions of any order, and further developed in [61]. See also [39] for a pedagogic presentation.
Thanks to this correspondence, we can rewrite arbitrary random tensor models as multi-trace matrix models [26, 61].

Let us describe the bijection Ψ between stranded diagrams G with sextic interactions B1, . . . , Bn, and embedded
diagrams M defined as follows:

• The diagrams have white vertices as shown in Tables I and II, corresponding to the interactions B1, . . . , Bn
under consideration. As represented in these tables, the edges attached to these white vertices carry specific
sets of colors I ⊂ {1, . . . , D}. The ordering of the edges around white vertices is fixed.

• The other extremities of the edges can only be attached to black vertices. There is no restriction on the number
or the kind of edges attached to black vertices. The edges around black vertices are cyclically ordered.

If we take such an embedded diagram M = Ψ(G) and delete all the edges whose sets of colors does not include the
color i, as well as all the isolated white vertices, we obtain a fatgraph Mi equivalent to a ribbon-graph, whose faces
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are in one-to-one correspondence with the faces of color i of G. The interest of this correspondence is thus that we
can use ribbon graphs and matrix models tools to identify the leading orders for random tensor models.

1

112

2

3

3

3

2

T

T T

T̄ T̄

T̄

A

B

C Ψ−→
12

23 13

A

BC
(A1)

From stranded graphs to embedded diagrams. A choice has been made for every interaction, of a pairing of every
tensor T with a T̄ , and this defines the white vertices in Tables I and II. To indicate the pairing in the tables, we
have used the graphical convention (35). The pairs (T, T̄ ) in the stranded graph G correspond to the edges around
the white vertices in Ψ(G). By following alternatively the propagators and the pairs (T, T̄ ) in the stranded graph G,
we partition the pairs (T, T̄ ) into cyclically ordered groups (the propagators are crossed from the T̄ to the T ). All the
edges corresponding to pairs (T, T̄ ) in the same group are connected to a common black vertex in Ψ(G). These edges
are cyclically ordered, due to the ordering of the pairs in (T, T̄ ) in the group. This defines the diagram Ψ(G).

If as a convention the tensor T (resp. T̄ ) leaves on the left (resp. right) of the edge, when seen from the white
vertex, then the propagators in G correspond to the corners around black vertices in Ψ(G), and they are followed
counterclockwise when the propagators are crossed from the T̄ to the T in G. The white vertices in Tables I and II
render the internal colored structure of the stranded interaction : the corners around white vertices inMi correspond
to strands of color i between tensors inside the interaction in G. Moreover, if a color i is not included in the set of
colors of an edge, it means that an edge of color i goes between the two tensors of the corresponding pair (T, T̄ ). Thus
the corners around black vertices inMi also correspond to strands of color i between tensors in G. This explains why
the faces around Mi correspond to faces of color i in G.

1

1

12

2

3

3

3

2

T

T
T

T̄ T̄

T̄

A

B

C

Ψ−→

12

23 13

A

BC
(A2)

From embedded diagrams to stranded graphs. Given an embedded diagram M, replace each white vertex by the
stranded representation, by matching the pairs (T, T̄ ) with the corresponding edges. Be sure to respect the convention
that the T (resp. T̄ ) are on the left (resp. right) of the edge when seen from the white vertex. For every corner around
a black vertex in M, add a propagator between the corresponding T and T̄ in the stranded graph.
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257–320.
[55] J. Ben Geloun and S. Ramgoolam, Counting Tensor Model Observables and Branched Covers of the 2-Sphere, Annales de

l’Institut Henri Poincaré D 1 (2014) 77–138.
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